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Foreword

There is an old idea that the space-time background of the world can
be represented as a continuous medium. Really, the modern mechanics
of a continuum medium uses a similar mathematical basis as General
Relativity, but applied to a three-dimensional physical medium in a flat
three-dimensional space: see the famous four-volume A Course in Con-
tinuum Mechanics by L. I. Sedov∗, or the less-comprehensive Fluid Me-
chanics by L. D. Landau & E. M. Lifshitz†. Why not use this approach
in General Relativity? Namely, — if the space-time curvature is con-
nected with such a continuous material object as the field of gravitation,
why not consider the other geometric properties of the space-time back-
ground in analogy to the physical properties of a continuous medium?
This approach could result in a complete geometric interpretation of
classical mechanics as a result. This idea fired the minds of theoretical
physicists commencing in probably that year when the General Theory
of Relativity was introduced in 1915.

Many prominent theoretical physicists worked on this problem in
the 1930s and 1940s. L. D. Landau and E. M. Lifshitz, A. L. Zelmanov,
A. Lichnérowicz, L. I. Sedov and others were among them. For example,
in 1944, Zelmanov considered the evolution of cosmological models in
Chronometric Invariants‡, where he introduced the space viscosity, the
volume deformation, and the three-dimensional curvature in analogy to
the similar factors in the continuous media mechanics. However this
movement had ended in the 1960s: no full representation of the space-
time as a continuous medium was suggested. I asked Leonid I. Sedov,
on occasion, why this occurred? He answered that there was an insur-
mountable obstacle along the way: many geometric properties of the
space-time did not find respective analogies in the mechanics of a con-
tinuous medium; so only a very partial mathematical analogy between
a continuous medium and the four-dimensional space-time exists.

In this view, this new research done by Pierre A. Millette opens very
promising possibilities for further development of the General Theory of
Relativity. His comprehensive study on this subject is presented here.

∗Sedov L. I. A Course in Continuum Mechanics, Vols I–IV. Wolters-Noordhoff
Publ., 1971.

†Landau L. D. & Lifshitz E. M. Fluid Mechanics. Pergamon Press, 1959.
‡Zelmanov A. L. Chronometric Invariants: On Deformations and the Curvature

of Accompanying Space. American Research Press, 2006.



10 Foreword

Because so many new developments are contained in his book, I would
recommend to read it chapter-by-chapter from the very beginning.

The key idea realized by the author of this book, Pierre A. Millette,
is that the space strains are somehow connected with the space-time
curvature. He then has supported this idea by an elegant mathematical
solution, based on a plain decomposition of any 2nd rank symmetric
tensor into two parts, named the dilatation-distortion decomposition.
So forth, applying the decomposition to the energy-momentum stress
tensor and to the Ricci tensor, he has demonstrated how the volume
dilatation results in the rest-mass energy density, while the volume de-
formation results in the space-time curvature and, thus, gravitation and
the gravitational field energy. So forth, he actually resolved the old-time
discussion that was so popular among the relativists commencing in the
1960s: whether gravitational waves are the waves of the space-time cur-
vature or the waves of the volume deformation of space? Now, looking
at Millette’s results, we see that this question was an actual tautology,
because the one results in the other, and vice versa.

The same decomposition is then applied to the symmetric term of
the electromagnetic field tensor, thus resulting in the “strained” elec-
tromagnetic field theory, with many interesting sequences.

Among the other derived results, which are many in the book (all
developed on the same basis of the aforementioned decomposition), I
would emphasise the elastic volume force, the quantum mechanical vol-
ume force, the linear and rotational defects of the space-time, the space-
time dislocations and disclinations, the wave function and the basics of
quantum mechanics that takes the aforementioned decomposition and
its sequences into account, the particle physics which, in the framework
of the theory, associates known types of the elementary particles with
respective defects of the space-time. . . All these and other problems are
explained in the other chapters of the book.

As a result, I see that Pierre A. Millette has created an absolutely
original extension of Einstein’s version of the General Theory of Relativ-
ity. This extension, having the same Riemannian basis as the “classical”
General Relativity, meanwhile provides the closest analogy between the
space-time background and a continuous medium.

I therefore very much hope that the Spacetime Continuum Elasto-
dynamics — the new extension of the “classical” General Theory of
Relativity — will turn, again, the attention of scientists to the space-
time analogy with a continuous medium. This new extension clearly
shows that the General Theory of Relativity in its “classical form” in-
troduced already by Einstein is not something fossilized but still is a
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wide field for further development and extensions even without the use
of extra-dimensions or modifications of the Riemannian mathematical
basis.

Puschino, November 16, 2016 Dmitri Rabounski

Editor-in-Chief

Progress in Physics





Preface

This book is about spacetime physics, in particular as it concerns grav-
itation, electromagnetism and quantum physics. The purpose of this
book is to lay the theoretical foundations of the Elastodynamics of
the Spacetime Continuum, allowing physicists to study and perform
research in this new area of spacetime physics.

This second edition of the book includes the new research results
developed over the last two years:

– clarification of special relativistic concepts in Chapter 2;

– enhanced analysis of the origin of inertial mass in the spacetime
continuum in Chapter 5;

– clarification of dislocation and disclination defects in Chapters 9
and 10;

– detailed analysis of quantum entanglement in Chapter 13;

– enhanced identification of quantum particles and their associated
spacetime defects in Chapter 18;

– identification of the electroweak interaction in Chapter 18;

– explanation of QED mass renormalization, vacuum polarization
and self-energies in STCED in Chapter 18.

In addition, known typos and other errata have been corrected and some
figures have been improved.

As mentioned in the copyright notice, this book is published and
distributed in agreement with the Budapest Open Initiative [299], as
is open-access journal Progress in Physics which publishes papers on
advanced studies in theoretical and experimental physics, including re-
lated themes from mathematics. I am grateful to Progress in Physics
and Editor-in-Chief Dr. Dmitri Rabounski for being available to inde-
pendent scientists to publish their work, independently of the pressures
from academia for conformance to the mainstream of physics. This has
resulted in a fruitful collaboration with the journal.

A note on continuum mechanics terminology. The subject
matter covered in this book covers many fields of physics, including gen-
eral relativity, electromagnetism, quantum theory, elasticity and con-
tinuum mechanics. The terminology used in the literature is in general
consistent across the different fields.

However, there are some differences within continuum mechanics, in
particular with respect to defect theory, where there are some inconsis-
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tencies in the terminology used in the literature. This is not surprising
given that the development of defect theory was initiated in the twenti-
eth century and is still an area of active research. We will point out the
inconsistencies in the relevant sections of the book as the terminology is
encountered. A glossary of the self-consistent physical symbols used in
this book is included at the end of the book (see page 379) to facilitate
the reading of this book.

A note on spacetime continuum constants. Note that in this
book, we denote the STCED spacetime continuum constants with a
diacritical mark over the symbols (for example κ̄0, λ̄0, µ̄0, ρ̄0) to differ-
entiate them from similar symbols used in other fields of physics. This
allows us to retain existing symbols such as µ0 for the electromagnetic
permeability of free space, compared to the Lamé elastic constant µ̄0

used to denote the spacetime continuum shear modulus.
A note on units and constants in equations. In general rel-

ativity and in quantum electrodynamics, it is customary to use “ge-
ometrized units” and “natural units” respectively, where the principal
constants are set equal to 1. The use of these units facilitates calcula-
tions since cumbersome constants do not need to be carried throughout
derivations. However, the absence of constants also obscures the physics
of the equations. In this book, all constants are retained in the deriva-
tions, to provide physical insight into the nature of the equations under
development.

In addition, we use rationalized MKSA units (Système Interna-
tional) for electromagnetism, as the traditionally used Gaussian units
are gradually being replaced by rationalized MKSA units in more recent
textbooks (see for example [17]).

With these clarifications, we are now ready to tackle the Elastody-
namics of the Spacetime Continuum.

Ottawa, July 30, 2019 Pierre A. Millette



Chapter 1

Strained Spacetime

§1.1 Properties of the spacetime continuum

The publication of the General Theory of Relativity (GTR) by Albert
Einstein in 1915 [97] was a watershed moment in our understanding
of spacetime and gravitation. This led to an ever growing cascade of
research and publications that continues unabated to this day. Einstein
himself spent his last forty years of research until his death in 1955
working mostly on his search for a unified field theory of gravitation
and electromagnetism.

General relativity is essentially a theory of the geometry of space-
time, which is generated by the energy-momentum present in spacetime.
Gravitation is then simply the effect of that geometry on the masses
present in spacetime. This can be represented as

Gravitation

6

STC Geometry

6

Energy-momentum

Mathematically, this is described by the deceptively compact Ein-
stein field equations

Gµν = −κ Tµν (1.1)

where Gµν is the Einstein tensor describing the geometry of spacetime,
Tµν represents the energy-momentum in the spacetime and κ = 8πG/c4

where G is the gravitational constant and c is the speed of light. The
above equation actually represents 16 separate non-linear coupled par-
tial differential equations, which belies the simplicity and elegance of
(1.1).

Unlike Einstein, who was searching for a spacetime geometrical de-
scription of his unified field theory, in this book, we consider the physics
of the spacetime continuum, to develop a theory that brings gravitation,
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electromagnetism and quantum physics under one umbrella description
providing a new theory of spacetime physics. This provides an alternate
perspective to the problem of describing the dynamics of the spacetime
continuum (STC ), separate from the geometrical description pursued
over the last one hundred years of GTR. This perspective derives from
general relativity, starting with the Einstein field equations (1.1), and
leads us to understand the geometrical description of GTR.

§1.1.1 Stresses and strains in the spacetime continuum

The first inkling that there is more to spacetime than just its geometry,
is the representation of the energy-momentum in Einstein’s field equa-
tions (1.1) above: Tµν is called the energy-momentum stress tensor.
The word stress implies that forces are being applied to the space-
time continuum by the energy-momentum present in its structure. At
the same time, this also implies that spacetime is indeed a continuum
that is warped by the presence of energy-momentum. From continuum
mechanics, we know that the application of stresses to the spacetime
continuum must result in strains in its structure, hence the terminology
strained spacetime. We will derive this result in the next section §1.2.

The deformation of the spacetime continuum is a physical process,
as shown by the deflection of light by the sun. Einstein in defending his
theory in 1918 stated [98]:

Whereas according to the special theory of relativity a part of
space without matter and without electromagnetic field seems
to be completely empty, that is to say not characterised by any
physical properties, according to the general theory of relativity
even space that is empty in this sense has physical properties.

More than forty years later, in 1952, Einstein wrote in Appendix V,
Relativity and the Problem of Space, of his book on Relativity [99]:

There is no such thing as an empty space, i.e. a space without
field. Space-time does not claim existence on its own, but only
as a structural quality of the field.

Einstein, throughout his search for a unified field theory of the gravi-
tational and electromagnetic fields after the publication of his General
Theory of Relativity, recognized that spacetime has physical properties
of its own [204]. Hence general relativity implicitly leads us to the real-
ization that the spacetime continuum must be a deformable continuum,
where the deformations are physical in nature.

The assignment of physical dynamic properties to the spacetime of
general relativity has been considered previously. For example, Sakha-
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rov [312] considers a “metrical elasticity” of space in which generalized
forces oppose the curving of space. Blair [27, p. 3–4] notes the very large
value of the proportionality constant in the inverse of (1.1). This leads
him to point out that spacetime is an elastic medium that can sup-
port waves, but its extremely high stiffness means that extremely small
amplitude waves have a very high energy density. He notes that the
coupling constant c4/8πG can be considered as a modulus of elasticity
for spacetime, and identifies the quantity c3/G with the characteris-
tic impedance of spacetime [27, p. 45]. Tartaglia et al have recently
explored strained spacetime in the cosmological context, as an exten-
sion of the spacetime Lagrangian to obtain a generalized Einstein equa-
tion [341,342].

The physical properties of the spacetime continuum can be traced
into other areas of physical theory. The vacuum of electromagnetic the-
ory can also be identified with the spacetime continuum. This vacuum
has various physical properties such as the characteristic impedance of
the vacuum Z0 = 376.73 Ω, the electromagnetic permittivity of the vac-
uum ε0 = 8.854× 10−12 F m−1, the electromagnetic permeability of the
vacuum µ0 = 12.566 × 10−7 N A−2 and the speed of electromagnetic
waves in vacuo c = 2.998 × 108 m s−1. These are physical electromag-
netic properties of the spacetime continuum observed during physical
electromagnetic processes in the vacuum of space that hint at a connec-
tion between general relativity and electromagnetism via the spacetime
continuum.

At the other end of the distance scale, we encounter the vacuum
of quantum physics [30, 255, 256]. The vacuum of quantum electrody-
namics is characterized by a constant creation/annihilation of (virtual)
particles, corresponding to the state of constant vibration of the space-
time continuum due to its energy-momentum content. The quantum
vacuum also provides a physical framework for various quantum effects
such as vacuum polarization, zero-point energy, the Casimir force, the
Aharonov-Bohm effect, and is the seat of physical quantum processes in
the vacuum that again hint at a connection between general relativity
and quantum physics via the spacetime continuum. The omnipresent
quantum vacuum is in effect the spacetime continuum, seen from up
close, with its microscopic properties made more evident by the micro-
scopic scale of quantum phenomena.

In all of these cases, from the macroscopic to the microscopic, the
spacetime continuum is not an empty canvas, but rather has physical
properties of its own. It is understandable that physicists and mathe-
maticians (not to mention philosophers) do not all have the same per-
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spective on the emptiness of the vacuum (see [32,314]). One can always
create an empty underlying mathematical structure used to “measure”
the deviations of the spacetime continuum from a reference state, but
there is no doubt that the spacetime continuum of physical theory is
characterized by physical dynamic properties.

§1.1.2 Deformations of the spacetime continuum

Recognizing that the spacetime continuum of general relativity is a de-
formable continuum leads to a different approach to characterize the
dynamics of the spacetime continuum. As seen in section §1.1.1, the
energy-momentum stress tensor leads to strains in the spacetime con-
tinuum and the strains result in the displacement of the elements of the
spacetime continuum from equilibrium, corresponding to the spacetime
continuum (STC ) deformations. The spacetime continuum itself is the
medium that supports those deformations and is consequently deformed
by the energy-momentum in its structure. This can be represented as

STC Deformations

6

Energy-momentum

The methods of continuum mechanics applied to the spacetime con-
tinuum are used for the analysis of the STC deformations in four dimen-
sions. This allows us to study the behaviour of the spacetime contin-
uum at a local level, as it is being deformed by the presence of energy-
momentum. The analysis can be defined both for small infinitesimal
deformations and for large finite deformations.

The combination of all STC deformations generates the geometry
of the spacetime continuum used in general relativity. The geometry of
the spacetime continuum of general relativity resulting from the energy-
momentum stress tensor can thus be seen to be a representation of the
deformations of the spacetime continuum resulting from the strains gen-
erated by the energy-momentum stress tensor. And as before, gravita-
tion is then simply the effect of that geometry on the masses present in
spacetime.

The analysis of STC deformations is thus seen to be an additional
layer of details in our understanding of the dynamics of the spacetime
continuum. Consequently, general relativity must be used in combina-
tion with continuum mechanics for a complete description of the dy-
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namics of the spacetime continuum, from the microscopic to the macro-
scopic. This can be represented as

Gravitation

6

STC Geometry

6

STC Deformations

6

Energy-momentum

This theory is referred to as the Elastodynamics of the Spacetime
Continuum (STCED) (see Millette [238–246]). In this theory, the space-
time continuum is analyzed within the framework of continuum me-
chanics and general relativity. Hence, while general relativity can be
described as a top-down theory of the spacetime continuum, the Elasto-
dynamics of the Spacetime Continuum can be described as a bottom-up
theory of the spacetime continuum. STCED provides a fundamental
description of the processes underlying the dynamics of the spacetime
continuum.

Given that the combination of all deformations present in the space-
time continuum generates its geometry, STCED thus provides a de-
scription complementary to that of general relativity. While GTR is
concerned with modeling the resulting geometry of the spacetime contin-
uum, STCED is used to analyze the deformations generating that geom-
etry. General relativity is thus the theory used to provide a macroscopic,
large-scale description of the spacetime continuum, while STCED is
used to provide a microscopic, small- to intermediate-scale description
of the fundamental spacetime continuum processes, reaching down to
the quantum level. The unification of general relativity and quantum
physics is accomplished via STCED, the theory of the Elastodynamics
of the Spacetime Continuum.

§1.2 Strained spacetime and the natural decomposition of the
spacetime metric tensor

We start by demonstrating from first principles that spacetime is strai-
ned by the presence of mass. In addition, we find that this provides a
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natural decomposition of the spacetime metric tensor of general relativ-
ity into a background and a dynamical part, and of spacetime tensor
fields, both of which are still unresolved and are the subject of contin-
uing investigations (see for example [60, 61, 81, 207, 334]). We find that
the presence of mass results in strains in the spacetime continuum, and
that those strains correspond to the dynamical part of the spacetime
metric tensor.

In section §1.1.1, we noted that the energy-momentum stress tensor
leads to strains in the spacetime continuum, and we mentioned that we
would derive this result in this section. This we accomplish by using
the time-honoured tradition in physics of analyzing such problems by
introducing test objects, in this case a test mass, into a well-understood
situation, and evaluating the consequences of this action. As a result,
we will also solve a long-standing problem of general relativity.

There is no straightforward definition of local energy density of the
gravitational field in general relativity [362, see p. 84, p. 286] [60, 181,
337]. This arises because the spacetime metric tensor includes both
the background spacetime metric and the local dynamical effects of the
gravitational field. No natural way of decomposing the spacetime metric
tensor into its background and dynamical parts is known.

In this section, we propose a natural decomposition of the space-
time metric tensor into a background and a dynamical part. We also
demonstrate that the energy-momentum stress tensor generates strains
in the spacetime continuum. This is derived from first principles by
introducing a test mass in the spacetime continuum described by the
background metric, and calculating the effect of this test mass on the
metric.

Consider the diagram of Figure 1.1. Points A and B of the spacetime
continuum, with coordinates xµ and xµ+dxµ respectively, are separated
by the infinitesimal line element

ds2 = gµν dx
µdxν (1.2)

where gµν is the metric tensor describing the background state of the
spacetime continuum.

We now introduce a test mass in the spacetime continuum and ex-
amine the consequences of this action. This results in the displacement
of point A to Ã, where the displacement is written as uµ. Similarly, the
displacement of point B to B̃ is written as uµ + duµ. The infinitesimal

line element between points Ã and B̃ is given by d̃s
2
.

By reference to Figure 1.1, the infinitesimal line element d̃s
2

can be
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Figure 1.1: Effect of a test mass on the background metric tensor
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expressed in terms of the background metric tensor as

d̃s
2

= gµν(dxµ + duµ)(dxν + duν). (1.3)

Multiplying out the terms in parentheses, we get

d̃s
2

= gµν(dxµdxν + dxµduν + duµdxν + duµduν). (1.4)

Expressing the differentials du as a function of x, this equation becomes

d̃s
2

= gµν(dxµdxν + dxµ uν ,α dx
α + uµ,α dx

αdxν+

+uµ,α dx
α uν ,β dx

β)
(1.5)

where the comma (,) denotes partial differentiation. Rearranging the
dummy indices, this expression can be written as

d̃s
2

= (gµν + gµα u
α
,ν + gαν u

α
,µ + gαβ u

α
,µu

β
,ν) dxµdxν (1.6)

and lowering indices, the equation becomes

d̃s
2

= (gµν + uµ,ν + uν,µ + uα,µuα,ν) dxµdxν . (1.7)
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The expression (uµ;ν+uν;µ+uα;µuα;ν) is equivalent to the definition
of the strain tensor εµν of continuum mechanics. The strain εµν is
expressed in terms of the displacements uµ of a continuum through the
kinematic relation [320, see p. 149] [126, see pp. 23–28]:

εµν = 1
2 (uµ;ν + uν;µ + uα;µuα

;ν) (1.8)

where the semicolon (;) denotes covariant differentiation. Substituting
for εµν from (1.8) into (1.7), we get

d̃s
2

= (gµν + 2 εµν) dxµdxν . (1.9)

Setting [126, see p. 24]

g̃µν = gµν + 2 εµν (1.10)

then (1.9) becomes

d̃s
2

= g̃µν dx
µdxν (1.11)

where g̃µν is the metric tensor describing the spacetime continuum with
the test mass.

From (1.9) and (1.2), we obtain

d̃s
2

= ds2 + 2 εµν dx
µdxν . (1.12)

The change in the line element resulting from the generated strains is
then given by

1
2

(
d̃s

2
− ds2

)
= εµν dx

µdxν . (1.13)

Given that gµν is the background metric tensor describing the back-
ground state of the continuum, and g̃µν is the spacetime metric tensor
describing the final state of the continuum with the test mass, then 2 εµν
must represent the dynamical part of the spacetime metric tensor due
to the test mass:

gdynµν = 2 εµν (1.14)

with a corresponding line element

ds2
dyn = 2 εµν dx

µdxν . (1.15)

We are thus led to the conclusion that applied stresses due to the
presence of energy-momentum result in strains in the spacetime contin-
uum. Those strains correspond to the dynamical part of the spacetime
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metric tensor. In addition, we obtain a natural way of decomposing
the spacetime metric tensor into a background spacetime metric and
a dynamical part corresponding to the local dynamical effects of the
gravitational field, given by twice the strain tensor.

It is important to note that these results also apply to the spacetime
of general relativity.

§1.3 Decomposition of tensor fields in strained spacetime

In this section, we consider the decomposition of spacetime tensor fields
of rank 2. As opposed to vector fields which can be decomposed into
longitudinal (irrotational) and transverse (solenoidal) components us-
ing the Helmholtz representation theorem [320, see pp. 260–261], the
decomposition of spacetime tensor fields can be done in many ways (see
for example [61,81,207,334]).

The application of continuum mechanics to the spacetime continuum
offers a natural decomposition of tensor fields, in terms of dilatations
and distortions [126, see pp. 58–60]∗. A dilatation corresponds to a
change of volume of the spacetime continuum without a change of shape
while a distortion corresponds to a change of shape of the spacetime
continuum without a change in volume. As we will see in Chapter
2, dilatations correspond to longitudinal displacements and distortions
correspond to transverse displacements of the elements of the spacetime
continuum [320, see p. 260].

The strain tensor εµν can thus be decomposed into a strain deviation
tensor eµν (the distortion) and a scalar es (the dilatation) according
to [126, see pp. 58–60]:

εµν = eµν + esg
µν (1.16)

where
eµν = εµν − esδµν (1.17)

es = 1
4 ε

α
α = 1

4 ε. (1.18)

Similarly, the energy-momentum stress tensor Tµν is decomposed
into a stress deviation tensor tµν and a scalar ts according to

Tµν = tµν + tsg
µν (1.19)

where similarly
tµν = Tµν − tsδµν (1.20)

∗see footnote on page 26 on the terminology used.
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ts = 1
4 T

α
α = 1

4 T. (1.21)

This decomposition of spacetime tensor fields of rank 2 in terms
of dilatation and distortion components allows us to also decompose
relations involving these tensor fields into separate dilatation and dis-
tortion relations. We will apply this decomposition to the Ricci tensor
in section §2.4 once the basis of the theory of the Elastodynamics of the
Spacetime Continuum has been developed in the next Chapter 2.

§1.4 The physicality of four-dimensional spacetime

Minkowski [257, 288] first introduced the concept of a four-dimensional
spacetime and the description of particles in this spacetime as worldlines
in 1908. This has given rise to the question whether four-dimensional
spacetime is real or a mathematical abstraction. Eddington [288] con-
sidered this question in 1921:

It was shown by Minkowski that all these fictitious spaces and
times can be united in a single continuum of four dimensions.
The question is often raised whether this four-dimensional space-
time is real, or merely a mathematical construction; perhaps it
is sufficient to reply that it can at any rate not be less real than
the fictitious space and time which it supplants.

Petkov [287, 288] provides a cogent summary of Minkowski’s paper.
Worldlines of particles at rest are vertical straight lines in a space−ct
diagram, while particles moving at a constant velocity v are oblique
lines and accelerated particles are curved lines. This provides a physi-
cal explanation for length contraction as a manifestation of the reality
of a particle’s extended worldline, where the cross-section measured
by an observer moving relative to it (i.e. at an oblique line in the
space−ct diagram), creates the difference in perceived length between
a body at rest and one in movement. This is explored in greater de-
tail in section §2.6.2. Minkowski’s work demonstrates the physicality of
four-dimensional spacetime, and that indeed, four-dimensional physics
is spacetime geometry.



Chapter 2

Spacetime Continuum Elastodynamics
(STCED)

§2.1 Model of the spacetime continuum

In this chapter, we derive the Elastodynamics of the Spacetime Contin-
uum by applying continuum mechanical results to strained spacetime.
Based on this model, a stress-strain relation is derived for the spacetime
continuum. We apply that stress-strain relation to show that rest-mass
energy density arises from the volume dilatation of the spacetime con-
tinuum. Then we apply the natural decomposition of tensor fields in
strained spacetime, in terms of dilatations and distortions, to the Ricci
tensor of general relativity, and conclude with a demonstration of the
relation between general relativity and STCED.

The model of the spacetime continuum used in the theory of the Elas-
todynamics of the Spacetime Continuum is an extension of the general
relativistic spacetime continuum based on continuum mechanics. The
spacetime continuum is modelled as a four-dimensional differentiable
manifold endowed with a metric gµν . It is a continuum that can un-
dergo deformations and support the propagation of such deformations.
A continuum that is deformed is strained.

An infinitesimal element of the unstrained continuum is character-
ized by a four-vector xµ, where µ = 0, 1, 2, 3. The time coordinate is
x0 ≡ ct.

A deformation of the spacetime continuum corresponds to a state
of the spacetime continuum where its elements are displaced from their
unstrained positions∗. Under deformation, an infinitesimal element at
xµ is displaced to a new position xµ +uµ, where uµ is the displacement
of the infinitesimal element from its unstrained position xµ.

The spacetime continuum is approximated by a deformable linear
elastic medium that obeys Hooke’s law. For a general anisotropic con-
tinuum in four dimensions [126, see pp. 50–53],

Eµναβ εαβ = Tµν (2.1)

∗As used in most continuum mechanics textbooks (see for example [57,144]).
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where εαβ is the strain tensor, Tµν is the energy-momentum stress ten-
sor, and Eµναβ is the elastic moduli tensor.

The spacetime continuum is further assumed to be isotropic and ho-
mogeneous. This assumption is in agreement with the conservation laws
of energy-momentum and angular momentum as expressed by Noether’s
theorem [189, see pp. 23–30]. For an isotropic medium, the elastic mod-
uli tensor simplifies to [126]:

Eµναβ = λ̄0(gµνgαβ) + µ̄0(gµαgνβ + gµβgνα) (2.2)

where λ̄0 and µ̄0 are the Lamé elastic constants of the spacetime con-
tinuum. µ̄0 is the shear modulus (the resistance of the continuum to
distortions) and λ̄0 is expressed in terms of κ̄0, the bulk modulus (the
resistance of the continuum to dilatations) according to

λ̄0 = κ̄0 − µ̄0/2 (2.3)

in a four-dimensional continuum.
The relation between κ, and µ and λ in N dimensions is given by

[199, p. 769]

κ =
2µ+Nλ

N
. (2.4)

Another elastic constant that is used in the literature is Poisson’s ratio
ν given by [199, p. 770]

ν =
λ

2µ+ (N − 1)λ
. (2.5)

We do not use Poisson’s ratio in this book, but this relation may be
needed when converting equations from the literature.

A dilatation, given by the divergence of the displacements, corre-
sponds to a change of volume of the spacetime continuum without a
change of shape∗ while a distortion, given by the gradient of the dis-
placements, corresponds to a change of shape (shear) of the spacetime
continuum without a change in volume†. As we saw in §1.3, spacetime
tensor fields can be decomposed in terms of dilatation and distortion

∗As used in all continuum mechanics textbooks.
†As used for example in [77, 126, 216]. This is one of the terms where there

are other definitions given by some authors in defect theory. For example, Volterra
[360], in his study of elastic deformations of multiply-connected solids in 1907 called
them distortions (also used by [297] in his extension of Volterra’s work), but that
terminology was subsequently changed to dislocations and disclinations.
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components which allows us to also decompose relations involving these
tensor fields into separate dilatation and distortion relations.

We remind the reader that in this book, we denote the STCED
spacetime continuum constants κ̄0, λ̄0, µ̄0, ρ̄0 with a diacritical mark
over the symbols to differentiate them from similar symbols used in
other fields of physics. This allows us to retain existing symbols such
as µ0 for the electromagnetic permeability of free space, compared to
the Lamé elastic constant µ̄0 used to denote the spacetime continuum
shear modulus.

§2.2 Stress-strain relation of the spacetime continuum

The introduction of strains in the spacetime continuum as a result of
the energy-momentum stress tensor allows us to use by analogy results
from continuum mechanics, in particular the stress-strain relation, to
provide a better understanding of strained spacetime. The stress-strain
relation is a characteristic of a continuum, and for a linear elastic con-
tinuum obeying Hooke’s law, the stress-strain relation is linear. One
of the consequences of linearity is that the principle of superposition is
applicable, as observed in physical laws [305].

By substituting (2.2) into (2.1), we obtain the stress-strain relation
for an isotropic and homogeneous spacetime continuum

2µ̄0ε
µν + λ̄0g

µνε = Tµν (2.6)

where

ε = εαα (2.7)

is the trace of the strain tensor obtained by contraction. The volume
dilatation ε is defined as the change in volume per original volume [320,
see pp. 149–152] and is an invariant of the strain tensor.

It is interesting to note that the structure of (2.6) is similar to that
of the field equations of general relativity, viz.

Rµν − 1
2 g

µνR = −κ Tµν (2.8)

where κ = 8πG/c4 and G is the gravitational constant. This strength-
ens our conjecture that the geometry of the spacetime continuum can
be seen to be a representation of the deformations of the spacetime con-
tinuum resulting from the strains generated by the energy-momentum
stress tensor. We will come back to the relation between STCED and
general relativity in section §2.5 in this chapter.
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Using (1.16) to (1.21) into the strain-stress relation of (2.6) and mak-
ing use of (2.10) and (2.3), we obtain separated dilatation and distortion
relations respectively:

dilatation : ts = 2(µ̄0 + 2λ̄0)es = 4κ̄0es = κ̄0ε

distortion : tµν = 2µ̄0e
µν .

(2.9)

The distortion-dilatation decomposition is evident in the dependence of
the dilatation relation on the bulk modulus κ̄0 and of the distortion
relation on the shear modulus µ̄0. The dilatation relation of (2.9) corre-
sponds to rest-mass energy as we will see in the next section §2.3, while
the distortion relation is traceless and thus massless, and corresponds
to shear transverse waves.

This decomposition of spacetime continuum deformations into a
massive dilatation and a massless transverse wave distortion provides a
mechanism for wave-particle duality. This could explain why dilatation-
measuring apparatus measure the massive “particle” properties of the
deformation, while distortion-measuring apparatus measure the mass-
less transverse “wave” properties of the deformation. Wave-particle
duality will be considered in more details in Chapter 12.

§2.3 Rest-mass energy relation

We now derive a relation for rest-mass energy density that clarifies the
nature of mass in the spacetime continuum of STCED. As derived in
(2.6), the stress-strain relation for an isotropic and homogeneous space-
time continuum can be written as:

2µ̄0ε
µν + λ̄0g

µνε = Tµν .

The contraction of (2.6) yields the relation

2(µ̄0 + 2λ̄0)ε = Tαα ≡ T. (2.10)

The time-time component T 00 of the energy-momentum stress tensor
represents the total energy density given by [279, see pp. 37–41]

T 00(xk) =

∫
d3pEp f(xk,p) (2.11)

where Ep = (ρ2c4 + p2c2)1/2, ρ is the rest-mass energy density, c is the
speed of light, p is the momentum 3-vector and f(xk,p) is the distri-
bution function representing the number of particles in a small phase
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space volume d3x d3p. The space-space components T ij of the energy-
momentum stress tensor represent the stresses within the medium given
by

T ij(xk) = c2
∫
d3p

pipj

Ep
f(xk,p) . (2.12)

They are the components of the net force acting across a unit area of a
surface, across the xi planes in the case where i = j. In the simple case
of a particle, they are given by [92, see p. 117]

T ii = ρ vivi (2.13)

where vi are the spatial components of velocity. If the particles are
subjected to forces, these stresses must be included in the energy-
momentum stress tensor.

Explicitly separating the time-time and the space-space components,
the trace of the energy-momentum stress tensor is written as

Tαα = T 0
0 + T ii . (2.14)

Substituting from (2.11) and (2.12), using the Minkowski metric ηµν of
signature (+ – – –), we obtain:

Tαα(xk) =

∫
d3p

(
Ep −

p2c2

Ep

)
f(xk,p) (2.15)

which simplifies to

Tαα(xk) = ρ2c4
∫
d3p

f(xk,p)

Ep
. (2.16)

Using the relation [279, see p. 37]

1

Ehar(xk)
=

∫
d3p

f(xk,p)

Ep
(2.17)

in equation (2.16), we obtain the relation

Tαα(xk) =
ρ2c4

Ehar(xk)
(2.18)

where Ehar(x
k) is the Lorentz invariant harmonic mean of the energy

of the particles at xk.
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In the harmonic mean of the energy of the particles Ehar, the mo-
mentum contribution p will tend to average out and be dominated by
the mass term ρc2, so that we can write

Ehar(x
k) ' ρc2 . (2.19)

Substituting for Ehar in (2.18), we obtain the relation

Tαα(xk) ' ρc2 . (2.20)

The total rest-mass energy density of the system is obtained by inte-
grating over all space:

Tαα =

∫
d3x Tαα(xk) . (2.21)

The expression for the trace derived from (2.14) depends on the
composition of the sources of the gravitational field. Considering the
energy-momentum stress tensor of the electromagnetic field, we can
show that Tαα = 0 as expected for massless photons, while

T 00 =
ε0
2

(
E2 + c2B2

)
is the total energy density, where ε0 is the electromagnetic permittivity
of free space, and E and B have their usual significance (see section
§5.3).

Hence Tαα corresponds to the invariant rest-mass energy density
and we write

Tαα = T = ρc2 (2.22)

where ρ is the rest-mass density. Using (2.22) into (2.10), the relation
between the invariant volume dilatation ε and the invariant rest-mass
energy density becomes

2(µ̄0 + 2λ̄0)ε = ρc2 (2.23)

or, in terms of the bulk modulus κ̄0,

ρc2 = 4κ̄0 ε . (2.24)

This equation demonstrates that rest-mass energy density arises
from the volume dilatation of the spacetime continuum. The rest-mass
energy is equivalent to the energy required to dilate the volume of the
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spacetime continuum. It is a measure of the energy stored in the space-
time continuum that is perceived as mass. The volume dilatation is an
invariant, as is the rest-mass energy density.

This is an important result as it demonstrates that mass is not in-
dependent of the spacetime continuum, but rather mass is part of the
spacetime continuum fabric itself. As we will see in Chapter 3, mass re-
sults from the dilatation of the spacetime continuum in the longitudinal
propagation of energy-momentum in the spacetime continuum. Matter
does not warp spacetime, but rather, matter is warped spacetime (i.e.
dilated spacetime). The universe consists of the spacetime continuum
and energy-momentum that propagates in it by deformation of its (i.e.
STC ) structure.

Another important consequence of this relation is that it provides
a definition of mass. The definition of mass is still one of the open
questions in physics, with most authors adopting an indirect definition
of mass based on the ratio of force to acceleration [178, see Chapter 8].
However, mass is one of the fundamental dimensions of modern systems
of units, and as such, should be defined directly, not indirectly. This is
a reflection of the current lack of understanding of the nature of mass in
modern physics. STCED provides a direct physical definition of mass:
mass is the invariant change in volume of spacetime in the longitudinal
propagation of energy-momentum in the spacetime continuum.

§2.4 Dilatation-distortion decomposition of the Ricci
tensor

In this section, we apply the natural decomposition of spacetime contin-
uum tensor fields, based on the continuum mechanical decomposition
of tensors in terms of dilatations and distortions, to the Ricci tensor
used in general relativity. From this, we will show that this results in
a separation of the field equations of general relativity into a dilatation
relation and a distortion relation. We will then evaluate these equations
in the weak field approximation to show that the longitudinal dilatation
mass relation leads to Poisson’s equation for a newtonian gravitational
potential, and that the transverse distortion wave relation leads to the
linearized field equation of gravity in the Transverse Traceless gauge.
Hence the results derived in STCED also apply to general relativity.

As shown in section §1.3, the stress tensor Tµν of general relativity
can be separated into a stress deviation tensor tµν and a scalar ts ac-
cording to (1.19), (1.20) and (1.21). The Ricci curvature tensor Rµν can
also be separated into a curvature deviation tensor rµν (corresponding
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to a distortion) and a scalar rs (corresponding to a dilatation) according
to

Rµν = rµν + rs g
µν (2.25)

where similarly
rµν = Rµν − rs δµν (2.26)

rs = 1
4 R

α
α = 1

4 R (2.27)

where R is the contracted Ricci curvature tensor.
Using (1.19) to (1.21) and (2.25) to (2.27) into the field equations of

general relativity [362, see p. 72],

Rµν − 1
2 g

µνR = −κTµν (2.28)

where again κ = 8πG/c4 and G is the gravitational constant, we obtain
a separation of the field equations of general relativity into dilatation
and distortion relations respectively:

dilatation : rs = −κ ts

distortion : rµν = κ tµν .
(2.29)

The dilatation relation of (2.29) can also be expressed as

R = −κ T. (2.30)

The distortion-dilatation separation of tensor fields is thus also ap-
plicable to the field equations of general relativity, resulting in separated
dilatation and distortion relations. This result follows from the geom-
etry of the spacetime continuum used in general relativity being gen-
erated by the combination of all deformations present in the spacetime
continuum as seen previously.

§2.4.1 Weak field approximation

We now evaluate these separated field equations (2.29) in the weak field
approximation to show that these relations satisfy the massive longitu-
dinal dilatation and massless transverse distortion results of STCED.

In the weak field approximation [258, see pp. 435–441], the metric
tensor gµν is written as gµν = ηµν +hµν where ηµν is the flat spacetime
diagonal metric with signature (+ – – –) and |hµν | � 1. The connection
coefficients are then given by

Γµαβ = 1
2 η

µν(hαν,β + hβν,α − hαβ,ν) (2.31)
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or, after raising the indices,

Γµαβ = 1
2 (hα

µ
,β + hβ

µ
,α − hαβ,µ). (2.32)

The Ricci tensor is also linearized to give

Rµν = Γαµν,α − Γαµα,ν (2.33)

which becomes

Rµν = 1
2 (hµ

α
,να + hν

α
,µα − hµν,αα − hαα,µν). (2.34)

The contracted Ricci tensor

R = gµνRµν ' ηµνRµν (2.35)

then becomes

R = 1
2 η

µν(hµ
α
,να + hν

α
,µα − hµν,αα − hαα,µν) (2.36)

which, after raising the indices and re-arranging the dummy indices,
simplifies to

R = hαβ,αβ − hαα,ββ . (2.37)

§2.4.2 Dilatation (mass) relation

Making use of (2.37) and (2.27) into the dilatation relation (2.30), we
obtain the longitudinal dilatation mass relation

hαα,β
β − hαβ,αβ = κT (2.38)

and, substituting for κ from (2.28) and T = ρc2 from (2.22),

∇2hαα − ∂α∂βhαβ =
8πG

c2
ρ (2.39)

where ρ is the rest-mass density. This equation is shown to lead to
Poisson’s equation for a newtonian gravitational potential in the next
section.

The second term of (2.39) would typically be set equal to zero using
a gauge condition analogous to the Lorenz condition [258, see p. 438].
However, the second term is a divergence term, and it should not be set
equal to zero in the general case where sources may be present.
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§2.4.3 Static newtonian gravitational field

We consider the metric perturbation [258, see pp. 412–416]

h00 = −2Φ/c2

hii = 0, for i = 1, 2, 3
(2.40)

where Φ is a static (i.e. time independent) newtonian gravitational
field. Then the term

hαβ,αβ = h00
,00 = 0 (2.41)

and (2.38) becomes
∇2h0

0 = κT. (2.42)

Using h00 from (2.40) and κ from (2.28), (2.42) becomes

∇2Φ =
4πG

c2
T. (2.43)

Substituting for T = ρc2 from (2.22), we obtain

∇2Φ = 4πGρ (2.44)

where ρ is the mass density. This equation is Poisson’s equation for a
newtonian gravitational potential.

§2.4.4 Distortion (wave) relation

Combining (2.34) and (2.37) with (2.26) and (2.27) into the distortion
relation of (2.29), we obtain the transverse distortion wave relation

1
2 (hµα,ν

α + hνα,µ
α − hµν,αα − hαα,µν)−

− 1
4 ηµν(hαβ,αβ − hαα,ββ) = κtµν

(2.45)

where tµν is obtained from (1.20) and (1.21). This equation can be
shown to be equivalent to the equation derived by Misner et al [258, see
their Eq.(18.5)] from which they derive their linearized field equation
and transverse wave equation in the Transverse Traceless gauge [258, see
pp. 946–950]. This shows that this equation of the linearized theory of
gravity corresponds to a transverse wave equation.

This result highlights the importance of carefully selecting the gauge
transformation used to simplify calculations. For example, the use of
the Transverse Traceless gauge eliminates massive solutions which, as
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shown above, are longitudinal in nature, while yielding only non-massive
(transverse) solutions for which the trace equals zero.

We thus find that the dilatation-distortion decomposition of ten-
sor fields also applies to general relativity. In addition, the results of
STCED are found to be applicable to general relativity. As mentioned
previously, this is not surprising as the postulates of STCED derive from
general relativity, and vice versa in that the geometry of spacetime used
in general relativity derives from the combination of the spacetime de-
formations of STCED.

§2.5 Relation between General Relativity and STCED

The previous section §2.4 shows that the results of STCED should be
applicable to general relativity. This is a reasonable expectation, given
that the postulates of STCED derive from general relativity. In this
section, we show the relation between the general relativistic spacetime
geometry and its generation from the combination of the spacetime
deformations of STCED.

This is derived from the STCED stress-strain relation of (2.6), viz.

2µ̄0ε
µν + λ̄0g

µνε = Tµν

and the Einstein field equations of general relativity of (2.8), viz.

Rµν − 1
2 g

µνR = −κ Tµν .

As noted in §2.2, the structure of the STCED stress-strain relation (2.6)
is similar to that of the Einstein field equations of general relativity (2.8).

Eq. (2.8) is a field equation in terms of the curvature of the space-
time continuum while (2.6) is a field equation in terms of the strains
of the spacetime continuum which are themselves expressed in terms of
displacements uµ from the equilibrium position xµ. Both field equations
are thus describing the same phenomenon of spacetime warping from
different perspectives.

However, the Ricci curvature tensor Rµν is a function of the connec-
tion coefficients Γ and their derivatives which are in turn functions of
the derivative of the metric tensor gµν . On the other hand, the strain
tensor εµν is expressed as the difference between the deformed metric
g̃µν and the original metric gµν

εµν = 1
2 (g̃µν − gµν) (2.46)

which is at most a function of the derivative of the metric tensor. The
curvature description is understandably going to be more complicated
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than the strain description as it needs to account for the combination
of the simpler deformations causing the geometry of the spacetime con-
tinuum.

Eq. (2.8) is a complex relation that corresponds to a macroscopic
description of the gravitational field equations in terms of the geometry
of spacetime. Eq. (2.6) is a simpler relation which corresponds to a
microscopic description of the deformations of the spacetime continuum
due to energy-momentum. The geometry of spacetime used in (2.8)
should thus be considered to be a linear composition (represented by a
sum) of STC deformations, starting with the total energy-momentum
generating the geometry of general relativity, TµνGR, being a composition
of the energy-momentum of the individual deformations of STCED,
TµνSTCED:

TµνGR =
∑

TµνSTCED . (2.47)

Substituting into (2.47) from (2.6) and (2.8), we obtain

− 1

κ
[
Rµν − 1

2 g
µνR

]
=
∑[

2µ̄0 ε
µν + λ̄0 g

µνε
]
. (2.48)

This explains the complexity of (2.8) relative to (2.6).
Contraction of (2.48) yields the relation

1

κ
R =

∑
2(µ̄0 + 2λ̄0) ε (2.49)

which, using (2.3) and (2.24), simplifies to

1

κ
R =

∑
4 κ̄0 ε =

∑
ρ c2 (2.50)

i.e. the curvature of the spacetime continuum arises from the com-
position of the effect of individual deformations and is proportional to
the rest-mass energy density present in the spacetime continuum. Sub-
stituting for R/κ from (2.50) into (2.48), and rearranging terms, we
obtain

1

κ
Rµν =

∑[
(λ̄0 + µ̄0)gµνε− 2µ̄0 ε

µν
]
. (2.51)

Eq. (2.50) and (2.51) give the relation between the microscopic de-
scription of the strains (i.e. deformations of the spacetime continuum)
and the macroscopic description of the gravitational field in terms of the
curvature of the spacetime continuum resulting from the combination of
the many microscopic displacements of the spacetime continuum from
equilibrium.
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§2.5.1 The cosmological constant

The observant reader will notice that the Einstein field equations of gen-
eral relativity of (2.8) does not include the cosmological constant term
+Λgµν where Λ is the cosmological constant. The cosmological constant
term was initially introduced by Einstein [96] to deal with the cosmolog-
ical solutions of his field equations. As the STCED stress-strain relation
of (2.6) provides a local small- to intermediate-scale description of the
fundamental processes of the spacetime continuum, it is not meant to be
a cosmological relation, which is the domain of the macroscopic, large-
scale description of the spacetime continuum provided by the General
Theory of Relativity. Hence there is no purpose in using the cosmologi-
cal constant in the comparison of the STCED stress-strain relation and
the Einstein field equations of general relativity of the previous section
§2.5. There is no value in introducing the cosmological constant in the
Elastodynamics of the Spacetime Continuum.

It should be noted that the cosmological constant term +Λgµν can
be equivalently incorporated in the second term − 1

2 g
µνR of the Einstein

field equations by writing the cosmological constant as

Λ = − 1
2 δR (2.52)

and incorporating it in the second term of the Einstein field equations
as − 1

2 g
µνR′ where R′ = R + δR. Given the previous considerations

summarized in (2.50), we see that the introduction of the cosmological
constant term +Λgµν is equivalent to introducing additional rest-mass
energy density in the spacetime continuum. The resurgent interest in
the cosmological constant is due to this characteristic, which is seen as a
possible solution to the question of dark matter and dark energy which
is considered to be a major problem by modern cosmologists. We will
come back to this question in Chapter 19 of this book.

§2.6 The question of relativistic mass

The concept of relativistic mass has been a part of special relativistic
physics since it was first introduced by Einstein [94,95] and explored by
the early relativists (see for example [346, 347]). Other terminology is
also used for relativistic mass, representing the users’ perspective on the
concept. For example, Aharoni [2] refers to it as the “relative mass”,
while Dixon [84] refers to it as “apparent mass”. Oas [270] and Okun
[274] provide good overviews on the development of the historical use of
the concept of relativistic mass. Oas [271] has prepared a bibliography
of published works where the concept is used and where it is ignored.
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It is clear that there is no consensus in the physics community on
the validity and use of the concept of relativistic mass. Some consider
relativistic mass to represent an actual increase in the inertial mass
of a body [287]. However, there have been objections raised against
this interpretation (see Taylor and Wheeler [344], Okun [273–275], Oas
[270]). The situation seems to arise from confusion on the meaning of
the special relativistic dynamics equations. In this section, we revisit
the question of relativistic mass to clarify the meaning of this concept
within special relativity, in light of the Elastodynamics of the Spacetime
Continuum (STCED) [238,254].

§2.6.1 Relativistic mass depends on the frame of reference

In the following sections, we show that the inertial mass of a body is
the rest-mass energy while the relativistic mass is in effect an effective
mass m∗. The relativistic mass m∗ is given by

m∗ = γm0 , (2.53)

where

γ =
1

(1− β2)
1/2

, (2.54)

β = v/c and m0 is the rest-mass or proper mass which is an invariant.
Some authors [275] suggest that rest-mass should be denoted as m as
this is the real measure of inertial mass. The relativistic mass of an
object corresponds to the total energy of an object (invariant proper
mass plus kinetic energy). The first point to note is that the relativistic
mass is the same as the proper mass in the frame of reference at rest
with the object, i.e. m∗ = m0 for v = 0. In any other frame of reference
in motion with velocity v with respect to the object, the relativistic mass
will depend on v according to (2.53).

For example, when the relativistic mass of a cosmic ray particle
is measured† in an earth lab, it depends on the speed of the particle
measured with respect to the earth lab. Similarly for a particle in a
particle accelerator, where its speed is measured with respect to the
earth lab. The relativistic mass of the cosmic ray particle measured
from say a space station in orbit around the earth or a spaceship in
transit in space would depend on the speed of the particle measured
with respect to the space station or the spaceship respectively.

We thus see that relativistic mass is an effect similar to length con-
traction and time dilation in that it is dependent on the difference in

†what is measured is the energy of the particle, not its mass.
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velocity v between the object’s frame of reference and the frame of ref-
erence from which it is measured. Observers in different moving frames
will measure different relativistic masses of an object as there is no ab-
solute frame of reference with respect to which an object’s speed can be
measured.

§2.6.2 Time dilation and space contraction

To further understand this conclusion, we need to look into time dilation
and length contraction in more detail. These special relativistic concepts
are often misunderstood by physicists. Many consider these changes to
be actual physical changes, taking the Lorentz-Fitzgerald contraction
and the time dilation effect to be real.

For example, John Bell in [20] relates the problem of the thread tied
between two spaceships and whether the thread will break at relativistic
speeds due to length contraction. He insists that it will – he relates
how “[a] distinguished experimental physicist refused to accept that the
thread would break, and regarded my assertion, that indeed it would,
as a personal misinterpretation of special relativity”. Bell appealed to
the CERN Theory Division for arbitration, and was dismayed that a
clear consensus agreed that the thread would not break, as indeed is
correct. As the number of special relativistic “paradoxes” attest, many
physicists, scientists and engineers have similar misunderstandings, not
clearly understanding the concepts.

This situation arises due to not realizing that v is the difference in
velocity between an object’s frame of reference and the frame of refer-
ence from which it is measured, not an absolute velocity, as discussed
in the previous section §2.6.1. In a nutshell, time dilation and length
contraction are apparent effects. In the frame of reference at rest with
an object that is moving at relativistic speeds with respect to another
frame of reference, there is no length contraction or time dilation.

The proper time in the frame of reference at rest with the object is
the physical time, and the length of the object in the frame of reference
at rest with the object is the physical length – there is no time dilation
or length contraction. These are observed in other frames of reference
moving with respect to that object and are only apparent dilations or
contractions perceived in those frames only. Indeed, observers in frames
of reference moving at different speeds with respect to the object of
interest will see different time dilations and length contractions. These
cannot all be correct – hence time dilation and length contraction are
apparent, not real.
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This can be demonstrated to be the case from physical considera-
tions, and in so doing, we clarify further the nature of length contrac-
tion. Petkov [288] provides graphically a physical explanation of time
dilation and length contraction, based on Minkowski’s 1908 paper [257]
where the latter first introduced the concept of a four-dimensional spa-
cetime and the description of particles in that spacetime as worldlines.
Worldlines of particles at rest are vertical straight lines in a space−ct
diagram, while particles moving at a constant velocity v are oblique
lines and accelerated particles are curved lines (see Fig. 2.3).

The basic physical reason for these effects can be seen from the
special relativistic line element (using x to represent the direction of
propagation and c = 1)

dτ2 = dt2 − dx2 . (2.55)

One sees that for a particle at rest, the vertical straight line in a
space−ct diagram is equivalent to

dτ2 = dt2 , (2.56)

which is the only case where the time t is equivalent to the proper time
τ (in the object’s frame of reference). In all other cases, in particular
for the oblique line in the case of constant velocity v, (2.55) applies and
there is a mixing of space x and time t, resulting in the perceived special
relativistic effects observed in a frame of reference moving at speed v
with respect to the object of interest.

Loedel diagrams [313], a variation on space−ct diagrams allowing to
display the Lorentz transformation graphically, are used to demonstrate
graphically length contraction, time dilation and other special relativis-
tic effects in problems that involve two frames of reference. Figs. 2.1 and
2.2, adapted from Petkov’s Figs. 4.18 [287, p. 86], and 4.20 [287, p. 91]
respectively, and Sartori’s Fig. 5.15 [313, p. 160], provide a graphical
view of the physical explanation of time dilation and length contraction
respectively.

From Fig. 2.1, we see that ∆t′ > ∆t as expected – the moving ob-
server sees time interval ∆t′ of the observed object to be dilated, while
the observed object’s time interval ∆t is actually the physical proper
time interval ∆τ . From Fig. 2.2, we see that space distance measure-
ments, i.e. space intervals, ∆x′ < ∆x as expected – the moving observer
sees space interval ∆x′ of the observed object to be contracted, while
the observed object’s space interval ∆x is actually the proper space
interval.
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This provides a physical explanation for length contraction as a man-
ifestation of the reality of a particle’s extended worldline, where the
cross-section measured by an observer moving relative to it (i.e. at an
oblique line in the space−ct diagram), creates the difference in perceived
length between a body in its rest frame and a frame in movement, as seen
in Fig. 2.2. It is important to understand that space itself is perceived
to be contracted, not just objects in space. As seen in STCED [238],
objects are not independent of spacetime, but are themselves deforma-
tions of spacetime, and are as such perceived to be contracted as space
itself is. In actual practice, this phenomenon should be called space
contraction, to avoid confusion, and demonstrate the complementary
nature of time dilation and space contraction.

Thus we see that apparent time dilation and space contraction are
perfectly valid physical results of Special Relativity, and there is noth-
ing anomalous about them. Proper consideration of these phenomena
eliminates the so-called paradoxes of Special Relativity as demonstrated
by various authors, see for example [287,313,344]. We now explore the

Figure 2.1: Physical explanation of time dilation in a Loedel space−ct
diagram
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Figure 2.2: Physical explanation of length contraction in a Loedel
space−ct diagram

question of relativistic mass, which we first considered in section §2.6.1,
in light of these considerations.

§2.6.3 Relativistic mass as an effective mass

In this section, we show that the inertial mass of a body is its proper
mass while the relativistic mass m∗ is in effect an effective mass or,
as Dixon [84] refers to it, an apparent mass. An effective mass is often
introduced in dynamic equations in various fields of physics. An effective
mass is not an actual mass – it represents a quantity of energy that
behaves in dynamic equations similar to a mass. Using the effective
mass, we can write the energy E as the sum of the proper mass and the
kinetic energy K of the body, which is typically written as

E = m∗c2 = m0 c
2 +K (2.57)

to give
K = (γ − 1)m0 c

2 . (2.58)

In general, the energy relation in special relativity is quadratic, given
by

E2 = m2
0 c

4 + p2c2 , (2.59)
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where p is the momentum. Making use of the effective mass (2.53)
allows us to obtain a linear expression from (2.59), starting from

m∗2c4 = γ2m2
0 c

4 = m2
0 c

4 + p2c2 , (2.60)

which becomes
pc =

√
γ2 − 1m0 c

2 (2.61)

or
pc = βγm0 c

2 =
v

c
γm0 c

2 =
v

c
E . (2.62)

Then
p = m∗v . (2.63)

As [287, p. 112] shows, the γ factor corresponds to the derivative of
time with respect to proper time, i.e.

dt

dτ
=

1

(1− β2)
1/2

= γ , (2.64)

such that the velocity with respect to the proper time, u, is given by

u = γv . (2.65)

Hence using (2.65) in (2.63) yields the correct special relativistic relation

p = m0 u , (2.66)

which again shows that m∗ in (2.63) is an effective mass when dealing
with dynamic equations in the local time t instead of the invariant
proper time τ . It is easy to see that differentiating (2.66) with respect
to proper time results in a force law that obeys Newton’s law with the
proper mass acting as the inertial mass.

Hence we find that relativistic mass results from dealing with mass in
local time t in a frame of reference moving with respect to the object of
interest, instead of the invariant proper time τ in the frame of reference
at rest with the object, and, from that perspective, is an effect similar
to space contraction and time dilation seen in section §2.6.2. We see
that the rest-mass m0 should really be referred to as the proper mass,
to avoid any confusion about the invariant mass of a body.

Relativistic mass is not apparent as time dilation and space contrac-
tion are, but rather is a measure of energy that depends on the relative
speed v between two frames of reference, and is not an intrinsic prop-
erty of an object as there is no absolute frame of reference to measure
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an object’s speed against. The relativistic mass energy m∗c2 is actually
the total energy of an object (proper mass plus kinetic energy) mea-
sured with respect to a given frame of reference and is not a mass per se
as mass is a relativistic invariant, i.e. a four-dimensional scalar, while
energy is the fourth component of a four-vector.

§2.6.4 Relativistic mass and STCED

In STCED, the proper mass corresponds to the invariant longitudinal
volume dilatation given by (2.24), viz.

ρc2 = 4κ0 ε

which is equivalent to the inertial mass. The constant κ0 is the space-
time bulk modulus and ε is the spacetime volume dilatation. Clearly,
the longitudinal volume dilatation does not increase with velocity as it
is an invariant. The result (2.66) is as expected from STCED.

For a spacetime volume element, the apparent space contraction
in the direction of motion will be cancelled out by the apparent time
dilation, i.e. the γ factors will cancel out. Thus the volume dilatation
ε and the proper mass density ρ of (2.24) remain unchanged from the
perspective of all frames of reference.

The only quantity that is impacted by the observer’s frame of ref-
erence is the kinetic energy K or alternatively the quantity pc. In the
frame of reference at rest with the object (which we can call the proper
frame of reference), the kinetic energy K = 0 as seen from (2.58), while
pc = 0 as seen from (2.61). The relativistic mass of an object is an
effective mass defined to correspond to the total energy of an object
(invariant proper mass plus kinetic energy) as observed from the per-
spective of another frame of reference. It does not represent an increase
in the proper mass of an object, which as we have seen in section §2.6.3,
corresponds to the inertial mass of the object.

Hence we see that relativistic mass is dependent on the difference in
velocity v between an object’s proper frame of reference that is at rest
with the object and the frame of reference from which it is observed.
Furthermore, relativistic mass results from dealing with dynamic equa-
tions in local time t in a frame of reference moving with respect to the
object of interest, instead of the invariant proper time τ in the frame of
reference at rest with the object. The results obtained are in agreement
with the Elastodynamics of the Spacetime Continuum.
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§2.7 The question of acceleration in special relativity

In the previous section §2.6, we showed that time dilation and space
contraction in inertial reference frames, that is unaccelerated reference
frames moving at a constant velocity, are apparent effects perceived in a
frame of reference moving with respect to an object of interest. The real
physical time and length are in the frame of reference at rest with the
object, and in that frame, there is no time dilation or space contraction
as v = 0 (and acceleration a = 0). This is seen clearly in Fig. 2.1 where
a time dilation is perceived in the frame of reference moving at speed v
with respect to the object of interest (∆t′), while there is no dilation in
the object’s frame of reference (∆t).

This result would seem to be at odds with the often quoted exper-
imental tests of special relativity confirming time dilation and length
contraction. But if we consider, for example, Bailey et al ’s muon exper-
iment [11], we find that there is no contradiction with the experimental
observations: a perceived time dilation is observed in the Earth’s labo-
ratory frame of reference while the muon, in its frame of reference has
no time dilation – note that no measurements were carried out in the
muon’s frame of reference in the Bailey experiment.

Careful examination of experimental tests of special relativity also
often reveals the presence of acceleration in the experiments, contrary
to the conditions under which special relativity applies. The question
of how to deal with acceleration in special relativity underlies many of
the analytical and experimental conundrums encountered in the theory
and is investigated in more details in this section.

§2.7.1 Measuring the impact of acceleration in special
relativity

The theory of special relativity applies to unaccelerated (constant veloc-
ity) frames of reference, known as inertial frames of reference, in a four-
dimensional Minkowski spacetime [257], of which the three-dimensional
Euclidean space is a subspace. When the Lorentz-Fitzgerald contrac-
tion was first introduced, it was considered to be a real physical effect in
Euclidean space to account for the null results of the Michelson-Morley
experiment. Einstein derived length contraction and time dilation as
effects originating in special relativity. These depend on the velocity of
the frame of reference with respect to which an object is being observed,
not the object’s velocity which can only be relative to another frame of
reference, as there is no absolute frame of reference against which to
measure the object’s velocity. Indeed, if time dilation and length con-
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traction were real effects in special relativity, this would be equivalent
to saying that there is an absolute frame of reference against which it
is possible to measure an object’s velocity, contrary to the theory.

Increasingly, special relativity has been applied to accelerated frames
of reference for which the theory does not apply. Some physicists claim
that acceleration does not matter in special relativity and that it has
no impact on its results, but there are many indications that this is
not the case. The Clock Hypothesis (or Postulate) is used to justify
the use of accelerated frames in special relativity: “when a clock is
accelerated, the effect of motion on the rate of the clock is no more than
that associated with its instantaneous velocity – the acceleration adds
nothing” [37, p. 9], and further postulates that if the Clock Hypothesis
applies to a clock, “then the clock’s proper time will be proportional to
the Minkowski distance along its worldline” [37, p. 95] as required.

Two experimental confirmations of the Clock Hypothesis are usually
given. The postulate is claimed to have been shown to be true for
accelerations of ∼1016g in a Mössbauer spectroscopy experiment by
Kündig [209] and of ∼1018g in Bailey et al ’s muon experiment [11],
which uses rotational motion of particles to generate the acceleration
– one obtains the quoted acceleration for a particle velocity close to
the speed of light. However, a close examination of these experiments
shows that they don’t quite provide the experimental confirmation they
are purported to give.

Kholmetskii et al [192] reviewed and corrected the processing of
Kündig’s experimental data and obtained an appreciable difference of
the relative energy shift ∆E/E between emission and absorption reso-
nant lines from the predicted relativistic time dilation ∆E/E = −v2/2c2

(to order c−2), where v is the tangential velocity of the resonant radia-
tion absorber. Writing the relative energy shift as ∆E/E = −k v2/c2,
they found that k = 0.596±0.006 instead of k = 0.5 as predicted by spe-
cial relativity and Kündig’s original reported result of k = 0.5003±0.006.
They then performed a similar Mössbauer spectroscopy experiment [193]
with two absorbers with a substantially different isomer shift to be able
to correct the Mössbauer data for vibrations in the rotor system at var-
ious rotational frequencies. They obtained a value of k = 0.68 ± 0.03,
a value similar to 2/3. Since then Kholmetskii and others [68,194–197]
have performed additional experimental and theoretical work to try to
explain the difference, but the issue remains unresolved at this time,
and is a clear indication that acceleration is not compatible with special
relativity.

Bailey et al [11], in their experiment of the measurement of the
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lifetime of positive and negative muons in a circular orbit, obtained life-
times of high-speed muons which they then reduced to a mean proper
lifetime at rest, assuming that special relativity holds in their accel-
erated muon experimental setup. This experiment was carried out at
CERN’s second Muon Storage Ring (MSR) [65, 235] which stores rel-
ativistic muons in a ring in a uniform magnetic field. The MSR was
specifically designed to carry out muon (g − 2) precession experiments
(g is the Landé g-factor) with muons of momentum 3.094 GeV/c cor-
responding to a γ-factor of 29.3 (effective relativistic mass [248]), so
that the electrons emitted from muon decay in the lab frame were very
nearly parallel to the muon momentum. The decay times of the emit-
ted electrons were measured in shower counters inside the ring to a
high precision, and the muon lifetimes in the laboratory frame were cal-
culated by fitting the experimental decay electron time spectrum to a
six-parameter exponential decay modulated by the muon spin preces-
sion frequency, using the maximum likelihood method – one of the six
parameters is the muon relativistic lifetime.

It is important to note that the decay electrons would be ejected
at the instantaneous velocity of the muon (0.9994c from the γ = 29.3
factor) tangential to the muon’s orbit. Thus the ejected electron moves
at the constant velocity of ejection to the shower counter and acceler-
ation does not play a role. Even though the muons are accelerated,
the detected electrons are not, and the experiment is not a test of the
Clock Hypothesis under acceleration as claimed. There is thus no way
of knowing the impact of acceleration from the experimental results as
acceleration is non-existent in the detection and measurement process.

It should also be noted that Hafele et al [145] in their time dilation
“twin paradox” experiment applied a correction for centripetal accel-
eration to their experimental results. in addition to a gravitational
time dilation correction, to obtain results in agreement with Lorentz
time dilation. The effect of acceleration cannot be disregarded in that
experiment. This will be considered in more details in section §2.7.3.
We thus find that the experimental support of the Clock Hypothesis is
questionable at best.

§2.7.2 The case for the impact of acceleration in special
relativity

Having determined that there is little experimental support for the valid-
ity of the Clock Hypothesis in accelerated frames of reference in special
relativity, we consider the case for the impact of acceleration in special
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relativity. Einstein developed general relativity to deal with accelerated
frames of reference – if acceleration can be used in special relativity,
why bother to develop a more general theory of relativity? Inspection
of an accelerated worldline in a Minkowski space-ct diagram shows that
indeed there is no basis for the Clock Hypothesis, as seen in Fig. 2.3.
The accelerated worldline suffers an increasing rate of time dilation,
somewhat like gravitational time dilation where increasing height in the
gravitational potential results in increasing time dilation.

This brings to mind Einstein’s equivalence principle introduced in
the analysis of accelerated frames of reference in general relativity. The
simplest formulation of this principle states that on a local scale, the
physical effects of a gravitational field are indistinguishable from the
physical effects of an accelerated frame of reference [268] (i.e. an accel-
erated frame of reference is locally equivalent to a gravitational field).
Hence, as displayed graphically for the accelerated worldline in the
Minkowski space-ct diagram of Fig. 2.3, an accelerated frame of refer-
ence undergoes time dilation similar to gravitational time dilation [268].
Indeed, assuming that acceleration has no impact in special relativity

Figure 2.3: Physical explanation of an accelerated worldline in a
Minkowski space−ct diagram
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cannot be correct as it violates the equivalence principle of general rel-
ativity.

We explore the connection between gravitational time dilation and
the time dilation in an accelerated frame of reference in greater de-
tails. Gravitational time dilation can be derived starting from the
Schwarzschild metric with signature (+ – – –) [64, p. 40]

c2dτ2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2−

− r2
(
dθ2 + sin2 θ dϕ2

)
,

(2.67)

where τ is the proper time, (r, θ, ϕ, t) are the spherical polar coordinates
including time, G is the gravitational constant, M is the mass of the
earth and c is the speed of light in vacuo. The gravitational time dilation
is obtained from the dt2 term to give

∆t =

(
1− 2GM

rc2

)− 1
2

∆t0 , (2.68)

where ∆t0 is the undilated (proper) time interval and ∆t is the dilated
time interval in the earth’s gravitational field. This can be rewritten as

∆t =

(
1− 2GMr

r2c2

)− 1
2

∆t0 , (2.69)

where the term GM/r2 is an acceleration a equal to g for r = R, the
earth’s radius, and finally

∆t =

(
1− 2ar

c2

)− 1
2

∆t0 . (2.70)

By the equivalence principle, this is also the time dilation in an acceler-
ated frame of reference. For small accelerations, using the first few terms
of the Taylor expansion, this time dilation expression can be written as

∆t '
(

1 +
ar

c2

)
∆t0 . (2.71)

The impact of acceleration on time dilation for small acceleration will
usually be small due to the c−2 dependency.

We note in particular the expressions for centripetal acceleration
a = v2/r in the case of circular motion

∆t =

(
1− 2v2

c2

)− 1
2

∆t0 , (2.72)
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which becomes for small accelerations, again using the first few terms
of the Taylor expansion,

∆t '
(

1 +
v2

c2

)
∆t0 . (2.73)

In this case, the impact can be significant, of the same order as the rela-
tivistic Lorentz time dilation. Hence there is no doubt that accelerated
frames of reference also undergo time dilation compared to unacceler-
ated (inertial) frames of reference.

§2.7.3 The consequences of acceleration in special
relativity

The presence of acceleration in a frame of reference provides a means of
determining the motion of that frame of reference as acceleration can be
easily detected compared to constant velocity which cannot. Whereas
in an inertial frame of reference there is no way of determining one’s
velocity, this limitation disappears in accelerated frames of reference.

Physical time dilation due to acceleration is a reality, as is physical
space contraction, which, from (2.67), is seen to have the inverse of
the functional form of (2.70), to give the acceleration space contraction
relation

∆x =

(
1− 2ar

c2

) 1
2

∆x0 (2.74)

which for small accelerations, using the first few terms of the Taylor
expansion, becomes

∆x '
(

1− ar

c2

)
∆x0 . (2.75)

Till now, we have not discussed the so-called “twin paradox” of spe-
cial relativity. This is not truly a paradox for there is no way to avoid
acceleration in the problem and it is thus not a special relativity prob-
lem. Assume that by some miracle we have twins moving at constant
velocity with respect to one another from departure to return with no
acceleration and that they are able to compare their age. It is impor-
tant to notice that in their inertial frames of reference, both proper
times dτ , the one in the frame of reference at rest with the earth, and
the one in the frame of reference at rest with the spaceship, are equal to
the physical time in both the frame of reference at rest with the earth
and the frame of reference at rest with the spaceship. From the earth,
it looks like the spaceship’s time is dilated, and from the spaceship, it
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looks like the earth’s time is dilated. It doesn’t matter as the time dila-
tion in one location as seen from the other location is apparent as seen
in [248]. When the spaceship comes back to earth, the twins would see
that indeed they have the same age.

The problem can be recast in a simpler fashion. Suppose instead of
the earth and a spaceship, we have two spaceships moving at constant
relativistic speed with respect to one another from start to finish with
no acceleration, and that the twins are able to compare their age at
the start and the finish. One spaceship moves slowly because of engine
problems, while the other moves at relativistic speeds. The resolution
would be as described in the previous paragraph: the twins would see
that indeed they have the same age at the finish.

The complication in this problem is that forces have to be applied
to accelerate the spaceship, then decelerate it to turn around, acceler-
ate it again and finally decelerate it when it comes back to the earth.
The problem then needs to be treated using accelerated frames of ref-
erence for those periods on the spaceship. As we have seen in section
§2.7.2, because of time dilation in accelerated frames of reference, the
astronaut will age less than its earth-bound twin, but only during peri-
ods of acceleration. During periods of unaccelerated constant velocity
travel, there will be no differential aging between the twins. However,
the earth-bound twin is itself in an accelerated frame of reference the
whole time, so its time will also be dilated. The details of who is older
and younger will depend on the details of the acceleration periods, with
the earth-bound twin’s time dilation depending on (2.68) and (2.72),
and the spaceship-bound twin’s time dilation depending on (2.70).

Comparing how these findings line up with the results of Hafele’s
circumglobal experiment [145,146], it is important to note that Hafele’s
experiment was done the whole time in a non-inertial accelerated frame
of reference. Its results were corrected for gravitational time dilation
and centripetal acceleration time dilation, the latter correction clearly
showing that acceleration has an impact on special relativity. The cen-
tripetal acceleration time dilation correction used by Hafele et al [145] is
similar to (2.72). One side effect of the experiment being conducted in
gravitational and accelerated frames of reference is that it was possible
to determine their motion, contrary to special relativity. The Lorentz
time dilation would then become a real effect in this purported test of
the “twin paradox”. There was no symmetry in the relative motions
that would have seen the plane stationary and the earth moving given
that gravitational and centripetal accelerations clearly showed who was
moving and at what velocity.
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Hence we find that acceleration has an impact in special relativity
and needs to be treated with general relativity. Paradoxes of special
relativity such as the “twin paradox” need to be handled with care as
there is no way to avoid acceleration in the problem and it is thus not a
special relativity problem. Indeed because of time dilation in accelerated
frames of reference, the differential aging of the twins will depend on
the details of the acceleration periods of both twins. During periods
of unaccelerated constant velocity travel, there will be no differential
aging between the twins. Reviewing how these findings line up with
the results of Hafele’s circumglobal experiment [145, 146], we find no
contradiction.



Chapter 3

Spacetime Wave Equations

§3.1 Kinematic relations

As we have seen previously in section §1.2, the strain εµν can be ex-
pressed in terms of the displacement uµ through the kinematic rela-
tion [320, see pp. 149–152]:

εµν = 1
2 (uµ;ν + uν;µ + uα;µuα

;ν) (3.1)

where the semicolon (;) denotes covariant differentiation. For small
displacements, this expression can be linearized to give the symmetric
tensor

εµν = 1
2 (uµ;ν + uν;µ) = u(µ;ν) (3.2)

where the parentheses around the indices of u(µ;ν) denote a symmetric
combination of the indices. We use the small displacement approxima-
tion in this analysis.

An antisymmetric tensor ωµν can also be defined from the displace-
ment uµ. This tensor is called the rotation tensor and is defined as [320]:

ωµν = 1
2 (uµ;ν − uν;µ) = u[µ;ν] (3.3)

where the square brackets around the indices of u[µ;ν] denote an anti-
symmetric combination of the indices.

Where needed, displacements in expressions derived from (3.2) will
be written as u‖ while displacements in expressions derived from (3.3)
will be written as u⊥. Using different symbolic subscripts for these
displacements provides a reminder that symmetric displacements are
along the direction of motion (longitudinal), while antisymmetric dis-
placements are perpendicular to the direction of motion (transverse).

In general, we have [320]

uµ;ν = εµν + ωµν (3.4)

where the tensor uµ;ν is a combination of symmetric and antisymmetric
tensors. Lowering index ν and contracting, we get the volume dilatation
of the spacetime continuum

uµ;µ = εµµ = u‖
µ

;µ = ε (3.5)
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where the relation
ωµµ = u⊥

µ
;µ = 0 (3.6)

has been used.

§3.2 Dynamic equations

In this section, we consider the dynamics of the spacetime continuum,
more specifically its elastodynamic equations given that the spacetime
continuum is modelled as a linear elastic continuum obeying Hooke’s
law. In general, a volume (or body) force Xν may be present in the
spacetime continuum, representing the forces internal to the continuum.

§3.2.1 Equilibrium condition

Under equilibrium conditions, the dynamics of the spacetime continuum
is described by the equation [126, see pp. 88–89],

Tµν ;µ = −Xν (3.7)

where Xν is the volume force. As Wald [362, see p. 286] points out, in
general relativity the local energy density of matter as measured by a
given observer is well-defined, and the relation

Tµν ;µ = 0 (3.8)

can be taken as expressing local conservation of the energy-momentum
of matter. However, it does not in general lead to a global conservation
law. The value Xν = 0 is thus taken to represent the macroscopic local
case, while (3.7) provides a more general relation.

At the microscopic level, energy is conserved within the limits of the
Heisenberg Uncertainty Principle. The volume force may thus be very
small, but not exactly zero. It again makes sense to retain the volume
force in the equation, and use (3.7) in the general case, while (3.8) can
be used at the macroscopic local level, obtained by setting the volume
force Xν equal to zero.

§3.2.2 Dynamic equation

In three-dimensional space, the dynamic equation is written as [126, see
pp. 88–89]

T ij ,j = −Xi + ρ̄0ü
i (3.9)

where ρ̄0 corresponds to the spacetime continuum density, Xi is the
volume force, the comma (,) represents differentiation and u̇ denotes the
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derivative with respect to time. Substituting for εµν = 1
2 (uµ;ν + uν;µ)

in (2.6), using (2.7) and uµ;µ = εµµ = ε in this equation, we obtain

µ̄0
−→
∇2ui + (µ̄0 + λ̄0)ε;i = −Xi + ρ̄0ü

i (3.10)

which, upon converting the time derivative to indicial notation and re-
arranging, is written as

µ̄0
−→
∇2ui − ρ̄0c

2ui,00 + (µ̄0 + λ̄0)ε;i = −Xi . (3.11)

We use the arrow above the nabla symbol to indicate the three-dimensio-
nal gradient whereas the four-dimensional gradient is written with no
arrow. Using the relation [238]

c =

√
µ̄0

ρ̄0
(3.12)

in the above, (3.11) becomes

µ̄0(
−→
∇2ui − ui,00) + (µ̄0 + λ̄0)ε;i = −Xi (3.13)

and, combining the space and time derivatives, we obtain

µ̄0∇2ui + (µ̄0 + λ̄0)ε;i = −Xi . (3.14)

This equation is the space portion of the STCED displacement wave
equation (3.18)

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −Xν .

Hence the dynamics of the spacetime continuum is described by the dy-
namic equation (3.7), which includes the accelerations from the applied
forces.

§3.3 Displacement wave equation

We derive the STCED displacement wave equation from the stress-
strain relation (2.6) for the spacetime continuum. Substituting for Tµν

from (2.6), (3.7) becomes

2µ̄0ε
µν

;µ + λ̄0g
µνε;µ = −Xν (3.15)

and, using (3.2),

µ̄0(uµ;ν
µ + uν;µ

µ) + λ̄0ε
;ν = −Xν . (3.16)
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Interchanging the order of differentiation in the first term and using
(3.5) to express ε in terms of u, this equation simplifies to

µ̄0u
ν;µ

µ + (µ̄0 + λ̄0)uµ;µ
ν = −Xν (3.17)

which can also be written as

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −Xν . (3.18)

This is the displacement wave equation seen in the previous section
§3.2.2.

In the case where there is no volume force (Xν = 0), we obtain the
macroscopic displacement wave equation

∇2uν = − µ̄0 + λ̄0

µ̄0
ε;ν . (3.19)

where ∇2 is the four-dimensional operator and again the semi-colon
(;) represents covariant differentiation. This equation has stationary
solutions (∂tu

ν = 0) for −∞ < x, y, z <∞ [292, see p. 544]:

uν(x, y, z) =
1

4π

µ̄0 + λ̄0

µ̄0

×
+∞∫∫∫
−∞

ε;ν(ξ, η, ζ) dξdηdζ√
(x− ξ)2 + (y − η)2 + (z − ζ)2

.

(3.20)

The general time-dependent solutions for −∞ < x, y, z < ∞ are given
by [292, see p. 412]:

uν(x, y, z, t) =
1

4π

µ̄0 + λ̄0

µ̄0

×
∫∫∫
r≤ct

1

r
ε;ν(ξ, η, ζ, t− r/c) dξdηdζ

+
1

4πc

∂

∂t

∫∫
r=ct

fν(ξ, η, ζ)

r
dS

+
1

4πc

∫∫
r=ct

gν(ξ, η, ζ)

r
dS

(3.21)
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where
r =

√
(ξ − x)2 + (η − y)2 + (ζ − z)2

fν(x, y, z) = uν |t=0

gν(x, y, z) = ∂tu
ν |t=0

and where the integration is performed over the surface of the sphere
(r = ct) and the volume of the sphere (r ≤ ct) with center at (x, y, z).

The R.H.S. of (3.19) is a source term, proportional to a current-like
term ε;ν which we call the dilatation current written as ξν (not the same
as coordinate ξ used in (3.20) and (3.21))

ξν = ε;ν = ∇ξ . (3.22)

Eq. (3.19) then becomes

∇2uν = − µ̄0 + λ̄0

µ̄0
ξν (3.23)

and the general displacement wave equation (3.18) with a non-zero vol-
ume force becomes

µ̄0∇2uν + (µ̄0 + λ̄0) ξν = −Xν . (3.24)

Eqs. (3.23) and (3.24) can be separated into longitudinal and trans-
verse components. Separating uν into a longitudinal (irrotational) com-
ponent uν‖ and a transverse (solenoidal) component uν⊥ using the Helm-

holtz theorem in four dimensions [378] according to

uν = uν‖ + uν⊥ , (3.25)

and similarly for the separation of the dilatation current ξν into a longi-
tudinal (irrotational) component ξν‖ and a transverse (solenoidal) com-
ponent ξν⊥

ξν = ξν‖ + ξν⊥ , (3.26)

and the volume force Xν into a longitudinal (irrotational) component
Xν
‖ and a transverse (solenoidal) component Xν

⊥

Xν = Xν
‖ +Xν

⊥ , (3.27)

the displacement wave equation (3.24) with a volume force can be sep-
arated into a longitudinal displacement equation

µ̄0∇2uν‖ = −(µ̄0 + λ̄0) ξν‖ −X
ν
‖ (3.28)
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and a transverse displacement equation

∇2uν⊥ = − µ̄0 + λ̄0

µ̄0
ξν⊥ −

1

µ̄0
Xν
⊥ (3.29)

which, in the absence of a current (ξν⊥ = 0), becomes

∇2uν⊥ = − 1

µ̄0
Xν
⊥ . (3.30)

These equations correspond to a wave and a particle displacement equa-
tion respectively, and hence displacement equations (3.23) and (3.24)
include wave-particle duality in their formulation.

§3.4 Continuity equation

We derive a continuity equation for STC deformations. Taking the
divergence of (3.4), we obtain

uµ;ν
µ = εµν ;µ + ωµν ;µ. (3.31)

Interchanging the order of partial differentiation in the first term, and
using (3.5) to express u in terms of ε, this equation simplifies to

εµν ;µ + ωµν ;µ = ε;ν = ξν . (3.32)

Hence the divergence of the strain and rotation tensors equals the gradi-
ent of the massive volume dilatation, the dilatation current, which acts
as a source term. This is the continuity equation for deformations of
the spacetime continuum.

§3.5 Field wave equations

We now obtain a series of specialized field wave equations from the
displacement wave equation.

§3.5.1 Dilatational (longitudinal) wave equation

Taking the divergence of (3.17) and interchanging the order of partial
differentiation in the first term, we obtain

(2µ̄0 + λ̄0)uµ;µ
ν
ν = −Xν

;ν . (3.33)

Using (3.5) to express u in terms of ε, this equation simplifies to

(2µ̄0 + λ̄0)ε;ν
ν = −Xν

;ν (3.34)
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or

(2µ̄0 + λ̄0)∇2ε = −Xν
;ν . (3.35)

In the case where there is no volume force (Xν = 0), we obtain the
macroscopic longitudinal wave equation

(2µ̄0 + λ̄0)∇2ε = 0. (3.36)

The volume dilatation ε satisfies a wave equation known as the dilata-
tional wave equation [320, see p. 260]. The solutions of the homogeneous
equation are dilatational waves which are longitudinal waves, propagat-
ing along the direction of motion. Dilatations thus propagate in the
spacetime continuum as longitudinal waves.

§3.5.2 Rotational (transverse) wave equation

Differentiating (3.17) with respect to xα, we obtain

µ̄0u
ν;µ

µ
α + (µ̄0 + λ̄0)uµ;µ

να = −Xν;α. (3.37)

Interchanging the dummy indices ν and α, and subtracting the resulting
equation from (3.37), we obtain the relation

µ̄0(uν;µ
µ
α − uα;µ

µ
ν) = −(Xν;α −Xα;ν). (3.38)

Interchanging the order of partial differentiations and using the defini-
tion of the rotation tensor ωνα of (3.3), the following wave equation is
obtained:

µ̄0∇2ωµν = −X [µ;ν] (3.39)

where X [µ;ν] is the antisymmetric component of the gradient of the
volume force defined as

X [µ;ν] = 1
2 (Xµ;ν −Xν;µ) . (3.40)

In the case where there is no volume force (Xν = 0), we obtain the
macroscopic transverse wave equation

µ̄0∇2ωµν = 0. (3.41)

The rotation tensor ωµν satisfies a wave equation known as the rota-
tional wave equation [320, see p. 260]. The solutions of the homogeneous
equation are rotational waves which are transverse waves, propagating
perpendicular to the direction of motion. Massless waves thus propagate
in the spacetime continuum as transverse waves.
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§3.5.3 Strain (symmetric) wave equation

A corresponding symmetric wave equation can also be derived for the
strain εµν . Starting from (3.37), interchanging the dummy indices ν
and α, adding the resulting equation to (3.37), and interchanging the
order of partial differentiation, the following wave equation is obtained:

µ̄0∇2εµν + (µ̄0 + λ̄0)ε;µν = −X(µ;ν) (3.42)

where X(µ;ν) is the symmetric component of the gradient of the volume
force defined as

X(µ;ν) = 1
2 (Xµ;ν +Xν;µ) . (3.43)

In the case where there is no volume force (Xν = 0), we obtain the
macroscopic symmetric wave equation

∇2εµν = − µ̄0 + λ̄0

µ̄0
ε;µν . (3.44)

This strain wave equation is similar to the displacement wave equation
(3.19).

§3.6 Spin analysis of the wave equations

We thus find that deformations propagate in the spacetime continuum
by longitudinal and transverse wave displacements. As mentioned pre-
viously, this is in keeping with wave-particle duality, with the transverse
mode corresponding to the wave aspects and the longitudinal mode cor-
responding to the particle aspects.

We consider the spin of the scalar, vector and tensor fields for the
wave equations derived in this chapter [124, p, 31]. We note that as seen
in Chapter 1, (1.16) to (1.18), the strain tensor εµν can be separated
into the traceless, and hence massless, part of εµν of spin 2 given by [199,
p. 753]

εµν(2) = eµν = εµν − 1
4 δ

µνε (3.45)

and the trace, and hence massive, part of εµν of spin 0 given by

εµν(0) = esδ
µν = 1

4 δ
µνε . (3.46)

The rotation tensor ωµν of (3.3) can be written as a rotation vector,
also known as the spin vector ωµ given by

ωµ = 1
2 ε

µαβ ωαβ . (3.47)
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The trace of the antisymmetric field ωµν is zero, and hence massless.
The field ωµν is of spin 1, and since it is massless, it does not have a
spin 0 component. This field will be studied in more details in Chapter
4 and will be seen to correspond to electromagnetism.

From (3.4), viz.

uµ;ν = εµν + ωµν ,

we can write uµ;ν as a combination of spin 0, 1 and 2 fields. From (3.45)
and (3.46),

εµν = eµν + 1
4 δ

µνε

= εµν(2) + εµν(0)

(3.48)

and from (3.47),

ωµν(1) = 1
2 ε

µνα ωα . (3.49)

Then

uµ;ν = εµν(0) + εµν(2) + ωµν(1) , (3.50)

i.e. a combination of spin 0 (mass as deformation particle aspect), spin 1
(electromagnetism) and spin 2 (deformation wave aspect). Substituting
from (3.45), (3.46) and (3.49), (3.50) becomes

uµ;ν = 1
4 δ

µνε+ eµν + 1
2 ε

µνα ωα . (3.51)

Note that some authors also refer to uµ;ν as the distortion tensor βµν [77]
(see the footnote on page 26 on the terminology used in this book). In
this work, we will use βµν when referring specifically to the distortion
tensor.

The wave equations derived in this chapter can be further charac-
terized as follows.

§3.6.1 Scalar field equation

The dilatational wave equation (3.35) is a nonhomogeneous scalar field
equation. The quanta of the scalar field are spin 0 (spinless) parti-
cles [124,141]. The scalar field ε corresponds to the massive particle as
per (2.24). Massive particles are longitudinal wave solutions of the di-
latational (longitudinal) wave equation, propagating along the direction
of motion.
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§3.6.2 Vector field equation

The displacement wave equation (3.18) is a nonhomogeneous vector
field equation. It is similar to the Proca equation for spin-1 particles
(massive vector boson). As shown in (3.28) and (3.29), this equation
corresponds to both a wave and a particle displacement equation respec-
tively, and hence includes wave-particle duality in its formulation. The
Proca equation is considered in more details in section §4.8 in Chapter
4.

§3.6.3 Massless vector field equation

The rotational wave equation (3.39) is a nonhomogeneous antisymmet-
ric tensor field equation equivalent to a massless vector wave equation.
The quanta of the vector field are equivalent to massless spin 1 trans-
verse waves [141]. The massless transverse waves will be seen to be
electromagnetic waves in Chapter 4. The solutions of the rotational
(transverse) wave equation are transverse waves, propagating perpen-
dicular to the direction of motion.

§3.6.4 Symmetric tensor field equation

The strain wave equation (3.42) is a nonhomogeneous symmetric tensor
field equation. The quanta of this tensor field are equivalent to massless
transverse waves of spin 2 and, as seen above, massive particles of spin
0 [141] (see section §3.6.1 above). This explains wave-particle duality,
with the spin 2 transverse mode corresponding to the wave aspects
and the spin 0 longitudinal mode corresponding to the particle aspects.
The massless transverse waves of spin 2 are the gravitational waves of
General Relativity with the corresponding graviton quanta.
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Electromagnetism in STCED

§4.1 Electromagnetic field strength

Since Einstein first published his General Theory of Relativity in 1915,
the problem of the unification of gravitation and electromagnetism has
been and remains the subject of continuing investigation (see for exam-
ple [31, 58, 62, 166, 298, 324, 325, 363, 379] for recent attempts). Einstein
himself spent a good part of his remaining years of research on the
investigation of Unified Field Theory.

In this chapter, we derive electromagnetism from the Elastodynam-
ics of the Spacetime Continuum. STCED is based on the application of
a continuum mechanical approach to the spacetime continuum. Electro-
magnetism is found to come out naturally from the theory in a straight-
forward manner. While the search has been for a geometric unifica-
tion, instead, the solution is found to lie in the physical properties of
the spacetime continuum, in its displacements from equilibrium. This
theory thus provides a unified description of the spacetime deforma-
tion processes underlying general relativistic gravitation and electro-
magnetism, in terms of spacetime continuum displacements resulting
from the strains generated by the energy-momentum stress tensor.

In the Elastodynamics of the Spacetime Continuum, the antisym-
metric rotation tensor ωµν is given by (3.3), viz.

ωµν = 1
2 (uµ;ν − uν;µ) (4.1)

where uµ is the displacement of an infinitesimal element of the spacetime
continuum from its unstrained position xµ. This tensor has the same
structure as the electromagnetic field-strength tensor Fµν defined as
[176, see p. 550]:

Fµν = ∂µAν − ∂νAµ (4.2)

where Aµ is the electromagnetic potential four-vector (φ/c,A), φ is the
scalar potential and A the vector potential.

Identifying the rotation tensor ωµν with the electromagnetic field-
strength tensor according to

Fµν = ϕ0ω
µν (4.3)
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leads to the relation
Aµ = − 1

2 ϕ0u
µ
⊥ (4.4)

where the symbolic subscript ⊥ of the displacement uµ indicates that
the relation holds for a transverse displacement (perpendicular to the
direction of motion). The constant of proportionality ϕ0 is referred to
as the “STC electromagnetic shearing potential constant”, and it has
units of [V · s ·m−2] or equivalently [T].

Due to the difference in the definition of ωµν and Fµν with re-
spect to their indices, a negative sign is introduced, and is attributed to
(4.4). This relation provides a physical explanation of the electromag-
netic potential: it arises from transverse (shearing) displacements of the
spacetime continuum, in contrast to mass which arises from longitudi-
nal (dilatational) displacements of the spacetime continuum. Sheared
spacetime is manifested as electromagnetic potentials and fields.

§4.2 Maxwell’s equations

Taking the divergence of the rotation tensor of (4.1), gives

ωµν ;µ = 1
2 (uµ;ν

µ − uν;µ
µ). (4.5)

Recalling (3.17), viz.

µ̄0u
ν;µ

µ + (µ̄0 + λ̄0)uµ;µ
ν = −Xν

where Xν is the volume force and λ̄0 and µ̄0 are the Lamé elastic con-
stants of the spacetime continuum, substituting for uν;µ

µ from (3.17)
into (4.5), interchanging the order of partial differentiation in uµ;ν

µ in
(4.5), and using the relation uµ;µ = εµµ = ε from (3.5), we obtain

ωµν ;µ =
2µ̄0 + λ̄0

2µ̄0
ε;ν +

1

2µ̄0
Xν . (4.6)

As seen previously in section §3.2, in the macroscopic local case, the
volume force Xν is set equal to zero to obtain the macroscopic relation

ωµν ;µ =
2µ̄0 + λ̄0

2µ̄0
ε;ν (4.7)

Using (4.3) in (4.7), we obtain

Fµν ;µ = ϕ0
2µ̄0 + λ̄0

2µ̄0
ε;ν . (4.8)
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§4.3 Current density four-vector

Comparing (4.8) with the covariant form of Maxwell’s equations [59, see
pp. 42–43]

Fµν ;µ = µ0j
ν (4.9)

where jν is the current density four-vector (c%, j), % is the charge den-
sity scalar, and j is the current density vector, we obtain the following
relation for the current density four-vector jν

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν (4.10)

or, in terms of the dilatation current ξν ,

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ξν . (4.11)

(Note the difference between µ0 and µ̄0 as discussed under “A note on
spacetime continuum constants” in the Preface.) This relation provides
a physical explanation of the current density four-vector: it arises from
the 4-gradient of the volume dilatation of the spacetime continuum (the
dilatation current). A corollary of this relation is that massless (trans-
verse) waves cannot carry an electric charge.

Substituting for jν from (4.10) in the relation [14, see p. 94]

jνjν = %2c2, (4.12)

we obtain the expression for the charge density

% =
1

2

ϕ0

µ0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν (4.13)

or, using the relation c = 1/
√
ε0µ0,

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν . (4.14)

Up to now, our identification of the rotation tensor ωµν of the Elasto-
dynamics of the Spacetime Continuum with the electromagnetic field-
strength tensor Fµν has generated consistent results, with no contra-
dictions.
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§4.4 Lorenz condition

The Lorenz condition can be derived directly from the theory. Taking
the divergence of (4.4), we obtain

Aµ;µ = − 1
2 ϕ0u⊥

µ
;µ. (4.15)

From (3.6), (4.15) simplifies to

Aµ;µ = 0. (4.16)

The Lorenz condition is thus obtained directly from the theory. The
reason for the value of zero is that transverse displacements are massless
because such displacements arise from a change of shape (distortion) of
the spacetime continuum, not a change of volume (dilatation).

§4.5 Four-vector potential

Substituting (4.4) into (4.5) and rearranging terms, we obtain the equa-
tion

∇2Aν −Aµ;ν
µ = ϕ0 ω

µν
;µ (4.17)

and, using (4.3) and (4.9), this equation becomes

∇2Aν −Aµ;ν
µ = µ0 j

ν . (4.18)

which is similar to the Proca equation to be considered in more details
in section §4.8.

Interchanging the order of partial differentiation in the term Aµ;ν
µ

and using the Lorenz condition of (4.16), we obtain the well-known wave
equation for the four-vector potential [59, see pp. 42–43]

∇2Aν = µ0 j
ν . (4.19)

The results we obtain are thus consistent with the macroscopic theory
of electromagnetism, with no contradictions.

§4.6 Electromagnetism and the STC volume force

We now investigate the impact of the volume force Xν on the equations
of electromagnetism. Recalling (4.6), Maxwell’s equation in terms of
the rotation tensor is given by

ωµν ;µ =
2µ̄0 + λ̄0

2µ̄0
ε;ν +

1

2µ̄0
Xν . (4.20)
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Substituting for ωµν from (4.3), this equation becomes

Fµν ;µ = ϕ0
2µ̄0 + λ̄0

2µ̄0
ε;ν +

ϕ0

2µ̄0
Xν . (4.21)

The additional Xν term can be allocated in one of two ways:

1. either jν remains unchanged as given by (4.10) and the expression
for Fµν ;µ has an additional term as developed in the first section
below;

2. or Fµν ;µ remains unchanged as given by (4.9) and the expression
for jν has an additional term as developed in the second section
below.

Option 2 is shown in the following derivation to be the logically consis-
tent approach.

§4.6.1 jν unchanged (contradiction)

Using (4.10) into (4.21), Maxwell’s equation becomes (jν unchanged)

Fµν ;µ = µ0 j
ν +

ϕ0

2µ̄0
Xν . (4.22)

Using (4.20) into (4.17) and making use of the Lorenz condition, the
wave equation for the four-vector potential becomes

∇2Aν − ϕ0

2µ̄0
Xν = µ0 j

ν . (4.23)

In this case, the equations for Fµν ;µ and Aν both contain an additional
term proportional to Xν .

We show that this option is not logically consistent as follows. Using
(4.10) into the continuity condition for the current density [59]

∂νj
ν = 0 (4.24)

yields the expression
∇2ε = 0. (4.25)

This equation is valid in the macroscopic case where Xν = 0, but dis-
agrees with the general case (non-zero Xν) given by (3.35), viz.

(2µ̄0 + λ̄0)∇2ε = −Xν
;ν .

The analysis in this section leads to a contradiction and consequently
is not valid.
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§4.6.2 Fµν
;µ unchanged (logically consistent)

Proper treatment of the general case requires that the current density
four-vector be proportional to the RHS of (4.21) as follows (Fµν ;µ un-
changed):

µ0 j
ν = ϕ0

2µ̄0 + λ̄0

2µ̄0
ε;ν +

ϕ0

2µ̄0
Xν . (4.26)

This yields the following general form of the current density four-vector:

jν =
1

2

ϕ0

µ0 µ̄0

[
(2µ̄0 + λ̄0) ε;ν +Xν

]
. (4.27)

Using this expression in the continuity condition for the current density
given by (4.24) yields (3.35) as required.

Using (4.27) into (4.21) yields the same covariant form of the Max-
well equations as in the macroscopic case:

Fµν ;µ = µ0 j
ν (4.28)

and the same four-vector potential equation

∇2Aν = µ0 j
ν (4.29)

in the Lorenz gauge.

§4.7 Homogeneous Maxwell equation

The validity of this analysis can be further demonstrated from the ho-
mogeneous Maxwell equation [59]

∂αF βγ + ∂βF γα + ∂γFαβ = 0. (4.30)

Taking the divergence of this equation over α,

∂α∂
αF βγ + ∂α∂

βF γα + ∂α∂
γFαβ = 0. (4.31)

Interchanging the order of differentiation in the last two terms and mak-
ing use of (4.28) and the antisymmetry of Fµν , we obtain

∇2F βγ + µ0(jβ;γ − jγ;β) = 0. (4.32)

Substituting for jν from (4.27),

∇2F βγ = − ϕ0

2µ̄0

[
(2µ̄0 + λ̄0)(ε;βγ − ε;γβ) + (Xβ;γ −Xγ;β)

]
. (4.33)
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Equation (3.42), viz.

µ̄0∇2εµν + (µ̄0 + λ̄0)ε;µν = −X(µ;ν)

shows that ε;µν is a symmetric tensor. Consequently the difference term
(ε;βγ − ε;γβ) disappears and (4.33) becomes

∇2F βγ = − ϕ0

2µ̄0
(Xβ;γ −Xγ;β). (4.34)

Expressing Fµν in terms of ωµν using (4.3), the resulting equation is
identical to (3.39), viz.

µ̄0∇2ωµν = −X [µ;ν]

confirming the validity of this analysis of electromagnetism including
the volume force.

Equations (4.27) to (4.29) are the self-consistent electromagnetic
equations derived from the Elastodynamics of the Spacetime Contin-
uum with the volume force. In conclusion, Maxwell’s equations remain
unchanged. The current density four-vector is the only quantity affected
by the volume force, with the addition of a second term proportional to
the volume force.

It is interesting to note that the current density obtained from the
quantum mechanical Klein-Gordon equation with an electromagnetic
field also consists of the sum of two terms [141, see p. 35]. We will
return to this peculiarity in section §7.1.

§4.8 Proca-like equation

As discussed previously in section §3.6.2, the displacement wave equa-
tion (3.18) is similar to a Proca-like vector field equation. In the macro-
scopic case where the volume force Xν is equal to zero, one obtains the
classical four-vector potential wave equation (4.19).

However, in the case of a non-zero volume force as is expected at the
quantum level, an additional term is present in (4.18). We show this by
substituting the general form of the current density four-vector (4.26)
into (4.18):

∇2Aν −Aµ;ν
µ = ϕ0

2µ̄0 + λ̄0

2µ̄0
ε;ν +

ϕ0

2µ̄0
Xν . (4.35)

The first term on the R.H.S. is written as the classical current density
four-vector

µ0 j
ν
classical = ϕ0

2µ̄0 + λ̄0

2µ̄0
ε;ν . (4.36)
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Using (4.36) into (4.35) and rearranging, we obtain

∇2Aν −Aµ;ν
µ −

ϕ0

2µ̄0
Xν = µ0 j

ν
classical (4.37)

which includes an additional term on the L.H.S. as found in the Proca
equation.

In Chapter 7, we will derive a quantum mechanical volume force
which will be seen to be of the form

Xν ∝ −Aν . (4.38)

Substituting for (4.38) into (4.37), the wave equation for the four-vector
potential becomes

∇2Aν −Aµ;ν
µ +KAν = µ0 j

ν
classical (4.39)

where K is a constant. The second term on the L.H.S. of the equation
can be set to zero using the Lorenz condition (4.16). The resulting equa-
tion is similar to the well-known Proca equation [176] and is investigated
further in section §7.3.5.
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Energy in the Spacetime Continuum

§5.1 Strain energy density of the spacetime continuum

Energy in the spacetime continuum is present as strain energy density.
This strain energy density is a scalar given by [126, see p. 51]

E = 1
2 T

αβεαβ (5.1)

where εαβ is the strain tensor and Tαβ is the energy-momentum stress
tensor. Introducing the strain and stress deviators from (1.16) and
(1.19), this equation becomes

E = 1
2

(
tαβ + tsg

αβ
)

(eαβ + esgαβ) . (5.2)

Multiplying and using relations eαα = 0 and tαα = 0 from the definition
of the strain and stress deviators, we obtain

E = 1
2

(
4tses + tαβeαβ

)
. (5.3)

Using (2.9) to express the stresses in terms of the strains, this expression
becomes

E = 1
2 κ̄0 ε

2 + µ̄0 e
αβeαβ (5.4)

where the Lamé elastic constant of the spacetime continuum µ̄0 is the
shear modulus (the resistance of the continuum to distortions) and κ̄0

is the bulk modulus (the resistance of the continuum to dilatations).
Alternatively, again using (2.9) to express the strains in terms of the
stresses, this expression can be written as

E =
1

2κ̄0
t2s +

1

4µ̄0
tαβtαβ . (5.5)

§5.2 Physical interpretation of the strain energy density

We observe in (5.4) and (5.5) that the strain energy density is separated
into two terms: the first one expresses the dilatation energy density (the
“mass” longitudinal term) while the second one expresses the distortion
energy density (the “massless” transverse term):

E = E‖ + E⊥ (5.6)
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where

E‖ =
1

2
κ̄0ε

2 ≡ 1

2κ̄0
t2 (5.7)

and

E⊥ = µ̄0e
αβeαβ ≡

1

4µ̄0
tαβtαβ . (5.8)

Using (2.24) into (5.7), we obtain

E‖ =
1

32 κ̄0

[
ρc2
]2

=
1

32 κ̄0
ρ2c4. (5.9)

The rest-mass energy density divided by the bulk modulus κ̄0, and the
transverse energy density divided by the shear modulus µ̄0, have dimen-
sions of energy density as expected.

Multiplying (5.5) by 32 κ̄0 and using (5.9), we obtain

32 κ̄0 E = ρ2c4 + 8
κ̄0

µ̄0
tαβtαβ . (5.10)

Noting that tαβtαβ is quadratic in structure, we see that this equation
is similar to the energy relation of Special Relativity [214, see p. 51] for
energy density

Ê2 = ρ2c4 + p̂ 2c2 (5.11)

where Ê is the total energy density and p̂ the momentum density.
The quadratic structure of the energy relation of Special Relativity

is thus found to be present in the Elastodynamics of the Spacetime
Continuum. Eqs. (5.10) and (5.11) also imply that the kinetic energy pc
is carried by the distortion part of the deformation, while the dilatation
part carries only the rest-mass energy.

This observation is in agreement with photons which are massless
(E‖ = 0), as will be shown in the next section §5.3, but still carry
kinetic energy in the transverse electromagnetic wave distortions (E⊥ =
tαβtαβ/4µ̄0).

As we will see in forthcoming chapters, the dilatation energy density
E‖ is usually fairly straightforward to calculate as it is proportional to
the square of the spacetime continuum volume dilatation ε, which is
itself equal to the trace of the strain tensor

ε = Trace(εµν) . (5.12)

However, the calculation of the distortion energy density E⊥ is usually
a time-consuming exercise that results in complicated expressions.



§5.3 Electromagnetic strain energy density 73

§5.3 Electromagnetic strain energy density

The strain energy density of the electromagnetic energy-momentum
stress tensor is now calculated. Starting from the symmetric electro-
magnetic stress tensor [59, see pp. 64–66]

Θµν =
1

µ0

(
FµαF

αν +
1

4
gµνFαβFαβ

)
≡ σµν , (5.13)

with gµν = ηµν of signature (+ – – –), and the field-strength tensor
components [59, see p. 43]

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By
Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 (5.14)

and

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 , (5.15)

we obtain [59, see p. 66] [258, see p. 141],

σ00 = 1
2

(
ε0E

2 + 1
µ0
B2
)

= 1
2 ε0

(
E2 + c2B2

)
σ0j = σj0 = 1

cµ0
(E ×B)

j
= ε0c (E ×B)

j
= 1

c S
j

σjk = −
(
ε0E

jEk + 1
µ0
BjBk

)
+ 1

2 δ
jk
(
ε0E

2 + 1
µ0
B2
)

= −ε0
[(
EjEk + c2BjBk

)
− 1

2 δ
jk
(
E2 + c2B2

)]
(5.16)

where Sj is the Poynting vector, and where we use the notation σµν ≡
Θµν as a generalization of the σij Maxwell stress tensor notation. Hence
the electromagnetic stress tensor is given by [59, see p. 66]:

σµν =


1
2 ε0

(
E2 + c2B2

)
Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz

 , (5.17)
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where σij is the Maxwell stress tensor. Using the relation σαβ =
ηαµηβνσ

µν to lower the indices of σµν , we obtain

σµν =


1
2 ε0

(
E2 + c2B2

)
−Sx/c −Sy/c −Sz/c

−Sx/c −σxx −σxy −σxz
−Sy/c −σyx −σyy −σyz
−Sz/c −σzx −σzy −σzz

 . (5.18)

§5.3.1 Longitudinal (mass) term

The longitudinal mass term is calculated from (5.7) and (1.21):

E‖ =
1

2κ̄0
t2s =

1

32κ̄0
(σαα)2. (5.19)

The term σαα is calculated from:

σαα = ηαβσ
αβ

= ηα0σ
α0 + ηα1σ

α1 + ηα2σ
α2 + ηα3σ

α3

= η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33.

(5.20)

Substituting from (5.17) and the metric ηµν of signature (+ – – –), we
obtain:

σαα =
1

2
ε0
(
E2 + c2B2

)
+ σxx + σyy + σzz. (5.21)

Substituting from (5.16), this expands to:

σαα = 1
2 ε0

(
E2 + c2B2

)
+ ε0

(
Ex

2 + c2Bx
2
)

+

+ ε0
(
Ey

2 + c2By
2
)

+ ε0
(
Ez

2 + c2Bz
2
)
−

− 3
2 ε0

(
E2 + c2B2

) (5.22)

and further,

σαα = 1
2 ε0

(
E2 + c2B2

)
+ ε0

(
E2 + c2B2

)
−

− 3
2 ε0

(
E2 + c2B2

)
.

(5.23)

Hence
σαα = 0 (5.24)
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and, substituting into (5.19),

E‖ = 0 (5.25)

as expected [59, see pp. 64–66]. This derivation thus shows that the rest-
mass energy density of the photon is zero, i.e. the photon is massless.

§5.3.2 Transverse (massless) term

The transverse term is calculated from (5.8), viz.

E⊥ =
1

4µ̄0
tαβtαβ . (5.26)

Given that ts = 1
4 σ

α
α = 0, then tαβ = σαβ and the terms σαβσαβ are

calculated from the components of the electromagnetic stress tensors
of (5.17) and (5.18). Substituting for the diagonal elements and mak-
ing use of the symmetry of the Poynting component terms and of the
Maxwell stress tensor terms from (5.17) and (5.18), this expands to:

σαβσαβ = 1
4 ε

2
0

(
E2 + c2B2

)2
+

+ ε20
[(
ExEx + c2BxBx

)
− 1

2

(
E2 + c2B2

)]2
+

+ ε20
[(
EyEy + c2ByBy

)
− 1

2

(
E2 + c2B2

)]2
+

+ ε20
[(
EzEz + c2BzBz

)
− 1

2

(
E2 + c2B2

)]2−
− 2

(
Sx/c

)2 − 2
(
Sy/c

)2 − 2
(
Sz/c

)2
+

+ 2 (σxy)2 + 2 (σyz)
2 + 2 (σzx)2.

(5.27)

The EB terms expand to:

EB terms = ε20

[
1
4

(
E2 + c2B2

)2
+

+
(
Ex

2 + c2Bx
2
)2 − (Ex2 + c2Bx

2
) (
E2 + c2B2

)
+

+
(
Ey

2 + c2By
2
)2 − (Ey2 + c2By

2
) (
E2 + c2B2

)
+

+
(
Ez

2 + c2Bz
2
)2 − (Ez2 + c2Bz

2
) (
E2 + c2B2

)
+

+ 3
4

(
E2 + c2B2

)2 ]
.

(5.28)
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Simplifying,

EB terms = ε20

[ (
E2 + c2B2

)2 − (Ex2 + c2Bx
2+

+Ey
2 + c2By

2 + Ez
2 + c2Bz

2
) (
E2 + c2B2

)
+

+
(
Ex

2 + c2Bx
2
)2

+
(
Ey

2 + c2By
2
)2

+

+
(
Ez

2 + c2Bz
2
)2 ]

(5.29)

which gives

EB terms = ε20

[ (
E2 + c2B2

)2 − (E2 + c2B2
)2

+

+
(
Ex

2 + c2Bx
2
)2

+
(
Ey

2 + c2By
2
)2

+

+
(
Ez

2 + c2Bz
2
)2 ]

(5.30)

and finally

EB terms = ε20

[ (
Ex

4 + Ey
4 + Ez

4
)

+

+ c4
(
Bx

4 +By
4 +Bz

4
)

+

+ 2c2
(
Ex

2Bx
2 + Ey

2By
2 + Ez

2Bz
2
) ]
.

(5.31)

Including the EB terms in (5.27), substituting from (5.16), expanding
the Poynting vector and rearranging, we obtain

σαβσαβ = ε20

[ (
Ex

4 + Ey
4 + Ez

4
)

+ c4
(
Bx

4 +By
4 +Bz

4
)
+

+ 2c2
(
Ex

2Bx
2 + Ey

2By
2 + Ez

2Bz
2
) ]
−

− 2ε20c
2
[

(EyBz − EzBy)
2

+ (−ExBz + EzBx)
2

+

+ (ExBy − EyBx)
2
]

+ 2ε20

[ (
ExEy + c2BxBy

)2
+

+
(
EyEz + c2ByBz

)2
+
(
EzEx + c2BzBx

)2 ]
.

(5.32)
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Expanding the quadratic expressions,

σαβσαβ = ε20

[ (
Ex

4 + Ey
4 + Ez

4
)

+

+ c4
(
Bx

4 +By
4 +Bz

4
)
+

+ 2c2
(
Ex

2Bx
2 + Ey

2By
2 + Ez

2Bz
2
) ]
−

− 2ε20c
2
[
Ex

2By
2 + Ey

2Bz
2 + Ez

2Bx
2+

+Bx
2Ey

2 +By
2Ez

2 +Bz
2Ex

2−

− 2
(
ExEyBxBy + EyEzByBz + EzExBzBx

)]
+

+ 2ε20

[(
Ex

2Ey
2 + Ey

2Ez
2 + Ez

2Ex
2
)
+

+ 2c2
(
ExEyBxBy + EyEzByBz + EzExBzBx

)
+

+ c4
(
Bx

2By
2 +By

2Bz
2 +Bz

2Bx
2
) ]
.

(5.33)

Grouping the terms in powers of c together,

1

ε20
σαβσαβ =

[ (
Ex

4 + Ey
4 + Ez

4
)

+

+ 2
(
Ex

2Ey
2 + Ey

2Ez
2 + Ez

2Ex
2
)]

+

+ 2c2
[(
Ex

2Bx
2 + Ey

2By
2 + Ez

2Bz
2
)
−

−
(
Ex

2By
2 + Ey

2Bz
2 + Ez

2Bx
2+

+Bx
2Ey

2 +By
2Ez

2 +Bz
2Ex

2
)
+

+ 4
(
ExEyBxBy + EyEzByBz+

+EzExBzBx
)]

+ c4
[ (
Bx

4 +By
4 +Bz

4
)

+

+ 2
(
Bx

2By
2 +By

2Bz
2 +Bz

2Bx
2
) ]
.

(5.34)
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Simplifying,

1

ε20
σαβσαβ =

(
Ex

2 + Ey
2 + Ez

2
)2

+

+ 2c2
(
Ex

2 + Ey
2 + Ez

2
) (
Bx

2 +By
2 +Bz

2
)
−

− 2c2
[
2
(
Ex

2By
2 + Ey

2Bz
2 + Ez

2Bx
2+

+Bx
2Ey

2 +By
2Ez

2 +Bz
2Ex

2
)
−

− 4
(
ExEyBxBy + EyEzByBz + EzExBzBx

)]
+

+ c4
(
Bx

2 +By
2 +Bz

2
)2

(5.35)

which is further simplified to

1

ε20
σαβσαβ =

(
E4 + 2c2E2B2 + c4B4

)
−

− 4c2
[

(EyBz −ByEz)2
+ (EzBx −BzEx)

2
+

+ (ExBy −BxEy)
2
]
.

(5.36)

Making use of the definition of the Poynting vector from (5.16), we
obtain

σαβσαβ = ε20
(
E2 + c2B2

)2−
− 4ε20c

2
[
(E ×B)x

2 + (E ×B)y
2 + (E ×B)z

2
] (5.37)

and finally

σαβσαβ = ε20
(
E2 + c2B2

)2 − 4

c2
(
Sx

2 + Sy
2 + Sz

2
)
. (5.38)

Substituting in (5.26), the transverse term becomes

E⊥ =
1

4µ̄0

[
ε20
(
E2 + c2B2

)2 − 4

c2
S2

]
(5.39)

or

E⊥ =
1

µ̄0

[
Uem

2 − 1

c2
S2

]
(5.40)

where Uem = 1
2 ε0(E2+c2B2) is the electromagnetic field energy density.
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§5.4 Electromagnetic field strain energy density and the
photon

S is the electromagnetic energy flux along the direction of propaga-
tion [59, see p. 62]. As noted by Feynman [122, see pp. 27-1–2], local
conservation of the electromagnetic field energy can be written as

−∂Uem
∂t

= ∇ · S, (5.41)

where the term E · j representing the work done on the matter inside
the volume is 0 in the absence of charges (due to the absence of mass).
By analogy with the current density four-vector jν = (c%, j), where % is
the charge density, and j is the current density vector, which obeys a
similar conservation relation, we define the Poynting four-vector

Sν = (cUem,S) , (5.42)

where Uem is the electromagnetic field energy density, and S is the
Poynting vector. Furthermore, as per (5.41), Sν satisfies

∂νS
ν = 0 . (5.43)

Using definition (5.42) in (5.40), that equation becomes

E⊥ =
1

µ̄0c2
SνS

ν . (5.44)

The indefiniteness of the location of the field energy referred to by Feyn-
man [122, see p. 27-6] is thus resolved: the electromagnetic field energy
resides in the distortions (transverse displacements) of the spacetime
continuum.

Hence the invariant electromagnetic strain energy density is given
by

E =
1

µ̄0c2
SνS

ν (5.45)

where we have used ρ = 0 as per (5.24). This confirms that Sν as
defined in (5.42) is a four-vector.

It is surprising that a longitudinal energy flow term is part of the
transverse strain energy density i.e. S2/µ̄0c

2 in (5.40). We note that
this term arises from the time-space components of (5.17) and (5.18)
and can be seen to correspond to the transverse displacements along the
time-space planes which are folded along the direction of propagation
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in 3-space as the Poynting vector. The electromagnetic field energy
density term Uem

2/µ̄0 and the electromagnetic field energy flux term
S2/µ̄0c

2 are thus combined into the transverse strain energy density.
The negative sign arises from the signature (+ – – –) of the Minkowski
metric tensor ηµν .

This longitudinal electromagnetic energy flux is massless as it is due
to distortion, not dilatation, of the spacetime continuum. However,
because this energy flux is along the direction of propagation (i.e. lon-
gitudinal), it gives rise to the particle aspect of the electromagnetic
field, the photon. As shown in [219, see pp. 174-5] [155, see p. 58], in
the quantum theory of electromagnetic radiation, an intensity operator
derived from the Poynting vector has, as expectation value, photons in
the direction of propagation.

This implies that the (pc)2 term of the energy relation of Special Rel-
ativity needs to be separated into transverse and longitudinal massless
terms as follows:

Ê2 = ρ2c4︸︷︷︸
E‖

+ p̂2
‖c

2 + p̂2
⊥c

2︸ ︷︷ ︸
massless E⊥

(5.46)

where p̂‖ is the massless longitudinal momentum density. Eq. (5.40)
shows that the electromagnetic field energy density term Uem

2/µ̄0 is
reduced by the electromagnetic field energy flux term S2/µ̄0c

2 in the
transverse strain energy density, due to photons propagating in the lon-
gitudinal direction. Hence we can write [155, see p. 58]∫

V

1

µ̄0c2
S2dV =

∑
k

nkhνk. (5.47)

where h is Planck’s constant and nk is the number of photons of fre-
quency νk. Thus the kinetic energy is carried by the distortion part
of the deformation, while the dilatation part carries only the rest-mass
energy, which in this case is 0.

As shown in (5.9), (5.10) and (5.11), the constant of proportionality
to transform energy density squared (Ê2) into strain energy density (E)
is 1/(32κ̄0):

E‖ =
1

32κ̄0

[
ρc2
]2

(5.48)

E =
1

32κ̄0
Ê2 (5.49)

E⊥ =
1

32κ̄0

[
p̂2
‖c

2 + p̂2
⊥c

2
]

=
1

4µ̄0
tαβtαβ . (5.50)
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Substituting (5.40) into (5.50), we obtain

E⊥ =
1

32κ̄0

[
p̂2
‖c

2 + p̂2
⊥c

2
]

=
1

µ̄0

[
Uem

2 − 1

c2
S2

]
(5.51)

and

p̂2
‖c

2 + p̂2
⊥c

2 =
32κ̄0

µ̄0

[
Uem

2 − 1

c2
S2

]
. (5.52)

This suggests that
µ̄0 = 32κ̄0 , (5.53)

to obtain the relation

p̂2
‖c

2 + p̂2
⊥c

2 = Uem
2 − 1

c2
S2 . (5.54)

§5.5 Origin of inertial mass in the spacetime continuum

It must also be said that the origin of inertia is and remains the
most obscure subject in the theory of particles and fields. A. Pais,
1982 [282, p. 288]

... the notion of mass, although fundamental to physics, is still
shrouded in mystery. M. Jammer, 2000 [180, p. ix]

In this section, we revisit the nature of inertial mass as provided by the
Elastodynamics of the Spacetime Continuum (STCED) [238, 254]. We
combine the various elements to the solution of the origin of inertial mass
sprinkled in this book in this section. This results in some repetition of
previously presented results, but the bringing-together of these results
under one umbrella section helps to understand the logical consistency
of the origin of inertial mass in the spacetime continuum.

As we have seen previously, STCED is a natural extension of Ein-
stein’s General Theory of Relativity which blends continuum mechanical
and general relativistic descriptions of the spacetime continuum. The
introduction of strains εµν in the spacetime continuum as a result of the
energy-momentum stress tensor Tµν allows us to use, by analogy, re-
sults from continuum mechanics, in particular the stress-strain relation,
to provide a better understanding of the general relativistic spacetime.

§5.5.1 Inertial mass in STCED

In STCED, as shown in [238, 254], energy propagates in the spacetime
continuum (STC ) as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invariant change
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in volume of the spacetime continuum which is the source of the asso-
ciated rest-mass energy density of the deformation. On the other hand,
distortions correspond to a change of shape (shearing) of the spacetime
continuum without a change in volume and are thus massless.

Thus deformations propagate in the spacetime continuum by lon-
gitudinal (dilatation) and transverse (distortion) wave displacements.
This provides a natural explanation for wave-particle duality, with the
massless transverse mode corresponding to the wave aspects of the de-
formations and the massive longitudinal mode corresponding to the par-
ticle aspects of the deformations.

The rest-mass energy density of the longitudinal mode is given by
[238, see Eq. (32)]

ρc2 = 4κ̄0ε (5.55)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is the bulk
modulus of the STC, and ε = εαα, the trace of the strain tensor εµν

obtained by contraction, is the volume dilatation defined as the change
in volume per original volume [320, see pp. 149–152] and is an invariant
of the strain tensor. Integrating over the 3-D space volume,∫

V3

ρc2 dV3 = 4κ̄0

∫
V3

εdV3 , (5.56)

and using

m =

∫
V3

ρdV3 (5.57)

in (5.56), where m is the rest mass (often denoted as m0) of the defor-
mation, we obtain

mc2 = 4κ̄0 Vεs (5.58)

where

Vεs =

∫
V3

εdV3 (5.59)

is the space volume dilatation corresponding to rest-mass m, and space-
time continuum volume dilatation ε is the solution of the 4-D dilata-
tional (longitudinal) wave equation [254, see Eq. (3.35)]

(2µ̄0 + λ̄0)∇2ε = −∂νXν (5.60)

where∇ and ∂ are the 4-D operators andXν is the spacetime continuum
volume force.

This demonstrates that mass is not independent of the spacetime
continuum, but rather mass is part of the spacetime continuum fabric
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itself. Hence mass results from the dilatation of the spacetime contin-
uum in the longitudinal propagation of energy-momentum in the space-
time continuum. Matter does not warp spacetime, but rather, matter
is warped spacetime (i.e. dilated spacetime). The universe consists of
the spacetime continuum and energy-momentum that propagates in it
by deformation of its structure.

It is interesting to note that Pais, in his scientific biography of Ein-
stein ‘Subtle is the Lord...’, mentions [282, p. 253]

The trace of the energy momentum tensor does vanish for elec-
tromagnetic fields but not for matter.

which is correct, as shown in [239, 242], where the zero trace of the
electromagnetic field energy-momentum stress tensor is reflected in the
zero mass of the photon. The missing link in general relativity is the
understanding that the trace of the energy-momentum stress tensor is
related to the trace of the spacetime continuum strain tensor and is
proportional to the mass of matter as given by (5.55) and (5.58).

There are basic questions of physics that can be resolved given this
understanding of the origin of inertial mass. The following sections deal
with many of these unresolved questions.

§5.5.2 Definition of mass

An important consequence of relations (5.55) and (5.58) is that they
provide a definition of mass. The definition of mass is still one of the
open questions in physics, with most authors adopting an indirect defi-
nition of mass based on the ratio of force to acceleration [178, see Ch. 8].
However, mass is one of the fundamental dimensions of modern systems
of units, and as such, should be defined directly, not indirectly. This
is a reflection of the current incomplete understanding of the nature of
mass in physics. STCED provides a direct physical definition of mass:
mass is the invariant change in volume of spacetime in the longitudinal
propagation of energy-momentum in the spacetime continuum.

Note that the operational definition of mass (m = F/a) is still
needed to measure the mass of objects and compare them. Jammer
covers the various operational and philosophical definitions of mass that
have been proposed [180, Ch. 1].

§5.5.3 Point particles

The fact that the mass of a particle corresponds to a finite spacetime
volume dilatation Vεs shows that a singular “point” particle is not phys-
ically valid. All particles occupy a finite volume, even if that volume
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can be very small. Problems arising from point particles are thus seen
to result from the abstraction of representing some particles as point
objects. Instead, particles need to be given a finite volume to give phys-
ically realistic results and avoid invalid results.

§5.5.4 Equivalence of inertial and gravitational mass

Einstein’s general relativistic principle of equivalence of inertial and
gravitational mass can be given added confirmation in STCED. As
shown in [239, 243], the Ricci tensor can also be decomposed into di-
latation and distortion components. The dilatation component can
be shown to result in Poisson’s equation for a newtonian gravitational
potential [254, see Eq. (2.44)] where the gravitational mass density is
identical to the rest-mass density identified in STCED. This confirms
theoretically the equivalence of inertial mass and gravitational mass,
as demonstrated experimentally within the accuracy currently achie-
vable [102].

§5.5.5 Mach’s principle

Mach’s principle, a terminology first used by Einstein [282, p. 287], was
not explicitly stated by Mach, and hence various takes on its state-
ment exist. One of the better formulation holds that one can deter-
mine rotation and hence define inertial frames with respect to the fixed
stars [365, see pp. 86–88]. By extension, inertia would then be due to
an interaction with the average mass of the universe [365, see p. 17].

This principle played an important role in the initial development
of general relativity by Einstein which is well documented by Pais [282,
pp. 283–287]. It also had an impact on the initial work performed in
cosmology by Einstein who was searching for a cosmological model that
would be in accord with Mach’s principle. Einstein’s evolving perspec-
tive on Mach’s work is best summarized by Pais [282, p. 287]:

So strongly did Einstein believe at that time in the relativity of
inertia that in 1918 he stated as being on equal footing three
principles on which a satisfactory theory of gravitation should
rest [Mach’s principle was the third] ... In later years, Einstein’s
enthusiasm for Mach’s principle waned and finally vanished.

Modifications of Einstein’s Theory of General Relativity have been pro-
posed in an attempt to incorporate Mach’s principle into general rela-
tivity (see for example [33,134]).

The book Gravitation and Inertia by Ciufolini and Wheeler [371],
with its emphasis on geometrodynamics and its well-known sayings
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“spacetime tells mass how to move and mass tells spacetime how to
curve” and “inertia here arises from mass there”, explores these ideas
in detail. However, it is important to realize that this perspective is an
interpretation of Einstein’s field equations of general relativity (2.8).
These equations are simply a relation between the geometry of the
spacetime continuum and the energy-momentum present in its struc-
ture. STCED shows that mass is not outside of the spacetime contin-
uum telling it how to curve (so to speak), but rather mass is part of
the spacetime continuum fabric itself participating in the curvature of
the spacetime continuum. The geometry of the spacetime continuum is
generated by the combination of all spacetime continuum deformations
which are composed of longitudinal massive dilatations and transverse
massless distortions.

As shown in section §2.5, the geometry of spacetime used in (2.8)
can thus be considered to be a linear composition (represented by a
sum) of STC deformations, starting with the total energy-momentum
generating the geometry of general relativity, TµνGR, being a composition
of the energy-momentum of the individual deformations of STCED,
TµνSTCED as given by (2.8), viz.

TµνGR =
∑

TµνSTCED .

As shown in section §2.5, from (2.6) and (2.8), we obtain the relations
(2.50) and (2.51), viz.

1

κ
R =

∑
4 κ̄0 ε =

∑
ρ c2

i.e. the curvature of the spacetime continuum arises from the composi-
tion of the effect of individual deformations and is proportional to the
rest-mass energy density present in the spacetime continuum, and

1

κ
Rµν =

∑[
(λ̄0 + µ̄0)gµνε− 2µ̄0 ε

µν
]
.

Eqs. (2.50) and (2.51) give the relation between the microscopic de-
scription of the strains (i.e. deformations of the spacetime continuum)
and the macroscopic description of the gravitational field in terms of the
curvature of the spacetime continuum resulting from the combination of
the many microscopic displacements of the spacetime continuum from
equilibrium. The source of the inertia is thus in the massive dilatation
associated with each deformation, and Mach’s principle (or conjecture
as it is also known) is seen to be incorrect.
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§5.5.6 Electromagnetic mass

The advent of Maxwell’s theory of electromagnetism in the second half
of the nineteenth century led to the possibility of inertia resulting from
electromagnetism, first proposed in 1881 by J. J. Thomson [178, see
Chapter 11]. The application of the concept of electromagnetic mass
to the electron discovered by J. J. Thomson in 1897, by modelling it as
a small charged sphere, led to promising results [122, see Chapter 28].
One can then calculate the energy in the electron’s electric field and
divide the result by c2. Alternatively, the electromagnetic momentum
of a moving electron can be calculated from Poynting’s vector and the
electromagnetic mass set equal to the factor multiplying the electron’s
velocity vector. Different methods give different results.

Using the classical electron radius

r0 =
e2

mec2
(5.61)

where e is the electronic charge and me the mass of the electron, then
the electromagnetic mass of the electron can be written as

mem = ke
e2

r0c2
(5.62)

where the factor ke depends on the assumed charge distribution in the
sphere and the method of calculation used. For a surface charge dis-
tribution, ke = 2/3, while for a uniform volume distribution, ke =
4/5. Numerous modifications were attempted to get mem = me [122,
178] with Poincaré introducing non-electrical forces known as “Poincaré
stresses” to get the desired result. This is a classical treatment that does
not take relativistic or quantum effects into consideration.

It should be noted that the simpler classical treatment of the elec-
tromagnetic mass of the electron based purely on the electric charge
density of the electron is a calculation of the static mass of the electron.
In STCED, the charge density % can be calculated from the current
density four-vector jν (see section §4.3)

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν (5.63)

where ϕ0 is the STC electromagnetic shearing potential constant, which
has units of [V · s · m−2] or equivalently [T], µ0 is the electromagnetic
permeability of free space, and ε;ν can be written as the dilatation
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current ξν = ε;ν . Substituting for jν from (5.63) in the relation [14, see
p. 94]

jνjν = %2c2, (5.64)

we obtain the expression for the charge density

% =
1

2

ϕ0

µ0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν . (5.65)

Note the difference between the electromagnetic permeability of free
space µ0 and the Lamé elastic constant µ̄0 used to denote the spacetime
continuum shear modulus.

We see that the charge density derives from the norm of the gradient
of the volume dilatation ε, i.e.

‖ε;ν‖ =
√
ε;νε;ν

=

√(
∂ε

∂x

)2

+

(
∂ε

∂y

)2

+

(
∂ε

∂z

)2

+
1

c2

(
∂ε

∂t

)2 (5.66)

in cartesian coordinates, and from the above, (5.65) becomes

% =
1

2

ϕ0

µ0c

2µ̄0 + λ̄0

2µ̄0
‖ε;ν‖ . (5.67)

The charge density is a manifestation of the spacetime fabric itself,
however it does not depend on the volume dilatation ε, only on its
gradient, and it does not contribute to inertial mass as given by (5.55).
The electromagnetic mass calculation is based on the energy in the
electron’s electric field and we now consider electromagnetic field energy
in STCED to clarify its contribution, if any, to inertial mass. This also
covers the calculation of electromagnetic mass from the Poynting vector.

§5.5.7 Mass of electromagnetic field energy

As shown in section §2.6.3, the correct special relativistic relation for
momentum p is given by

p = m0 u , (5.68)

where m0 is the proper or rest mass, u is the velocity with respect to
the proper time τ , given by u = γv, where

γ =
1

(1− β2)
1/2

, (5.69)
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β = v/c, and v is the velocity with respect to the local time t. When
dealing with dynamic equations in the local time t instead of the invari-
ant proper time τ , momentum p is given by

p = m∗v , (5.70)

where the relativistic mass m∗ is given by

m∗ = γm0 . (5.71)

Eq. (5.70), compared to (5.68), shows that relativistic mass m∗ is
an effective mass which results from dealing with dynamic equations in
the local time t instead of the invariant proper time τ . The relativistic
mass energy m∗c2 corresponds to the total energy of an object (invariant
proper mass plus kinetic energy) measured with respect to a given frame
of reference [248]. As noted by Jammer [180, p. 41],

Since [velocity v] depends on the choice of [reference frame] S
relative to which it is being measured, [relativistic mass m∗] also
depends on S and is consequently a relativistic quantity and not
an intrinsic property of the particle.

Using the effective mass, we can write the energy E as the sum of
the proper mass and the kinetic energy K of the body, which is typically
written as

E = m∗c2 = m0 c
2 +K . (5.72)

If the particles are subjected to forces, these stresses must be included
in the energy-momentum stress tensor, and hence added to K. Thus
we see that the inertial mass corresponds to the proper or rest mass
of a body, while relativistic mass does not represent an actual increase
in the inertial mass of a body, just its total energy (see Taylor and
Wheeler [344], Okun [273–275], Oas [270,271]).

Considering the energy-momentum stress tensor of the electromag-
netic field, we can show that Tαα = 0 as expected for massless photons,
while

T 00 =
ε0
2

(
E2 + c2B2

)
= Uem (5.73)

is the total energy density, where Uem is the electromagnetic field energy
density, ε0 is the electromagnetic permittivity of free space, and E and B
have their usual significance for the electric and magnetic fields (see [254,
§5.3]). As m0 = 0 for the electromagnetic field, the electromagnetic field
energy then needs to be included in the K term in (5.72).
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In general, the energy relation in special relativity is quadratic, given
by

E2 = m2
0 c

4 + p2c2 , (5.74)

where p is the momentum. Making use of the effective mass (2.53)
allows us to obtain (2.63) from (5.74) [242], starting from

m∗2c4 = γ2m2
0 c

4 = m2
0 c

4 + p2c2 . (5.75)

This section provides a description of the electromagnetic field energy
using a quadratic energy relation which corresponds to the more com-
plete classical treatment of the electromagnetic mass of the electron
based on the Poynting vector of the electron in motion.

In STCED, energy is stored in the spacetime continuum as strain
energy [242]. As seen in section §5.2, the strain energy density of the
spacetime continuum is separated into two terms given by (5.6), viz.

E = E‖ + E⊥

The first one (5.7) expresses the dilatation energy density (the mass
longitudinal term) while the second one (5.8) expresses the distortion
energy density (the massless transverse term), viz.

E‖ =
1

2
κ̄0ε

2 ≡ 1

32κ̄0
ρ2c4 ,

where ρ is the rest-mass density of the deformation, and

E⊥ = µ̄0 e
αβeαβ =

1

4µ̄0
tαβtαβ ,

with the strain distortion (1.17)

eαβ = εαβ − es gαβ

and the strain dilatation es = 1
4 ε

α
α. Similarly for the stress distortion

tαβ and the stress dilatation ts. Then the dilatation (massive) strain
energy density of the deformation is given by the longitudinal strain
energy density (5.7) and the distortion (massless) strain energy density
of the deformation is given by the transverse strain energy density (5.8).

As shown in section §5.3 for the electromagnetic field, the longitu-
dinal term is given by (5.25), viz.

E‖ = 0
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as expected [59, see pp. 64–66]. This result thus shows that the rest-mass
energy density of the electromagnetic field, and hence of the photon is
zero, i.e. the photon is massless. The transverse term is given by (5.39)
and (5.40), viz.

E⊥ =
1

4µ̄0

[
ε20
(
E2 + c2B2

)2 − 4

c2
S2

]
or

E⊥ =
1

µ̄0

[
Uem

2 − 1

c2
S2

]
where Uem = 1

2 ε0(E2 + c2B2) is the electromagnetic field energy den-
sity as before and S is the magnitude of the Poynting vector. Using
the Poynting four-vector Sν = (cUem,S) defined in (5.42) where S is
the Poynting vector, in the above equation, we obtain the transverse
massless energy density of the electromagnetic field (5.44), viz.

E⊥ =
1

µ̄0c2
SνS

ν .

As we stated previously, the indefiniteness of the location of the field
energy referred to by Feynman [122, see p. 27-6] is thus resolved: the
electromagnetic field energy resides in the distortions (transverse dis-
placements) of the spacetime continuum.

Hence the electromagnetic field is transverse and massless, and has
no massive longitudinal component. The electromagnetic field has en-
ergy, but no rest mass, and hence no inertia. From STCED, we see that
electromagnetism as the source of inertia is not valid.

Electromagnetic mass is thus seen to be an unsuccessful attempt
to account for the inertial mass of a particle from its electromagnetic
field energy. The electromagnetic field contributes to the particle’s total
energy, but not to its inertial mass which STCED shows originates in
the particle’s dilatation energy density (the mass longitudinal term)
which is zero for the electromagnetic field.

§5.5.8 Summary

In this section, we have revisited the nature of inertial mass as provided
by the Elastodynamics of the Spacetime Continuum (STCED) which
provides a better understanding of general relativistic spacetime. Mass
is shown to be the invariant change in volume of spacetime in the longi-
tudinal propagation of energy-momentum in the spacetime continuum.
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Hence mass is not independent of the spacetime continuum, but rather
mass is part of the spacetime continuum fabric itself.

STCED provides a direct physical definition of mass. In addition,
it answers many of the unresolved questions that pertain to the nature
of mass:

– The mass of a particle corresponds to a finite spacetime volume
dilatation Vεs and particles need to be given a finite volume (as
opposed to “point particles”) to give physically realistic results
and avoid invalid results.

– It confirms theoretically the equivalence of inertial and gravita-
tional mass.

– The source of inertia is in the massive dilatation associated with
each deformation, and Mach’s principle (or conjecture), which
holds that inertia results from interaction with the average mass
of the universe, is seen to be incorrect.

– The electromagnetic field is transverse and massless, and has no
massive longitudinal component. It has energy, but no rest mass,
and hence no inertia. The electromagnetic field contributes to the
particle’s total energy, but not to its inertial mass.

STCED thus provides a physical model of the nature of inertial mass,
which also includes an explanation for wave-particle duality. This model
leads to the clarification and resolution of unresolved and contentious
questions pertaining to inertial mass and its nature.





Chapter 6

Spacetime Continuum Volume Force

§6.1 STC volume force

The volume (or body) force Xν has been introduced in the equilibrium
dynamic equation of the spacetime continuum in (3.7) of section §3.2.1
viz.

Tµν ;µ = −Xν . (6.1)

Comparison with the corresponding general relativistic expression sho-
wed that the volume force is equal to zero at the macroscopic local level.
Indeed, as pointed out by Wald [362, see p. 286], in general relativity
the local energy density of matter as measured by a given observer is
well-defined, and the relation

Tµν ;µ = 0 (6.2)

can be taken as expressing local conservation of the energy-momentum
of matter.

It was also pointed out in that section that at the microscopic level,
energy is known to be conserved only within the limits of the Heisenberg
Uncertainty Principle, suggesting that the volume force may be very
small, but not exactly zero. This is analogous to quantum theory where
Planck’s constant h must be taken into consideration at the microscopic
level while at the macroscopic level, the limit h→ 0 holds.

In this chapter, we investigate the volume force and its impact on
the equations of the Elastodynamics of the Spacetime Continuum.

§6.2 Linear elastic volume force

First we consider a simple linear elastic volume force. Based on the
results obtained, we will then consider a variation of that linear elastic
volume force based on the Klein-Gordon quantum mechanical current
density in the next chapter.

We investigate a volume force that consists of an elastic linear force
in a direction opposite to the displacements. This is the well-known
elastic “spring” force

Xν = k̄0u
ν (6.3)
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where k̄0 is the postulated elastic force constant of the spacetime contin-
uum volume force. Eq. (6.3) is positive as the volume force Xν is defined
positive in the direction opposite to the displacement [126]. Introduc-
tion of this volume force into our previous analysis of the spacetime
continuum wave equations in sections §3.3 and §3.5 yields the following
relations.

§6.2.1 Displacement wave equation

Substituting (6.3) into (3.18), viz.

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −Xν , (6.4)

the dynamic equation in terms of displacements becomes

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −k̄0u
ν . (6.5)

This equation can be rewritten as

∇2uν +
k̄0

µ̄0
uν = − µ̄0 + λ̄0

µ̄0
ε;ν . (6.6)

This displacement equation is similar to a nonhomogeneous Klein-Gor-
don equation for a vector field, with a source term.

Separating uν into a longitudinal (irrotational) component uν‖ and a

transverse (solenoidal) component uν⊥ using the Helmholtz theorem in
four dimensions [378] according to

uν = uν‖ + uν⊥ , (6.7)

and similarly separating the dilatation current ξν = ε;ν into a longitu-
dinal component ξν‖ and a transverse component ξν⊥

ξν = ξν‖ + ξν⊥ , (6.8)

and substituting into (6.6), we obtain the separated equations

∇2uν‖ +
k̄0

µ̄0
uν‖ = − µ̄0 + λ̄0

µ̄0
ξν‖

∇2uν⊥ +
k̄0

µ̄0
uν⊥ = − µ̄0 + λ̄0

µ̄0
ξν⊥

(6.9)

which becomes

∇2uν⊥ +
k̄0

µ̄0
uν⊥ = 0 (6.10)

given that ξν⊥ = ε;ν
⊥ = 0. The wave equation for uν‖ describes the

propagation of longitudinal displacements, while the wave equation for
uν⊥ describes the propagation of transverse displacements.
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§6.2.2 Wave equations

Additional wave equations as shown in section §3.5, can be derived from
this volume force.

Dilatational (longitudinal) wave equation. Substituting (6.3) into
(3.35), viz.

(2µ̄0 + λ̄0)∇2ε = −Xν
;ν , (6.11)

the longitudinal (dilatational) wave equation becomes

(2µ̄0 + λ̄0)∇2ε = −k̄0u
ν

;ν . (6.12)

Using uµ;µ = ε from (3.5) and rearranging, this equation can be rewrit-
ten as

∇2ε+
k̄0

2µ̄0 + λ̄0
ε = 0 . (6.13)

This wave equation applies to the volume dilatation ε. This equation is
similar to the homogeneous Klein-Gordon equation for a scalar field, a
field whose quanta are spinless particles [141].

Rotational (transverse) wave equation. Substituting (6.3) into
(3.39), viz.

µ̄0∇2ωµν = −X [µ;ν] , (6.14)

the transverse (rotational) wave equation becomes

µ̄0∇2ωµν = − k̄0

2
(uµ;ν − uν;µ) . (6.15)

Using the definition of ωµν from (3.3) and rearranging, this equation
can be rewritten as

∇2ωµν +
k̄0

µ̄0
ωµν = 0 . (6.16)

This antisymmetric equation is also similar to an homogeneous Klein-
Gordon equation for an antisymmetric tensor field.

Strain (symmetric) wave equation. Substituting (6.3) into (3.42),
viz.

µ̄0∇2εµν + (µ̄0 + λ̄0)ε;µν = −X(µ;ν), (6.17)

the symmetric (strain) wave equation becomes

µ̄0∇2εµν + (µ̄0 + λ̄0)ε;µν = − k̄0

2
(uµ;ν + uν;µ). (6.18)
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Using the definition of εµν from (3.2) and rearranging, this equation can
be rewritten as

∇2εµν +
k̄0

µ̄0
εµν = − µ̄0 + λ̄0

µ̄0
ε;µν . (6.19)

This symmetric equation is also similar to a nonhomogeneous Klein-
Gordon equation for a symmetric tensor field with a source term.

§6.2.3 Electromagnetism

We consider the impact of this volume force on the equations of elec-
tromagnetism derived previously. Substituting (6.3) into (4.20), viz.

ωµν ;µ =
2µ̄0 + λ̄0

2µ̄0
ε;ν +

1

2µ̄0
Xν , (6.20)

Maxwell’s equations in terms of the rotation tensor become

ωµν ;µ =
2µ̄0 + λ̄0

2µ̄0
ε;ν +

k̄0

2µ̄0
uν . (6.21)

Separating uν into its longitudinal (irrotational) component uν‖ and its

transverse (solenoidal) component uν⊥ using the Helmholtz theorem in
four dimensions [378] according to

uν = uν‖ + uν⊥, (6.22)

substituting for ωµν from Fµν = ϕ0ω
µν and for uν⊥ from Aµ = − 1

2 ϕ0u
µ
⊥,

this equation becomes

Fµν ;µ = ϕ0
2µ̄0 + λ̄0

2µ̄0
ε;ν +

ϕ0k̄0

2µ̄0
uν‖ −

k̄0

µ̄0
Aν . (6.23)

Proper treatment of this case requires that the current density four-
vector be proportional to the RHS of (6.23) as follows:

µ0j
ν =

ϕ0

2µ̄0

[
(2µ̄0 + λ̄0) ε;ν + k̄0u

ν
‖

]
− k̄0

µ̄0
Aν . (6.24)

This thus yields the following microscopic form of the current density
four-vector:

jν =
ϕ0

2µ̄0µ0

[
(2µ̄0 + λ̄0)ε;ν + k̄0u

ν
‖

]
− k̄0

µ̄0µ0
Aν . (6.25)
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We thus find that the second term is proportional to Aν as is the
second term of the current density obtained from the quantum mechani-
cal Klein-Gordon equation with an electromagnetic field [141, see p. 35].
in addition, we find that jν includes a longitudinal component k̄0u

ν
‖

propagating along the direction of propagation.

§6.3 Discussion of linear elastic volume force results

This section has been useful in that consideration of a simple linear
elastic volume force leads to equations which are of the Klein-Gordon
type. The wave equations that are obtained for the scalar ε, the 4-
vector uν , and the symmetric and antisymmetric tensors εµν and ωµν

respectively, are all equations that are similar to homogeneous or non-
homogeneous Klein-Gordon equations. The solutions of these equations
are well understood [292, see pp. 414–433].

It should be noted that we cannot simply put

m2c2

~2
=

k̄0

2µ̄0 + λ̄0
(6.26)

or
m2c2

~2
=
k̄0

µ̄0
(6.27)

from the Klein-Gordon equation, as the expression to use depends on
the wave equation considered. This ambiguity in the equivalency of the
constant m2c2/~2 to STCED constants indicates that the postulated
elastic linear volume force proposed in (6.3) is not quite correct, even if
it is a step in the right direction. It has provided insight into the impact
of the volume force on this analysis, but the volume force is not quite
the simple linear elastic expression considered in (6.3).

In the next chapter, we will derive a volume force from the general
current density four-vector expression (4.27) seen previously in section
§4.6.2. We find that the volume force (6.3) and consequently the current
density four-vector (6.25) need to be modified.

§6.4 Designer STC volume forces

The spacetime continuum volume force can thus be tailored to the space-
time continuum characteristics. This we refer to as designer volume
forces, that is volume forces designed to meet the needs of the space-
time continuum under consideration. This approach is similar to that
followed to design Lagrangians in quantum electrodynamics. As we
will see in the upcoming chapters on spacetime continuum defects, the
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characteristics of the spacetime continuum can vary depending on the
nature and density of defects in its structure.

In the next Chapter 7, we derive a quantum mechanical volume force
based on the similarity in the structure of the current density four-vector
in STCED and that derived from the spin-0 Klein-Gordon equation. It
is expected that other STC volume forces can be derived from similar
identifications with other equations.

Eshelby [113] and deWit [78, 79] point out that a fictitious volume
force can be used to simulate the field of a defect in the spacetime contin-
uum. deWit [79] provides examples, including one for an isotropic con-
tinuum. This approach provides another method of obtaining spacetime
continuum volume forces tailored to the characteristics of the spacetime
continuum. This is considered further in section §8.4.



Chapter 7

Quantum Mechanical Volume Force

§7.1 Derivation of a quantum mechanical volume force

In this chapter, we derive a quantum mechanical volume force based
on the similarity in the structure of the current density four-vector in
STCED and the one from the spin-0 Klein-Gordon equation. Hence
one identification of the volume force based on quantum mechanical
considerations is possible by comparing (4.27), viz.

jν =
1

2

ϕ0

µ0 µ̄0

[
(2µ̄0 + λ̄0)ε;ν +Xν

]
, (7.1)

with the quantum mechanical expression of the current density four-
vector jν obtained from the Klein-Gordon equation for a spin-0 particle.
The Klein-Gordon equation can also describe the interaction of a spin-0
particle with an electromagnetic field. The current density four-vector
jν in that case is written as [141, see p. 35]

jν =
ie~
2m

(ψ∗∂νψ − ψ ∂νψ∗)− e2

m
Aν(ψψ∗) (7.2)

where the superscript ∗ denotes complex conjugation.
The first term of (7.2) includes the following derivative-like expres-

sion:
i(ψ∗∂νψ − ψ ∂νψ∗). (7.3)

It is generated by multiplying the Klein-Gordon equation for ψ by ψ∗

and subtracting the complex conjugate [141]. The general form of the
expression can be generated by writing

ψ ∼ exp(iϑ) (7.4)

which is a qualitative representation of the wavefunction. One can then
see that with (7.4), the expression

∂ν(ψψ∗) (7.5)

has the qualitative structure of (7.3) although it is not strictly equiva-
lent. However, given that the steps followed to generate (7.3) are not
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repeated in this derivation, strict equivalence is not expected. Replacing
(7.3) with (7.5), (7.2) becomes

jν =
e~
2m

∂ν(ψψ∗)− e2

m
Aν(ψψ∗) . (7.6)

We see that the first term of (7.6) is similar to the first term of (7.1)
and setting them to be equal, we obtain

ϕ0

2µ0 µ̄0
(2µ̄0 + λ̄0)ε;ν =

e~
2m

∂ν(ψψ∗). (7.7)

Similarly, the second terms of (7.1) and (7.2) are also similar and setting
them to be equal, we obtain

ϕ0

2µ0 µ̄0
Xν = −e

2

m
Aν(ψψ∗). (7.8)

The equalities (7.7) and (7.8) thus result from the comparison of (7.1)
and (7.2).

The first identification that can be determined from (7.7) is

ε (xµ) = υ0ψψ
∗ (7.9)

where the proportionality constant has been set to υ0 which has units
of [m3]. While ε which is the change in volume per original volume
as a function of position xµ, which is stated explicitly in (7.9), is a
dimensionless quantity, the Klein-Gordon wavefunction ψ has units of
L−Nn/2 and the norm of the wavefunction ψψ∗ has units L−Nn where
N is the number of particles and n is the number of spatial dimensions.
For one particle in three-dimensional space, the units of the propor-
tionality constant υ0 are thus [m3]. This equation indicates that the
Klein-Gordon quantum mechanical wavefunction describes longitudinal
wave propagations in the spacetime continuum corresponding to the
volume dilatation associated with the particle property of an object.

Making use of (7.9) in (7.7), the STC electromagnetic shearing po-
tential constant ϕ0 of (4.4) is then given by:

ϕ0 =
2µ̄0

2µ̄0 + λ̄0

µ0

υ0

e~
2m

. (7.10)

The units of ϕ0 are [V · s ·m−2] or [T] as required. Using (7.5) and (7.9)
in (7.2), we obtain

jν =
e~

2mυ0
ε;ν − e2

mυ0
Aνε (xµ) . (7.11)
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The units of jν are [C · s−1 ·m−2] as required.

Using (4.4) viz.

Aν = − 1
2 ϕ0u

ν
⊥ (7.12)

and (7.9) in (7.8), the quantum mechanical volume force is given by

Xν =
µ̄0µ0

υ0

e2

m
ε (xµ) uν⊥. (7.13)

Using the definition for the dimensionless fine structure constant α =
µ0ce

2/h, (7.13) becomes

Xν =
µ̄0α

υ0

h

mc
ε (xµ) uν⊥ (7.14)

or

Xν =
µ̄0α

υ0
λc ε (xµ) uν⊥ (7.15)

where λc = h/mc is the electron’s Compton wavelength.

Thus the STCED elastic force constant of (6.3) is given by

k̄0 =
µ̄0µ0

υ0

e2

m
=
µ̄0α

υ0

h

mc
=
µ̄0α

υ0
λc , (7.16)

where we have included the constant υ0 in k̄0. The volume force is
proportional to ε (xµ)uν⊥ as opposed to just uν as in (6.3):

Xν = k̄0 ε (xµ) uν⊥ . (7.17)

The units are [N ·m−3] as expected.

The volume force Xν is proportional to the Planck constant as sus-
pected previously. This explains why the volume force tends to zero
in the macroscopic case. The volume force is also proportional to the
STC volume dilatation ε (xµ) in addition to the displacements uν⊥. This
makes sense as all deformations, both distortions and dilatations, should
be subject to the STC elastic spring force. This is similar to an elastic
spring law as Xν is defined positive in the direction opposite to the dis-
placement [126]. The volume force also describes the interaction with an
electromagnetic field given that (7.2) from which it is derived includes
electromagnetic interactions.
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§7.2 Displacements equation

Substituting (7.17) into (6.4), the dynamic equation in terms of dis-
placements becomes

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −k̄0 ε(x
µ)uν⊥. (7.18)

This equation can be rewritten as

∇2uν +
k̄0

µ̄0
ε (xµ) uν⊥ = − µ̄0 + λ̄0

µ̄0
ε;ν . (7.19)

We note that ε(xµ) is a scalar function of 4-position only, and plays a role
similar to the potential V (r ) in the Schrödinger equation. Indeed, ε(xµ)
represents the mass energy structure (similar to an energy potential)
impacting the solutions of this equation.

Separating uν into its longitudinal (irrotational) component uν‖ and

its transverse (solenoidal) component uν⊥ using the Helmholtz theorem
in four dimensions [378] according to

uν = uν‖ + uν⊥ , (7.20)

and similarly separating the dilatation current ξν = ε;ν into a longitu-
dinal component ξν‖ and a transverse component ξν⊥

ξν = ξν‖ + ξν⊥ , (7.21)

we obtain the separated equations

∇2uν‖ = − µ̄0 + λ̄0

µ̄0
ξν‖

∇2uν⊥ +
k̄0

µ̄0
uν⊥ = − µ̄0 + λ̄0

µ̄0
ξν⊥

(7.22)

which becomes

∇2uν⊥ +
k̄0

µ̄0
uν⊥ = 0 (7.23)

given that ξν⊥ = ε;ν
⊥ = 0. The wave equation for uν‖ describes the

propagation of longitudinal displacements, while the wave equation for
uν⊥ describes the propagation of transverse displacements.
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§7.2.1 Longitudinal displacements equation

Substituting for ε;ν from (7.11) in the first equation of (7.22), we obtain

∇2uν‖ = −2kL
~

(
e2

m
υ0 j

ν + eAνε (xµ)

)
(7.24)

where the dimensionless ratio

kL =
µ̄0 + λ̄0

µ̄0
(7.25)

has been introduced. Hence the source term on the RHS of this equa-
tion includes the mass resulting from the dilatation displacements, the
current density four-vector, and the vector potential resulting from the
distortion displacements. It provides a full description of the gravita-
tional and electromagnetic interactions at the microscopic level.

§7.2.2 Transverse displacements equation

Substituting for uν⊥ from (4.4) in the second equation of (7.22), we
obtain

∇2Aν +
k̄0

µ̄0
ε (xµ) Aν = 0. (7.26)

Substituting for k̄0 from (7.16), this equation becomes

∇2Aν +
µ0

υ0

e2

m
ε (xµ) Aν = 0 (7.27)

or

∇2Aν +
α

υ0

h

mc
ε (xµ) Aν = 0 . (7.28)

This equation is similar to a Proca equation except that the coefficient of
Aν is not the familiar m2c2/~2. Given that transverse displacements are
massless, the Proca equation coefficient is not expected given its usual
interpretation that it represents the mass of the particle described by
the equation. This is discussed in more details in section §7.3.5.

§7.3 Wave equations

We derive the additional wave equations as shown in section §3.5, from
this volume force.
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§7.3.1 Longitudinal wave equation

Substituting (7.17) into (6.11), the longitudinal (dilatational) wave equ-
ation becomes

(2µ̄0 + λ̄0)∇2ε = −∇ν
[
k̄0 ε (xµ) uν⊥

]
. (7.29)

Taking the divergence on the RHS, using uν⊥;ν = 0 from (3.6) and
rearranging, this equation can be rewritten as

∇2ε = − k̄0

2µ̄0 + λ̄0
uν⊥ε;ν . (7.30)

Substituting for uν⊥ from (4.4), for k̄0 from (7.16) and for ε;ν from (7.11),
we obtain

∇2ε− 4
e2

~2
AνAν ε = 4

mυ0

~2
Aνjν . (7.31)

Recognizing that
e2AνAν = P νPν = −m2c2, (7.32)

and substituting in (7.31), the equation becomes

∇2ε+ 4
m2c2

~2
ε = 4

mυ0

~2
Aνjν . (7.33)

This is the Klein-Gordon equation except for the factor of 4 multiplying
the ε coefficient and the source term. The term on the RHS of this
equation is an interaction term of the form A · j.

As identified from (7.9) and confirmed by this equation, the Klein-
Gordon quantum mechanical wavefunction describes longitudinal wave
propagations in the spacetime continuum corresponding to the volume
dilatation associated with the particle property of an object. The RHS
of the equation indicates an interaction between the longitudinal current
density jν and the transverse vector potential Aν . This is interpreted
in electromagnetism as energy in the static magnetic induction field to
establish the steady current distribution [67, see p. 150]. It is also the
form of the interaction term introduced in the vacuum Lagrangian for
classical electrodynamics [262, see p. 428].

Although (7.33) with the m2c2/~2 coefficient is how the Klein-Gor-
don equation is typically written, (7.31) is a more physically accurate
way of writing that equation, i.e.

~2

4
∇2ε− e2AνAν ε = mυ0A

νjν , (7.34)
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as the massive nature of the equation resides in its solutions ε (xµ). The
constant m needs to be interpreted in the same way as the constant e.
The constant e in the Klein-Gordon equation is the elementary unit of
electrical charge (notwithstanding the quark fractional charges), not the
electrical charge of the particle represented by the equation. Similarly,
the constant m in the Klein-Gordon equation needs to be interpreted
as the elementary unit of mass (the electron’s mass), not the mass of
the particle represented by the equation. That is obtained from the
solutions ε (xµ) of the equation.

§7.3.2 Transverse wave equation

Using (7.17) into (6.14), the transverse (rotational) wave equation be-
comes

µ̄0∇2ωµν = − k̄0

2
[(εuµ⊥);ν − (εuν⊥);µ] . (7.35)

Using (3.3) and rearranging, this equation can be rewritten as

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1

2

k̄0

µ̄0
(ε;µuν⊥ − ε;νuµ⊥) . (7.36)

Substituting for ωµν using Fµν = ϕ0ω
µν from (4.3), for uν⊥ from (4.4),

for k̄0 from (7.16) and for ε;ν from (7.11), we obtain

∇2Fµν +
µ0

υ0

e2

m
ε (xµ) Fµν = µ0

e

~
(Aµjν −Aνjµ) . (7.37)

This equation can also be written as

∇2Fµν +
α

υ0
λc ε (xµ) Fµν = µ0

e

~
(Aµjν −Aνjµ) . (7.38)

This is a new equation of the electromagnetic field strength Fµν . The
term on the RHS of this equation is an interaction term of the formA×j.
In electromagnetism, this term is the volume density of the magnetic
torque (magnetic torque density), and is interpreted as the “longitu-
dinal tension” between two successive current elements (Helmholtz’s
longitudinal tension), observed experimentally by Ampère (hairpin ex-
periment) [307].

§7.3.3 Strain wave equation

Substituting (7.17) into (6.17), the strain (symmetric) wave equation
becomes

µ̄0∇2εµν + (µ̄0 + λ̄0)ε;µν = − k̄0

2
[(εuµ⊥);ν + (εuν⊥);µ] (7.39)



106 Chapter 7 Quantum Mechanical Volume Force

which can be rewritten as

∇2εµν +
µ̄0 + λ̄0

µ̄0
ε;µν =

=
1

2

k̄0

µ̄0
[ε (uµ;ν

⊥ + uν;µ
⊥ ) + (ε;µuν⊥ + ε;νuµ⊥)] .

(7.40)

Substituting for uν⊥ from (4.4), for k̄0 from (7.16) and for ε;ν from (7.11),
we obtain

∇2εµν + kL ε
;µν = kT

2m

~2
(Aµjν +Aνjµ) +

+kT
ε

υ0

[
e

~
(Aµ;ν +Aν;µ) +

2e2

~2
(AµAν +AνAµ)

] (7.41)

where the dimensionless ratio

kT =
2µ̄0 + λ̄0

µ̄0
(7.42)

has been introduced and ratio kL has been used from (7.25). The last
term can be summed to 2AµAν . This new equation for the symmetric
strain tensor field includes on the RHS symmetric interaction terms be-
tween the current density four-vector and the vector potential resulting
from the distortion displacements and between the vector potential and
the mass resulting from the dilatation displacements.

§7.3.4 Simplified wave equations

Inspection of the wave equations derived previously shows that common
factors are associated with Aν and jν in all the equations. We thus
introduce the reduced physical variables A∗ν and j∗ν defined according
to

A∗ν = eAν

j∗ν =
m

e
jν ,

(7.43)

and A∗ν and j∗ν defined according to

A∗ν =
2e

~
Aν

j∗ν =
2m

e~
jν .

(7.44)
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The various wave equations then simplify to the following.

Longitudinal displacements equation

∇2uν‖ = −2kL
~

(υ0 j
∗ν + εA∗ν) (7.45)

∇2uν‖ = −kL
(
υ0 j

∗ν + εA∗ν
)

(7.46)

Transverse displacements equation

∇2A∗ν +
α

υ0
λc εA

∗ν = 0 (7.47)

∇2A∗ν +
α

υ0
λc εA

∗ν = 0 (7.48)

Longitudinal wave equation

~2

4
∇2ε−A∗νA∗ν ε = υ0A

∗νj∗ν (7.49)

∇2ε−A∗νA∗ν ε = υ0A
∗νj∗

ν
(7.50)

Transverse wave equation

∇2Fµν +
α

υ0
λc ε (xµ) Fµν = µ0

e

~m
(A∗µj∗ν −A∗νj∗µ) (7.51)

∇2Fµν +
α

υ0
λc ε (xµ) Fµν = 1

2 µ0 µB
(
A∗µj∗ν −A∗νj∗µ

)
(7.52)

Strain wave equation

∇2εµν + kL ε
;µν = kT

2

~2
(A∗µj∗ν +A∗νj∗µ) +

+kT
ε

υ0

[
1

~
(A∗µ;ν +A∗ν;µ) +

2

~2
(A∗µA∗ν +A∗νA∗µ)

] (7.53)

∇2εµν + kL ε
;µν = 1

2 kT
(
A∗µj∗ν +A∗νj∗µ

)
+

+ 1
2 kT

ε

υ0
[(A∗µ;ν +A∗ν;µ) + (A∗µA∗ν +A∗νA∗µ)]

(7.54)
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§7.3.5 Proca wave equation

As seen in section §4.8, a Proca-like equation (4.37) is obtained from
the electromagnetic equations with a volume force Xν given by

∇2Aν −Aµ;ν
µ −

ϕ0

2µ̄0
Xν = µ0 j

ν
classical . (7.55)

Using the volume force derived from (7.8) and (7.9), (7.55) becomes

∇2Aν −Aµ;ν
µ +

µ0e
2

m

ε(xµ)

υ0
Aν = µ0 j

ν
classical . (7.56)

Re-arranging the derivatives in the second term on the L.H.S. and using
the Lorenz condition (4.16), we obtain

∇2Aν +
µ0e

2

m

ε(xµ)

υ0
Aν = µ0 j

ν
classical (7.57)

which is similar to (7.27) obtained previously in section §7.2.2. This
equation can be rewritten as

∇2Aν + α
h

mc

ε(xµ)

υ0
Aν = µ0 j

ν
classical . (7.58)

This equation has the same structure as the Proca equation, although
the coefficient of the second term on the L.H.S. is not the familiar
(mc/~)2.

§7.4 Alternative derivation of the quantum mechanical
volume force

In this section we consider an alternative derivation of the quantum
mechanical volume force from the comparison of (7.1) viz.

jν =
1

2

ϕ0

µ0 µ̄0

[
(2µ̄0 + λ̄0)ε;ν +Xν

]
(7.59)

and (7.2) viz.

jν =
ie~
2m

(ψ∗∂νψ − ψ ∂νψ∗)− e2

m
Aν(ψψ∗) . (7.60)

Based on (7.4), we write ψ as

ψ = A exp(iϑ) (7.61)
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where A is the amplitude of the wavefunction. Then

∂νψ = iA exp(iϑ) ∂νϑ (7.62)

and

i(ψ∗∂νψ − ψ ∂νψ∗) = −2A∗A ∂νϑ = −2 |A|2 ∂νϑ (7.63)

which can be seen to be a type of antisymmetrical derivative

∂̄ν(ψψ∗) = i(ψ∗∂νψ − ψ ∂νψ∗) , (7.64)

to generate a transverse quantity in line with (7.60) which is an equation
for the transverse current jν = jν⊥ in terms of the transverse vector
potential Aν ∝ uν⊥.

Substituting (7.61) and (7.63) into (7.60), we obtain

jν = −e~
m
|A|2 ∂νϑ− e2

m
|A|2Aν (7.65)

or

jν = − e

m
|A|2 [~ ∂νϑ+ eAν ] . (7.66)

Comparing (7.59) and (7.65), the first term of (7.59) is similar to the
first term of (7.65) and setting them to be equal, we obtain

ϕ0

2µ0 µ̄0
(2µ̄0 + λ̄0)ε;ν = −e~

m
|A|2 ∂νϑ . (7.67)

Similarly, the second terms of (7.59) and (7.65) are also similar and
setting them to be equal, we obtain

ϕ0

2µ0 µ̄0
Xν = −e

2

m
|A|2Aν . (7.68)

The equalities (7.67) and (7.68) result from the comparison of (7.59)
and (7.60).

From (7.67) and (7.63), we see that

ε;ν = −2 υ0|A|2 ∂νϑ (7.69)

and hence

ε (xµ) = υ0|A|2 (7.70)
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where the proportionality constant υ0 has been introduced as in §7.1.
This leads to the STC electromagnetic shearing potential constant ϕ0

as defined previously in (7.10):

ϕ0 =
2µ̄0

2µ̄0 + λ̄0

µ0

υ0

e~
2m

. (7.71)

Setting ε (xµ) = υ0ψψ
∗ = υ0|A|2 as done in (7.9), results in the volume

force Xν (7.17) as used in section §7.1. Setting ε;ν equal to (7.63) leads
to relation (7.7) and the results of sections §7.1 to §7.3.

However, the approach followed in this section provides another way
of allocating the variables. In the relations (7.67) and (7.68), the factor
|A|2 is common to both, and represents the intensity of the unnormal-
ized wavefunction. We see that the current density jν given by (7.66)
consists of the ratio e/m multiplied by the intensity of the wavefunction
and by the sum of two terms, the first representing the energy in the
wave from (7.67) and the second the energy from the vector potential
from (7.68).

From (7.68), we can determine the volume force, given by

Xν = −2µ̄0 µ0

ϕ0

e2

m
|A|2Aν . (7.72)

Using (4.4), (7.72) can be rewritten as

Xν = µ̄0 µ0
e2

m
|A|2 uν⊥ . (7.73)

Defining k̄0, the elastic force constant of the STC volume force, given
by

k̄0 = µ0 µ̄0
e2

m
= µ̄0α

h

mc
, (7.74)

then the volume force is given by

Xν = k̄0 |A|2 uν⊥ . (7.75)

Setting ε (xµ) = υ0ψψ
∗ = υ0|A|2, we obtain (7.16) and (7.17) as previ-

ously:

k̄′0 =
µ̄0µ0

υ0

e2

m
=
µ̄0α

υ0

h

mc
, (7.76)

where we have included the constant υ0 in k̄′0. Then the volume force
is proportional to ε (xµ)uν⊥ as previously:

Xν = k̄′0 ε (xµ) uν⊥ . (7.77)
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Eq. (7.77) is equivalent to (7.75).
Using the volume force (7.72) in (7.59), the following expression is

obtained for ξν = ε;ν :

ε;ν =
2µ̄0

2µ̄0 + λ̄0

µ0

ϕ0

[
jν +

e2

m
|A|2Aν

]
. (7.78)

This equation is the same as the one used in sections §7.1 to §7.3 ob-
tained by setting ε (xµ) = υ0ψψ

∗ = υ0|A|2. From (7.67), we can also
write

ε;ν = − 2µ̄0

2µ̄0 + λ̄0

µ0

ϕ0

e~
m
|A|2 ∂νϑ . (7.79)

Equating (7.78) and (7.79), we obtain

jν = − e

m
|A|2 [~ ∂νϑ+ eAν ] (7.80)

which is the same as (7.66), indicating that the equations are self-consis-
tent.

Using
ϑ = kµx

µ , (7.81)

where kµ is the 4-vector wavevector given by (ω/c,k), ∂νϑ is given by

∂νϑ = kν (7.82)

and (7.80) becomes

jν = − e

m
|A|2 [~ kν + eAν ] . (7.83)

The time component is given by

jt = − e

mc
|A|2 [~ω + eφ] . (7.84)

and the space component by

j = − e

m
|A|2 [~k + eA] . (7.85)

We obtain explicitly the sum of two terms, with the first giving the
energy in the wave given by the Einstein quantum mechanical expression
and the second giving the energy in the vector potential.

Substituting (7.82) into (7.79), the dilatation current becomes

ξν = ε;ν = − 2µ̄0

2µ̄0 + λ̄0

µ0

ϕ0

e~
m
|A|2 kν = −2 υ0|A|2 kν (7.86)
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or alternatively

ξν = ε;ν = − 2µ̄0

2µ̄0 + λ̄0

µ0

ϕ0υ0

e~
m
ε (xµ) kν = −2 ε (xµ) kν . (7.87)

These results are supplemental to those of sections §7.1 to §7.3.

§7.5 Alternative volume forces

This chapter provides an example of a volume force derived by com-
parison with the Klein-Gordon current density for spin-0 particles with
electromagnetic interaction. It has one unknown parameter υ0, of units
[m−3], which corresponds to the normalization factor for the Klein-
Gordon wavefunction norm. It corresponds to an inverse volume and
could be set to an appropriate constant such as

υ0 =
(mc

~

)3

(7.88)

or
υ0 = (b0)

−3
, (7.89)

where b0 is defined in section §14.2. The actual value depends on the
actual equivalent Klein-Gordon solutions under consideration.

This procedure of devising a volume force for a given situation pro-
vides one approach to dealing with quantum physics in STCED. This
is an approach similar to how Lagrangians are determined in quantum
electrodynamics. The results obtained in this chapter provide interest-
ing insights into the physical nature of the quantum level. However, the
Klein-Gordon equation has limitations as a relativistic quantum wave
equation [141], and the quantum mechanical volume force derived from
the equation should thus be considered to have limited application. In
subsequent chapters, we consider a more general approach to analyz-
ing quantum physics based on the analysis of defects in the spacetime
continuum.



Chapter 8

Defects in the Spacetime Continuum

§8.1 Analysis of spacetime continuum defects

Given that the spacetime continuum behaves as a deformable medium,
there is no reason not to expect dislocations, disclinations and other
defects to be present in the spacetime continuum. Dislocations and
disclinations of the spacetime continuum represent the fundamental dis-
placement processes that occur in its structure. These fundamental
displacement processes should correspond to basic quantum phenom-
ena and provide a framework for the description of quantum physics in
STCED.

In the following chapters, we use the word defect to mean specif-
ically dislocations and disclinations, but without in general excluding
other defects such as point defects. Dislocations are translational defor-
mations, while disclinations are rotational deformations. Defects can
be characterized using the Volterra [360] classification or using the the-
ory of topological stability [201]. The two methods are not equivalent
and the topological classification is usually used as a supplement to the
Volterra classification.

Dislocations and disclinations can be analyzed as either discrete de-
fect lines, continuous infinitesimal defect loops, or as continuous distri-
butions of defect densities [80], which is more suited to the methods of
differential geometry. This breakdown applies both to dislocations and
disclinations. The theory of disclinations is an extension of dislocation
theory, that includes both dislocations and disclinations. It reduces to
dislocation theory in the absence of disclinations.

Using defect density distributions results in field equations using
the methods of differential geometry. These are also amenable to gauge
theories and the modern theoretical descriptions are mostly in terms of
gauge theory and differential geometry, using continuous distributions of
defect densities (see for example [199]). Defect theory is applied mostly
to condensed matter physics, although the extension of differential ge-
ometry methods to cosmic strings is an ongoing effort.

We will cover the analysis of distributions of defect densities in a later
separate chapter (Chapter 11). In the following chapters on dislocations
and disclinations, we cover discrete line defects, and to some degree,
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infinitesimal defect loops, both of which are not given much coverage
in modern defect analysis. These we will find provide a description of
basic quantum processes in the microscopic description of the spacetime
continuum.

Our analysis of spacetime defects is done in the isotropic linear elas-
tic continuum we have been considering till now. However, it should
be noted that modern defect theory in condensed matter physics is an
advanced discipline that is rich in results derived from more complex
continuum models.

Volterra [360] first studied and classified the elastic deformations of
multiply-connected solids in 1907. These he named distortions, which
was later changed by Love [220] to dislocations. The growing impor-
tance of rotational dislocations prompted Frank [127] to rename those to
disinclinations which he later shortened to disclinations, the term that is
still used today [78]. Defect theory has been the subject of investigation
since the first half of the twentieth century and is a well-developed dis-
cipline in continuum mechanics [159, 172, 203, 211, 263, 364]. The more
recent formulation of defects in solids is based on gauge theory and
differential geometry as discussed previously [93,199].

The last quarter of the twentieth century has seen the investiga-
tion of spacetime topological defects in the context of string theory,
particularly cosmic strings [224, 297], and cosmic expansion [309, 340].
Teleparallel spacetime with defects [224,356,357] has resulted in a differ-
ential geometry of defects, which can be folded into the Einstein-Cartan
Theory (ECT) of gravitation, an extension of Einstein’s theory of grav-
itation that includes torsion [309, 310]. Recently, the phenomenology
of spacetime defects has been considered in the context of quantum
gravity [167–169].

There are many papers that have been published on the subject
of defects in the spacetime continuum. Unfortunately, like all areas
under development, there are papers that have errors, while others have
inconsistencies that are not fatal, but that lead to conclusions that are
questionable if not incorrect. The specific papers will in most cases
not be identified, although some may be mentioned where required.
While not claiming to be infallible, the results presented in the following
chapters on defects in the spacetime continuum and its application to
quantum physics provide a self-consistent picture in agreement with the
established references in this area of research.
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§8.2 Defects in four-dimensional spacetime

The theory of defects in three-dimensional space is well developed, in-
cluding non-linearity, finite displacements, fracture mechanics, etc. The
theory of defects in four-dimensional spacetime is limited to an elastic
homogeneous spacetime continuum, based on the properties indicated
by the physical laws, as discussed in section §2.1.

The challenge we face lies in extending the three-dimensional elastic
homogeneous space theory to four dimensions. For example, Puntigam
et al [297], in extending the Volterra defect analysis from three to four
dimensions, considered the problem topologically, deforming Minkowski
spacetime by 4 dislocations and 6 disclinations into 10 differently struc-
tured Riemann-Cartan spacetimes. Instead of the process described by
Volterra [360], the cut is three-dimensional (instead of two-dimensional
as in the Volterra process). Although this is a mathematically valid
procedure which may well bring to light new physical processes, this is
not strictly equivalent to Volterra’s analysis.

An equally valid approach is to apply Volterra’s analysis to the four-
dimensional spacetime continuum. Then the challenge is the application
of the analysis to cases that involve the time ct dimension, such as for
example a screw dislocation or an edge dislocation along the ct-axis.
The problem then becomes one of analyzing the ct-axis consequences
on a case-by-case basis as we will see in the following chapters.

As noted by Nabarro [265, see p. 588], Frank seems to have been
the first to have raised the possibility of time-like dislocations, in which
a clock taken around a circuit would lose or gain a definite interval of
time.

§8.3 Defects and the incompatibility tensor

The spacetime continuum overall is isotropic and elastic, with defects in
its structure. The approach followed in our analysis of spacetime con-
tinuum defects is to start from the elastic theory and add the defects to
determine their impact. We thus consider an elastic isotropic homoge-
neous spacetime continuum as our starting point. The distortion tensor
βµν is defined according to [77]

βµν = uµ;ν (8.1)

which equals, as per (3.4),

βµν = εµν + ωµν (8.2)
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where εµν is the symmetric strain tensor and ωµν is the antisymmetric
rotation tensor.

The strain tensor is also subject to compatibility conditions which are
both necessary and sufficient conditions to determine a single-valued dis-
placement field uµ. The compatibility conditions are valid in a simply-
connected continuum∗ such that when it is deformed, it remains contin-
uous, free of gaps. The compatibility conditions in three-dimensional
space are written as

∇×∇× ε = εijk εlmn εil,jm = 0 (8.3)

where εijk is the permutation symbol. There is no straightforward equiv-
alent of the curl operator (or cross-product) in four dimensions, so care
is required when converting (8.3) for the spacetime continuum.

The derivation in [153, see p. 262] shows that conversion of three-
dimensional indices to four-dimensional indices is valid in this case, re-
sulting in the following compatibility equations:

εµν;αβ + εαβ;µν − εµβ;να − εαν;βµ = 0 . (8.4)

Provided that the permutation symbol in the four-dimensional space-
time continuum εαβγ is defined as per the three-dimensional permuta-
tion symbol, i.e. equal to +1 for even permutations of αβγ, −1 for odd
permutations of αβγ, 0 for other cases, we can write

inc εµν = εαγµ εβδν ε
αβ;γδ = 0 (8.5)

where inc is the incompatibility operator. There are 10 linearly inde-
pendent conditions in four dimensions.

In defect theory, gaps are generated as a result of the defect defor-
mations, and the continuum can become multiply-connected. In that
case, the compatibility conditions may not be equal to zero, but rather
equal to the incompatibility tensor, ı̇µν :

inc εµν = ı̇µν . (8.6)

This tensor is symmetric and satisfies the continuity condition

ı̇µν ;ν = 0 . (8.7)

∗In a simply-connected continuum, a closed curve within the continuum can be
shrunk to a point.
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The properties of the incompatibility tensor will be explored further in
later sections.

For an elastic strain tensor, the incompatibility tensor ı̇µν = 0 as the
spacetime continuum is then simply-connected. An elastic continuum
with defects will include localized defects where the incompatibility ten-
sor is not zero, in a continuum that obeys the compatibility conditions
(8.5) in most locations. The strain tensor can then be broken down
into [78]

∗εµν = εµν + /εµν (8.8)

where ∗εµν represents the total (effective) strain tensor including the
defects, εµν is the elastic strain tensor and /εµν is the defect strain ten-
sor. Note that the defect tensors are also often referred to as plastic
fields to denote non-elastic plastic deformations in the field theory of
elastoplasticity.

Substituting (8.8) into (8.6), the incompatibility tensor is then given
by

ı̇µν = inc ∗εµν = εαγµ εβδν /ε
αβ;γδ (8.9)

where we have used

inc εµν = 0 (8.10)

for the elastic strain tensor εµν .

Similarly, the rotation tensor, distortion tensor and the bend-twist
tensor to be defined in (10.10) can usually be separated into elastic and
defect parts,

∗ωµν = ωµν + /ωµν (8.11)

∗βµν = βµν + /βµν (8.12)

∗κµν = κµν + /κµν . (8.13)

However, the displacement uµ cannot be split into elastic and defect
parts in all cases [80]. Similarly for the distortion tensor βµν . In that
case, the symmetric part of the distortion tensor can be split according
to

β(µν) = ∗εµν = εµν + /εµν (8.14)

from (8.2) and (8.8).
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§8.4 Defects and the volume force

As mentioned in §8.3, the strain tensor in the elastic homogeneous space-
time continuum considered in this book is elastic and the incompatibility
tensor ı̇µν = 0. However, defects in the spacetime continuum introduce
imperfections in the continuum that can result in the incompatibility
tensor ı̇µν 6= 0. Eshelby [78, 113] showed that a defect described by a
strain tensor /εµν can be represented by a fictitious volume force

Xν = −Eµναβ/εαβ;µ . (8.15)

This can be shown from (3.7), viz.

Tµν ;µ = −Xν ,

making use of (2.6) and (8.8) into the above equation, to obtain

2µ̄0ε
µν

;µ + 2µ̄0/ε
µν

;µ + λ̄0ε
;ν + λ̄0/ε

;ν = −Xν . (8.16)

Since the elastic strain tensor εµν has a volume force of zero, we obtain

Xν = −
(
2µ̄0/ε

µν
;µ + λ̄0/ε

;ν
)
. (8.17)

However, it should be noted that the volume force for a defect could
still be zero if the situation is such that the incompatibility tensor is
zero. In the absence of defects, /εµν = 0, the incompatibility tensor is
zero, and the volume force is also zero.

In Chapter 7, we derived a non-zero quantum mechanical volume
force which indicates the presence of defects in the spacetime continuum
at the quantum level.

§8.5 Defects dynamics

In section §3.3, we showed that the dynamics of the spacetime contin-
uum is described by the dynamic equation (3.18), which includes the
accelerations from the applied forces, viz.

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = −Xν .

In this analysis, we consider the simpler problem of defects in an
isotropic continuum under equilibrium conditions with no volume force.
As seen in §6.4, the field of a defect in the spacetime continuum can
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always be simulated by a fictitious volume force if necessary. Then
(3.18) becomes

µ̄0∇2uν + (µ̄0 + λ̄0)ε;ν = 0, (8.18)

where ∇2 is the four-dimensional operator and the semi-colon (;) rep-
resents covariant differentiation.

Separating uν into its longitudinal (irrotational) component uν‖ and

its transverse (solenoidal) component uν⊥ using the Helmholtz theorem
in four dimensions [378] according to

uν = uν‖ + uν⊥, (8.19)

(8.18) can be separated into a screw dislocation displacement (trans-
verse) equation

µ̄0∇2uν⊥ = 0 (8.20)

and an edge dislocation displacement (longitudinal) equation

∇2uν‖ = − µ̄0 + λ̄0

µ̄0
ε;ν . (8.21)

The components of the energy-momentum stress tensor are given
by [258]:

T 00 = H

T 0j = sj

T i0 = gi

T ij = σij

(8.22)

where H is the total energy density, sj is the energy flux vector, gi is the
momentum density vector, and σij is the Cauchy stress tensor which is
the ith component of force per unit area at xj .

From the stress tensor Tµν , we can calculate the strain tensor εµν

and then calculate the strain energy density of the dislocations. As
shown in §2.1, for a general anisotropic continuum in four dimensions,
the spacetime continuum is approximated by a deformable linear elastic
medium that obeys Hooke’s law [126, see pp. 50–53]

Eµναβεαβ = Tµν (8.23)

where Eµναβ is the elastic moduli tensor. For an isotropic and homo-
geneous medium, the elastic moduli tensor simplifies to [126]:

Eµναβ = λ̄0

(
gµνgαβ

)
+ µ̄0

(
gµαgνβ + gµβgνα

)
. (8.24)
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For the metric tensor gµν , we use the flat spacetime diagonal metric
ηµν with signature (+ – – –) as the spacetime continuum is locally flat at
the microscopic level. Substituting for (8.24) into (8.23) and expanding,
we obtain

T 00 = (λ̄0 + 2µ̄0) ε00 − λ̄0 ε
11 − λ̄0 ε

22 − λ̄0 ε
33

T 11 = −λ̄0 ε
00 + (λ̄0 + 2µ̄0) ε11 + λ̄0 ε

22 + λ̄0 ε
33

T 22 = −λ̄0 ε
00 + λ̄0 ε

11 + (λ̄0 + 2µ̄0) ε22 + λ̄0 ε
33

T 33 = −λ̄0 ε
00 + λ̄0 ε

11 + λ̄0 ε
22 + (λ̄0 + 2µ̄0) ε33

Tµν = 2µ̄0 ε
µν , µ 6= ν.

(8.25)

In terms of the stress tensor, the inverse of (8.25) is given by

ε00 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0)T 00+

+ λ̄0 (T 11 + T 22 + T 33)
]

ε11 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0)T 11+

+ λ̄0 (T 00 − T 22 − T 33)
]

ε22 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0)T 22+

+ λ̄0 (T 00 − T 11 − T 33)
]

ε33 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0)T 33+

+ λ̄0 (T 00 − T 11 − T 22)
]

εµν =
1

2µ̄0
Tµν , µ 6= ν.

(8.26)

where T ij = σij . We calculate ε = εαα from the values of (8.26). Using
ηµν , (2.3) and Tαα = ρc2 from (2.22), we obtain (2.24) as required.
This confirms the validity of the strain tensor in terms of the energy-
momentum stress tensor as given by (8.26).
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Eshelby [114–116] introduced an elastic field energy-momentum ten-
sor for continuous media to deal with cases where defects (such as dis-
locations) lead to changes in configuration. The displacements uν are
considered to correspond to a field defined at points xµ of the spacetime
continuum. This tensor was first derived by Morse and Feshback [261]
for an isotropic elastic medium, using dyadics. The energy flux vector sj
and the field momentum density vector gi are then given by [114,261]:

sj = −u̇k σkj

gi = ρ̄0 uk,i u̇k

bij = Lδij − uk,i σkj

(8.27)

where ρ̄0 is the density of the medium, in this case the spacetime con-
tinuum, L is the Lagrangian equal to K − W where W is the strain
energy density and K is the kinetic energy density (H = K +W ), and
bij is known as the Eshelby stress tensor [229, see p. 27]. If the energy-
momentum stress tensor is symmetric, then gi = si. In this paper, we
consider the case where there are no changes in configuration, and use
the energy-momentum stress tensor given by (8.22) and (8.25).





Chapter 9

Dislocations in the Spacetime Continuum

§9.1 Analysis of spacetime continuum dislocations

In this chapter, we investigate dislocations in the spacetime continuum
in the context of STCED. The approach followed till now by investiga-
tors has been to use Einstein-Cartan differential geometry, with dislo-
cations (translational deformations) impacting curvature and disclina-
tions (rotational deformations) impacting torsion. The dislocation itself
is modelled via the line element ds2 [297].

In this chapter, we investigate spacetime continuum dislocations us-
ing the underlying displacements uν and the energy-momentum stress
tensor. We thus work from the RHS of the general relativistic equa-
tion (the stress tensor side) rather than the LHS (the geometric tensor
side). It should be noted that the general relativistic equation used can
be the standard Einstein equation or a suitably modified version, as in
Einstein-Cartan or Teleparallel formulations.

In this section, we review the basic physical characteristics and dy-
namics of dislocations in the spacetime continuum. The energy-momen-
tum stress tensor was considered in section §8.5. A detailed review of
stationary and moving screw and edge dislocations follows in sections
§9.2 and §9.3, along with their strain energy density as calculated from
STCED. The Volterra and deWit treatment of discrete dislocation lines
is then covered in sections §9.4 and §9.5, and we close with curved dis-
locations in sections §9.6. The relation of spacetime continuum defects
to quantum physics is covered starting in Chapter 14.

A dislocation is characterized by its dislocation-displacement vector,
known as the Burgers vector, bµ in a four-dimensional continuum, de-
fined positive in the direction of a vector ξµ tangent to the dislocation
line in the spacetime continuum [159, see pp.17–24].

A Burgers circuit encloses the dislocation. A similar reference cir-
cuit can be drawn to enclose a region free of dislocation (see Fig. 9.1).
The Burgers vector is the vector required to make the Burgers circuit
equivalent to the reference circuit (see Fig. 9.2). It is a measure of the
displacement between the initial and final points of the circuit due to
the dislocation.

It is important to note that there are two conventions used to define
the Burgers vector. In this chapter, we use the convention used by
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Figure 9.1: A reference circuit in a region free of dislocation, S: start,
F: finish

66
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Hirth [159] referred to as the local Burgers vector. The local Burgers
vector is equivalently given by the line integral

bµ =

∮
C

∂uµ

∂s
ds (9.1)

taken in a right-handed sense relative to ξµ, where uµ is the displace-
ment vector.

A dislocation is thus characterized by a line direction ξµ and a Burg-
ers vector bµ. There are two types of dislocations: an edge dislocation
for which bµξµ = 0 and a screw dislocation which can be right-handed
for which bµξµ = b, or left-handed for which bµξµ = −b, where b is
the magnitude of the Burgers vector. Arbitrary mixed dislocations can
be decomposed into a screw component, along vector ξµ, and an edge
component, perpendicular to vector ξµ.

The edge dislocation was first proposed by Orowan [278], Polanyi
[291] and Taylor [343] in 1934, while the screw dislocation was proposed
by Burgers [40] in 1939. In this chapter, we extend the concept of
dislocations to the elastodynamics of the spacetime continuum. Edge
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Figure 9.2: A dislocation showing the Burgers vector bµ, direction vector
ξµ which points into the paper and the Burgers circuit, S: start, F: finish
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dislocations correspond to dilatations (longitudinal displacements) and
hence have an associated rest-mass energy, while screw dislocations cor-
respond to distortions (transverse displacements) and are massless [245].

§9.2 Screw dislocations

We first consider the simplest dislocation, the discrete screw dislocation,
both in the stationary and the moving case.

§9.2.1 Stationary screw dislocation

We consider a stationary screw dislocation in the spacetime contin-
uum, with cylindrical polar coordinates (r, θ, z), with the dislocation
line along the z-axis (see Fig. 9.3). Then the Burgers vector is along
the z-axis and is given by br = bθ = 0, bz = b, the magnitude of the
Burgers vector. The only non-zero component of the deformations is
given by [159, see pp. 60–61] [203, see p. 51]

uz =
b

2π
θ =

b

2π
tan−1 y

x
. (9.2)
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Figure 9.3: A stationary screw dislocation in cartesian (x, y, z) and
cylindrical polar (r, θ, z) coordinates.

This solution satisfies (8.20), the screw dislocation displacement eq-
uation seen previously in section §8.5.

Similarly, the only non-zero components of the stress and strain
tensors are given by

σθz =
b

2π

µ̄0

r

εθz =
b

4π

1

r

(9.3)

respectively.
The rotation tensor is calculated from (3.3), viz.

ωµν = 1
2 (uµ;ν − uν;µ) .

Substituting for the displacements from (9.2), we find that the only
non-zero component of the rotation tensor is

ωzθ = −ωθz =
b

4π
. (9.4)
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In terms of the rotation vector (see section §10.1), using (10.1) viz.

ωα =
1

2
εαµν ωµν ,

we obtain

ωr = − b

4π
. (9.5)

Using (14.3), the rotation vector can also be written as

ωr = − b̄
2
, (9.6)

where, as we will see in section §14.2, b̄ = b/2π. For the stationary screw
dislocation of (9.2), we thus obtain a constant, left-handed rotation
vector. Note that if we consider a stationary screw dislocation with a
negative Burgers vector −b (b > 0),

uz = − b

2π
θ = − b

2π
tan−1 y

x
, (9.7)

we obtain a constant, right-handed rotation vector

ωr =
b

4π
. (9.8)

It should be noted that even though (9.6) is similar to ~/2, the units of
b̄ are [m] while those of ~ are [J ·s], and are thus not the same quantities.

§9.2.2 Moving screw dislocation

We now consider the previous screw dislocation, moving along the x-
axis, parallel to the dislocation, at a constant speed vx = v. Equation
(8.18) then simplifies to the wave equation for massless transverse shear
waves for the displacements uz along the z-axis, with speed ct = c given
by (3.12), where ct is the speed of the transverse waves corresponding
to c the speed of light.

If coordinate system (x′, y′, z′, t′) is attached to the uniformly mov-
ing screw dislocation, then the transformation between the stationary
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and the moving screw dislocation is given by [159]

x′ =
x− vt

(1− v2/c2)1/2

y′ = y

z′ = z

t′ =
t− vx/c2

(1− v2/c2)1/2
.

(9.9)

which is the special relativistic transformation.
The only non-zero component of the deformation in cartesian coor-

dinates is given by [159, see pp. 184–185]

uz =
b

2π
tan−1 αy

x− vt
, (9.10)

where

α =

√
1− v2

c2
. (9.11)

The Lorentz gamma-factor is given by

γ =
1

α
=

(
1− v2

c2

)− 1
2

. (9.12)

This solution also satisfies the screw dislocation displacement equation
(8.20). It simplifies to the case of the stationary screw dislocation when
the speed v = 0.

Using (9.9) into (9.10) to transform to the moving coordinate system
(x′, y′, z′, t′), we obtain

uz′ =
b

2π
tan−1 y

′

x′
, (9.13)

and the rotation vector is given by

ωr′ = − b

4π
(9.14)

in the moving coordinate system (x′, y′, z′, t′), the same as (9.5) in the
stationary coordinate system.
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The only non-zero components of the stress tensor in cartesian co-
ordinates are given by [159]

σxz = −bµ̄0

2π

αy

(x− vt)2 + α2y2

σyz =
bµ̄0

2π

α(x− vt)
(x− vt)2 + α2y2

.

(9.15)

The only non-zero components of the strain tensor in cartesian coordi-
nates are derived from εµν = 1

2 (uµ;ν + uν;µ) [238, see Eq.(41)]:

εxz = − b

4π

αy

(x− vt)2 + α2y2

εyz =
b

4π

α(x− vt)
(x− vt)2 + α2y2

,

(9.16)

in an isotropic continuum.
Non-zero components involving time are given by

εtz = εzt =
1

2

(
∂uz
∂(ct)

+
∂ut
∂z

)
εtz =

b

4π

v

c

αy

(x− vt)2 + α2y2

(9.17)

where ut = 0 has been used. This assumes that the screw dislocation is
fully formed and moving with velocity v as described. Using (8.25), the
non-zero stress components involving time are given by

σtz = σzt =
bµ̄0

2π

v

c

αy

(x− vt)2 + α2y2
. (9.18)

Screw dislocations are thus found to be Lorentz invariant.

§9.2.3 Screw dislocation strain energy density

We consider the stationary screw dislocation in the spacetime continuum
of section §9.2.1, with cylindrical polar coordinates (r, θ, z), with the
dislocation line along the z-axis and the Burgers vector along the z-axis
bz = b.

Then the strain energy density of the screw dislocation is given by
the transverse distortion energy density [238, see Eq. (74)]

E⊥ = µ̄0 e
αβeαβ (9.19)
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where from [238, see Eq. (33)],

eαβ = εαβ − esgαβ (9.20)

where es = 1
4 ε

α
α is the dilatation which for a screw dislocation is equal

to 0. The screw dislocation is thus massless and E‖ = 0.
The non-zero components of the strain tensor are as defined in (9.3).

Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (9.21)

Substituting from (9.3),

E⊥ =
µ̄0 b

2

8π2

1

r2
= E . (9.22)

We now consider the more general case of the moving screw dis-
location in the spacetime continuum of section §9.2.2, with cartesian
coordinates (x, y, z). The non-zero components of the strain tensor are
as defined in (9.16) and (9.17). Substituting in (9.19), the equation
becomes [238, see Eqs.(114–115)]

E⊥ = 2µ̄0

(
−εtz2 + εxz

2 + εyz
2
)
. (9.23)

Substituting from (9.16) and (9.17) into (9.23), the screw dislocation
strain energy density becomes

E⊥ =
µ̄0 b

2

8π2

α2

(x− vt)2 + α2y2
= E . (9.24)

This equation simplifies to (9.22) in the case where v = 0, as expected.
In addition, the energy density (which is quadratic in energy as per [238,
see Eq.(76)]) is multiplied by the special relativistic α factor.

§9.2.4 Screw dislocation current and charge density

The current density four-vector is calculated from (4.10), viz.

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν =

ϕ0

2µ0 ᾱ0
ε;ν

and the charge density from (4.14), viz.

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν =

ϕ0ε0c

4ᾱ0

√
ε;νε;ν
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where ϕ0 is the spacetime continuum electromagnetic shearing potential
constant and

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
.

For the screw dislocation,

jν = 0 (9.25)

% = 0 (9.26)

given that ε = 0.

§9.3 Edge dislocations

We next consider discrete edge dislocations, both in the stationary and
the moving case.

§9.3.1 Stationary edge dislocation

We consider a stationary edge dislocation in the spacetime continuum in
cartesian coordinates (x, y, z), with the dislocation line along the z-axis
and the Burgers vector bx = b, by = bz = 0 (see Fig. 9.4). Then the non-
zero components of the deformations are given in cartesian coordinates
by [159, see p. 78]

ux =
b

2π

(
tan−1 y

x
+

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy

x2 + y2

)

uy = − b

2π

(
1

2

µ̄0

2µ̄0 + λ̄0
ln(x2 + y2)+

+
1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
.

(9.27)

This solution results in a non-zero R.H.S. of the edge dislocation dis-
placement equation (8.21) as required. Equation (8.21) can be evaluated
to give a value of ε in agreement with the results of section §9.3.4 as
shown in that section.

The rotation tensor is calculated from (3.3). Substituting for the
displacements from (9.27), we find that the only non-zero component of
the rotation tensor is

ωxy = −ωyx =
b

2π

x

x2 + y2
. (9.28)
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Figure 9.4: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

In terms of the rotation vector, using (10.1), we obtain

ωz =
b

π

x

x2 + y2
. (9.29)

In cylindrical polar coordinates, the rotation vector can also be written
as

ωz =
b

π

cos θ

r
. (9.30)

For a stationary edge dislocation, we thus obtain a right-handed rotation
vector that decreases as 1/r and varies sinusoidally with θ.

The cylindrical polar coordinate description of the edge dislocation
is more complex than the cartesian coordinate description. We thus use
cartesian coordinates in the following sections, transforming to polar
coordinate expressions as warranted. The non-zero components of the
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stress tensor in cartesian coordinates are given by [159, see p. 76]

σxx = −bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(3x2 + y2)

(x2 + y2)2

σyy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(x2 − y2)

(x2 + y2)2

σzz =
1

2

λ̄0

µ̄0 + λ̄0
(σxx + σyy)

= −bµ̄0

π

λ̄0

2µ̄0 + λ̄0

y

x2 + y2

σxy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)

(x2 + y2)2
.

(9.31)

The non-zero components of the strain tensor in cartesian coordi-
nates are derived from εµν = 1

2 (uµ;ν + uν;µ) [238, see Eq.(41)]:

εxx = − b

2π

y

x2 + y2

(
1 +

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
= − by

2π

(3µ̄0 + 2λ̄0)x2 + µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εyy = − b

2π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2

(
1− µ̄0 + λ̄0

µ̄0

2x2

x2 + y2

)
=
by

2π

(µ̄0 + 2λ̄0)x2 − µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εxy =
b

2π

µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)

(x2 + y2)2

(9.32)

in an isotropic continuum.

§9.3.2 Moving edge dislocation

We now consider the previous edge dislocation, moving along the x-
axis, parallel to the z-axis, along the slip plane x−z, at a constant
speed vx = v. The solutions of (8.18) for the moving edge dislocation
then include both longitudinal and transverse components. The only
non-zero components of the deformations in cartesian coordinates are
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given by [364, see pp. 39–40] [117, see pp. 218–219]

ux =
bc2

πv2

(
tan−1 αly

x− vt
− α2

2 tan−1 αy

x− vt

)
uy =

bc2

2πv2

(
αl ln

[
(x− vt)2 + α2

l y
2
]
−

− α2
2

α
ln
[
(x− vt)2 + α2y2

])
,

(9.33)

where

α2 =

√
1− v2

2c2
, (9.34)

αl =

√
1− v2

c2l
(9.35)

and cl is the speed of longitudinal deformations given by

cl =

√
2µ̄0 + λ̄0

ρ̄0
. (9.36)

Similarly to (9.12), we have

γ2 =
1

α2
=

(
1− v2

2c2

)− 1
2

γl =
1

αl
=

(
1− v2

c2l

)− 1
2

.

(9.37)

This solution again results in a non-zero R.H.S. of the edge dislocation
displacement equation (8.21) as required, and (8.21) can be evaluated
to give a value of ε as in section §9.3.4. This solution simplifies to the
case of the stationary edge dislocation when the speed v = 0.

The rotation tensor is calculated from (3.3). Substituting for the dis-
placements from (9.33), we find that the only non-zero space component
of the rotation tensor is

ωxy = −ωyx =
b

2π

α2
2

α

x− vt
(x− vt)2 + (αy)2

. (9.38)

In terms of the rotation vector, using (10.1), we obtain

ωz =
b

π

α2
2

α

x− vt
(x− vt)2 + (αy)2

. (9.39)
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From (9.11) and (9.34), using a Taylor expansion for α−1, we have

α2
2

α
' 1− v4

4c4
→ 1 (9.40)

and hence

ωz →
b

π

x− vt
(x− vt)2 + (αy)2

. (9.41)

This expression is the same as that of the stationary edge dislocation
of (9.29) in the case where v → 0. For a moving edge dislocation, we
thus find that the z-component of the rotation vector includes only the
transverse terms of the dislocation, with the longitudinal terms can-
celling out.

The non-zero time components of the rotation tensor are also ob-
tained from (3.3) and (9.33):

ωxt =
1

2

(
1

c

∂ux
∂t
− ∂ut
∂x

)
= −ωtx

=
b

2π

c

v

(
αly

(x− vt)2 + (αly)2
− α2

2

αy

(x− vt)2 + (αy)2

)
ωyt = − b

2π

c

v

(
αl(x− vt)

(x− vt)2 + (αly)2
− α2

2

α2

α(x− vt)
(x− vt)2 + (αy)2

)
.

(9.42)

The corresponding space rotation vector components are then given by

ωx = − b
π

c

v

(
αl(x− vt)

(x− vt)2 + (αly)2
− α2

2

α

x− vt
(x− vt)2 + (αy)2

)
ωy = − b

π

c

v

(
αly

(x− vt)2 + (αly)2
− α2

2

αy

(x− vt)2 + (αy)2

)
.

(9.43)

The x- and the y-components of the rotation vector include both trans-
verse and longitudinal terms of the dislocation.

Finally, the time component of the rotation vector is given by

ωt = εtxy ω
xy + εtyx ω

yx

= ωxy − ωyx = 2ωxy

=
b

π

α2
2

α

x− vt
(x− vt)2 + (αy)2

.

(9.44)
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The non-zero components of the stress tensor in cartesian coordi-
nates are given by [159, see pp. 189–190] [364, see pp. 39–40]

σxx =
bc2y

πv2

(
λ̄0α

3
l − (2µ̄0 + λ̄0)αl

(x− vt)2 + α2
l y

2
+

2µ̄0α
2
2α

(x− vt)2 + α2y2

)

σyy =
bc2y

πv2

(
(2µ̄0 + λ̄0)α3

l − λ̄0αl
(x− vt)2 + α2

l y
2
− 2µ̄0α

2
2α

(x− vt)2 + α2y2

)

σzz =
1

2

λ̄0

µ̄0 + λ̄0
(σxx + σyy)

=
λ̄0b

π

c2

c2l

−αly
(x− vt)2 + α2

l y
2

=
b

π

λ̄0µ̄0

2µ̄0 + λ̄0

−αly
(x− vt)2 + α2

l y
2

σxy =
µ̄0bc

2

πv2

(
2αl(x− vt)

(x− vt)2 + α2
l y

2
− α2

2(α+ 1/α)(x− vt)
(x− vt)2 + α2y2

)
.

(9.45)

It is important to note that for a screw dislocation, the stress on the
plane x− vt = 0 becomes infinite at v = c. This sets an upper limit on
the speed of screw dislocations in the spacetime continuum, and provides
an explanation for the speed of light limit. This upper limit also applies
to edge dislocations, as the shear stress becomes infinite everywhere at
v = c, even though the speed of longitudinal deformations cl is greater
than that of transverse deformations c [159, see p. 191] [364, see p. 40].

The non-zero components of the strain tensor in cartesian coordi-
nates are derived from εµν = 1

2 (uµ;ν + uν;µ) [238, see Eq.(41)]:

εxx =
bc2y

πv2

(
−αl

(x− vt)2 + (αly)2
+

α2
2α

(x− vt)2 + (αy)2

)

εyy =
bc2y

πv2

(
α3
l

(x− vt)2 + (αly)2
− α2

2α

(x− vt)2 + (αy)2

)

εxy =
bc2

2πv2

(
2αl(x− vt)

(x− vt)2 + (αly)2
− α2

2(α+ 1/α)(x− vt)
(x− vt)2 + (αy)2

) (9.46)

in an isotropic continuum.
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Non-zero components involving time are given by

εtx = εxt =
1

2

(
∂ux
∂(ct)

+
∂ut
∂x

)
εty = εyt =

1

2

(
∂uy
∂(ct)

+
∂ut
∂y

)

εtx =
b

2π

c

v

(
αly

(x− vt)2 + α2
l y

2
− α2

2

αy

(x− vt)2 + α2y2

)

εty = − b

2π

c

v

(
αl(x− vt)

(x− vt)2 + α2
l y

2
− α2

2

α2

α(x− vt)
(x− vt)2 + α2y2

)
(9.47)

where ut = 0 has been used. This assumes that the edge dislocation is
fully formed and moving with velocity v as described. Using (8.25), the
non-zero stress components involving time are given by

σtx =
bµ̄0

π

c

v

(
αly

(x− vt)2 + α2
l y

2
− α2

2

αy

(x− vt)2 + α2y2

)

σty = −bµ̄0

π

c

v

(
αl(x− vt)

(x− vt)2 + α2
l y

2
− α2

2

α2

α(x− vt)
(x− vt)2 + α2y2

)
.

(9.48)

§9.3.3 Edge dislocation strain energy density

As we have seen in section §9.2.3, the screw dislocation is massless as
ε = 0 and hence E‖ = 0 for the screw dislocation: it is a pure distortion,
with no dilatation. In this section, we evaluate the strain energy density
of the edge dislocation.

As seen in [238, see section 8.1], the strain energy density of the
spacetime continuum is separated into two terms: the first one expresses
the dilatation energy density (the mass longitudinal term) while the sec-
ond one expresses the distortion energy density (the massless transverse
term):

E = E‖ + E⊥ (9.49)

where

E‖ =
1

2
κ̄0ε

2 ≡ 1

32κ̄0

(
ρc2
)2 ≡ 1

2κ̄0
t2s (9.50)

where ε is the volume dilatation and ρ is the mass energy density of the
edge dislocation, and

E⊥ = µ̄0e
αβeαβ ≡

1

4µ̄0
tαβtαβ (9.51)
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where from [238, see Eq. (36)] the energy-momentum stress tensor Tαβ is
decomposed into a stress deviation tensor tαβ and a scalar ts, according
to

tαβ = Tαβ − tsgαβ (9.52)

where ts = 1
4 T

α
α. Then the dilatation strain energy density of the

edge dislocation is given by the (massive) longitudinal dilatation energy
density (9.50) and the distortion (massless) strain energy density of the
edge dislocation is given by the transverse distortion energy density
(9.51).

§9.3.4 Stationary edge dislocation strain energy density

We first consider the case of the stationary edge dislocation of section
§9.3.1. The volume dilatation ε for the stationary edge dislocation is
given by

ε = εαα = εxx + εyy (9.53)

where the non-zero diagonal elements of the strain tensor are obtained
from (9.32). Substituting for εxx and εyy from (9.32), we obtain

ε = − b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2
. (9.54)

In cylindrical polar coordinates, (9.54) is expressed as

ε = − b
π

µ̄0

2µ̄0 + λ̄0

sin θ

r
. (9.55)

We can disregard the negative sign in (9.54) and (9.55) as it can be
eliminated by using the FS/RH convention instead of the SF/RH con-
vention for the Burgers vector [159, see p. 22]).

As mentioned in section §9.3.1, the volume dilatation ε can be cal-
culated from the edge dislocation displacement (longitudinal) equation
(8.21), viz.

∇2uν‖ = − µ̄0 + λ̄0

µ̄0
ε;ν .

For the x-component, this equation gives

∇2ux =
∂2ux
∂x2

+
∂2ux
∂y2

= − µ̄0 + λ̄0

µ̄0
ε,x. (9.56)

Substituting for ux from (9.27), we obtain

∇2ux = −2b

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy

(x2 + y2)2
= − µ̄0 + λ̄0

µ̄0
ε,x. (9.57)
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Hence

ε,x =
2b

π

µ̄0

2µ̄0 + λ̄0

xy

(x2 + y2)2
(9.58)

and

ε =
2b

π

µ̄0

2µ̄0 + λ̄0

∫
xy

(x2 + y2)2
dx. (9.59)

Evaluating the integral [376], we obtain

ε = − b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2
(9.60)

in agreement with (9.54).
Similarly for the y-component, substituting for uy from (9.27), the

equation

∇2uy =
∂2uy
∂x2

+
∂2uy
∂y2

= − µ̄0 + λ̄0

µ̄0
ε,y (9.61)

gives

ε,y = − b
π

µ̄0

2µ̄0 + λ̄0

x2 − y2

(x2 + y2)2
. (9.62)

Evaluating the integral [376]

ε = − b
π

µ̄0

2µ̄0 + λ̄0

∫
x2 − y2

(x2 + y2)2
dy, (9.63)

we obtain

ε = − b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2
(9.64)

again in agreement with (9.54).
The mass energy density is calculated from (2.24)

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε (9.65)

where (2.3) has been used. Substituting for ε from (9.54), the mass
energy density of the stationary edge dislocation is given by

ρc2 =
4b

π

κ̄0µ̄0

2µ̄0 + λ̄0

y

x2 + y2
. (9.66)

In cylindrical polar coordinates, (9.66) is expressed as

ρc2 =
4b

π

κ̄0µ̄0

2µ̄0 + λ̄0

sin θ

r
. (9.67)
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Using (9.54) in (9.50), the stationary edge dislocation longitudinal
dilatation strain energy density is then given by

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

y2

(x2 + y2)2
. (9.68)

In cylindrical polar coordinates, (9.68) is expressed as

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2
. (9.69)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously in (9.20),

eαβ = εαβ − esgαβ (9.70)

where es = 1
4 ε is the volume dilatation calculated in (9.54). Then

eαβeαβ =
(
εαβ − 1

4 εg
αβ
) (
εαβ − 1

4 εgαβ
)

(9.71)

and the distortion strain energy density equation becomes

E⊥ = µ̄0

(
εαβεαβ − 1

4 εg
αβεαβ − 1

4 εgαβε
αβ + 1

16 ε
2gαβgαβ

)
= µ̄0

(
εαβεαβ − 1

4 ε
2 − 1

4 ε
2 + 1

4 ε
2
) (9.72)

for gαβ = ηαβ . Hence

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (9.73)

This expression is expanded using the non-zero elements of the strain
tensor (9.32) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 − 1
4 ε

2
)

(9.74)

where 2εxy
2 = εxy

2 + εyx
2. Substituting from (9.32) and (9.54) in the

above, simplifying the β̄2
0 terms (see (9.76) and following definition), fol-

lowed by the other terms, completing the squares for r2 and performing
polynomial division, we obtain

E⊥ =
µ̄0 b

2

4π2

2 β̄2
0 x

2 + ᾱ2
0 y

2

(x2 + y2)2
(9.75)
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where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
(9.76)

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
. (9.77)

Substituting for ᾱ2
0 and β̄2

0 , (9.75) becomes

E⊥ =
b2

4π2

µ̄0

(2µ̄0 + λ̄0)2

2(µ̄0 + λ̄0)2 x2 + µ̄2
0 y

2

(x2 + y2)2
. (9.78)

In cylindrical polar coordinates, (9.78) is expressed as

E⊥ =
b2

4π2

µ̄0

(2µ̄0 + λ̄0)2

2(µ̄0 + λ̄0)2 cos2 θ + µ̄2
0 sin2 θ

r2
. (9.79)

This equation can also be written as

E⊥ =
µ̄0 b

2

4π2

(
ᾱ2

0

sin2 θ

r2
+ 2β̄2

0

cos2 θ

r2

)
. (9.80)

§9.3.5 Moving edge dislocation strain energy density

We next consider the general case of the moving edge dislocation in
the spacetime continuum of section §9.3.2, with cartesian coordinates
(x, y, z). We first evaluate the volume dilatation ε for the moving edge
dislocation. The volume dilatation is given by

ε = εαα = εxx + εyy (9.81)

where the non-zero diagonal elements of the strain tensor are obtained
from (9.46). Substituting for εxx and εyy from (9.46) in (9.81), we notice
that the transverse terms cancel out, and we are left with the following
longitudinal term:

ε =
bc2y

πv2

α3
l − αl

(x− vt)2 + α2
l y

2
(9.82)

This equation can be further reduced to

ε =
bc2

πv2

v2

cl2
αly

(x− vt)2 + α2
l y

2
(9.83)
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and finally, using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (3.12) and (9.36)),

ε(xi, t) =
b

2π

2µ̄0

2µ̄0 + λ̄0

αly

(x− vt)2 + α2
l y

2
. (9.84)

As we have seen previously, the mass energy density is calculated
from (9.65)

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε. (9.85)

Substituting for ε from (9.84), the mass energy density of an edge dis-
location is given by

ρ(xi, t) c
2 =

b

2π

8κ̄0µ̄0

2µ̄0 + λ̄0

αly

(x− vt)2 + α2
l y

2
. (9.86)

Using (9.84) in (9.50), the edge dislocation longitudinal dilatation strain
energy density is then given by

E‖ =
1

2
κ̄0

(
b

2π

2µ̄0

2µ̄0 + λ̄0

αly

(x− vt)2 + α2
l y

2

)2

. (9.87)

The distortion strain energy density is calculated from (9.73) as de-
rived from (9.51). The expression is expanded using the non-zero ele-
ments of the strain tensor (9.46) and (9.47) to obtain [238, see Eqs.(114–
115)])

E⊥ = µ̄0

(
εxx

2 + εyy
2 − 2εtx

2 − 2εty
2 + 2εxy

2 − 1
4 ε

2
)

(9.88)

Substituting from (9.46), (9.47) and (9.82) in the above and simplifying,
we obtain

E⊥ =
µ̄0 b

2

π2

c4

v4[
α4

2

2α2

(
(1 + α2)2 − v2/c2

)
(x− vt)2 + 2α4(1 + α2

2) y2

r∗4
−

− 2αl α
2
2 α

(
1 + α2

2/α
2
)

(x− vt)2 +
(
α2

2 + α2
l

)
y2

r∗2 r∗2l
+

+α2
l

(1 + α2
2) (x− vt)2 +

(
α2

2 + α4
l − 1

4 v
4/c4l

)
y2

r∗4l

]
(9.89)
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where

r∗2 = (x− vt)2 + α2y2 (9.90)

r∗2l = (x− vt)2 + α2
l y

2 . (9.91)

We consider the above equations for the moving edge dislocation in
the limit as v → 0. Then the terms

αy

(x− vt)2 + α2y2
→ sin θ

r
(9.92)

and
x− vt

(x− vt)2 + α2y2
→ cos θ

r
(9.93)

in cylindrical polar coordinates. Similarly for the same terms with αl
instead of α.

The volume dilatation obtained from (9.84) is then given in cylin-
drical polar coordinates (r, θ, z) by

ε→ b

2π

2µ̄0

2µ̄0 + λ̄0

sin θ

r
. (9.94)

The mass energy density is obtained from (9.86) to give

ρc2 → b

2π

8κ̄0µ̄0

2µ̄0 + λ̄0

sin θ

r
. (9.95)

From (9.87), the edge dislocation dilatation strain energy density is then
given by

E‖ →
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2
. (9.96)

These equations are in agreement with (9.55), (9.67) and (9.69) respec-
tively.

The edge dislocation distortion strain energy density in the limit as
v → 0 is obtained by using (9.92) and (9.93) in (9.46), (9.47) and (9.82)
to compute (9.88). For example, εxx becomes

εxx =
b c2

πv2

(
−1 + α2

2

) sin θ

r
. (9.97)

Using these limiting values in (9.46) and (9.47), and c2/cl
2 = µ̄0/(2µ̄0 +

λ̄0) (see (3.12) and (9.36)) in the expression for ε in (9.94), equation
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(9.88) then becomes:

E⊥ →
µ̄0 b

2

π2

c4

v4

[
− 1

4

v4

cl4
sin2 θ

r2
+
(
−1 + α2

2

)2 sin2 θ

r2
+

+
(
α2
l − α2

2

)2 sin2 θ

r2
+

(
2αl − α2

2

(
α+

1

α

))2
cos2 θ

r2
−

− v2

c2
(
1− α2

2

)2 sin2 θ

r2
− v2

c2

(
−αl +

α2
2

α

)2
cos2 θ

r2

]
.

(9.98)

Using the definitions of α2, α2
2 and α2

l from (9.11), (9.34) and (9.35)
respectively, using the first term of the Taylor expansion for α and αl
as v → 0, and neglecting the terms multiplied by −v2/c2 in (9.98) as
they are of order v6/c6, (9.98) becomes

E⊥ →
µ̄0 b

2

π2

c4

v4

[(
−1

4

v4

cl4
+

v4

4c4
+

(
−v

2

c2l
+

v2

2c2

)2
)

sin2 θ

r2
+

+ 4

(
1− v2

2c2l
− 1 +

v2

2c2

)2
cos2 θ

r2

]
.

(9.99)

Squaring and simplifying, we obtain

E⊥ →
µ̄0 b

2

π2

c4

v4

[(
3

4

v4

cl4
− v4

c2l c
2

+
v4

2c4

)
sin2 θ

r2
+

+

(
v4

cl4
− 2

v4

c2l c
2

+
v4

c4

)
cos2 θ

r2

] (9.100)

and further

E⊥ →
µ̄0 b

2

2π2

[(
1− 2

c2

c2l
+

3

2

c4

cl4

)
sin2 θ

r2
+

+ 2

(
1− 2

c2

c2l
+
c4

cl4

)
cos2 θ

r2

]
.

(9.101)

Using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (3.12) and (9.36)), (9.101) becomes

E⊥ →
µ̄0 b

2

2π2

[(
1− 2 ᾱ0 +

3

2
ᾱ2

0

)
sin2 θ

r2
+

+ 2
(
1− 2ᾱ0 + ᾱ2

0

) cos2 θ

r2

] (9.102)
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where (
1− 2ᾱ0 + ᾱ2

0

)
= (1− ᾱ0)

2
= β̄2

0 (9.103)

and ᾱ0 and β̄0 are as defined in (9.76). This equation represents the
impact of the time terms included in the calculation of E⊥ and the limit
operation v → 0 used in (9.89). Adding the terms of the sin2 θ/r2

coefficient by setting c ' cl in (9.100), we obtain the same term as in
(9.80). Hence, comparing this expression with (9.80) for the stationary
dislocation, we find that it has the same structure, with some additional
details resulting from the time limit operation.

§9.3.6 Edge dislocation current and charge density

The current density four-vector is calculated from (4.10), viz.

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν =

ϕ0

2µ0ᾱ0
ε;ν

and the charge density from (4.14), viz.

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν =

ϕ0ε0c

4ᾱ0

√
ε;νε;ν

where ϕ0 is the spacetime continuum electromagnetic shearing potential
constant.

We first consider the stationary edge dislocation. Using the expres-
sion for ε from (9.64), the non-zero components of the current density
are given by

jx =
ϕ0b

πµ0

xy

r4
=

ϕ0b

2πµ0

sin 2θ

r2

jy = −ϕ0b

πµ0

x2 − y2

r4
= −ϕ0b

πµ0

cos 2θ

r2

(9.104)

where r2 = x2 + y2. The charge density is given by

% = ± 1

4π
ϕ0ε0c

b

r2
. (9.105)

The sign depends on the problem under consideration.
The charge is given by integrating % over the volume V :

Q =

∫
V

% dV =

∫
V

% r2dr sinϕdϕdθ (9.106)



146 Chapter 9 Dislocations in the Spacetime Continuum

in spherical polar coordinates. This becomes

Q = ± 1

4π
ϕ0ε0c b

∫ R

0

dr

∫ π

0

sinϕdϕ

∫ 2π

0

dθ (9.107)

where R is the “radius” of the deformation. Evaluating the integrals,
we get

Q = ±ϕ0ε0c bR (9.108)

where the units are [C] as expected. Using b = nb0 (see (14.2)),

Q = ±nϕ0ε0c b0R = ±n ϕ0b0
µ0c

R (9.109)

where n is the number of elementary Burgers displacement b0.
We next consider the moving edge dislocation. Using the expression

for ε from (9.84), the non-zero components of the current density are
given by

jx = −ϕ0b

πµ0
αl

(x− vt)y
[(x− vt)2 + (αly)2]

2

jy =
ϕ0b

2πµ0
αl

(x− vt)2 − (αly)2

[(x− vt)2 + (αly)2]
2

jct =
ϕ0b

πµ0
αl
v

c

(x− vt)y
[(x− vt)2 + (αly)2]

2 .

(9.110)

The charge density is given by

% = ± 1

4π
ϕ0ε0c αl

b

(x− vt)2 + (αly)2[
1 + 2(1 + ᾱ0)

v2

c2
(x− vt)2y2

[(x− vt)2 + (αly)2]
2

] 1
2

(9.111)

and for v/c� 1

% ' ± 1

4π
ϕ0ε0c αl

b

(x− vt)2 + (αly)2[
1 + (1 + ᾱ0)

v2

c2
(x− vt)2y2

[(x− vt)2 + (αly)2]
2

]
.

(9.112)

which tends to

%→ ± 1

4π
ϕ0ε0c αl

b

(x− vt)2 + (αly)2
(9.113)
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and the results of the stationary edge dislocation as v → 0. The sign
again depends on the problem under consideration.

§9.4 Volterra discrete dislocation line

In this section, we consider a discrete straight dislocation line running
along the z-axis, composed of both screw and edge dislocations first
proposed by Volterra [360]. The dislocations include a screw dislocation
with displacement bz and edge dislocations with displacements bx and
by. We will review the Volterra analysis in greater details in §10.2.

The displacements are given by

ux =
1

2π
(bxθ − by ln r)

uy =
1

2π
(byθ + bx ln r)

uz =
1

2π
bzθ

(9.114)

where

r2 = x2 + y2 (9.115)

θ = arctan
(y
x

)
. (9.116)

The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ):

εxx = − bx
2π

y

r2
− by

2π

x

r2

εyy =
bx
2π

y

r2
+
by
2π

x

r2

εzz = 0

εxy =
bx
π

x

r2
− by
π

y

r2

εyz =
bz
2π

x

r2

εxz = − bz
2π

y

r2
.

(9.117)
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The volume dilatation ε for the discrete dislocation line is then given
by

ε = εαα = εxx + εyy + εzz . (9.118)

Substituting for εxx, εyy and εzz from (9.117), we obtain

ε = 0 . (9.119)

Hence the mass energy density is zero

ρc2 = 0 (9.120)

and the longitudinal dilatation strain energy density is also zero

E‖ = 0 . (9.121)

This indicates a problem with the Volterra displacements (9.114) as the
volume dilatation of an edge dislocation is not equal to zero.

The distortion strain energy density is calculated from (9.147)

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
, (9.122)

using the non-zero elements of the strain tensor (9.117) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εxz

2
)
. (9.123)

Substituting from (9.117) in the above, we obtain

E⊥ =
µ̄0

4π2

(
b2z
r2

+ 2

(
b2x + b2y

)
r2

+ 2
(bxx− byy)

2

r4

)
. (9.124)

The components of the stress tensor in cartesian coordinates are
given by:

σxx = − µ̄0bx
π

y

r2
− µ̄0by

π

x

r2

σyy =
µ̄0bx
π

y

r2
+
µ̄0by
π

x

r2

σzz = 0

σxy =
2µ̄0bx
π

x

r2
− 2µ̄0by

π

y

r2

σyz =
µ̄0bz
π

x

r2

σxz = − µ̄0bz
π

y

r2
.

(9.125)
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The volume force calculated from [80]

Xν = −σµν ;µ , (9.126)

gives

Xx =
µ̄0bx
π

2xy

r4
+
µ̄0by
π

x2 − y2

r4

Xy = − µ̄0by
π

2xy

r4
+
µ̄0bx
π

x2 − y2

r4

Xz = 0

(9.127)

and the fields are not in equilibrium. As pointed out by deWit [80], this
is another problem with the Volterra displacements in that there is a net
volume force present. Another example, for the stationary screw (9.3)
and edge (9.31) dislocations considered previously, it is straightforward
to show that there is no net volume force present (Xν = 0).

§9.5 deWit discrete dislocation line

In this section, we consider a discrete straight dislocation line running
along the z-axis, composed of both screw and edge dislocations as de-
rived by deWit [80] to correct the Volterra displacements so that no net
volume force is present

Displacements are often difficult to derive, and minimal simplified
expressions are often used. For example, the Volterra dislocation ex-
pressions that we analyzed in the previous section §9.4 are a case in
point. deWit corrects the Volterra expressions to ensure no net volume
force is present and mentions that the displacements (9.130) below are
as he derived them, “except for some trivial constants”. In our work,
correct displacement expressions are needed as they are the basis of
the physical characteristics of the deformations, including their strain
energy density.

The cartesian (x, y, z) and cylindrical polar (r, θ, z) coordinates used
by deWit [80] in his analysis are as per Fig. 9.5. deWit defined his
analysis in terms of coordinates (x1, x2, x3) which correspond and are
equivalent to our use of (x, y, z). Specific screw and edge dislocation
defects are oriented along these axes: the screw dislocation along the
z-axis with Burgers vector bz represented in Fig. 9.3, the edge dislo-
cation along the z-axis with Burgers vector bx represented in Fig. 9.4,
and a different edge dislocation along the z-axis with Burgers vector by
represented in Fig. 9.6 which we call the gap dislocation. In all cases,
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Figure 9.5: Cartesian (x, y, z) and cylindrical polar (r, θ, z) coordinates
used by deWit [80] in his analysis. The cut line corresponds to the
displacement discontinuity of the dislocation.

the dislocation line ξ is along the z-axis, but the Burgers vectors are
oriented along different axes.

The cut along the negative x-axis represents the discontinuity in the
displacement given by (10.4) and extends in the x− z plane. It should
be noted that the dislocation illustrations should be on the negative x-
axis in accordance with Fig. 9.5 – they have been drawn on the positive
x-axis for clarity of illustration only. It is also important to note that
there are two types of edge dislocations: the edge dislocation proper
which can be called the ledge dislocation and the gap dislocation. It
will usually be clear from the context whether we are referring to edge
dislocations in general or to the edge dislocation proper – this will be
stated explicitly in cases where it is not clear.

Defining the constants ᾱ0 and β̄0

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
(9.128)

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
, (9.129)
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Figure 9.6: A stationary gap dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

the deWit displacements are given by [80]

ux =
b
(e)
x

2π

(
θ + β̄0

xy

r2

)
+
b
(g)
y

2π

(
ᾱ0 ln r + β̄0

y2

r2

)

uy = −b
(e)
x

2π

(
ᾱ0 ln r + β̄0

x2

r2

)
+
b
(g)
y

2π

(
θ − β̄0

xy

r2

)
uz =

b
(s)
z

2π
θ

(9.130)

where we have specifically appended superscripts to the Burgers vec-

tors for clarity: b
(e)
x for the edge dislocation proper, b

(g)
y for the gap

dislocation, and b
(s)
z for the screw dislocation. In general, we will not

append these superscripts except where required for clarity. We can
obtain specific expressions for screw dislocations by putting bx = 0 and
by = 0, for edge dislocations by putting by = 0 and bz = 0, and for gap
dislocations by putting bx = 0 and bz = 0, and similarly for the other
expressions below.
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The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ):

εxx = − bx
2π

(
ᾱ0

y

r2
+ β̄0

2x2y

r4

)
+

by
2π

(
ᾱ0

x

r2
− β̄0

2xy2

r4

)
εyy = − bx

2π

(
ᾱ0

y

r2
− β̄0

2x2y

r4

)
+

by
2π

(
ᾱ0

x

r2
+ β̄0

2xy2

r4

)
εzz = 0

εxy =
bx
2π

β̄0

(
x

r2
− 2xy2

r4

)
− by

2π
β̄0

(
y

r2
− 2x2y

r4

)
εyz =

bz
4π

x

r2

εxz = − bz
4π

y

r2
.

(9.131)

The volume dilatation ε for the discrete dislocation line is then given
by

ε = εαα = εxx + εyy + εzz . (9.132)

Substituting for εxx, εyy and εzz from (9.131), we obtain

ε = − 1

π

µ̄0

2µ̄0 + λ̄0

bxy − byx
r2

. (9.133)

The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (9.133), using the positive value of ε as per
section §9.3.4, the mass energy density of the discrete dislocation line is
given by

ρc2 =
4

π

κ̄0µ̄0

2µ̄0 + λ̄0

bxy − byx
r2

. (9.134)

The components of the stress tensor in cartesian coordinates are
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given by [80]:

σxx = − µ̄0bx
π

β̄0

(
y

r2
+

2x2y

r4

)
+
µ̄0by
π

β̄0

(
x

r2
− 2xy2

r4

)
σyy = − µ̄0bx

π
β̄0

(
y

r2
− 2x2y

r4

)
+
µ̄0by
π

β̄0

(
x

r2
+

2xy2

r4

)
σzz = − 1

π

µ̄0λ̄0

2µ̄0 + λ̄0

(
bxy − byx

r2

)
σxy =

µ̄0bx
π

β̄0

(
x

r2
− 2xy2

r4

)
− µ̄0by

π
β̄0

(
y

r2
− 2x2y

r4

)
σyz =

µ̄0bz
2π

x

r2

σxz = − µ̄0bz
2π

y

r2
.

(9.135)

As shown in [80], the volume force is zero,

Xν = −σµν ;µ = 0 , (9.136)

and the fields are in equilibrium.

We now consider the rotation tensor defined by (3.3), viz.

ωµν = 1
2 (uµ;ν − uν;µ) .

Given that uµ;ν = uν;µ, the diagonal elements of the rotation tensor are
zero. Only the off-diagonal elements are non-zero. Substituting for the
displacements from (9.131), we obtain

ωxy = −ωyx =
1

2π

bxx+ byy

r2

ωyz = −ωzy = − bz
4π

x

r2

ωxz = −ωzx =
bz
4π

y

r2
.

(9.137)

In terms of the rotation vector, using (10.1) viz.

ωα =
1

2
εαµν ωµν ,
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we obtain

ωx = − bz
4π

x

r2

ωy = − bz
4π

y

r2

ωz =
1

2π

bxx+ byy

r2
.

(9.138)

The x and y components of the rotation vector are the components
of bz along those axes respectively, attenuated by a factor 1/r (i.e.
x/r = cos θ and y/r = sin θ), while the z component of the rotation
vector is the moment of the components of bx and by along the x and y
axes also attenuated by a factor 1/r.

§9.5.1 deWit dislocation line strain energy density

The strain energy density of the discrete dislocation line is calculated as
follows. Using (9.133) in (9.50), the discrete dislocation line longitudinal
dilatation strain energy density is then given by

E‖ =
1

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

(bxy − byx)2

r4
. (9.139)

Expanding the quadratic term, we obtain

E‖ = EE‖ + EG‖ + EE−G‖ int (9.140)

where the edge dislocation longitudinal dilatation strain energy density
EE‖ , the gap dislocation longitudinal dilatation strain energy density

EG‖ , and the edge-gap interaction longitudinal dilatation strain energy

density EE−G‖ int are given by

EE‖ =
1

2π2
κ̄0ᾱ

2
0

b
(e) 2
x y2

r4
(9.141)

EG‖ =
1

2π2
κ̄0ᾱ

2
0

b
(g) 2
y x2

r4
(9.142)

EE−G‖ int = − 1

π2
κ̄0ᾱ

2
0

b
(e)
x b

(g)
y xy

r4
. (9.143)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .
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As seen previously in (9.20),

eαβ = εαβ − esgαβ (9.144)

where es = 1
4 ε is the volume dilatation calculated in (9.54). Then

eαβeαβ =
(
εαβ − 1

4 εg
αβ
) (
εαβ − 1

4 εgαβ
)

(9.145)

and the distortion strain energy density equation becomes

E⊥ = µ̄0

(
εαβεαβ − 1

4 εg
αβεαβ − 1

4 εgαβε
αβ + 1

16 ε
2gαβgαβ

)
= µ̄0

(
εαβεαβ − 1

4 ε
2 − 1

4 ε
2 + 1

4 ε
2
) (9.146)

for gαβ = ηαβ . Hence

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (9.147)

This expression is expanded using the non-zero elements of the strain
tensor (9.131) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εxz

2 − 1
4 ε

2
)
. (9.148)

Substituting from (9.131) and (9.133) in the above and simplifying, we
obtain

E⊥ =
µ̄0

8π2

b2z
r2

+
µ̄0

4π2
ᾱ2

0

(bxy − byx)2

r4
+

+
µ̄0

2π2
β̄2

0

(bxx+ byy)2

r4
− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(9.149)

Setting bz = 0 and by = 0 in the above, we obtain the distortion strain
energy density expression (9.75) for the stationary edge dislocation.

Expanding the quadratic terms, we obtain

E⊥ = ES⊥ + EE⊥ + EG⊥ + EE−G⊥ int (9.150)

where the screw dislocation distortion strain energy density ES⊥, the
edge dislocation distortion strain energy density EE⊥ , the gap disloca-
tion distortion strain energy density EG⊥ , and the edge-gap interaction
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distortion strain energy density EE−G⊥ int are given by

ES⊥ =
µ̄0

8π2

b
(s) 2
z

r2
(9.151)

EE⊥ =
µ̄0

4π2

b
(e) 2
x

(
ᾱ2

0y
2 + 2β̄2

0x
2
)

r4
(9.152)

EG⊥ =
µ̄0

4π2

b
(g) 2
y

(
ᾱ2

0x
2 + 2β̄2

0y
2
)

r4
(9.153)

EE−G⊥ int = − µ̄0

2π2

(
ᾱ2

0 − 2β̄2
0 + 3γ̄0

) b(e)x b
(g)
y xy

r4
(9.154)

where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
. (9.155)

We can also separate (9.149) into different components as follows.
Substituting from (9.138) and (9.139), (9.149) becomes

E⊥ =
µ̄0

8π2

b2z
r2

+
1

2

µ̄0

κ̄0
E‖ + 2µ̄0

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2

ω2
z−

− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(9.156)

The first term is the screw dislocation strain energy density of (9.22),
the second term is proportional to the edge dislocation distortion strain
energy density arising from the longitudinal strain energy density of
(9.139), the third term is the edge dislocation distortion strain energy
density arising from the rotation vector of (9.138) and the last term is
part of the edge-gap dislocation interaction strain energy density term.
It is interesting to note that there are no interaction terms (cross-terms)
between screw and edge dislocations for a dislocation line although there
are interaction terms between edge dislocations (edge and gap disloca-
tions). However, as we will see in section §18.6, a dislocation line does
exhibit self-energy processes.

§9.5.2 deWit dislocation line current and charge density

The current density four-vector is calculated from (4.10), viz.

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν =

ϕ0

2µ0ᾱ0
ε;ν
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and the charge density from (4.14), viz.

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν =

ϕ0ε0c

4ᾱ0

√
ε;νε;ν

where ϕ0 is the spacetime continuum electromagnetic shearing potential
constant.

Using the expression for ε from (9.133), the non-zero components of
the current density are given by

jx =
ϕ0

2πµ0

byr
2 + 2x (bxy − byx)

r4

jy = − ϕ0

2πµ0

bxr
2 − 2y (bxy − byx)

r4

(9.157)

where r2 = x2 + y2. These can be separated in terms of edge proper
and gap dislocations as follows:

jx =
ϕ0

2πµ0

2xy b
(e)
x −

(
x2 − y2

)
b
(g)
y

r4

jy = − ϕ0

2πµ0

(
x2 − y2

)
b
(e)
x + 2xy b

(g)
y

r4

(9.158)

which, as per (9.104), can be further simplified to

jx =
ϕ0

2πµ0

b
(e)
x sin 2θ − b(g)y cos 2θ

r2

jy = − ϕ0

2πµ0

b
(e)
x cos 2θ + b

(g)
y sin 2θ

r2
,

(9.159)

which simplifies to (9.104) in the case where b
(g)
y = 0 when we are

dealing with an edge proper dislocation. The charge density is given by

% = ± 1

4π
ϕ0ε0c

1

r2

√
b
(e) 2
x + b

(g) 2
y . (9.160)

The sign depends on the problem under consideration.

§9.6 Curved dislocations

In this section, we consider the equations for generally curved disloca-
tions (also known as infinitesimal dislocation loops) generated by in-
finitesimal elements of a dislocation. These allow us to handle complex
dislocations that are encountered in the spacetime continuum.
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§9.6.1 The Burgers displacement equation

The Burgers displacement equation for an infinitesimal element of a
dislocation dl = ξdl in vector notation is given by [159, see p. 102]

u(r) =
b

4π

∫
A

R̂ · dA
R2

− 1

4π

∮
C

b× dl′

R
+

+
1

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0
∇

[∮
C

(b × R) · dl′

R

] (9.161)

where u is the displacement vector, r is the vector to the displaced point,
r′ is the vector to the dislocation infinitesimal element dl′, R = r′ − r,
b is the Burgers vector, and closed loop C bounds the area A.

In tensor notation, (9.161) is given by

uµ(rν) = − 1

8π

∫
A

bµ
∂

∂x′α
(
∇′2R

)
dAα−

− 1

8π

∮
C

bβ εµβγ ∇′2Rdx′γ−

− 1

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bβ ε
βαγ ∂2R

∂x′µ ∂x′α
dx′γ

(9.162)

where εαβγ is the permutation symbol, equal to 1 for cyclic permuta-
tions, −1 for anti-cyclic permutations, and 0 for permutations involving
repeated indices. As noted by Hirth [159, see p. 103], the first term of
this equation gives a discontinuity ∆u = b over the surface A, while
the two other terms are continuous except at the dislocation line. This
equation is used to calculate the displacement produced at a point r by
an arbitrary curved dislocation by integration over the dislocation line.

§9.6.2 The Peach and Koehler stress equation

The Peach and Koehler stress equation for an infinitesimal element of
a dislocation is derived by differentiation of (9.162) and substitution of
the result in (8.25) [159, see p. 103–106]. In this equation, the disloca-
tion is defined continuous except at the dislocation core, removing the
discontinuity over the surface A and allowing to express the stresses in
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terms of line integrals alone.

σµν = − µ̄0

8π

∮
C

bα εβαµ
∂

∂x′β
(
∇′2R

)
dx′ν−

− µ̄0

8π

∮
C

bα εβαν
∂

∂x′β
(
∇′2R

)
dx′µ−

− µ̄0

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bα ε
βαγ×

×
(

∂3R

∂x′β ∂x′µ∂x′ν
− δµν

∂

∂x′β
(
∇′2R

))
dx′γ .

(9.163)

This equation is used to calculate the stress field of an arbitrary curved
dislocation by line integration.





Chapter 10

Disclinations in the Spacetime Continuum

§10.1 Analysis of spacetime continuum disclinations

In this chapter, we investigate disclinations in the spacetime continuum
in the context of STCED. As discussed in section §9.1, the theory of
disclinations is derived by introducing disclinations in the theory of
dislocations, as the theory of disclinations is actually a combined theory
of dislocations and disclinations. The term dispiration is also used to
indicate a defect that is a combination of both a translation and a
rotation.

A disclination is a deformation characterized by a discrete rotation
Ω which is represented by the Frank vector Ωµ in a four-dimensional
continuum. The rotation is about an axis L in the spacetime continuum.
This corresponds to a closure failure of the rotation of a closed circuit
around the disclination line L.

Three types of disclinations can be distinguished (see Fig. 10.1): i) a
wedge disclination, in which the Frank vector Ωµ is parallel to the axis
L and to the cut; ii) a splay disclination, in which the Frank vector Ωµ

is perpendicular to the axis L and parallel to the cut; and iii) a twist
disclination, in which the Frank vector Ωµ is perpendicular to the axis L
and to the cut. Note that some authors consider the splay disclination
to be a special case of the twist disclination.

The Frank vector is the fundamental invariant of a disclination. It
is for disclinations what the Burgers vector is for dislocations. In a
continuous isotropic continuum, the Burgers and Frank vectors can be
arbitrarily small. This allows us to characterize disclinations similarly
to how dislocations are characterized using a Burgers circuit integral
(see section §9.1). As seen in section §3.1, the local rotation tensor is
defined using (3.3), viz.

ωµν = 1
2 (uµ;ν − uν;µ) .

A rotation vector ωα can be associated with the rotation tensor ωµν

according to

ωα = 1
2 ε

αµν ωµν (10.1)
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Figure 10.1: Three types of disclinations: wedge (top), splay (middle),
twist (bottom) [200].

where the permutation symbol εαµν is as defined in §8.3, equal to +1
for even permutations of αµν, −1 for odd permutations of αµν, 0 for
other cases. Then the Frank vector is given by the line integral

Ωµ =

∮
C

dωµ (10.2)

where the contour C encloses the disclination line L. Note that the
Frank vector can also be associated with a rotation tensor

Ωµ = 1
2 ε

µαβ Ωαβ . (10.3)
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In section §9.1, we saw that the Burgers vector is a measure of the
displacement between the initial and final points of a Burgers circuit
due to a dislocation. This displacement represents a discontinuity in
the spacetime continuum resulting from the dislocation. For a defect
that includes dislocations and disclinations, this discontinuity is char-
acterized by Weingarten’s theorem [77,78,200]: following an irreducible
circuit in a multiply-connected continuum satisfying the elastic com-
patibility conditions, the discontinuity in the rotation and displacement
can only consist of a constant vector (the Burgers vector) and a fixed
rotation (the Frank vector), given by [78]

[uµ] = bµ + εµαβ Ωαxβ (10.4)

[ωα] = Ωα (10.5)

where the [ ] notation represents a discontinuous change. Frank vectors
satisfy a Kirchhoff relation at disclination nodes, as do Burgers vectors
at dislocation nodes.

Disclinations, as rotational deformations, are associated with spaces
with torsion Sλµν defined by

Sλµν = 1
2

(
Γλµν − Γλνµ

)
, (10.6)

which is the antisymmetric component of the connection Γλµν and which
transforms like a proper tensor.

The contortion tensor Kλ
µν is built from the torsion tensor as fol-

lows:

Kλ
µν = 1

2

(
Sλ·µν − S λ

µ·ν − S λ
ν·µ
)

(10.7)

It can more explicitly be defined in terms of the associated torsion tensor
Sµνλ = Sµν

αgαλ as

Kµνλ = Sµνλ − Sνλµ + Sλµν . (10.8)

The contortion can also be defined in terms of the connection as follows:

Kλ
µν = Γλµν −

{
λ
µ ν

}
(10.9)

where
{
λ
µ ν

}
is the Christoffel symbol. Note that in a space with torsion,

the gamma connection coefficient is not symmetric over the indices µν,
while the Christoffel symbol is, hence explaining relation (10.9).



164 Chapter 10 Disclinations in the Spacetime Continuum

Another field arising from torsion is the bend-twist field [78, 199],
also known as torsion-flexure in civil engineering or curvature-twist, is
defined as the gradient of the rotation vector:

κµν = ωµ;ν (10.10)

where the diagonal elements describe a twisting and the off-diagonal
elements describe a bending.

§10.2 Volterra dislocations and disclinations

Volterra [360] in his analysis of 1907 considered 6 types of defects: 3
dislocations and 3 disclinations. The dislocations included the screw
dislocation with displacement bz and two edge dislocations with dis-
placements bx and by. The disclinations included the wedge disclination
normal to the dxy surface, and two twist disclinations normal to the dyz
and dzx surfaces. He was the first to derive the displacements for the
dislocations and disclinations about the z-axis as follows [265, see p. 58]:

2πux = (bx − dzxz + dxyy) arctan
(y
x

)
+

+ 1
2 (−by − dyzz − ᾱ0 dxyx) ln(x2 + y2)

2πuy = (by − dxyx+ dyzz) arctan
(y
x

)
+

+ 1
2 (bx − dzxz − ᾱ0 dxyy) ln(x2 + y2)

2πuz = (bz − dyzy + dzxx) arctan
(y
x

)
+

+ 1
2 (dyzx+ dzxy) ln(x2 + y2)

(10.11)

where as before

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
, (10.12)

the bi’s are dislocation constants specifying the relative displacement of
the dislocation and the dij ’s are disclination constants specifying their
relative rotation. These maintain the equilibrium without volume forces
except at the core of the defect along the z-axis.
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We write (10.11) using the Frank vector as follows:

2πux = (bx − Ωyz + Ωzy) arctan
(y
x

)
+

+ 1
2 (−by − Ωxz − ᾱ0 Ωzx) ln(x2 + y2)

2πuy = (by − Ωzx+ Ωxz) arctan
(y
x

)
+

+ 1
2 (bx − Ωyz − ᾱ0 Ωzy) ln(x2 + y2)

2πuz = (bz − Ωxy + Ωyx) arctan
(y
x

)
+

+ 1
2 (Ωxx+ Ωyy) ln(x2 + y2)

(10.13)

where (bx, by, bz) is the dislocation Burgers vector and (Ωx,Ωy,Ωz) is
the disclination Frank vector, and where Ωz is the component for the
wedge disclination of the core of the defect along the z-axis. Note that
one has

r2 = x2 + y2

θ = arctan
(y
x

) (10.14)

in cylindrical polar coordinates (r, θ, z).

The rotation tensor and rotation vector are calculated as in section
§9.2 from the displacements (10.13). The rotation tensor is then given
by

ωxy =
Ωz
2π

arctan
(y
x

)
=

Ωz
2π

θ

ωyz =
Ωx
2π

arctan
(y
x

)
− Ωy

4π

[
1 + ln

(
x2 + y2

)]
− bz

4π

=
Ωx
2π

θ − Ωy
4π

(1 + 2 ln r)− bz
4π

ωxz = −Ωy
2π

arctan
(y
x

)
− Ωx

4π

[
1 + ln

(
x2 + y2

)]
+
bz
4π

= −Ωy
2π

θ − Ωx
4π

(1 + 2 ln r) +
bz
4π

(10.15)
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and the rotation vector by

ωx =
Ωx
2π

arctan
(y
x

)
− Ωy

4π

[
1 + ln

(
x2 + y2

)]
− bz

4π

=
Ωx
2π

θ − Ωy
4π

(1 + 2 ln r)− bz
4π

ωy =
Ωy
2π

arctan
(y
x

)
+

Ωx
4π

[
1 + ln

(
x2 + y2

)]
− bz

4π

=
Ωy
2π

θ +
Ωx
4π

(1 + 2 ln r)− bz
4π

ωz =
Ωz
2π

arctan
(y
x

)
=

Ωz
2π

θ .

(10.16)

The bend-twist tensor is given by

κµν = ωµ;ν . (10.17)

The components of the bend-twist tensor in cartesian coordinates are
then given by

κxx = −Ωx
2π

y

r2
− Ωy

2π

x

r2

κxy =
Ωx
2π

x

r2
− Ωy

2π

y

r2

κxz = 0

κyx = −Ωy
2π

y

r2
+

Ωx
2π

x

r2

κyy =
Ωy
2π

x

r2
+

Ωx
2π

y

r2

κyz = 0

κzx = −Ωz
2π

y

r2

κzy =
Ωz
2π

x

r2

κzz = 0 .

(10.18)

The trace of the bend-twist tensor is zero:

Trace(κµν) = καα = 0 . (10.19)
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The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ):

εxx = − 1

2π
(bx − Ωyz + Ωzy)

y

x2 + y2
−

− 1

2π
(by + Ωxz + ᾱ0 Ωzx)

x

x2 + y2
− ᾱ0

4π
Ωz ln(x2 + y2)

εyy =
1

2π
(by − Ωzx+ Ωxz)

x

x2 + y2
+

+
1

2π
(bx − Ωyz − ᾱ0 Ωzy)

y

x2 + y2
− ᾱ0

4π
Ωz ln(x2 + y2)

εzz = 0

εxy =
1

2π
(2bx − 2Ωyz + (1− ᾱ0) Ωzy)

x

x2 + y2
−

− 1

2π
(2by + 2Ωxz − (1− ᾱ0) Ωzx)

y

x2 + y2

εyz =
1

2π
(bz − Ωxy + Ωyx)

x

x2 + y2
+

+
1

2π
(Ωxx+ Ωyy)

y

x2 + y2

εxz = − 1

2π
(bz − Ωxy + Ωyx)

y

x2 + y2
+

+
1

2π
(Ωxx+ Ωyy)

x

x2 + y2

(10.20)

in an isotropic continuum. The volume dilatation ε for the Volterra
dislocations and disclinations is then given by

ε = εαα = εxx + εyy + εzz . (10.21)

Substituting for εxx, εyy and εzz from (10.20) into (10.21),

ε = − 1

2π
(1 + ᾱ0) Ωzx

x

x2 + y2
− 1

2π
(1 + ᾱ0) Ωzy

y

x2 + y2
−

− ᾱ0

2π
Ωz ln

(
x2 + y2

) (10.22)



168 Chapter 10 Disclinations in the Spacetime Continuum

and using (10.12), we obtain

ε = −Ωz
2π

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]
. (10.23)

The components of the stress tensor in cartesian coordinates are
obtained by substituting (10.20) into (8.25):

σxx = 2µ̄0εxx + λ̄0ε

= − µ̄0

π
(bx − Ωyz + Ωzy)

y

x2 + y2
−

− µ̄0

π
(by + Ωxz + ᾱ0 Ωzx)

x

x2 + y2
−

− µ̄0ᾱ0

2π
Ωz ln(x2 + y2)

− Ωzλ̄0

2π

[
1 + ᾱ0

[
1 + ln

(
x2 + y2

)]]
σyy = 2µ̄0εyy + λ̄0ε

=
µ̄0

π
(by − Ωzx+ Ωxz)

x

x2 + y2
+

+
µ̄0

π
(bx − Ωyz − ᾱ0 Ωzy)

y

x2 + y2
−

− µ̄0ᾱ0

2π
Ωz ln(x2 + y2)

− Ωzλ̄0

2π

[
1 + ᾱ0

[
1 + ln

(
x2 + y2

)]]
σzz = λ̄0ε = −Ωzλ̄0

2π

[
1 + ᾱ0

[
1 + ln

(
x2 + y2

)]]
σxy =

µ̄0

π
(2bx − 2Ωyz + (1− ᾱ0) Ωzy)

x

x2 + y2
−

− µ̄0

π
(2by + 2Ωxz − (1− ᾱ0) Ωzx)

y

x2 + y2

(10.24)
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σyz =
µ̄0

π
(bz − Ωxy + Ωyx)

x

x2 + y2
+

+
µ̄0

π
(Ωxx+ Ωyy)

y

x2 + y2

σxz = − µ̄0

π
(bz − Ωxy + Ωyx)

y

x2 + y2
+

+
µ̄0

π
(Ωxx+ Ωyy)

x

x2 + y2
.

The σxx and σyy components simplify as follows:

σxx = − µ̄0

π
(bx − Ωyz + Ωzy)

y

x2 + y2
−

− µ̄0

π
(by + Ωxz + ᾱ0 Ωzx)

x

x2 + y2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + ᾱ0(µ̄0 + λ̄0) ln

(
x2 + y2

)]
σyy =

µ̄0

π
(by − Ωzx+ Ωxz)

x

x2 + y2
+

+
µ̄0

π
(bx − Ωyz − ᾱ0 Ωzy)

y

x2 + y2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + ᾱ0(µ̄0 + λ̄0) ln

(
x2 + y2

)]
.

(10.25)

The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.23), using the positive value of ε as per
section §9.3.4, the mass energy density of the Volterra dislocations and
disclinations is given by

ρc2 =
2κ̄0Ωz
π

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]
. (10.26)

We calculate the strain energy density of the Volterra dislocations
and disclinations as follows. Using (10.23) in (9.50), the longitudinal
dilatation strain energy density is then given by

E‖ =
κ̄0Ω2

z

8π2

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]2

. (10.27)
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The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.28)

This expression is expanded using the non-zero elements of the strain
tensor (10.20) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εxz

2 − 1
4 ε

2
)
. (10.29)

Substituting from (10.20) and (10.23) in the above, we obtain

E⊥ =
µ̄0

4π2

(
c1
x2

r4
+ c2

y2

r4
+ c3

xy

r4
+ c4

x

r2
ln r2+

+ c5
y

r2
ln r2 + c6 ln2 r2 − 4π2ε2

) (10.30)

where the coefficients ci are complicated functions of the following vari-
ables:

c1 = f1(x, y, z, bx, by, bz,Ωx,Ωy,Ωz)

c2 = f2(x, y, z, bx, by,Ωx,Ωy,Ωz)

c3 = f3(x, y, z, bx, by,Ωx,Ωy,Ωz)

c4 = ᾱ0 (1 + ᾱ0) Ω2
z x

c5 = ᾱ0 (1 + ᾱ0) Ω2
z y

c6 = 1
2 ᾱ

2
0 Ω2

z

last term = − 1
4 Ω2

z

[
1 + ᾱ0

(
1 + ln r2

)]2
.

(10.31)

Note that we have explicitly written out the simpler coefficients. Specific
cases of the distortion strain energy densities are calculated for combi-
nations of the dislocation Burgers vector (bx, by, bz) and the disclination
Frank vector (Ωx,Ωy,Ωz) in other sections of this book.
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The volume force for Volterra dislocations and disclinations can be
calculated from

Xν = −Tµν ;µ (10.32)

using the stress tensor (10.25). Alternatively, we can make use of (2.6)
into the above equation to calculate the volume force from the strain
tensor using (8.16), viz.

2µ̄0ε
µν

;µ + 2µ̄0/ε
µν

;µ + λ̄0ε
;ν + λ̄0/ε

;ν = −Xν .

The full strain tensor of (10.20) can be used in (8.16) as the elastic
portion of the strain tensor does not contribute to the volume force,
only the defect portion. The volume force is then given by

Xx = − µ̄0 Ωz
π

(
1− 3µ̄0

2µ̄0 + λ̄0
− λ̄0

(2µ̄0 + λ̄0)2

)
x

x2 + y2
−

− µ̄0

π
(−bx + Ωyz + ᾱ0 Ωzy)

2xy

(x2 + y2)2
−

− µ̄0

π
(−by − Ωxz + Ωzx)

x2 − y2

(x2 + y2)2

Xy = − µ̄0 Ωz
π

(
1− 3µ̄0

2µ̄0 + λ̄0
− λ̄0

(2µ̄0 + λ̄0)2

)
y

x2 + y2
−

− µ̄0

π
(by + Ωxz + ᾱ0 Ωzx)

2xy

(x2 + y2)2
−

− µ̄0

π
(−bx + Ωyz − Ωzy)

x2 − y2

(x2 + y2)2

Xz = 0 .

(10.33)

The volume force along the z-axis is zero, but there is a net volume
force along the x-axis and the y-axis.

The Volterra displacements (10.13) can represent dislocations by set-
ting the disclination Frank vector (Ωx,Ωy,Ωz) to zero. Stationary screw
dislocations are represented by setting bx = by = 0. We then obtain the
results of section §9.2. Stationary edge dislocations are represented by
setting bz = 0. The results are similar to those of section §9.3, except
that only bx is not equal to 0 in section §9.3, while both bx and by are
not equal to 0 in Volterra’s displacements (10.13). Volterra dislocations
were considered in greater details in §9.4.

Similarly, (10.13) can represent disclinations by setting the disloca-
tion Burgers vector (bx, by, bz) to zero. Stationary wedge disclinations
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are represented by setting Ωx = Ωy = 0 with only Ωz not equal to zero.
We then obtain the results for wedge disclinations of section §10.3. Sta-
tionary twist disclinations are represented by setting Ωz = 0. We then
obtain the results for twist disclinations of section §10.4.

§10.3 Volterra wedge disclinations

Stationary wedge disclinations are represented by setting the disloca-
tion Burgers vector (bx, by, bz) to zero and the disclination Frank vector
components Ωx = Ωy = 0 with only Ωz not equal to zero in (10.13) to
obtain

ux =
Ωz
2π

[
y arctan

(y
x

)
− ᾱ0

2
x ln(x2 + y2)

]
uy = −Ωz

2π

[
x arctan

(y
x

)
+
ᾱ0

2
y ln(x2 + y2)

]
uz = 0

(10.34)

which can also be written as

ux =
Ωz
2π

[y θ − ᾱ0 x ln r]

uy = −Ωz
2π

[x θ + ᾱ0 y ln r]

uz = 0

(10.35)

where again

r2 = x2 + y2

θ = arctan
(y
x

) (10.36)

in cylindrical polar coordinates (r, θ, z).

The rotation tensor and rotation vector are calculated as in section
§9.2 from the displacements (10.34). The rotation tensor is then given
by

ωxy =
Ωz
2π

arctan
(y
x

)
=

Ωz
2π

θ

ωyz = 0

ωxz = 0

(10.37)
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and the rotation vector by

ωx = 0

ωy = 0

ωz =
Ωz
2π

arctan
(y
x

)
=

Ωz
2π

θ .

(10.38)

The rotation vector has only one component along the z-axis.
The bend-twist tensor is given by

κµν = ωµ;ν . (10.39)

The components of the bend-twist tensor in cartesian coordinates are
then given by

κxx = 0 , κxy = 0 , κxz = 0 ,

κyx = 0 , κyy = 0 , κyz = 0 ,

κzx = −Ωz
2π

y

r2
, κzy =

Ωz
2π

x

r2
, κzz = 0 .

(10.40)

The diagonal elements are zero, indicating no twist, while the zx and
zy off-diagonal elements are non-zero, indicating bending along that
direction.

The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ):

εxx = −Ωz
2π

[
y2

x2 + y2
+ ᾱ0

x2

x2 + y2
+
ᾱ0

2
ln(x2 + y2)

]
εyy = −Ωz

2π

[
x2

x2 + y2
+ ᾱ0

y2

x2 + y2
+
ᾱ0

2
ln(x2 + y2)

]
εzz = 0

εxy =
Ωz
2π

(1− ᾱ0)
xy

x2 + y2

εyz = 0

εxz = 0

(10.41)
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which can be written as

εxx = −Ωz
2π

[
y2

r2
+ ᾱ0

x2

r2
+ ᾱ0 ln r

]
εyy = −Ωz

2π

[
x2

r2
+ ᾱ0

y2

r2
+ ᾱ0 ln r

]
εzz = 0

εxy =
Ωz
2π

(1− ᾱ0)
xy

r2

εyz = 0

εxz = 0 .

(10.42)

The volume dilatation ε for the wedge disclination is then given by

ε = εαα = εxx + εyy + εzz . (10.43)

Substituting for εxx, εyy and εzz from (10.41) into (10.43),

ε = −Ωz
2π

[
1 + ᾱ0 + ᾱ0 ln

(
x2 + y2

)]
ε = −Ωz

2π
[1 + ᾱ0 + 2ᾱ0 ln r]

(10.44)

and using (10.12), we obtain

ε = −Ωz
2π

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]
. (10.45)

The components of the stress tensor in cartesian coordinates are
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obtained from (10.24):

σxx = − µ̄0Ωz
π

ᾱ0x
2 + y2

x2 + y2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + (µ̄0 + λ̄0)ᾱ0 ln

(
x2 + y2

)]
σyy = − µ̄0Ωz

π

x2 + ᾱ0y
2

x2 + y2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + (µ̄0 + λ̄0)ᾱ0 ln

(
x2 + y2

)]
σzz = − λ̄0Ωz

2π

[
1 + ᾱ0 + ᾱ0 ln

(
x2 + y2

)]
σxy =

µ̄0Ωz
π

(1− ᾱ0)
xy

x2 + y2

σyz = 0

σxz = 0

(10.46)

which can also be written as

σxx = − µ̄0Ωz
π

ᾱ0x
2 + y2

r2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + 2(µ̄0 + λ̄0)ᾱ0 ln r

]
σyy = − µ̄0Ωz

π

x2 + ᾱ0y
2

r2
−

− Ωz
2π

[
λ̄0(1 + ᾱ0) + 2(µ̄0 + λ̄0)ᾱ0 ln r

]
σzz = − λ̄0Ωz

2π
[1 + ᾱ0 + 2ᾱ0 ln r]

σxy =
µ̄0Ωz
π

(1− ᾱ0)
xy

r2

σyz = 0

σxz = 0 .

(10.47)
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The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.45), using the positive value of ε as per
section §9.3.4, the mass energy density of the wedge disclination is gi-
ven by

ρc2 =
2κ̄0Ωz
π

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]
. (10.48)

We calculate the strain energy density of the wedge disclination as
follows. Using (10.45) in (9.50), the longitudinal dilatation strain energy
density is then given by

E‖ =
κ̄0Ω2

z

8π2

[
1 +

µ̄0

2µ̄0 + λ̄0

[
1 + ln

(
x2 + y2

)]]2

. (10.49)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.50)

This expression is expanded using the non-zero elements of the strain
tensor (10.42) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 − 1
4 ε

2
)
. (10.51)

Substituting from (10.42) and (10.45) in the above, we obtain

E⊥ =
µ̄0Ω2

z

4π2

[
3

4

(
1− 2

3
ᾱ0 + ᾱ2

0

)
+ ᾱ0 [1 + ᾱ0(1 + ln r) ln r]

]
(10.52)

where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
. (10.53)

The volume force for wedge disclinations can be calculated from

Xν = −Tµν ;µ (10.54)
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using the stress tensor (10.47). The volume force is then given by

Xx = − µ̄0 Ωz
π

x

x2 + y2

(
µ̄0 + λ̄0

2µ̄0 + λ̄0
− 2(1− ᾱ0)x2

x2 + y2

)
Xy =

µ̄0 Ωz
π

y

x2 + y2

(
µ̄0 + λ̄0

2µ̄0 + λ̄0
− 2(1− ᾱ0)y2

x2 + y2

)
Xz = 0 .

(10.55)

The volume force along the z-axis is zero, but there is a net volume
force along the x-axis and the y-axis.

§10.4 Volterra twist disclinations

Stationary twist disclinations are represented by setting the dislocation
Burgers vector (bx, by, bz) to zero and the disclination Frank vector com-
ponent Ωz = 0 in (10.13). Both Ωx and Ωy are not equal to zero. Note
that we do not differentiate between twist and splay disclinations in this
section as twist disclination expressions include both twist disclinations
proper and splay disclinations. Note that when we need to differenti-
ate between splay and twist disclinations, we will use the terminology
“twist disclination proper” to refer to the twist disclination. With these
substitutions, we obtain

ux = −Ωy
2π

z arctan
(y
x

)
− Ωx

4π
z ln(x2 + y2)

uy =
Ωx
2π

z arctan
(y
x

)
− Ωy

4π
z ln(x2 + y2)

uz =

(
−Ωx

2π
y +

Ωy
2π

x

)
arctan

(y
x

)
+

+

(
Ωx
4π

x+
Ωy
4π

y

)
ln(x2 + y2)

(10.56)

which can be written as

ux = −Ωy
2π

z θ − Ωx
2π

z ln r

uy =
Ωx
2π

z θ − Ωy
2π

z ln r

uz =

(
−Ωx

2π
y +

Ωy
2π

x

)
θ +

(
Ωx
2π

x+
Ωy
2π

y

)
ln r

(10.57)
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in cylindrical polar coordinates (r, θ, z).

The rotation tensor and rotation vector are calculated as in section
§9.2 from the displacements (10.56). The rotation tensor is then given
by

ωxy = 0

ωyz =
Ωx
2π

arctan
(y
x

)
− Ωy

4π

[
1 + ln

(
x2 + y2

)]
=

Ωx
2π

θ − Ωy
4π

(1 + 2 ln r)

ωxz = −Ωy
2π

arctan
(y
x

)
− Ωx

4π

[
1 + ln

(
x2 + y2

)]
= −Ωy

2π
θ − Ωx

4π
(1 + 2 ln r) .

(10.58)

and the rotation vector by

ωx =
Ωx
2π

arctan
(y
x

)
− Ωy

4π

[
1 + ln

(
x2 + y2

)]
=

Ωx
2π

θ − Ωy
4π

(1 + 2 ln r)

ωy =
Ωy
2π

arctan
(y
x

)
+

Ωx
4π

[
1 + ln

(
x2 + y2

)]
=

Ωy
2π

θ +
Ωx
4π

(1 + 2 ln r)

ωz = 0 .

(10.59)

The rotation vector has x and y components, but no z component, which
is associated with the wedge disclination.

The bend-twist tensor is given by

κµν = ωµ;ν . (10.60)

The components of the bend-twist tensor in cartesian coordinates are
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then given by

κxx = −Ωx
2π

y

r2
− Ωy

2π

x

r2
,

κxy =
Ωx
2π

x

r2
− Ωy

2π

y

r2
, κxz = 0 ,

κyx = −Ωy
2π

y

r2
+

Ωx
2π

x

r2
,

κyy =
Ωy
2π

x

r2
+

Ωx
2π

y

r2
, κyz = 0 ,

κzx = 0 , κzy = 0 , κzz = 0 .

(10.61)

The trace of the bend-twist tensor is zero as required:

Trace(κµν) = καα = 0 , (10.62)

The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ):

εxx =
Ωy
2π

z
y

x2 + y2
− Ωx

2π
z

x

x2 + y2

εyy =
Ωx
2π

z
x

x2 + y2
− Ωy

2π
z

y

x2 + y2

εzz = 0

εxy = −Ωy
π
z

x

x2 + y2
− Ωx

π
z

y

x2 + y2

εyz =

(
−Ωx

2π
y +

Ωy
2π

x

)
x

x2 + y2
+

+

(
Ωx
2π

x+
Ωy
2π

y

)
y

x2 + y2

εxz =

(
Ωx
2π

y − Ωy
2π

x

)
y

x2 + y2
+

+

(
Ωx
2π

x+
Ωy
2π

y

)
x

x2 + y2
.

(10.63)

The volume dilatation ε for the twist disclinations is then given by

ε = εαα = εxx + εyy + εzz . (10.64)
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Substituting for εxx, εyy and εzz from (10.63) into (10.64),

ε = 0 . (10.65)

Hence the Volterra twist disclination does not have a volume dilatation
like a wedge disclination, but is rather a pure distortion. As we will see
later, this means that there is no rest-mass energy density associated
with the Volterra twist disclination. We will revisit this result for the
deWit twist disclination.

The components of the stress tensor in cartesian coordinates are
obtained from (10.24) as follows:

σxx =
µ̄0Ωy
π

z
y

x2 + y2
− µ̄0Ωx

π
z

x

x2 + y2

σyy =
µ̄0Ωx
π

z
x

x2 + y2
− µ̄0Ωy

π
z

y

x2 + y2

σzz = 0

σxy = −2µ̄0Ωy
π

z
x

x2 + y2
− 2µ̄0Ωx

π
z

y

x2 + y2

σyz =

(
− µ̄0Ωx

π
y +

µ̄0Ωy
π

x

)
x

x2 + y2
+

+

(
µ̄0Ωx
π

x+
µ̄0Ωy
π

y

)
y

x2 + y2
=
µ̄0Ωy
π

σxz =

(
µ̄0Ωx
π

y − µ̄0Ωy
π

x

)
y

x2 + y2
+

+

(
µ̄0Ωx
π

x+
µ̄0Ωy
π

y

)
x

x2 + y2
=
µ̄0Ωx
π

.

(10.66)

The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.65), the mass energy density of the twist
disclinations is 0 as discussed previously:

ρc2 = 0 . (10.67)

Similarly, when we calculate the strain energy density of the twist discli-
nations using (10.65) in (9.50), the longitudinal dilatation strain energy
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density is also 0 (i.e. it is massless):

E‖ = 0 . (10.68)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.69)

This expression is expanded using the non-zero elements of the strain
tensor (10.63) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εxz

2 − 1
4 ε

2
)
. (10.70)

Substituting from (10.63) and (10.65) in the above, we obtain

E⊥ =
µ̄0

2π2

(
Ω2
x + Ω2

y

)(
1 +

z2

r2

)
+

+
µ̄0

2π2
(Ωxy + Ωyx)

2 z2

r4

(10.71)

which can be also expressed as

E⊥ =
µ̄0

2π2

(
Ω2
x + Ω2

y

)
+

+
µ̄0

2π2

z2

r2

[
Ω2
x + Ω2

y +
(Ωxy + Ωyx)

2

r2

]
.

(10.72)

The volume force for twist disclinations can be calculated from

Xν = −σµν ;µ (10.73)

using the stress tensor (10.66). The volume force is then given by

Xx =
µ̄0Ωx
π

z
x2 − y2

(x2 + y2)2
− µ̄0Ωy

π
z

2xy

(x2 + y2)2

Xy = − µ̄0Ωx
π

z
2xy

(x2 + y2)2
− µ̄0Ωy

π
z

x2 − y2

(x2 + y2)2

Xz = 0 .

(10.74)

The volume force along the z-axis is zero, but there is a net volume
force along the x-axis and the y-axis.



182 Chapter 10 Disclinations in the Spacetime Continuum

§10.5 deWit discrete disclination lines

As we have seen in the previous sections on dislocations, deWit [80]
points out that the Volterra dislocation and disclination displacements
(10.11) are not in equilibrium, and that a volume force Xν is present in
the continuum. He proposed corrected disclination line displacements
that are in equilibrium, for which no volume force is present (Xν = 0).
These are given by [80]

ux = −Ωx
2π

z

(
µ̄0

2µ̄0 + λ̄0
ln r +

µ̄0 + λ̄0

2µ̄0 + λ̄0

y2

r2

)
+

+
Ωy
2π

z

(
θ +

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy

r2

)
−

− Ωz
2π

(
y θ − µ̄0

2µ̄0 + λ̄0
x (ln r − 1)

)
uy = −Ωx

2π
z

(
θ − µ̄0 + λ̄0

2µ̄0 + λ̄0

xy

r2

)
−

− Ωy
2π

z

(
µ̄0

2µ̄0 + λ̄0
ln r +

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2

r2

)
+

+
Ωz
2π

(
x θ +

µ̄0

2µ̄0 + λ̄0
y (ln r − 1)

)
uz =

Ωx
2π

(
y θ − µ̄0

2µ̄0 + λ̄0
x (ln r − 1)

)
−

− Ωy
2π

(
x θ +

µ̄0

2µ̄0 + λ̄0
y (ln r − 1)

)

(10.75)

where r2 = x2 +y2 and θ = arctan(y/x) in cylindrical polar coordinates
(r, θ, z). These displacements do not include the dislocation Burgers
vector bµ as it has been set to zero. Those were covered in section §9.4.
Only disclination displacements are included in the above, modified by
DeWit to obtain a zero volume force. We note in particular added terms
proportional to x2/r2, y2/r2 and xy/r2 which are present in (10.33). As
pointed out in [80], the asymptotic dependence of the displacements is
r ln r.

The cartesian (x, y, z) and cylindrical polar (r, θ, z) coordinates used
by deWit [80] in his analysis for disclinations are as used for dislocations
per Fig. 9.5. The cut in the x − z plane is still along the negative
x-axis and represents the discontinuity resulting from the rotational
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displacememnt as given by (10.4) and the following equation. As done
for dislocations, deWit uses subscripts (Ω1,Ω2,Ω3) for the Frank vector
axes of the three types of disclinations. These are equivalent to our use
of (Ωx,Ωy,Ωz) which correspond to the three axes (Ωr,Ωn,Ωz) used in
Fig. 10.1 for the splay, twist and wedge disclinations respectively. Ωx
is thus the axis of rotation about which the rotation is applied for the
splay disclination, Ωy is the axis of rotation about which the rotation is
applied for the twist disclination proper, and Ωz is the axis of rotation
about which the rotation is applied for the wedge disclination.

We simplify (10.75) with the use of the parameters ᾱ0 and β̄0:

ux = −Ω
(s)
x

2π
z

[
ᾱ0 ln r + β̄0

y2

r2

]
+

+
Ω

(t)
y

2π
z
[
θ + β̄0

xy

r2

]
−

− Ω
(w)
z

2π
[y θ − ᾱ0 x (ln r − 1)]

uy = −Ω
(s)
x

2π
z
[
θ − β̄0

xy

r2

]
− Ω

(t)
y

2π
z

[
ᾱ0 ln r + β̄0

x2

r2

]
+

+
Ω

(w)
z

2π
[x θ + ᾱ0 y (ln r − 1)]

uz =
Ω

(s)
x

2π
[y θ − ᾱ0 x (ln r − 1)]− Ω

(t)
y

2π
[x θ + ᾱ0 y (ln r − 1)]

(10.76)

where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
(10.77)

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
(10.78)

and where we have specifically appended superscripts to the Frank vec-

tors for clarity: Ω
(s)
x for the splay disclination, Ω

(t)
y for the twist discli-

nation proper, and Ω
(w)
z for the wedge disclination. As for dislocations,

in general, we will not append these superscripts except where required
for clarity. We can obtain specific expressions for wedge disclinations by
putting Ωx = 0 and Ωy = 0, for splay disclinations by putting Ωy = 0
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and Ωz = 0, and for twist disclinations proper by putting Ωx = 0 and
Ωz = 0, and similarly for the other expressions below.

The displacements vector above is the total effective displacement
including both elastic and defect components. The total effective strain
tensor is separated into elastic and defect components as per (8.8), viz.

∗εµν = εµν + /εµν .

The elastic strain components are calculated from εij = 1
2 (ui,j + uj,i):

εxx = −Ωx
2π

z

(
ᾱ0

x

r2
− 2β̄0

xy2

r4

)
−

− Ωy
2π

z

(
ᾱ0

y

r2
+ 2β̄0

x2y

r4

)
+

Ωz
2π

(
ᾱ0 ln r + β̄0

y2

r2

)
εyy = −Ωx

2π
z

(
ᾱ0

x

r2
+ 2β̄0

xy2

r4

)
−

− Ωy
2π

z

(
ᾱ0

y

r2
− 2β̄0

x2y

r4

)
+

Ωz
2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzz = 0

εxy =
Ωx
2π

z β̄0

(
y

r2
− 2

x2y

r4

)
+

+
Ωy
2π

z β̄0

(
x

r2
− 2

xy2

r4

)
− Ωz

2π
β̄0
xy

r2

εyz =
Ωx
2π

β̄0
xy

r2
− Ωy

2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzx = −Ωx

2π

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

β̄0
xy

r2
.

(10.79)

while the non-zero defect strain components are given by [80]

/εxy = 1
2 Ωy zH(−x)δ(y)

/εyy = (Ωzx− Ωxz)H(−x)δ(y)

/εyz = − 1
2 ΩyxH(−x)δ(y)

(10.80)

where H(x) is the Heavyside function defined as 0 for x < 0 and 1
for x > 0, used to describe the discontinuity defined by [80] along the
−x− z half-plane by restricting the range θ = (−π,+π) as per Fig. 9.5.
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Again, the volume dilatation ε is given by

ε = εαα = εxx + εyy + εzz . (10.81)

Substituting for εxx, εyy and εzz from (10.79) into (10.81), we obtain

ε = − 1

π

µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
+

+
Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)
.

(10.82)

The components of the stress tensor in cartesian coordinates are
given by

σxx = − µ̄0β̄0

π

[
Ωx z

(
x

r2
− 2

xy2

r4

)
+ Ωy z

(
y

r2
+ 2

x2y

r4

)
−

−Ωz

(
ln r +

y2

r2
+

λ̄0

2µ̄0

)]
σyy = − µ̄0β̄0

π

[
Ωx z

(
x

r2
+ 2

xy2

r4

)
+ Ωy z

(
y

r2
− 2

x2y

r4

)
−

−Ωz

(
ln r +

x2

r2
+

λ̄0

2µ̄0

)]
σzz = − λ̄0

π

[
ᾱ0 (Ωxx+ Ωyy)

z

r2
− Ωz

(
ᾱ0 ln r +

1

2
β̄0

)]
σxy =

µ̄0β̄0

π

[
Ωx z

(
y

r2
− 2

x2y

r4

)
+

+Ωy z

(
x

r2
− 2

xy2

r4

)
− Ωz

xy

r2

]
σyz =

µ̄0Ωx
π

β̄0
xy

r2
− µ̄0Ωy

π

(
ᾱ0 ln r + β̄0

x2

r2

)
σzx = − µ̄0Ωx

π

(
ᾱ0 ln r + β̄0

y2

r2

)
+
µ̄0Ωy
π

β̄0
xy

r2
.

(10.83)

Calculating the volume force from

Xν = −σµν ;µ ,

we find that this stress tensor results in no volume force in the continuum
(Xν = 0) as required.
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The components of the rotation vector in cartesian coordinates are
given by

ωx =
Ωx
2π

θ

ωy =
Ωy
2π

θ

ωz =
Ωz
2π

θ +
Ωx
2π

yz

r2
− Ωy

2π

xz

r2
.

(10.84)

while the components of the defect rotation vector (see (8.11)) in carte-
sian coordinates are given by [80]

/ωx = −1

2
ΩyxH(−x)δ(y)

/ωy = 0

/ωz = −1

2
ΩyzH(−x)δ(y) .

(10.85)

where as before, H(x) is the Heavyside function defined as 0 for x < 0
and 1 for x > 0, used to describe the discontinuity defined by [80] along
the −x − z half-plane by restricting the range θ = (−π,+π) as per
Fig. 9.5.

The bend-twist tensor can be separated into elastic and defect com-
ponents according to

∗κµν = ∗ωµ;ν = κµν + /κµν (10.86)

where ∗κµν is the total effective bend-twist tensor, κµν is the elastic
bend-twist tensor and /κµν is the defect bend-twist tensor.

The components of the elastic bend-twist tensor in cartesian coor-
dinates are given by

κxx = −Ωx
2π

y

r2

κyx =
Ωx
2π

x

r2

κzx = 0

(10.87)
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κxy = −Ωy
2π

y

r2

κyy =
Ωy
2π

x

r2

κzy = 0

κxz = −Ωx
π

xyz

r4
− Ωy

2π
z

[
1

r2
− 2

x2

r4

]
− Ωz

2π

y

r2

κyz = −Ωx
2π

z

[
1

r2
− 2

y2

r4

]
+

Ωy
π

xyz

r4
+

Ωz
2π

x

r2

κzz =
Ωx
2π

y

r2
− Ωy

2π

x

r2
.

while the components of the defect bend-twist tensor in cartesian co-
ordinates are given by [80]

/κxx = − 1
2 ΩyH(−x)δ(y)

/κyx = − 1
2 ΩyxH(−x)δ′(y) + ΩxH(−x)δ(y)

/κyy = ΩyH(−x)δ(y)

/κxz = 1
2 Ωy zδ(x)δ(y)

/κyz = − 1
2 ΩyzH(−x)δ′(y) + ΩzH(−x)δ(y)

/κzz = − 1
2 ΩyH(−x)δ(y)

/κzx = /κxy = /κzy = 0

(10.88)

where again as before, H(x) is the Heavyside function defined as 0 for
x < 0 and 1 for x > 0, used to describe the discontinuity defined by [80]
along the −x−z half-plane by restricting the range θ = (−π,+π) as per
Fig. 9.5. We find that as expected, the trace of the elastic bend-twist
tensor is zero

Trace(κµν) = καα = 0 , (10.89)

as is the trace of the defect bend-twist tensor

Trace(/κµν) = /καα = 0 , (10.90)

indicating that there is no net twist present in the continuum.
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The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.82), using the positive value of ε as per
section §9.3.4, the mass energy density of the disclination line is given
by

ρc2 =
4κ̄0

π
ᾱ0 (Ωxx+ Ωyy)

z

r2
− 4κ̄0Ωz

π

(
ᾱ0 ln r +

1

2
β̄0

)
. (10.91)

We will encounter other combinations of positive and negative rest-mass
energy density terms in other cases.

We calculate the strain energy density of the disclination line as
follows. Using (10.82) in (9.50), the longitudinal dilatation strain energy
density is then given by

E‖ =
κ̄0

2π2

[
−ᾱ0 (Ωxx+ Ωyy)

z

r2
+ Ωz

(
ᾱ0 ln r +

1

2
β̄0

)]2

. (10.92)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.93)

This expression is expanded using the non-zero elements of the strain
tensor (10.79) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 − 1
4 ε

2
)
. (10.94)

Substituting from (10.79) and (10.82) in the above, we note that E⊥ can
be separated into the following terms:

E⊥ = EW⊥ + ET⊥ + ΩxΩzterms + ΩyΩzterms (10.95)

where EW⊥ is the wedge disclination distortion strain energy density
given by (10.113) and ET⊥ is the twist disclination distortion strain en-
ergy density given by (10.132). The ΩxΩz and ΩyΩz cross-terms repre-
sent the energy interaction terms for the wedge and twist disclinations:

EW−T⊥ int = ΩxΩzterms + ΩyΩzterms . (10.96)
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Computing the ΩxΩz terms and the ΩyΩz terms, we obtain the
wedge-twist disclination interaction strain energy density

EW−T⊥ int = − µ̄0ΩxΩz
2π2

xz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0 + β̄2
0

y2

r2

(
1− 2y2

r2

)]
− µ̄0ΩyΩz

2π2

yz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0 + β̄2
0

x2

r2

(
1− 2x2

r2

)]
.

(10.97)

Hence

E⊥ = EW⊥ + ET⊥ + EW−T⊥ int . (10.98)

It is important to note that the interaction does not involve longitu-
dinal terms, only distortion terms. In section §17.2, we consider the
interaction terms of dislocations and disclinations arising from the gen-
eral displacements derived from the general combined deWit dislocation
displacements (9.130) and disclination displacements (10.76).

§10.6 deWit wedge disclinations

The deWit wedge disclinations are represented by setting the disclina-
tion Frank vector components Ωx = Ωy = 0 with only Ωz not equal to
zero in (10.75) to obtain

ux = − Ωz
2π

(y θ − ᾱ0 x (ln r − 1))

uy =
Ωz
2π

(x θ + ᾱ0 y (ln r − 1))

uz = 0

(10.99)

where r2 = x2 +y2 and θ = arctan(y/x) in cylindrical polar coordinates
(r, θ, z).

The elastic strain components are calculated from εij = 1
2 (ui,j+uj,i):

εxx =
Ωz
2π

(
ᾱ0 ln r + β̄0

y2

r2

)
εyy =

Ωz
2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzz = 0

(10.100)
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εxy = −Ωz
2π
β̄0
xy

r2

εyz = 0

εzx = 0 .

Again, the volume dilatation ε is given by

ε = εαα = εxx + εyy + εzz . (10.101)

Substituting for εxx, εyy and εzz from (10.100) into (10.101), we obtain

ε =
Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)
. (10.102)

The components of the stress tensor in cartesian coordinates are
given by

σxx =
µ̄0β̄0Ωz

π

(
ln r +

y2

r2
+

λ̄0

2µ̄0

)
σyy =

µ̄0β̄0Ωz
π

(
ln r +

x2

r2
+

λ̄0

2µ̄0

)
σzz =

λ̄0Ωz
π

(
ᾱ0 ln r +

1

2
β̄0

)
σxy = − µ̄0β̄0Ωz

π

xy

r2

σyz = 0

σzx = 0 .

(10.103)

Calculating the volume force from

Xν = −σµν ;µ ,

we find that this stress tensor results in no volume force in the continuum
(Xν = 0) as required.

The components of the rotation vector in cartesian coordinates are
given by

ωx = 0

ωy = 0

ωz =
Ωz
2π

.

(10.104)
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The components of the elastic bend-twist tensor in cartesian coor-
dinates are given by

κxx = 0 , κxy = 0 , κxz = −Ωz
2π

y

r2
,

κyx = 0 , κyy = 0 , κyz =
Ωz
2π

x

r2
,

κzx = 0 , κzy = 0 , κzz = 0 .

(10.105)

We find that as expected, the trace of the elastic bend-twist tensor is
zero

Trace(κµν) = καα = 0 , (10.106)

indicating that there is no net twist present in the continuum.
The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.102), using the positive value of ε as per
section §9.3.4, the mass energy density of the wedge disclination is gi-
ven by

ρc2 =
4κ̄0Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)
. (10.107)

We calculate the strain energy density of the wedge disclination as
follows. Using (10.102) in (9.50), the longitudinal dilatation strain en-
ergy density is then given by

E‖ =
κ̄0Ω2

z

2π2

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)2

(10.108)

or

E‖ =
κ̄0Ω2

z

2π2

(
ᾱ0 ln r +

1

2
β̄0

)2

. (10.109)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ
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where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.110)

This expression is expanded using the non-zero elements of the strain
tensor (10.100) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 − 1
4 ε

2
)
. (10.111)

Substituting from (10.100) and (10.102) in the above and simplifying,
we obtain

E⊥ =
µ̄0Ω2

z

4π2

(
ᾱ2

0 ln2 r + 3ᾱ0β̄0 ln r +
3

4
β̄2

0

)
(10.112)

which can be further simplified to

E⊥ =
µ̄0Ω2

z

4π2

[(
ᾱ0 ln r +

3

2
β̄0

)2

−
(

3

2
β̄0

)2
]
. (10.113)

§10.6.1 deWit wedge disclination current and charge density

The current density four-vector is calculated from (4.10), viz.

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν =

ϕ0

2µ0ᾱ0
ε;ν

and the charge density from (4.14), viz.

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν =

ϕ0ε0c

4ᾱ0

√
ε;νε;ν

where ϕ0 is the spacetime continuum electromagnetic shearing potential
constant.

Using the expression for ε from (10.102), the non-zero components
of the current density are given by

jx =
ϕ0Ωz
2πµ0

x

r2
=
ϕ0Ωz
2πµ0

cos θ

r

jy = −ϕ0Ωz
2πµ0

y

r2
=
ϕ0Ωz
2πµ0

sin θ

r

(10.114)

where r2 = x2 + y2. The charge density is given by

% = ± 1

4π
ϕ0ε0c

Ωz
r2

. (10.115)
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The sign depends on the problem under consideration.
The charge is given by integrating % over the volume V :

Q =

∫
V

% dV =

∫
V

% rdr dθ dz (10.116)

in cylindrical polar coordinates. This becomes

Q = ± 1

4π
ϕ0ε0cΩz

∫ R

b0

1

r
dr

∫ 2π

0

dθ

∫ `

0

dz (10.117)

where b0 is the radius of the core of the disclination and R is the “radius”
of the cylindrical deformation. Evaluating the integrals, we get

Q = ±1

2
ϕ0 ε0 c `Ωz ln

(
R

b0

)
(10.118)

where Ωz is a rotation along the z-axis, perpendicular to the x-y plane.
If a vector perpendicular to the x-y plane can be associated with Ωz,
then its units will be [m] along the z-axis, and the units of Q will be
[C] as expected. If Ωz is purely a rotation, then the units of Q will be
[C ·m−1].

§10.7 deWit twist disclinations

The deWit twist disclinations are represented by setting the disclination
Frank vector component Ωz = 0 in (10.75). Both Ωx and Ωy are not
equal to zero. Note that again we do not differentiate between twist
and splay disclinations in this section as twist disclination expressions
include both twist disclinations proper and splay disclinations. Note
that when we need to differentiate between splay and twist disclinations,
we will use the terminology “twist disclination proper” to refer to the
twist disclination. With these substitutions, we obtain

ux = −Ωx
2π

z

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

z
(
θ + β̄0

xy

r2

)
uy = −Ωx

2π
z
(
θ − β̄0

xy

r2

)
− Ωy

2π
z

(
ᾱ0 ln r + β̄0

x2

r2

)
uz =

Ωx
2π

(y θ − ᾱ0 x (ln r − 1))− Ωy
2π

(x θ + ᾱ0 y (ln r − 1))

(10.119)

where r2 = x2 +y2 and θ = arctan(y/x) in cylindrical polar coordinates
(r, θ, z).
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The elastic strain components are calculated from εij = 1
2 (ui,j+uj,i):

εxx = −Ωx
2π

z

(
ᾱ0

x

r2
− 2β̄0

xy2

r4

)
−

− Ωy
2π

z

(
ᾱ0

y

r2
+ 2β̄0

x2y

r4

)
εyy = −Ωx

2π
z

(
ᾱ0

x

r2
+ 2β̄0

xy2

r4

)
−

− Ωy
2π

z

(
ᾱ0

y

r2
− 2β̄0

x2y

r4

)
εzz = 0

εxy =
Ωx
2π

z β̄0

(
y

r2
− 2

x2y

r4

)
+

+
Ωy
2π

z β̄0

(
x

r2
− 2

xy2

r4

)
εyz =

Ωx
2π

β̄0
xy

r2
− Ωy

2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzx = −Ωx

2π

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

β̄0
xy

r2
.

(10.120)

Again, the volume dilatation ε is given by

ε = εαα = εxx + εyy + εzz . (10.121)

Substituting for εxx, εyy and εzz from (10.120) into (10.121), we obtain

ε = − 1

π

µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
(10.122)

or

ε = − ᾱ0

π
(Ωxx+ Ωyy)

z

r2
. (10.123)

The components of the stress tensor in cartesian coordinates are
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given by

σxx = − µ̄0β̄0

π

[
Ωx z

(
x

r2
− 2

xy2

r4

)
+ Ωy z

(
y

r2
+ 2

x2y

r4

)]
σyy = − µ̄0β̄0

π

[
Ωx z

(
x

r2
+ 2

xy2

r4

)
+ Ωy z

(
y

r2
− 2

x2y

r4

)]
σzz = − λ̄0

π

[
ᾱ0 (Ωxx+ Ωyy)

z

r2

]
σxy =

µ̄0β̄0

π

[
Ωx z

(
y

r2
− 2

x2y

r4

)
+ Ωy z

(
x

r2
− 2

xy2

r4

)]
σyz =

µ̄0Ωx
π

β̄0
xy

r2
− µ̄0Ωy

π

(
ᾱ0 ln r + β̄0

x2

r2

)
σzx = − µ̄0Ωx

π

(
ᾱ0 ln r + β̄0

y2

r2

)
+
µ̄0Ωy
π

β̄0
xy

r2
.

(10.124)

Calculating the volume force from

Xν = −σµν ;µ ,

we find that this stress tensor results in no volume force in the continuum
(Xν = 0) as required.

The components of the rotation vector in cartesian coordinates are
given by

ωx =
Ωx
2π

θ

ωy =
Ωy
2π

θ

ωz =
Ωx
2π

yz

r2
− Ωy

2π

xz

r2
.

(10.125)

The components of the elastic bend-twist tensor in cartesian coor-
dinates are given by

κxx = −Ωx
2π

y

r2

κyx =
Ωx
2π

x

r2

κzx = 0

(10.126)
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κxy = −Ωy
2π

y

r2

κyy =
Ωy
2π

x

r2

κzy = 0

κxz = −Ωx
π

xyz

r4
− Ωy

2π
z

(
1

r2
− 2

x2

r4

)
κyz = −Ωx

2π
z

(
1

r2
− 2

y2

r4

)
+

Ωy
π

xyz

r4

κzz =
Ωx
2π

y

r2
− Ωy

2π

x

r2
.

We find that as expected, the trace of the elastic bend-twist tensor is
zero

Trace(κµν) = καα = 0 , (10.127)

indicating that there is no net twist present in the continuum.
The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .

Substituting for ε from (10.122), using the positive value of ε as per
section §9.3.4, the mass energy density of the twist disclination is given
by

ρc2 =
4κ̄0

π

µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
. (10.128)

We calculate the strain energy density of the twist disclination as fol-
lows. Using (10.122) in (9.50), the longitudinal dilatation strain energy
density is then given by

E‖ =
κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2

)2

. (10.129)

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ
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where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (10.130)

This expression is expanded using the non-zero elements of the strain
tensor (10.120) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εzx

2 − 1
4 ε

2
)
. (10.131)

Substituting from (10.120) and (10.122) in the above, we obtain

E⊥ =
µ̄0Ω2

x

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

y2

r2
ln r+

+
[(
ᾱ2

0 − 1
2 β̄

2
0

)
x2 + β̄2

0y
2
] z2

r4

]
+

+
µ̄0Ω2

y

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

x2

r2
ln r+

+
[
β̄2

0x
2 +

(
ᾱ2

0 − 1
2 β̄

2
0

)
y2
] z2

r4

]
−

− µ̄0ΩxΩy
π2

[
β̄0

(
ᾱ0 ln r + 1

2 β̄0

)
+
(
β̄2

0 − 1
2 ᾱ

2
0

) z2

r2

]
.

(10.132)

In the case where Ωx = Ωy = Ω, this equation simplifies to

E⊥ =
µ̄0Ω2

2π2

[
2ᾱ2

0 ln2 r − β̄2
0 +

(
3ᾱ2

0 − β̄2
0

) z2

r2

]
. (10.133)

§10.7.1 deWit twist dislocation current and charge density

The current density four-vector is calculated from (4.10), viz.

jν =
ϕ0

µ0

2µ̄0 + λ̄0

2µ̄0
ε;ν =

ϕ0

2µ0ᾱ0
ε;ν

and the charge density from (4.14), viz.

% =
1

2
ϕ0ε0c

2µ̄0 + λ̄0

2µ̄0

√
ε;νε;ν =

ϕ0ε0c

4ᾱ0

√
ε;νε;ν

where ϕ0 is the spacetime continuum electromagnetic shearing potential
constant.
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Using the expression for ε from (10.123), the non-zero components
of the current density are given by

jx = − ϕ0

2πµ0

Ωxzr
2 − 2xz (Ωxx+ Ωyy)

r4

jy = − ϕ0

2πµ0

Ωyzr
2 − 2yz (Ωxx+ Ωyy)

r4

jz = − ϕ0

2πµ0

Ωxx+ Ωyy

r2

(10.134)

where r2 = x2 + y2. The charge density is given by

% = ± 1

4π
ϕ0ε0c

1

r2

√(
Ω2
x + Ω2

y

)
z2 + (Ωxx+ Ωyy)

2
. (10.135)

The sign depends on the problem under consideration.
It is interesting to note that the charge density for the previous dis-

locations and disclinations considered (edge dislocation (9.105), deWit
dislocation line (9.160), wedge disclination (10.115)) all have the same
functional dependence:

% = ± 1

4π
ϕ0ε0c

f(bν ,Ων)

r2
, (10.136)

while the charge density for the twist disclination (10.135) also includes
coordinates xν in f(bν ,Ων , xν).



Chapter 11

Field Theory of Defects

§11.1 Analysis of distributions of defect densities

In this chapter, we deal with distributions of defect densities, namely
dislocation densities and disclination densities. We first consider the
treatment of defect densities based on the tensor methods of defects
analysis [79,80,199].

We then provide an overview of the gauge theory and Cartan dif-
ferential geometry treatment introduced in the 1980s, also referred to
as the field theory of defects. The treatment is based on Kleinert [199]
who is a key reference on this topic (as applied to condensed matter).
This theory is popular for the investigation of defects in condensed mat-
ter physics and in string theory due to the mathematical elegance and
popularity of gauge theories and Cartan differential geometry.

However, it should be noted that, as Kröner [206] (quoted in [201])
has pointed out, “[a]lthough the field theory of defects has found many
applications, the early hope that it could become the basis of a general
theory of plasticity has not been fulfilled”.

§11.2 Dislocation and disclination densities

Dislocation and disclination densities are functions of position and are
denoted as αµν(xξ) and θµν(xξ) respectively. More specifically, they are
defined by [79,80,199]

αµν(xξ) = εµστuν ;στ (xξ)

θµν(xξ) = εµστων ;στ (xξ)
(11.1)

respectively, where uν is the displacement vector and ων is the rotation
vector. For a defect line along L, (11.1) becomes

αµν(xξ) = δµ(L) (bν − Ωντxτ )

θµν(xξ) = δµ(L) Ων
(11.2)

respectively, where bν is the Burgers vector and Ων is the Frank vector
defined as per (10.3), and the defect line L has a core discontinuity in
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the displacement and rotation fields, represented by the delta function
δ(L) (see also (10.4) and subsequent equation). If the disclination axis
is passing through x0

τ , then the top equation (11.2) is given by

αµν(xξ) = δµ(L)
(
bν − εστνΩσ(xτ − x0

τ )
)
. (11.3)

Lazar [215] has proposed an approach to avoid the core discontinuity
for a straight twist disclination in the field theory of elastoplasticity.

For dislocation density tensor αµν , the diagonal elements correspond
to screw components, while off-diagonal components correspond to edge
components. For disclination density tensor θµν , the diagonal elements
correspond to wedge components, while off-diagonal components corre-
spond to twist components [78]. These defect density tensors satisfy the
conservation laws [199]

αµν ;µ = −ενστθστ

θµν ;µ = 0 .
(11.4)

In the following sections of this chapter, we will see how these defect
density tensors impact the geometric properties of the spacetime con-
tinuum.

§11.3 Defect densities in continua

The dislocation and disclination density tensors αµν and θµν can be
written in terms of the defect strain and defect bend-twist tensors as [80]

αµν = −εµστ
(
/ετ
ν

;σ + ετ
νλ/κσλ

)
θµν = −εµστ/κτ ν ;σ .

(11.5)

The incompatibility tensor is given by [112, p. 124] [80]

ı̇µν = 1
2 (εµστατ

ν
;σ + ενστατ

µ
;σ) (11.6)

where ı̇µν is symmetric over the indices (µν).
The contortion Kµν and bend-twist κµν tensors are expressed in

terms of the dislocation density tensor αµν and the disclination density
tensor θµν as follows [79]:

Kνµ = −αµν + 1
2 δ

µναλλ (11.7)

θµν − 1
2 δ

µνθλλ = −εµαβ (/κνβ;α − /καβ ;ν) . (11.8)
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where /κµν is the defect bend-twist tensor. The inverse relation is given
by

αµν = −Kνµ + δµνKλ
λ . (11.9)

§11.4 Differential geometry of defects

As pointed out by Kleinert, “[a] crystal filled with dislocations and
disclinations turns out to have the same geometric properties as an
affine space with torsion and curvature, respectively” [199, p. 1333]. We
follow the development of Kleinert [199, see Part IV, Chapter 2] in this
section.

To properly deal with rotational deformations in the spacetime con-
tinuum, we need to add torsion to the differential geometry of general
relativity which deals only with curvature. As we saw previously in
section §11.1, this means that certain tensors are introduced, which are
zero in the absence of torsion, in particular the torsion tensor Sµν

λ

defined by
Sµν

λ = 1
2

(
Γµν

λ − Γνµ
λ
)
, (11.10)

which is the antisymmetric part of the connection Γµν
λ and which trans-

forms like a proper tensor.
The connection can then be decomposed into a Christoffel part and

the contortion tensor. Defining the modified connection Γµνλ according
to

Γµνλ = Γµν
τgτλ , (11.11)

the modified connection is written as

Γµνλ = {µν, λ}+Kµνλ (11.12)

where {µν, λ} is the Christoffel symbol of the first kind and Kµνλ is the
contortion tensor defined as

Kµνλ = Sµνλ − Sνλµ + Sλµν (11.13)

and Sµνλ = Sµν
τgτλ. Kµνλ is antisymmetric in the last two indices.

The curvature tensor Rµνστ is still given by

Rµνστ = ∂µΓνσ
τ − ∂νΓµσ

τ + Γµσ
κΓνκ

τ − Γνσ
κΓµκ

τ . (11.14)

However, it is important to note that the connection is given by (11.12),
using (11.11), and includes the contortion tensor in addition to the
Christoffel symbol. The curvature tensor of general relativity uses only
the Christoffel symbol, without the contortion tensor, and is known
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as the Riemann curvature tensor. Spaces with curvature and torsion
are known as Riemann-Cartan spaces, while spaces with no torsion are
known as Riemann spaces [199].

We consider the metric tensor of (1.7) for small displacements in
Minkowski spacetime:

gµν = ηµν + ∂µuν + ∂νuµ . (11.15)

Then the connection, torsion tensor and curvature tensor are given by
[199, p. 1359]

Γµνλ = ∂µ∂νuλ

Sµνλ = 1
2 (∂µ∂ν − ∂ν∂µ)uλ

Rµνκλ = (∂µ∂ν − ∂ν∂µ) ∂κuλ

(11.16)

respectively. The Einstein tensor is given by [199, p. 1360]

Gµν = 1
4 eγ

νκλeµγστRκλστ (11.17)

where the Levi-Civita pseudo-tensor eµνστ is the covariant version of
the Levi-Civita pseudo-tensor εµνστ given by

eµνστ =
√
−g εµνστ (11.18)

and
√
−g is the positive determinant of −gµν . Note also that

eµνστ =
1√
−g

εµνστ . (11.19)

We note that the curvature tensor is that of Riemann-Cartan spaces.
The dislocation density tensor is related to the torsion tensor ac-

cording to
αµν = εµ

κλΓκλν = εµ
κλSκλν (11.20)

and from (11.12), to the contortion tensor according to

αµν = εµ
κλKκλν . (11.21)

Nye’s contortion tensor of rank two is obtained from the contortion
tensor using

Kµν = 1
2 Kµκλε

κλ
ν (11.22)

and substituting into (11.21), we obtain

αµν = −Kνµ + δµνKλ
λ (11.23)
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as before (see (11.9)). Nye’s contortion tensor can also be written in
terms of the displacement and rotation fields as

Kµν = ∂µων − ενστ∂σuτµ . (11.24)

The disclination density tensor is related to the Einstein tensor of
(11.17)

θµν = Gµν (11.25)

while the incompatibility tensor, also known as the defect density tensor
(dislocations and disclinations), is related to the Einstein tensor formed
from the Riemannian curvature tensor (no torsion), which we denote
with a flat diacritical mark, as follows

ı̇µν = Ḡµν . (11.26)

§11.5 Implications for STCED and GTR

This chapter provides a brief introduction to the field theory of defects.
As mentioned in section §8.1, using defect density distributions results
in field equations using the methods of differential geometry which are
amenable to gauge theories. The modern theoretical descriptions, used
mostly in condensed matter physics, are mostly in terms of gauge the-
ory and differential geometry, using continuous distributions of defect
densities (see for example [199]). At this time, STCED does not use
distributions of defect densities, although its future use is not precluded,
and this chapter has been presented for completeness to allow readers to
position research papers in the theoretical framework of defect theory.

It is of particular interest to note that the introduction of small dis-
placements in Minkowski spacetime results in the introduction of the
infinitesimal strain tensor in the metric, as seen in (11.15). Of par-
ticular interest also is that the dislocation density tensor is related to
the torsion tensor while the disclination density tensor is related to the
Einstein tensor. Finally, the incompatibility tensor, also known as the
defect density tensor that includes both dislocations and disclinations,
is related to the Einstein tensor formed from the Riemannian curvature
tensor as evidenced in (11.26). This leads us again to the differential
geometry of the General Theory of Relativity and shows the close rela-
tionship between STCED and GTR.





Chapter 12

Wave-Particle Duality in STCED

§12.1 Wave-particle duality in electromagnetism

In this chapter, we concentrate on the built-in wave-particle duality that
is present in STCED. We first consider the simpler case of electromag-
netism, in particular the photon wavefunction, and then generalize the
result to STCED in general.

In electromagnetism, as shown in §5.3.1, the volume dilatation is
given by ε = 0. Hence, the photon is massless and there is no longitudi-
nal mode of propagation. Electromagnetic waves are massless transverse
distortion waves.

Photons correspond to an energy flow along the direction of propa-
gation in 3-space resulting from the Poynting vector. This longitudinal
electromagnetic energy flux is massless as it is due to distortion, not
dilatation, of the spacetime continuum. However, because this energy
flux is along the direction of propagation, it gives rise to the particle
aspect of the electromagnetic field, the photon, even though the photon
is not a particle.

We should note that the modern understanding of photons is that
they are massless excitations of the quantized electromagnetic field, not
particles per se. Thus in this case, the kinetic energy in the longitudinal
direction is carried by the distortion part of the deformation, while the
dilatation part, which carries the rest-mass energy, is not present as
the mass is 0. This result is thus in agreement with orthodox quantum
electrodynamics.

This situation provides us with an opportunity to investigate the
transverse mode of propagation, independently of the longitudinal mo-
de. In general, the transverse propagation of electromagnetic waves is
given by sinusoidal waves ψ and the intensity of the waves, correspond-
ing to the energy density, is given by |ψ|2. This is equivalent to the
modulus squared of the wavefunction used in quantum mechanics as a
probability density. A full analysis requires that we investigate further
the quantum mechanics of the photon, and in particular, the photon
wavefunction.
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§12.2 Photon wavefunction

The photon wavefunction is a first quantization description of the elec-
tromagnetic field [41, 56]. Historically, this development was not done,
as second quantization of the electromagnetic field was first developed.
As a result, photon wave mechanics is not fully accepted in the scientific
community, mainly because of the differences between particle and pho-
ton dynamics. As opposed to a particle, the photon has zero rest-mass
and propagates at the speed of light. In addition, the position operator
cannot be defined for a photon, only the momentum operator (known
as the photon localization problem).

Bialynicki-Birula [41–45], Sipe [328], and more recently Mohr [259],
Raymer and Smith [301–303] and others have derived and promoted
the use of the photon wavefunction. Bialynicki-Birula defines the pho-
ton wavefunction as “a complex vector-function of space coordinates
r and time t that adequately describes the quantum state of a single
photon” [41]. He sees three advantages to introducing a photon wave-
function [44]: it provides 1) a unified description of both massive and
massless particles both in first quantization and second quantization;
2) an easier description of photon dynamics without having to resort to
second quantization; 3) new methods of describing photons.

As pointed out in [56] and references therein, the photon wave equa-
tion is now used to study the propagation of photons in media, the
quantum properties of electromagnetic waves in structured media, and
the scattering of electromagnetic waves in both isotropic and anisotropic
inhomogeneous media. Raymer and Smith [302,303] have extended the
use of the photon wavefunction to the analysis of multi-photon states
and coherence theory. To the above list, in this book, we add an ad-
ditional benefit of the photon wavefunction: the clarification of the
physical interpretation of the quantum mechanical wavefunction [244].

The photon wavefunction is derived from the description of the elec-
tromagnetic field based on the complex form of the Maxwell equa-
tions first used by Riemann, Silberstein and Bateman [41] (the Rie-
mann–Silberstein vector). As summarized by Bialynicki-Birula [45],
“[t]he Riemann–Silberstein vector on the one hand contains full infor-
mation about the state of the classical electromagnetic field and on the
other hand it may serve as the photon wave function in the quantum
theory”. The Maxwell equations are then written as [41]

i ∂tF(r, t) = c∇× F(r, t)

∇ · F(r, t) = 0
(12.1)
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where

F(r, t) =

(
D(r, t)√

2ε0
+ i

B(r, t)√
2µ0R

)
(12.2)

and where D(r, t) and B(r, t) have their usual significance.
Then the dynamical quantities like the energy density and the Poynt-

ing vector are given by [41]

E =

∫
F∗ · F d3r

S =
1

2ic

∫
F∗ × F d3r

(12.3)

where F∗ denotes the complex conjugate. The sign selected in (12.2)
reflects positive helicity (projection of the spin on the direction of mo-
mentum) corresponding to left-handed circular polarization. Photons of
negative helicity corresponding to right-handed circular polarization are
represented by changing the sign from i to −i in (12.2). Hence (12.2)
can be written as

F±(r, t) =

(
D(r, t)√

2ε0
± i B(r, t)√

2µ0

)
(12.4)

to represent both photon polarization states.
A photon of arbitrary polarization is thus represented by a combina-

tion of left- and right-handed circular polarization states. The photon
wavefunction is then given by the six-component vector

Ψ(r, t) =

(
F+(r, t)
F−(r, t)

)
. (12.5)

The corresponding photon wave equation is discussed in [44].

§12.3 Physical interpretation of the photon wavefunction

From (12.5) and (12.4), we calculate the modulus squared of the photon
wavefunction to obtain [56]

|Ψ(r, t)|2 =

(
ε0|E|2

2
+
|B|2

2µ0

)
. (12.6)

The modulus squared of the photon wavefunction Ψ(r, t) gives the elec-
tromagnetic energy density at a given position and time. This is the
physical interpretation of the quantum mechanical |Ψ(r, t)|2 for electro-
magnetic transverse waves in the absence of longitudinal waves.
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Bialynicki-Birula proposes to convert |Ψ(r, t)|2 to a probability den-
sity as required by the accepted quantum mechanical probabilistic inter-
pretation [44]. This he achieves by dividing the modulus squared of the
photon wavefunction by the expectation value of the energy <E> [44,
see his equation (44)]. In this way, it is made to describe in probabilistic
terms the energy distribution in space associated with a photon.

Thus the probabilistic formulation of quantum theory is preserved,
while the physical interpretation of |Ψ|2 is shown to correspond to an en-
ergy density. Raymer and Smith [303] state that “[a] strong argument in
favour of the energy-density wave function form of PWM [Photon Wave
Mechanics] is that it bears strong connections to other, well-established
theories—both quantum and classical—such as photodetection theory,
classical and quantum optical coherence theory, and the biphoton am-
plitude, which is used in most discussions of spontaneous parametric
down conversion”.

Hence, we have to conclude that the appropriate physical interpre-
tation of |Ψ|2 is that it represents a physical energy density, not a prob-
ability density. However, the energy density can be converted to a
probability density once it is normalized with the system energy (as
done by Bialynicki-Birula for the photon wavefunction). In this way,
STCED does not replace the probabilistic formulation of quantum the-
ory, it just helps to understand the physics of quantum theory. The
two formulations are equivalent, which explains the success of the prob-
abilistic formulation of quantum theory. In actual practice, the quan-
tum mechanical probability formulation can be used as is, as it gives
the same results as the physical energy density formulation of STCED.
However, the physical intensity waves of STCED help us understand
the physics of the quantum mechanical wavefunction and the physics of
wave-particle duality.

It is important to note that the energy density physical interpreta-
tion of |Ψ|2 applies just as much to systems as to single particles, as for
the probability density interpretation.

§12.4 Wave-particle duality in STCED

In STCED, the displacement uν of a deformation from its undeformed
state can be decomposed into a longitudinal (dilatation) component uν‖
and a transverse (distortion) component uν⊥. The volume dilatation ε
is given by the relation [238, see (44)]

ε = uµ;µ ≡ u‖µ;µ. (12.7)
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The longitudinal displacement wave equation and the transverse dis-
placement wave equation of a deformation are given respectively by
(see §7.2)

∇2uν‖ = − µ̄0 + λ̄0

µ̄0
ε;ν

∇2uν⊥ +
k̄0

µ̄0
ε (xµ) uν⊥ = 0

(12.8)

where ∇2 is the four-dimensional operator, λ̄0 and µ̄0 are the Lamé
elastic constants of the spacetime continuum and k̄0 is the elastic force
constant of the spacetime continuum. The constant µ̄0 is the shear mod-
ulus (the resistance of the continuum to distortions) and λ̄0 is expressed
in terms of κ̄0, the bulk modulus (as in section §2.1) according to

λ̄0 = κ̄0 − µ̄0/2 (12.9)

in a four-dimensional continuum. The wave equation for uν‖ describes
the propagation of longitudinal displacements, while the wave equa-
tion for uν⊥ describes the propagation of transverse displacements in the
spacetime continuum. The STCED deformation wave displacements
solution is similar to Louis de Broglie’s “double solution” [75,76].

§12.4.1 Wave propagation in STCED

The electromagnetic case, as seen in section §12.1, provides a physical
interpretation of the wavefunction for transverse wave displacements.
This interpretation should apply in general to any wavefunction Ψ. In
STCED, in the general case, every deformation can be decomposed into
a combination of a transverse mode corresponding to the wave aspect of
the deformation, and a longitudinal mode corresponding to the particle
aspect of the deformation [239]. Thus the physical interpretation of sec-
tion §12.3 applies to the general STCED transverse wave displacements,
not only to the electromagnetic ones.

Hence, |Ψ|2 represents the physical intensity (energy density) of
the transverse (distortion) wave, rather than the probability density
of quantum theory. It corresponds to the transverse field energy of the
deformation. It is not the same as the particle, which corresponds to
the longitudinal (dilatation) wave displacement and is localized within
the deformation via the massive volume dilatation, as discussed in the
next section §12.4.2. However, |Ψ|2 can be normalized with the system
energy and converted into a probability density, thus allowing the use of
the existing probabilistic formulation of quantum theory. Additionally,
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the physical intensity waves of STCED help us understand the physics
of wave-particle duality and resolve the paradoxes of quantum theory.

§12.4.2 Particle propagation in STCED

Particles propagate in the spacetime continuum as longitudinal wave
displacements. Mass is proportional to the volume dilatation ε of the
longitudinal mode of the deformation as per (2.24). This longitudinal
mode displacement satisfies a wave equation for ε, different from the
transverse mode displacement wave equation for Ψ. This longitudinal
dilatation wave equation for ε is given by [238, see (204)]

∇2ε = − k̄0

2µ̄0 + λ̄0
uν⊥ε;ν . (12.10)

It is important to note that the inhomogeneous term on the R.H.S.
includes a dot product coupling between the transverse displacement
uν⊥ and the gradient of the volume dilatation ε;ν for the solution of the
longitudinal dilatation wave equation for ε. This explains the behavior
of electrons in the double slit interference experiment.

The transverse distortion wave equation for ωµν [238, see (210)]

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1

2

k̄0

µ̄0
(ε;µuν⊥ − ε;νuµ⊥) (12.11)

shows a R.H.S. cross product coupling between the transverse displace-
ment uν⊥ and the gradient of the volume dilatation ε;µ for the solution
of the transverse distortion wave equation for ωµν . The transverse dis-
tortion wave ωµν corresponds to a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum consists of
a combination of a transverse and a longitudinal wave. The transverse
wave is the source of the interference pattern in double slit experiments,
which impacts the location of the associated longitudinal wave of the
individual particle in generating the interference pattern. The longitu-
dinal dilatation wave behaves as a particle and goes through one of the
slits, even as it follows the interference pattern dictated by the trans-
verse distortion wave, as observed experimentally [150, see in particular
Figure 4] and as seen in the coupling between ε;ν and uν⊥ in (12.10) and
(12.11) above.

These results are in agreement with the results of the Jánossy-Naray,
Clauser, and Dagenais and Mandel experiments on the self-interference
of photons and the neutron interferometry experiments performed by
Bonse and Rauch [322, see pp. 73-81]. The transverse distortion wave
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generates the interference pattern, while the longitudinal wave’s dilata-
tion (particle) follows a specific action, with its final location guided by
the transverse wave’s interference pattern.

The longitudinal wave is similar to the de Broglie “singularity-wave
function” [75]. However, in STCED the particle is not a singularity of
the wave, but is instead characterized by its mass which arises from the
volume dilatation propagating as part of the longitudinal wave. There
is no need for the collapse of the wavefunction Ψ, as the particle resides
in the longitudinal wave, not the transverse one. A measurement of a
particle’s position is a measurement of the longitudinal wave, not the
transverse wave.





Chapter 13

Wavefunctions, Operators and
Measurements

§13.1 The mathematics of wavefunctions

In this chapter, we will review the mathematics and physics of quantum
theory to be in a better position to analyze the theory and clarify its
physical nature within STCED in the following chapters. One will often
hear physicists say that quantum mechanics is difficult to understand
as it is not intuitive. However, as the saying goes, “ce qui se conçoit
bien s’énonce clairement”, i.e. “that which is well understood is clearly
explained”.

To understand quantum mechanics, one must understand the math-
ematics that underlie the theory. We will not start by jumping in the
middle of the mathematics as is done in most textbooks, as this just
confuses the situation. Instead, we will start with the basic mathemat-
ical concepts and see how they pertain to the mathematics of quantum
theory to be better able to understand the physics, and interpretation,
of quantum physics. We will eventually get into the more arcane aspects
of the theory, but first, we have to start at the beginning.

A point P3 in three dimensions is specified by numbers along three
mutually independent axes, such as the cartesian coordinates (x, y, z),
that span (cover) the three-dimensional space. The cartesian axes are

characterized by three vectors~i,~j,~k that are usually normalized to 1 to
provide three unit vectors î, ĵ, k̂. Their mutual independence is shown
by their (dot) products being equal to zero: î · ĵ = 0, ĵ · k̂ = 0 and

k̂ · î = 0 which shows that the unit vectors are orthogonal (orthonormal
to be exact).

The coordinates of the point can then be written as

P3 = xî+ yĵ + zk̂ . (13.1)

This is known as a vector space. Mathematicians have other conditions
that they impose on the vector space, but these are the basic concepts.
The three-dimensional vector space can be extended to an n-dimensional
vector space using

Pn =

n∑
m=1

xmîm (13.2)
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where îm are the n unit vectors spanning the n-dimensional vector space
and the xm are the coordinate values along the axes spanning the vector
space that describes the point Pn. This is very basic mathematics, but it
is highly relevant to understanding the mathematical theory of quantum
mechanics.

At the end of the nineteenth century, mathematicians, including
David Hilbert, noticed that orthogonal sets of basis functions gm(x)
could also be obtained in connection with Sturm-Liouville problems
(related to certain types of differential equations) that had the same
properties as vector spaces, including [205]

– product of basis functions

(gm, gn) =

∫ b

a

gm(x)gn(x)dx ; (13.3)

– norm (“length”) of a basis function

‖gm‖2 =

∫ b

a

g2
m(x)dx ; (13.4)

– orthogonality of the set of, in this case orthonormal, basis func-
tions where their norm is equal to one

(gm, gn) = δmn ; (13.5)

– representation of an arbitrary function f(x) in terms of the basis
functions gm(x)

f(x) =
∑
m

cmgm(x) where

(f, gm) = cm‖gm‖2.
(13.6)

This is known as a function space.
In particular, quantum mechanics uses a function space known as a

Hilbert space, where the (inner) product is defined as

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx . (13.7)

More specifically, a complex Hilbert space is used in quantum theory,
meaning that the functions are complex functions, not just real func-
tions. It is important to note that the complex Hilbert space is a math-
ematical space spanned (covered) by a set of orthogonal basis functions.
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Any function in that mathematical space can be expressed as a com-
bination of the set of orthogonal basis functions as (13.6), where the
coefficients cm are themselves complex functions of the coordinates.

This is, in a nutshell, the mathematical basis of quantum theory, as
laid out by mathematician von Neumann in the 1930s [361]. In quantum
mechanics, the Hilbert space is known as the state space, and the set
of basis functions are known as state vectors. General system states
(wavefunctions) are combinations of the state vectors similar to (13.6)
in the mathematical state space. The coefficients of (13.6) are expressed
as probability amplitudes.

Some may consider this to be an oversimplification of the mathe-
matical theory, but at this time, this is sufficient for our purpose as
we are pushing back the foliage to have a better view at the physics
and interpretation of the theory. We have not looked at other aspects
of quantum mechanics such as operators as these are embellishments
of the theory that are not required for our current discussion of the
quantum physics fundamentals. We will look at those in due time.

Everything we have looked at till now makes sense and is a very rea-
sonable approach to the analysis of quantum physics. Quantum physics
needs to be based on probabilistic analysis as we, at our level, are not
currently in a position to analyze the quantum physics at that level to
the same degree that we can at the macroscopic level, although this does
not preclude being able to do so in the future as our physical theories
improve further.

This mathematical theory provides an elegant mean of carrying cal-
culations on quantum physical systems, as is evidenced by the calcula-
tional success of quantum theory. However, problems are encountered
in the interpretation of the theory which is taken too literally. The basic
source of the problem is that the mathematical Hilbert space is taken to
be a physical space, and the wavefunction written as for example (13.6)
is taken to represent a physical system state that is a combination of
state vectors that exists in an evanescent state until it is measured (i.e.
observed). At that point, the wavefunction “collapses” into one of the
states that is measured. This is an interpretation of the mathematics
that is not required and that really belongs into metaphysics. Inter-
pretations based on giving physical reality to the Hilbert mathematical
space are philosophical musings at best.

The justification for this interpretation is usually ascribed to the
indeterminacy of the quantum world resulting from, among other rea-
sons, the Heisenberg Uncertainty Principle and, since the 1960s, to Bell’s
theorem [19]. As shown in [237] and section §13.3, the Heisenberg Un-



216 Chapter 13 Wavefunctions, Operators and Measurements

certainty Principle arises because of the dependency of momentum on
wave number that exists at the quantum level. Quantum mechanical
conjugate variables are Fourier transform pairs of variables. It is im-
portant to differentiate between the measurement limitations that arise
from the properties of Fourier transform pairs, and any inherent limita-
tions that may or may not exist for those same variables independently
of the measurement process. Quantum theory currently assumes that
the inherent limitations are the same as the measurement limitations.
As shown in [237] and section §13.3, quantum measurement limitations
affect our perception of the quantum environment only, and are not
inherent limitations of the quantum level. Bell’s theorem will be con-
sidered in greater detail in section §13.4.

Independently of this analysis, when systems are “prepared”, they
end up being in definite physical states, not evanescent states. These
states obey the STCED wave equations, which can include entangled
states as we will see in section §18.9. When a component of an entangled
state is measured, one does not see superluminal communication be-
tween the entangled states, but rather one measures the states that the
system was initially prepared in, and the probability analysis needs to
be based on mathematical probability theory and Bayesian analysis, i.e.
conditional probabilities, as clearly demonstrated by Jaynes [182–184].
What changes instantaneously is our state of knowledge of the system,
not the system itself. Certainly, there is evidence of nonlocality of field
theories at the quantum level, as covered further for STCED in section
§18.8, but there is a large degree of separation between the nonlocality
concept and the wavefunction “collapse” concept. This will be consid-
ered in greater detail in sections §13.5 and §13.6.

The latter leads to concepts such as Schrödinger’s cat where, given
a proper experimental setup, an unobserved cat is in a half-alive or
half-dead physical state depending on whether a random event has hap-
pened or not. When an observer checks on the cat, the wavefunction
“collapses” and the cat is found either dead or alive. This is empty phi-
losophy, taken to its reductio ad absurdum limit. If the random event
occurs, the cat will die, and we will eventually find out from the smell
– no need for an observer to “collapse” the wavefunction! Or is it the
smell acting as surrogate observer that “collapses” the wavefunction?

We see questions asked such as whether there is a sound generated if
a tree crashes in a forest with no observer to hear the sound. Of course, a
physical analysis of the problem shows that sound energy is still emitted
in the audible range, whether there is an observer present to hear it or
not. This example is an evident one, but there is much confusion that
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arises from this concept that is flowing in the undercurrents of modern
physics research. For example, a search for “wavefunction collapse”
(and “wave function collapse”) in the arXiv archive paper titles results
in more than 120 papers. This is a modern equivalent of the middle
ages question on the number of angels that can dance on the head of a
pin. The need for an observer to force the wavefunction to “collapse” is
a modern version of anthropocentrism, i.e. human-centric philosophy.

§13.2 Wavefunctions and operators

Now that we have a better perspective on the mathematical formalism of
quantum mechanics and its interpretation difficulties, we will consider
the physical underpinnings of quantum theory to better understand
quantum physics and its interpretation.

In the previous section §13.1, we have used the probabilistic inter-
pretation of the wavefunction to discuss its physical reality. As we have
seen in section §12.3 on the physical interpretation of the photon wave-
function, the probabilistic use of the wavefunction is valid provided that
it is normalized as discussed in that section. The modulus squared of
the photon wavefunction Ψ(r, t) given by (12.6) corresponds to the elec-
tromagnetic energy density at a given position and time. It is converted
to a probability density by dividing the modulus squared of the photon
wavefunction by the system energy [44].

These results were derived using the wavefunction of the simpler and
better understood electromagnetic field photon. As we saw in §12.4.1,
in the general STCED case, |Ψ|2 represents the physical intensity (en-
ergy density) of the transverse (distortion) wave, corresponding to the
transverse field energy of the deformation. |Ψ|2 can be normalized with
the system energy and converted into a probability density, thus allow-
ing the use of the existing probabilistic formulation of quantum theory.
This we now cover in greater detail.

In particular, wavefunctions are the solution of quantum mechanical
wave equations. They are thus wave solutions, which we call wavefunc-
tions, also known as kets |ψ〉 in the Dirac formalism. As the modulus
squared of the wavefunction |ψ|2 corresponds to the energy density of
the wavefunction as mentioned previously, this means that the integral
over the volume V is the system energy. It is calculated from

E =

∫ ∞
−∞
|ψ|2 dV =

∫ ∞
−∞

ψ∗ψ dV , (13.8)

where ψ∗ denotes complex conjugation. In quantum mechanics, this is
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also written as 〈ψ|ψ〉 using Dirac notation, and is used as normaliza-
tion factor which, in addition to ensuring that the wavefunctions are
orthonormal, also unwittingly converts |ψ|2 from an energy density to
a probability density.

As seen in section §13.1 and in this section, quantum mechanics
is couched in its own formalism and terminology, although it is using
standard mathematical theory. A good part of this is due to its historical
development where a formalism different from the mathematical one,
and a terminology that reflected a certain physical picture of what was
perceived as the explanation of the new theory were adopted.

The formalism and terminology has gradually become more formal-
ized and less physical in its understanding of the theory. One only needs
to look at textbooks, such as [296,300] from the 1960s with its empha-
sis on wave packets and wave mechanics and [12] from the late 1990s
with its formal presentation of the theory and absence of wave packets
or wave mechanics concepts. The axiomatization of quantum mechan-
ics has resulted in a theory steeped in its own mathematical formalism
disconnected from physical reality, reinforced by the mysterious aura
projected by the current interpretation of the theory.

The calculation of observables using operators is a case in point. For
example, [12, see p. 43] states

To each dynamical variable (physical concept) there corresponds
a linear operator (mathematical object), and the possible values
of the dynamical variable are the eigenvalues of the operator.
[emphasis in original]

and later states that operators correspond to observables. This is calcu-
lated from Obs = 〈ψ|Op|ψ〉 using Dirac notation. Mathematically, this
is derived from the expectation value of variable X which is given by

〈X〉 =

∫∞
−∞ ψ∗X ψ dV∫∞
−∞ ψ∗ψ dV

(13.9)

where 〈X〉 can be measured experimentally.

The momentum and energy operators, −i~ ~∇ and i~ ∂/∂t respec-
tively, give rise to questions on their nature and is best understood as a
result of the relationship between momentum ~p and wave vector ~k at the
quantum level [237]. Starting with the wavefunction of a free particle
in one dimension

ψ(x, t) = A exp i(kxx− ωt+ ϕ) (13.10)
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where A is the amplitude and ϕ is a phase factor, and taking the partial
derivative with respect to x, we have

∂

∂x
ψ(x, t) = ikxA exp i(kxx− ωt+ ϕ) = i

px
~
ψ(x, t) , (13.11)

and hence the operator for px operating on the wavefunction is given
by

Op(px) = −i~ ∂

∂x
. (13.12)

Similarly, by partial differentiation of (13.10) with respect to t, we ob-
tain the operator for E operating on the wavefunction given by

Op(E) = i~
∂

∂t
. (13.13)

Mathematically, observables are nothing more than the expectation
value of a variable (that is called an operator) of a function named ψ
the wavefunction. The requirement that the operator be hermitian, etc
comes from the mathematics. Hence this aspect of quantum theory is
couched in terminology and interpretation that is not required by the
mathematical theory or the physical nature of the process.

§13.3 The Heisenberg Uncertainty Principle and the
Nyquist-Shannon Sampling Theorem

The Heisenberg Uncertainty Principle is a cornerstone of quantum me-
chanics. As noted by Hughes [171, see pp. 265-266], the interpretation
of the Principle varies

– from expressing a limitation on measurement as originally derived
by Heisenberg [154] (Heisenberg’s microscope),

– to being the variance of a measurement carried out on an ensemble
of particles [294] [226],

– to being inherent to a microsystem [73], meaning essentially that
there is an indeterminism to the natural world which is a basic
characteristic of the quantum level.

Greenstein retains only the first and last alternatives [140, see p. 51].
However, the Heisenberg Uncertainty Principle can be derived from

considerations which clearly demonstate that these interpretations of
the principle are not required by its mathematical formulation. This
derivation, based on the application of Fourier methods, is given in
various mathematical and engineering textbooks, for example [54, see
p. 141].
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§13.3.1 Consistent derivation of the Heisenberg Uncertainty
Principle

In the Fourier transform literature, the Heisenberg Uncertainty Prin-
ciple is derived from a general theorem of Fourier theory called the
Uncertainty Theorem [54]. This theorem states that the effective width
of a function times the effective width of its transform cannot be less
than a minimum value given by

W (f) ·W (f̃) ≥ 1/2 (13.14)

where f is the function of interest and f̃ is its Fourier transform. W (f)
is the effective width of function f , defined by

|W (f)|2 =

∫∞
−∞ |f(u)|2[u−M(f)]2du∫∞

−∞ |f(u)|2du
(13.15)

and M(f) is the mean ordinate defined by

M(f) =

∫∞
−∞ |f(u)|2udu∫∞
−∞ |f(u)|2du

. (13.16)

There are several points that must be noted with respect to this
derivation: Eq.(13.14) applies to a Fourier transform pair of variables.
Taking the simple case of time t and frequency ν to illustrate the
point: If we consider the function f to be the function that describes
a time function t, then the width of the function, W (f), can be de-
noted as W (f) = ∆t. The Fourier transform of function t is the fre-
quency function ν and the width of this function can be denoted as
W (t̃) = W (ν) = ∆ν. Substituting in (13.14), the Uncertainty Theorem
then yields

∆t ·∆ν ≥ 1/2. (13.17)

However, if one wishes to use the circular frequency ω = 2πν instead,
(13.17) becomes

∆t ·∆ω ≥ π. (13.18)

It is thus necessary to take special care to clearly identify the Fourier
transform variable used as it impacts the R.H.S. of the resulting Uncer-
tainty relation (see for example [367] and [142, pp. 21-22]).

Equations (13.17) and (13.18) above correspond to the following
definitions of the Fourier transform respectively [367]:



§13.3 Nyquist-Shannon Sampling Theorem 221

Equation (13.17):

f(t) =

∫ ∞
−∞

f̃(ν) exp(2πiνt)dν (13.19)

f̃(ν) =

∫ ∞
−∞

f(t) exp(−2πiνt)dt (13.20)

Equation (13.18):

f(t) =
1

2π

∫ ∞
−∞

f̃(ω) exp(iωt)dω (13.21)

f̃(ω) =

∫ ∞
−∞

f(t) exp(−iωt)dt. (13.22)

Sometimes the factor 1/2π is distributed between the two integrals
(the Fourier and the Inverse Fourier Transform Integrals) as 1/

√
2π.

In Physics, (13.21) and (13.22) are preferred, as this eliminates the
cumbersome factor of 2π in the exponential (see for example [382, p. 12]),
but care must then be taken to ensure the resulting factor of 1/2π in
(13.21) is propagated forward in derivations using that definition.

Using the relation E = hν, where h is Planck’s constant, in (13.17)
above, or the relation E = ~ω, where ~ = h/2π, in (13.18) above, one
obtains the same statement of the Heisenberg Uncertainty Principle
namely

∆E ·∆t ≥ h/2 (13.23)

in both cases.
Similarly for the position x, if we consider the function f to be the

function that describes the position x of a particle, then the width of the
function, W (f), can be denoted as W (f) = ∆x. The Fourier transform
of function x is the function x̃ = λ−1 and the width of this function can
be denoted as W (x̃) = W (λ−1) = ∆(λ−1) which we write as ∆λ−1 for
brevity. You will note that we have not used the wavenumber function
k, as this is usually defined as k = 2π/λ (see for example [368] and
references). Substituting in (13.14), we obtain the relation

∆x ·∆λ−1 ≥ 1/2. (13.24)

In terms of the wavenumber k, (13.24) becomes

∆x ·∆k ≥ π. (13.25)
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Given that the momentum of a quantum particle is given by p = h/λ
or by p = ~k, both (13.24) and (13.25) can be expressed as

∆x ·∆p ≥ h/2. (13.26)

Equations (13.23) and (13.26) are both different statements of the Hei-
senberg Uncertainty Principle.

The R.H.S. of these equations is different from the usual statement
of the Heisenberg Uncertainty Principle where the value ~/2 is used
instead of the value h/2 obtained in this analysis. The application of
(13.17) to circular variables (i.e. using ω in (13.17) instead of (13.18))
would result in the (incorrect) expression

∆t ·∆ω ≥ 1/2 (13.27)

and the more commonly encountered (incorrect) expression

∆E ·∆t ≥ ~/2. (13.28)

However, Heisenberg’s original derivation [154] had the R.H.S. of
(13.26) approximately equal to h, and Greenstein’s re-derivation [140,
see p. 47] of Heisenberg’s principle results in the value h/2. Kennard’s
formal derivation [191] using standard deviations established the value
of ~/2 used today. This would thus seem to be the reason for the
use of the value ~/2 in the formulation of the Heisenberg Uncertainty
Principle.

Recently, Schürmann et al [317] have shown that in the case of a
single slit diffraction experiment, the standard deviation of the momen-
tum typically does not exist. They derive the conditions under which
the standard deviation of the momentum is finite, and show that the
R.H.S. of the resulting inequality satisfies (13.26). It thus seems that
(13.26) is the more general formulation of the Heisenberg Uncertainty
Principle, while the expression with the value ~/2 derived using stan-
dard deviations is a more specific case.

Whether one uses ~/2 or h/2 has little impact on the Heisenberg Un-
certainty Principle as the R.H.S. is used to provide an order of magni-
tude estimate of the effect considered. However, the difference becomes
evident when we apply our results to the Brillouin zone formulation of
the solid state in Condensed Matter Physics (as will be seen in Section
13.3.4) since this now impacts calculations resulting from models that
can be compared with experimental values.
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§13.3.2 Interpretation of the Heisenberg Uncertainty
Principle

This derivation demonstrates that the Heisenberg Uncertainty Princi-
ple arises because x and p form a Fourier transform pair of variables.
It is a characteristic of Quantum Mechanics that conjugate variables
are Fourier transform pairs of variables. Thus the Heisenberg Uncer-
tainty Principle arises because the momentum p of a quantum particle is
proportional to the de Broglie wave number k of the particle. If momen-
tum was not proportional to wave number, the Heisenberg Uncertainty
Principle would not exist for those variables.

This argument elucidates why the Heisenberg Uncertainty Principle
exists. Can it shed light on the meaning of the Heisenberg Uncertainty
Principle in relation to the basic nature of the quantum level? First,
we note that the Uncertainty Principle, according to Fourier transform
theory, relates the effective width of Fourier transform pairs of functions
or variables. It is not a measurement theorem per se. It does not
describe what happens when Fourier transform variables are measured,
only that their effective widths must satisfy the Uncertainty Principle.

Indeed, as pointed out by Omnès [276, see p. 57],“it is quite legit-
imate to write down an eigenstate of energy at a well-defined time”.
Omnès ascribes this seeming violation of the Heisenberg Uncertainty
Principle to the fact that time is not an observable obtained from an
operator like momentum, but rather a parameter. Greenstein [140, see
p. 65] makes the same argument. However, time t multiplied by the
speed of light c is a component of the 4-vector xµ and energy E divided
by c is a component of the energy-momentum 4-vector Pµ. The time
component of these 4-vectors should not be treated differently than the
space component. The operator versus parameter argument is weak.

What Omnès’ example shows is that the impact of the effective
widths ∆t and ∆E of the Heisenberg Uncertainty Principle depends
on the observation of the time function t and of the energy function E
that is performed. A time interval ∆t can be associated with the time
function t during which is measured the energy eigenstate function E
which itself has a certain width ∆E, with both widths (∆) satisfying
(13.23). This example demonstrates that the Heisenberg Uncertainty
Principle is not a measurement theorem as often used. Rather, it is a
relationship between the effective widths of Fourier transform pairs of
variables that can have an impact on the observation of those variables.

A more stringent scenario for the impact of the energy-time Heisen-
berg Uncertainty Principle is one where the time and energy functions
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are small quantities. For example, we consider the impact of ∆t on the
observation of τn, the lifetime of an atom in energy eigenstate n, and the
impact of ∆E on the transition energy Emn, for a transition between
states n and m during spectral line emission. The conditions to be able
to observe τn and Emn are:

τn ≥ ∆t (13.29)

Emn ≥ ∆E. (13.30)

Using (13.23) in (13.29),

τn ≥ ∆t ≥ h/(2∆E). (13.31)

Hence

∆E ≥ h

2

1

τn
. (13.32)

As state n increases, the lifetime τn decreases. Eq.(13.32) is thus more
constrained in the limit of large n. Using the following hydrogenic
asymptotic expression for τn from Millette et al [236]

τn ∼
n5

ln(n)
(13.33)

into (13.32), (13.30) becomes

Emn ≥ ∆E &
h

2
k

ln(n)

n5
(13.34)

where 1/k is the constant of proportionality of (13.33) given by

k =
26

3

√
π

3
Z2α3cRH (13.35)

where Z is the nuclear charge of the hydrogenic ion, α is the fine-
structure constant, and RH is the hydrogen Rydberg constant. Elimi-
nating the middle term, (13.34) becomes

Emn &
h

2
k

ln(n)

n5
. (13.36)

Applying L’Hôpital’s rule, the R.H.S. of the above equation is of order

R.H.S. ∼ O

(
1

n5

)
as n→∞ (13.37)
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while the L.H.S. is of order [26, see p. 9]

L.H.S. ∼ O

(
1

n2

)
as n→∞. (13.38)

Given that (13.37) tends to zero faster than (13.38), (13.36) is satisfied.
Both τn, the lifetime of the atom in energy eigenstate n, and the tran-
sition energy Emn for the transition between states n and m satisfy the
conditions for observation of the spectral line emission. Thus for the
time interval ∆t, given by (13.29), associated with the time function τn
for the transition energy function Emn which itself has a certain width
∆E, given by (13.30), both ∆’s satisfy (13.23) as expected, given the
observation of spectral line emission.

§13.3.3 Quantum measurements and the Nyquist-Shannon
Sampling Theorem

At the quantum level, one must interact to some degree with a quantum
system to perform a measurement. When describing the action of mea-
surements of Fourier transform variables, one can consider two limiting
measurement cases: 1) truncation of the variable time series as a result
of a fully interacting measurement or 2) sampling of the variable time
series at intervals which we consider to be regular in this analysis, in
the case of minimally interacting measurements. As we will see, the
action of sampling allows for measurements that otherwise would not
be possible in the case of a single minimal interaction.

It should be noted that the intermediate case of a partial measure-
ment interaction resulting for example in a transfer of energy or mo-
mentum to a particle can be considered as the truncation of the original
time series and the initiation of a new time series after the interaction.
The advantage of decomposing measurement actions in this fashion is
that their impact on Fourier transform variables can be described by
the Nyquist-Shannon Sampling Theorem of Fourier transform theory.
This theorem is a measurement theorem for Fourier transform variables
based on sampling and truncation operations.

The Nyquist-Shannon Sampling Theorem is fundamental to the field
of information theory, and is well known in digital signal processing and
remote sensing [277]. In its most basic form, the theorem states that
the rate of sampling of a signal (or variable) fs must be greater than
or equal to the Nyquist sampling rate fS to avoid loss of information in
the sampled signal, where the Nyquist sampling rate is equal to twice
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that of the highest frequency component, fmax, present in the signal:

fs ≥ fS = 2fmax. (13.39)

If the sampling rate is less than that of (13.39), aliasing occurs, which
results in a loss of information.

In general, natural signals are not infinite in duration and, during
measurement, sampling is also accompanied by truncation of the signal.
There is thus loss of information during a typical measurement process.
The Nyquist-Shannon Sampling theorem elucidates the relationship be-
tween the process of sampling and truncating a variable and the effect
this action has on its Fourier transform [35, see p. 83]. In effect, it ex-
plains what happens to the information content of a variable when its
conjugate is measured.

Sampling a variable x at a rate δx will result in the measurement
of its conjugate variable x̃ being limited to its maximum Nyquist range
value x̃N as given by the Nyquist-Shannon Sampling theorem:

x̃ ≤ x̃N (13.40)

where
x̃N = 1/(2δx). (13.41)

Combining these two equations, we get the relation

x̃ · δx ≤ 1/2, for x̃ ≤ x̃N . (13.42)

Conversely, truncating a variable x at a maximum value xN (x ≤ xN )
will result in its conjugate variable x̃ being sampled at a rate δx̃ given
by the Nyquist-Shannon Sampling theorem δx̃ = 1/(2xN ) resulting in
the relation

δx̃ · x ≤ 1/2, forx ≤ xN . (13.43)

The impact of the Nyquist-Shannon Sampling theorem is now con-
sidered for a particle’s position x and momentum p. Applying the the-
orem to the case where a particle’s trajectory is truncated to xN , we
can write from (13.43), for x ≤ xN ,

x · δλ−1 ≤ 1/2, forx ≤ xN (13.44)

or
x · δk ≤ π, forx ≤ xN (13.45)

which becomes
x · δp ≤ h/2, forx ≤ xN (13.46)
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where δp is the p-domain sampling rate and the x values can be mea-
sured up to xN (corresponding to the equality in the equations above).

Conversely, applying the theorem to the case where a particle’s tra-
jectory is sampled at a rate δx, one can also write from (13.42), for
x̃ ≤ x̃N , where x̃ stands for either of λ−1, k, or p,

δx · λ−1 ≤ 1/2, forλ−1 ≤ λ−1
N (13.47)

or

δx · k ≤ π, for k ≤ kN (13.48)

which becomes

δx · p ≤ h/2, for p ≤ pN (13.49)

where δx is the x-domain sampling rate and kN is the wave number
range that can be measured. For the case where the equality holds, we
have kN = π/δx where kN is the Nyquist wave number, the maximum
wave number that can be measured with a δx sampling interval.

Sampling in one domain leads to truncation in the other. Sampling
(δx) and truncation (xN ) in one domain leads to truncation (kN ) and
sampling (δk) respectively in the other. As x and k form a Fourier
transform pair in quantum mechanics, the Nyquist-Shannon Sampling
theorem must also apply to this pair of conjugate variables. Similar
relations can be derived for the E and ν pair of conjugate variables.

§13.3.4 Implications of the Nyquist-Shannon Sampling
Theorem at the quantum level

Equations (13.45) and (13.48) lead to the following measurement be-
haviors at the quantum level:

Lower-bound limit: If the position of a particle is measured over
an interval xN , its wave number cannot be resolved with a resolution
better than sampling rate δk as given by (13.45) with x = xN . If the
momentum of a particle is measured over an interval kN , its position
cannot be resolved with a resolution better than sampling rate δx as
given by (13.48) with k = kN .

Upper-bound limit: If the position of a particle is sampled at a rate
δx, wave numbers up to kN can be resolved, while wave numbers larger
than kN cannot be resolved as given by (13.48). If the momentum of a
particle is sampled at a rate δk, lengths up to xN can be resolved, while
lengths longer than xN cannot be resolved as given by (13.45).
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The lower-bound limit is similar to how the Heisenberg Uncertainty
Principle is usually expressed when it is used as a measurement princi-
ple, although it is not strictly equivalent. The Nyquist-Shannon Sam-
pling Theorem provides the proper formulation and limitations of this
type of measurement.

The upper-bound limit suggests a different type of quantum mea-
surement: regular sampling of a particle’s position or momentum. In
this case, one can obtain as accurate a measurement of the Fourier trans-
form variable as desired, up to the Nyquist-Shannon Sampling limit of
h/2 (i.e. in the interval [0, h/2]).

An example of this phenomenon occurs in the solid state in Con-
densed Matter Physics where the translational symmetry of atoms in
a solid resulting from the regular lattice spacing, is equivalent to an
effective sampling of the atoms of the solid and gives rise to the Bril-
louin zone for which the valid values of k are governed by (13.48). Set-
ting δx = a, the lattice spacing, and extending by symmetry the k
values to include the symmetric negative values, one obtains [149, see
p. 34], [55, see p. 100], [382, see p. 21]:

−π/a ≤ k ≤ π/a (13.50)

or alternatively

k ≤ |π/a|. (13.51)

This is called the reduced zone scheme and π/a is called the Brillouin
zone boundary [198, see p. 307]. The Brillouin zones of the solid state
in Condensed Matter Physics are thus a manifestation of the Nyquist-
Shannon Sampling theorem at the quantum level.

In essence, this is a theory of measurement for variables that are
Fourier transform pairs. The resolution of our measurements is gov-
erned by limitations that arise from the Nyquist-Shannon Sampling
theorem. Equations (13.45) and (13.48) are recognized as measurement
relationships for quantum-mechanical conjugate variables. Currently,
Quantum Mechanics only considers the Uncertainty Theorem but not
the Sampling Theorem. The two theorems are applicable to Quantum
Mechanics and have different interpretations: the Uncertainty Theorem
defines a relationship between the widths of conjugate variables, while
the Sampling Theorem establishes sampling and truncation measure-
ment relationships for conjugate variables.

The value δx is a sampled measurement and as a result can resolve
values of p up to its Nyquist value pN given by the Nyquist-Shannon
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Sampling theorem, (13.49). This is a surprising result as the momen-
tum can be resolved up to its Nyquist value, in apparent contradiction
to the Heisenberg Uncertainty Principle. Yet this result is known to be
correct as demonstrated by the Brillouin zones formulation of the solid
state in Condensed Matter Physics. Physically this result can be under-
stood from the sampling measurement operation which builds up the
momentum information during the sampling process, up to the Nyquist
limit pN . It must be remembered that the Nyquist limit depends on
the sampling rate δx as per the Nyquist-Shannon Sampling theorem,
(13.49). The Nyquist value must also satisfy (13.39) to avoid loss of
information in the sampling process, due to aliasing.

This improved understanding of the Heisenberg Uncertainty Princi-
ple and its sampling counterpart allows us to clarify its interpretation.
This is based on our understanding of the behavior of the Uncertainty
Theorem and the Nyquist-Shannon Sampling Theorem in other appli-
cations such as, for example, Digital Signal Processing.

§13.3.5 Measurement limitations and inherent limitations

It is important to differentiate between the measurement limitations
that arise from the properties of Fourier transform pairs previously con-
sidered, and any inherent limitations that may or may not exist for those
same variables independently of the measurement process. Quantum
theory currently assumes that the inherent limitations are the same as
the measurement limitations. This assumption needs to be re-examined
based on the improved understanding obtained from the effect of the
Uncertainty and Sampling Theorems in other applications.

The properties of Fourier transform pairs considered in the previous
sections do not mean that the underlying quantities we are measuring
are inherently limited by our measurement limitations. On the contrary,
we know from experience in other applications that our measurement
limitations do not represent an inherent limitation on the measured
quantities in Fourier Transform theory: for example, in Digital Sig-
nal Processing, a signal is continuous even though our measurement
of the signal results in discrete and aliased values of limited resolution
subject to the Nyquist-Shannon Sampling Theorem (analog and digital
representation of the signal). The effective width of the signal and its
transform are related by the Uncertainty theorem. Even though the
time and frequency evolution of a signal that we measure is limited by
our measurement limitations, the time domain and frequency domain
signals are both continuous, independently of how we measure them.
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The measurement limitations apply equally to the macroscopic level
and to the quantum level as they are derived from the properties of
Fourier transform pairs of variables which are the same at all scales.
However, at the quantum level, contrary to our macroscopic environ-
ment, we cannot perceive the underlying quantities other than by in-
strumented measurements. Hence during a measurement process, the
quantum level is limited by our measurement limitations. However,
assuming that these measurement limitations represent inherent limita-
tions and form a basic characteristic of the quantum level is an assump-
tion that is not justified based on the preceding considerations. Indeed,
the Nyquist-Shannon Sampling Theorem of Fourier Transform theory
shows that the range of values of variables below the Heisenberg Uncer-
tainty Principle value of h/2 is accessible under sampling measurement
conditions, as demonstrated by the Brillouin zones formulation of the
solid state in Condensed Matter Physics.

§13.3.6 Overlap of the Heisenberg Uncertainty Principle and
the Nyquist-Shannon Sampling Theorem

Brillouin zone analysis in the solid state in Condensed Matter Physics
demonstrates that one can arbitrarily measure k from 0 up to its Nyquist
limit, as long as the variable x is sampled at a constant rate (rather than
performing a single x measurement). The Nyquist-Shannon Sampling
Theorem can thus be considered to cover the range that the Heisenberg
Uncertainty Principle excludes.

However, one should recognize that the coverage results from two
disparate theorems, and one should be careful not to try to tie the two
Theorems at their value of overlap π. The reason is that one expression
involves the widths of conjugate variables as determined by (13.14) to
(13.16), while the other involves sampling a variable and truncating its
conjugate, or vice versa as determined by (13.45) and (13.48). The
equations are not continuous at the point of overlap π. Indeed, any
relation obtained would apply only at the overlap π and would have no
applicability or physical validity on either side of the overlap.

§13.3.7 Summary

In this section, we have shown that a consistent application of Fourier
Transform theory to the derivation of the Heisenberg Uncertainty Prin-
ciple requires that the R.H.S. of the Heisenberg inequality be h/2, not
~/2. This is confirmed when extending the analysis to the Brillouin
zones formulation of the solid state in Condensed Matter Physics.
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We have noted that the Heisenberg Uncertainty Principle, obtained
from the Uncertainty Theorem of Fourier Transform theory, arises be-
cause of the dependency of momentum on wave number that exists at
the quantum level. Quantum mechanical conjugate variables are Fourier
Transform pairs of variables.

We have shown from Fourier Transform theory that the Nyquist-
Shannon Sampling Theorem affects the nature of-measurements of qua-
ntum mechanical conjugate variables. We have shown that Brillouin
zones in the solid state in Condensed Matter Physics are a manifestation
of the Nyquist-Shannon Sampling Theorem at the quantum level.

We have noted that both the Sampling Theorem and the Uncertainty
Theorem are required to fully describe quantum mechanical conjugate
variables. The Nyquist-Shannon Sampling Theorem complements the
Heisenberg Uncertainty Principle. The overlap of these Theorems at
the h/2 equality value is a mathematical artifact and has no physical
significance.

We have noted that the Uncertainty Theorem and the Nyquist-
Shannon Sampling Theorem apply to Fourier Transform pairs of vari-
ables independently of the level at which the theorems are applied
(macroscopic or microscopic). Conjugate variable measurement limi-
tations due to these Theorems affect how we perceive quantum level
events as these can only be perceived by instrumented measurements
at that level. However, based on our analysis, quantum measurement
limitations affect our perception of the quantum environment only, and
are not inherent limitations of the quantum level, as demonstrated by
the Brillouin zones formulation of the solid state in Condensed Matter
Physics.

The application of the Nyquist-Shannon Sampling Theorem to the
quantum level offers the possibility of investigating new experimental
conditions beyond the Brillouin zone example from the solid state in
Condensed Matter Physics considered in this section, allowing a unique
vista into a range of variable values previously considered unreachable
due to the Heisenberg Uncertainty Principle. Regular sampling of po-
sition allows us to determine momentum below its Nyquist limit, and
similarly the regular sampling of momentum will allow us to determine
position below its Nyquist limit.

§13.4 The EPR paradox and Bell’s inequality

Bell’s inequality [19,135,137,142] sets constraints for the existence of lo-
cal hidden variable theories in quantum mechanics. Bohr, of the Copen-
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hagen probabilistic school, and Einstein, of the objective reality school,
who both contributed to the foundation of quantum mechanics, did not
agree on its interpretation – their views and correspondence on the topic
are well documented in many books [163,232,332,372].

In 1935, Einstein, Podolsky and Rosen published a paper [100] that
aimed to show that quantum mechanics was not a complete description
of physical reality. Bohr provided a response to the challenge [29], but
the EPR paper remained an argument for hidden variables in quan-
tum mechanics. In 1964, Bell [19] published an inequality that imposed
constraints for local hidden variable theories to be valid in quantum
mechanics. The experiments performed by Aspect et al [6] with en-
tangled photons confirmed that Bell’s inequality was violated within
experimental errors, taken to mean that local hidden variable theories
are not valid in quantum mechanics. Only non-local hidden variable
theories are possible, based on these results.

In this section, we investigate the applicability of Bell’s inequality,
based on the assumptions used in its derivation.

§13.4.1 Bell’s inequality

Bell’s derivation [19] considers a pair of spin one-half particles of spin
σ1 and σ2 respectively, formed in the singlet state, and moving freely in
opposite directions. Then σ1 · a is the measurement of the component
of σ1 along some vector a, and similarly for σ2 · b along some vector b.
Bell then considers the possibility of a more complete description using
hidden variable parameters λ.

He writes down the following equation for the expectation value of
the product of the two components σ1 · a and σ2 · b with parameters λ:

P (a,b) =

∫
dλ ρ(λ)A(a, λ)B(b, λ) (13.52)

where
A(a, λ) = ±1 and B(b, λ) = ±1 (13.53)

and ρ(λ) is the probability distribution of parameter λ. This should
equal the quantum mechanical expectation value

〈σ1 · a σ2 · b〉 = −a · b . (13.54)

Bell says that it does not matter whether λ is “a single variable or a
set, or even a set of functions, and whether the variables are discrete or
continuous” [19]. He uses a single continuous parameter described by
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a probability distribution. In a later paragraph, he states that (13.52)
represents all kinds of possibilities, such as any number of hidden vari-
ables, two sets of hidden variables dependent on A and B, or even as
initial values of the variables λ at a given time if one wants to assign
“dynamical significance and laws of motion” [19] to it. However, it is
doubtful that the probability distribution ρ(λ) can be used to represent
all possible theories of hidden variables.

Indeed, the basic limitation of (13.52) with its use of a probability
distribution ρ(λ) is that it imposes a quantum mechanical calculation
representation on the analysis. Other quantum level dynamic theories,
which we will refer to as hidden variable dynamic theories, could obey
totally different dynamic principles, in which case, (13.52) would not be
applicable. Eq. (13.52) is only applicable to a specific class of hidden
variable theories that can be represented by that equation, which Jaynes
[182] refers to as Bell theories. In the following sections, we consider
examples of quantum dynamical processes that cannot be represented
by (13.52) or by the probability distribution ρ(λ) used in (13.52).

§13.4.2 Measurement limitations and inherent limitations

It is important to note that Bohr’s responses to Einstein’s gedanken
experiments were based on measurements arguments, which acted as a
barrier to any further analysis beyond that consideration. As pointed
out by Jaynes [183], Einstein and Bohr “were both right in the essentials,
but just thinking on different levels. Einstein’s thinking [was] always
on the ontological level traditional in physics; trying to describe the
realities of Nature. Bohr’s thinking [was] always on the epistemological
level, describing not reality but only our information about reality”.

As discussed in [237] and in previous section §13.3.5, the Heisenberg
Uncertainty Principle arises because x and p form a Fourier transform
pair of variables at the quantum level due to the momentum p of a
quantum particle being proportional to the de Broglie wave number k of
the particle. It is a characteristic of quantum mechanics that conjugate
variables are Fourier transform pairs of variables.

As we have noted, and it deserves to be repeated, it is thus important
to differentiate between the measurement limitations that arise from
the properties of Fourier transform pairs, and any inherent limitations
that may or may not exist at the quantum level for those same vari-
ables, independently of the measurement process. Conjugate variable
measurement limitations affect how we perceive quantum level events
as those can only be perceived by instrumented measurements at that
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level. However, as shown in [237] and in previous section §13.3.5, conju-
gate variable measurement limitations affect only our perception of the
quantum environment, and are not inherent limitations of the quantum
level as seen in the following.

The properties of Fourier transform pairs are the same at all scales,
from the microscopic to the macroscopic. We know from experience in
other applications that our measurement limitations do not represent
an inherent limitation on the measured quantities in Fourier Transform
theory as for example in Digital Signal Processing, where a signal is
continuous even though our measurement of the signal results in discrete
and aliased values of limited resolution subject to the Nyquist-Shannon
Sampling Theorem. Even though the time and frequency evolution of
a signal that we measure is limited by our measurement limitations,
the time domain and frequency domain signals are both continuous and
fully defined, independently of how we measure them.

Furthermore, the Nyquist-Shannon Sampling Theorem of Fourier
transform theory allows access to the range of values of variables below
the Heisenberg Uncertainty Principle limit under sampling measurement
conditions, as demonstrated by the Brillouin zones formulation of the
solid state in Condensed Matter Physics [237] [382, see p. 21] [55, see
p. 100]. This shows that local hidden variables are possible at the quan-
tum level, independently of the measurement process. The dynamical
process in this case is masked by the properties of the Fourier transform.

§13.4.3 Bohmian mechanics and STCED wave-particle
duality

In this section we take a second look at wave-particle duality in STCED,
in particular with respect to Bohmian mechanics and hidden variables
theory. The Elastodynamics of the Spacetime Continuum (STCED)
[238] has similarities to Bohmian mechanics in that the solutions of
the STCED wave equations are similar to Louis de Broglie’s “double
solution” [75, 76]. Bohmian mechanics also known as de Broglie-Bohm
theory [90,136,160] is a theory of quantum physics developed by David
Bohm in 1952 [28], based on Louis de Broglie’s original work on the
pilot wave, that provides a causal interpretation of quantum mechanics.
It is empirically equivalent to orthodox quantum mechanics, but is free
of the conceptual difficulties and the metaphysical aspects that plague
the interpretation of quantum theory.

Interestingly, Bell was aware of and a proponent of Bohmian me-
chanics when he derived his inequality [21]:
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Bohm showed explicitly how parameters could indeed be introdu-
ced, into nonrelativistic wave mechanics, with the help of which
the indeterministic description could be transformed into a deter-
ministic one. More importantly, in my opinion, the subjectivity
of the orthodox version, the necessary reference to the ‘observer,’
could be eliminated... I will try to present the essential idea...
so compactly, so lucidly, that even some of those who know they
will dislike it may go on reading, rather than set the matter aside
for another day.

In Bohmian mechanics, a system of particles is described by a combi-
nation of the wavefunction from Schrodinger’s equation and a guiding
equation that specifies the location of the particles. “Thus, in Bohmian
mechanics the configuration of a system of particles evolves via a deter-
ministic motion choreographed by the wave function” [136] such as in
the two-slit experiment. We will see a similar behaviour in the STCED
wave equations below. Bohmian mechanics is equivalent to a non-local
hidden variables theory.

In the Elastodynamics of the Spacetime Continuum, as discussed
in [244] and shown in Chapter 12, energy propagates in the spacetime
continuum by longitudinal (dilatation) and transverse (distortion) wave
displacements. This provides a natural explanation for wave-particle
duality, with the transverse mode corresponding to the wave aspects
of the deformations and the longitudinal mode corresponding to the
particle aspects of the deformations.

The displacement uν of a deformation from its undeformed state
can be decomposed into a longitudinal component uν‖ and a transverse
component uν⊥. The volume dilatation ε is given by the relation ε =
u‖

µ
;µ [238]. The wave equation for uν‖ describes the propagation of

longitudinal displacements, while the wave equation for uν⊥ describes the
propagation of transverse displacements in the spacetime continuum.
The uν displacement wave equations can be expressed as a longitudinal
wave equation for the dilatation ε and a transverse wave equation for
the rotation tensor ωµν [238].

Particles propagate in the spacetime continuum as longitudinal wave
displacements. Mass is proportional to the volume dilatation ε of the
longitudinal mode of the deformation [238, see (32)]. This longitudinal
mode displacement satisfies a wave equation for ε, different from the
transverse mode displacement wave equation for ωµν . This longitudinal
dilatation wave equation for ε is given by [238, see (204)]

∇2ε = − k̄0

2µ̄0 + λ̄0
uν⊥ε;ν (13.55)
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where µ̄0 and λ̄0 are the Lamé constants and k̄0 the elastic volume
force constant of the spacetime continuum. It is important to note that
the inhomogeneous term on the R.H.S. includes a dot product coupling
between the transverse displacement and the volume dilatation for the
solution of the longitudinal dilatation wave equation for ε.

The transverse distortion wave equation for ωµν [238, see (210)]

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1

2

k̄0

µ̄0
(ε;µuν⊥ − ε;νuµ⊥) (13.56)

also includes a R.H.S. coupling, in this case a cross product, between the
transverse displacement and the volume dilatation for the solution of the
transverse distortion wave equation for ωµν . The transverse distortion
wave ωµν corresponds to a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum consists of
a combination of longitudinal and transverse waves. The coupling be-
tween ε;µ and uν⊥ on the R.H.S. of both wave equations explains the be-
havior of electrons in the double slit interference experiment. It shows
that even though the transverse wave is the source of the interference
pattern in double slit experiments, the longitudinal dilatation wave,
which behaves as a particle, follows the interference pattern dictated by
the transverse distortion wave as observed experimentally.

The longitudinal dilatation wave behaves as a particle and goes
through one of the slits, even as it follows the interference pattern dic-
tated by the transverse distortion wave, as observed experimentally [150,
see in particular Figure 4] and as seen in the coupling between ε;µ and
uν⊥ in (13.55) and (13.56) above. This behaviour is the same as that in
Bohmian mechanics seen above. These results are in agreement with the
results of the Jánossy-Naray, Clauser, and Dagenais and Mandel experi-
ments on the self-interference of photons and the neutron interferometry
experiments performed by Bonse and Rauch [322, see pp. 73-81].

As mentioned previously, the solutions of the STCED wave equa-
tions are similar to Louis de Broglie’s “double solution”. The longitu-
dinal wave is similar to the de Broglie “singularity-wave function” [75].
In STCED however, the particle is not a singularity of the wave, but is
instead characterized by its mass which arises from the volume dilata-
tion propagating as part of the longitudinal wave. There is no need for
the collapse of the wavefunction Ψ, as the particle resides in the lon-
gitudinal wave, not the transverse one. A measurement of a particle’s
position is a measurement of the longitudinal wave, not the transverse
wave.
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In addition, |Ψ|2 represents the physical energy density of the trans-
verse (distortion) wave. It corresponds to the transverse field energy of
the deformation. It is not the same as the particle, which corresponds to
the longitudinal (dilatation) wave displacement and is localized within
the deformation via the massive volume dilatation. However, |Ψ|2 can
be normalized with the system energy and converted into a probability
density, thus allowing the use of the existing probabilistic formulation
of quantum theory.

The dynamical process, although it has some similarities to Bohmian
mechanics, is also different from it as it is centered on longitudinal
(particle) and transverse (wavefunction) wave equations derived from
the properties of the spacetime continuum of general relativity. It is
thus deterministic and causal as is general relativity.

§13.4.4 Physical influence versus logical inference

We have considered two examples of quantum dynamical processes whe-
re the starting equation (13.52) and the probability distribution ρ(λ)
used in (13.52) do not apply to the situation. We now examine in greater
details the probabilistic formulation of Bell’s inequality derivation of
section §13.4.1 to better understand its limitations.

Physicist E. T. Jaynes was one of the pioneers of the usage of prob-
ability theory as an extension of deductive logic. His textbook “Prob-
ability Theory: The Logic of Science” [184] published posthumously is
an invaluable resource for scientists looking to understand the scientific
use of probability theory as opposed to the conventional mathematical
measure theory. As he states in [182],

Many circumstances seem mysterious or paradoxical to one who
thinks that probabilities are real physical properties existing in
Nature. But when we adopt the “Bayesian Inference” viewpoint
of Harold Jeffreys [185,186], paradoxes often become simple plat-
itudes and we have a more powerful tool for useful calculations.

Jaynes clarifies this approach to probability theory and contrasts it to
frequencies as follows [182]:

In our system, a probability is a theoretical construct, on the epis-
temological level, which we assign in order to represent a state of
knowledge, or that we calculate from other probabilities accord-
ing to the rules of probability theory. A frequency is a property
of the real world, on the ontological level, that we measure or
estimate.

The probability distributions used for inference do not describe a prop-
erty of the world, only a certain state of information about the world,
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which provides us with the means to use prior information for analysis
as powerfully demonstrated in numerous applications in [182–184].

The Einstein–Podolsky–Rosen (EPR) paradox and Bell inequality in
quantum theory is one of the examples examined by Jaynes in [182]. In
quantum mechanics, the belief that probabilities are real physical prop-
erties leads to quandaries such as the EPR paradox which lead some to
conclude that there is no real world and that physical influences travel
faster than the speed of light, or worse (“a spooky kind of action at
a distance” as Einstein called it). As Jaynes points out, it is impor-
tant to note that the EPR article did not question the existence of the
correlations, which were expected, but rather the need for a physical
causation instead of what he calls “instantaneous psychokinesis”, based
on experimenter decisions, to control distant events.

Jaynes’ analysis of the derivation of Bell’s inequality uses the fol-
lowing notation for conditional probabilities which corresponds to Bell’s
notation as follows:

P (AB | ab) = P (a,b) (13.57)

P (A | aλ) = A(a, λ) , (13.58)

such that Bell’s equation (13.52) above becomes

P (AB | ab) =

∫
dλ ρ(λ)P (A | aλ)P (B | bλ) . (13.59)

However, as Jaynes notes, the fundamentally correct relation for P (AB |
ab) according to probability theory should be

P (AB | ab) =

∫
dλP (AB | abλ)P (λ | ab) . (13.60)

Assuming that knowledge of the experimenters’ choices gives no in-
formation about λ, then one can write

P (λ | ab) = ρ(λ) . (13.61)

The fundamentally correct factorization of the other probability factor
of (13.60), P (AB | abλ), is given by [182]

P (AB | abλ) = P (A | abλ)P (B |Aabλ) . (13.62)

However, as Jaynes notes, one could argue as Bell did that EPR de-
mands that A should not influence events at B for space-like intervals.
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This requirement then leads to the factorization used by Bell to repre-
sent the EPR problem

P (AB | abλ) = P (A | aλ)P (B | bλ) . (13.63)

Nonetheless, the factorization (13.63) disagrees with the formalism of
quantum mechanics in that the result of the measurement at A must
be known before the correlation affects the measurement at B, i.e.
P (B |Aab). Hence it is not surprising that Bell’s inequality is not sat-
isfied in systems that obey quantum mechanics.

Two additional hidden assumptions are identified by Jaynes in Bell’s
derivation, in addition to those mentioned above:

1. Bell assumes that a conditional probability P (X |Y ) represents
a physical causal influence of Y on X. However, consistency re-
quires that conditional probabilities express logical inferences not
physical influences.

2. The class of Bell hidden variable theories mentioned in section
§13.4.1 does not include all local hidden variable theories. As
mentioned in that section, hidden variable theories don’t need to
satisfy the form of (13.52) (or alternatively (13.59)), to reproduce
quantum mechanical results, as evidenced in Bohmian mechanics.

Bell’s inequality thus applies to the class of hidden variable theories
that satisfy his relation (13.52), i.e. Bell hidden variable theories, but
not necessarily to other hidden variable dynamic theories.

The superluminal communication implication stems from the first
hidden assumption above which shows that what is thought to travel
faster than the speed of light is actually a logical inference, not a physical
causal influence. As summarized by Jaynes [182],

The measurement at A at time t does not change the real physical
situation at B; but it changes our state of knowledge about that
situation, and therefore it changes the predictions we are able to
make about B at some time t′. Since this is a matter of logic
rather than physical causation, there is no action at a distance
and no difficulty with relativity.

There is simply no superluminal communication, as required by spe-
cial relativity. Assuming otherwise would be similar to Pauli assuming
that the established law of conservation of energy mysteriously fails in
weak interactions instead of successfully postulating a new particle (the
neutrino).
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§13.4.5 Quantum confusion

In this section, we have investigated the applicability of Bell’s inequal-
ity, based on the assumptions used in its derivation. We have considered
two examples of hidden variable dynamic theories that do not satisfy
Bell’s initial equation (13.52) used to derive his inequality, and conse-
quently for which Bell’s inequality is not applicable: one based on the
Nyquist-Shannon Sampling Theorem of Fourier transform theory and
the other based on the wave-particle solutions of the STCED wave eq-
uations which are similar to Louis de Broglie’s “double solution”. We
highlight two hidden assumptions identified by Jaynes [182] that limit
the applicability of Bell’s inequality, as derived, to Bell hidden variable
theories and that show that there are no superluminal physical influ-
ences, only logical inferences.

We close with a quote from Jaynes [184, see p. 328] that captures
well the difficulty we are facing:

What is done in quantum theory today... when no cause is ap-
parent one simply postulates that no cause exists – ergo, the
laws of physics are indeterministic and can be expressed only in
probability form.

Thus we encounter paradoxes such as seemingly superluminal physical
influences that contradict special relativity, and “spooky action at a
distance” is considered as an explanation rather than working to under-
stand the physical root cause of the problem. This section shows that,
in this case, the root cause is due to improper assumptions, specifically
the first hidden assumption identified by Jaynes highlighted in section
§13.4.4 above, that is assuming that a conditional probability represents
a physical influence instead of the physically correct logical inference.
In summary,

He who confuses reality with his knowledge of reality generates
needless artificial mysteries. [182]

§13.5 Quantum entanglement

Quantum entanglement is a quantum mechanical property of a com-
posite quantum system consisting of two or more subsystems (such as
particles), describing a situation where a quantum subsystem is linked
to another via a specific process leading to correlations between observ-
able physical properties of the subsystems. The two-particle spin-singlet
state

|ψ−〉 =
1√
2

(
| ↑1↓2 〉 − | ↓1↑2 〉

)
(13.64)
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is an example of state entanglement in bipartite systems [177, p. 19].
Schrödinger first introduced the term entangled state to describe the

non-separable pure states of quantum systems [315], [177, p. 17]. Con-
sider for example the emission of two photons of opposite polarization
from a given process, such as the stimulated emission of polarization-
entangled photons (see for example [151,210]). The emitted photons are
then conceived of as “entangled” pure states. The system is described
by the wavefunction [151]

|ψ〉 =
1√
2

(
| �1 〉 | 	2 〉+ | 	1 〉 | �2 〉

)
(13.65)

where �i and 	i represent the right-hand and left-hand circularly po-
larized photons for i = 1 or 2. This wavefunction represents what
we know of the entangled system, or alternatively represents our lack
of knowledge of the specific properties of each photon that is emitted.
All we know is that if one emitted photon is right-hand circularly po-
larized, then the other will be left-hand circularly polarized, and vice
versa. Eq. (13.65) is a statement of this situation.

The predominant interpretation (the orthodox viewpoint [213]) is
that the wavefunction (13.65) represents a physical description of the
emitted photons in an unresolved evanescent state, and that once a mea-
surement is performed on one of them, the wavefunction collapses, the
measured photon’s actual properties are then known and an instanta-
neous propagation of that information is perceived by the other photon
so that it can assume the complementary properties required by the
process – “spooky action at a distance” (SAAD) as Einstein called it,
a process that some physicists like to think of as quantum magic, an
approach that speaks more of metaphysics than physics. The reasons
for the acceptance of this description will be considered in greater detail
in Section §13.6.

Over the past decades, experiments have been devised to extend
the range of quantum entanglements, to the point where classical scales
have been achieved. This includes both the size of entangled objects
(e.g. [5,22,86,217,266]) and the distances over which entanglement has
been maintained (e.g. [156,380]).

These are particularly stunning results as, according to the ortho-
dox interpretation, any interaction of one of the entangled components
with its environment will collapse the entanglement. The probability of
preventing such interactions and preserving entanglements over classical
sizes and distances is exceedingly small. As noted by Jaeger [177, p. 20]
“Indeed, pure such states of two-particle systems are exceptional rather
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than typical in the world; typically, a system very soon interacts with
a number of other systems, so that, even if it were prepared in a pure
state, it is typically described by a mixed state”.

The probability that a photon can travel a distance x without inter-
action is given by [349] [162, Section 3.3.1] [163, p 304]

Pno−int(x) = exp(−np σ x) (13.66)

where np is the particle number density and σ is the total photon in-
teraction cross-section including absorption and scattering. For prop-
agation of photons in the atmosphere, np ∼ 2.5 × 1025 m−3 [71] and
σ ∼ 180 barn/molecule ≡ 1.8 × 10−26 m2/molecule [289]. Using these
values in (13.66), the no-interaction probability becomes

Pno−int(x) = e−0.45 x (13.67)

where x is in meters. We see that for classical distances x, the proba-
bility Pno−int(x) increasingly becomes very small. For example,

Pno−int(1 m) = 0.64

Pno−int(10 m) = 0.011

Pno−int(100 m) = 2.9× 10−20

Pno−int(1 km) = 3.6× 10−196 .

(13.68)

For the value of 143 km of [156, 380] the probability that a photon can
travel such a distance without interaction is astronomically small.

Hence the probability of preserving entanglements over classical sizes
and distances and preventing the entanglement from collapsing due to
physical interactions is exceedingly small. The question has to be raised:
in light of these successful classical-scale experiments, are we currently
misunderstanding the quantum entanglement process such that instead
of a fragile entanglement situation as the above considerations indicate,
we can derive a quantum entanglement process that leads to a physi-
cally robust entanglement situation that persists to classical scales as
observed?

§13.5.1 Quantum entanglement questions

Questions have been raised concerning entanglement and its extension
to the classical (or macro) domain [38]. There is no doubt that some
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processes generate particle or photon pairs that have a definite rela-
tionship (correlation) between them (which are referred to as being
entangled) and these relationships are confirmed experimentally. At
stake here is the interpretation of the quantum entanglement process,
and the impact of the understanding of this process on the development
and technological applications of this quantum mechanical process –
a misinterpretation can lead to considerations that are not physically
realistic.

Questions have also been raised on the limited applicability of Bell’s
inequality [182,247,381], based on the assumptions used in its derivation
as seen in previous section §13.4. Bell [18] uses a single continuous
parameter λ described by a probability distribution ρ(λ): the basic
limitation of this approach is that it imposes a quantum mechanical
calculation approach on the analysis. Bell’s derivation is only applicable
to a specific class of hidden variable theories that can be represented
by his starting equation and assumptions, which Jaynes [182] refers to
as Bell theories. Some hidden variable theories don’t need to satisfy
Bell’s starting equation to reproduce quantum mechanical results, as
evidenced by Bohmian mechanics [90]. Bell’s inequality is thus found
to apply to a limited set of circumstances and situations, not to every
quantum system. Selleri [322] provides a comprehensive review of the
proofs of Bell’s inequality.

Actual experimental demonstration of entanglement is a challenge.
Entanglement experiments detect both entangled components within
the same time window (see Section §13.6.3), so there is no way to con-
firm the presence or absence of SAAD – it is assumed to be present
purely based on the predominant interpretation discussed in Section
§13.5. Zhao [381] has proposed various experiments to clarify the physi-
cal properties of entanglement, including one to determine if the collapse
of the entangled wavefunction due to the measurement of one compo-
nent causes the transformation of the other component due to SAAD as
is supposed in the orthodox interpretation. No reports of these experi-
ments having been performed have surfaced – their execution should be
given a high priority to help us better understand the phenomenon of
entanglement.

§13.5.2 Literal or physical interpretation?

To be able to answer the question posed at the end of the previous
Section §13.5 on a physically robust entanglement process, we need to
have a better understanding of the physical description of quantum me-
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chanics and of its transition to the classical domain. The orthodox view
in the standard formalism of quantum mechanics is effected (done) via
entanglement, wavefunction collapse and decoherence [187]. This is a lit-
eral interpretation of the Hilbert space mathematical theory of quantum
mechanics developed by von Neumann and Dirac [83,361]. However, as
noted by Home and Whitaker [163, see p. 309], “[t]o conclude, there are
aspects of classical reality pertaining to the macrophysical world that
cannot be made consistent with quantum theory in any limit, at least
using the standard formalism and decoherence models.”

This thus leads us to consider other approaches to understand this
problem. There are other interpretations of quantum mechanics which
satisfy its principles – the book by Home [162] provides an excellent
exposition of the conceptual foundations of quantum physics. As is
well-known [335], the various formulations of quantum mechanics pro-
vide the same results (Schrödinger wave equation, Heisenberg matrix
formulation, Dirac standard formalism, Feynman path integral, Bohm
quantum potential among others) – the differences between them lie
in the insights that these different formulations can provide. To un-
derstand the process under discussion, what is required is a physical
interpretation based on a formulation of quantum mechanics that gives
precedence to the physical rather than the mathematical aspects of the
theory, and of its transition to the classical domain.

A physical theory of quantum mechanics which offers a logical tran-
sition into classical physics was first developed before it was displaced by
the preferred standard formalism. This initial theory was instrumental
in the development of quantum mechanics. Here we briefly recap this
approach.

In classical mechanics [218], the phase space description of a system
is given in terms of generalized coordinates q = {qi ; i = 1, 2, · · · , N}
and canonical momenta p = {pi ; i = 1, 2, · · · , N} and its time evolu-
tion is described in terms of its Hamiltonian H(q, p) using Hamilton’s
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (13.69)

The Lagrangian of the system determines its dynamics in configura-
tion space in terms of the coordinates {qi} through the Euler-Lagrange
equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 , i = 1, 2, · · · , N . (13.70)

If a statistical description of the system is desired, the state of the
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system is described in terms of a probability function P (q, p) defined on
the phase space, and its time evolution is given by

dP

dt
= {P,H}+

∂P

∂t
, (13.71)

where the Poisson bracket {P,H} is given by

{P,H} =
∑
i

(
∂P

∂qi

∂H

∂pi
− ∂H

∂qi

∂P

∂pi

)
. (13.72)

The quantum mechanical description of the system derived from the
foregoing considerations sees the dynamical variables (q, p) now inter-
preted as operators (q̂, p̂) acting on complex wavefunctions ψ(q) gener-
ating observables and satisfying the commutation relation

[q̂i, p̂j ] = i~ δij , (13.73)

where ~ is Planck’s reduced constant. This transition from a classical
to a quantum mechanical description, known as canonical quantization,
is effected (done) by the replacement of classical variables by quantum
operators according to

qi → q̂i , pi → p̂i (13.74)

and (classical) Poisson brackets by (quantum) commutators according
to

{A,B} → 1

i~
[Â, B̂] . (13.75)

The close relation between the classical and quantum dynamical equa-
tions is evident in the similarity between the classical equation of motion
(13.71) and the quantum equation of motion as derived by Heisenberg,

d

dt
〈A〉 =

1

i~

〈
[Â, Ĥ]

〉
+

〈
∂A

∂t

〉
. (13.76)

This result is a manifestation of Ehrenfest’s theorem [12, see pp. 389–
394] which holds that quantum mechanical expectation values 〈A〉 obey
the classical equations of motion. This similarity points to the relation
between the classical probability functions defined on the (q, p) phase
space and the quantum mechanical expectation values obtained from the
(q̂, p̂) operators acting on the complex wavefunctions ψ(q) representing
our knowledge of the system, which in the end obey the classical equa-
tions of motion.
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This approach provides a physical interpretation that can be used to
better understand the classical scaling of quantum entanglement. One
of the characteristics of the above considerations is the physical reality of
the underlying quantum mechanical system as it evolves into a classical
system. In the following section, we consider the nature of quantum
states as this has an impact on the robustness of entangled states.

§13.5.3 The nature of quantum states

Jaeger [177, pp. 19–22] clearly communicates the importance of under-
standing the difference between separable (product) and non-separable
(entangled) states. Over the past quarter century, the definition of
entanglement has been extended, from information theory, to include
mixed states that are separable when given as combination of products
of subsystem states. Separable subsystem states are entirely uncorre-
lated (not entangled), while the entangled mixed states are the insep-
arable states – however, “[t]he problem of determining whether or not
a given state of a composite system is entangled is known as the sep-
arability problem.” [177, p. 21]. These entangled mixed states tend to
somewhat muddle the entanglement water.

When considering separable (product) states, as noted by Jaeger
[177, p. 21], “...the outcomes of local measurements on any separable
state can be simulated by a local hidden-variables theory, that is, the
behavior of systems described by such states can be accounted for using
common-cause explanations”. In other words, separable states can have
definite physical properties when they are prepared.

It is important to note that Bell’s inequality is violated only by
entangled (non-separable) states. As noted by Jaeger [177, p. 22], “[t]he
quantum states in which correlations between [components] A and B
can violate a Bell-type inequality are called Bell correlated, or EPR
correlated. If a bipartite pure state is entangled, then it is Bell correlated
with certainty, as was first pointed out by Sandu Popescu and Daniel
Rohrlich [293] and by Nicolas Gisin in the early 1990s [133]. However,
no simple logical relation between entanglement and Bell correlation
holds for the mixed entangled states”.

Home [162, pp. 203–209] also makes the point. He concludes “an
arbitrary mixture of factorable or product state vectors always satisfies
Bell’s inequality” as first shown by [50, 165], while “ [f]or any given
nonfactorable state vector of correlated quantum systems it is always
possible to choose observables so that Bell’s inequality is violated by
quantum mechanical predictions.” [162, pp. 205, 208] which was first
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demonstrated by [133] as seen previously.
Hence we have two different types of quantum states depending

on whether they are product (separable) or entangled (non-separable)
states. Separable states are consistent with local realism – they can be
physical and local, while entangled states are not consistent with local
realism, based on Bell’s inequality. It is surprising to obtain two dia-
metrically opposed types of behaviours of quantum states. The normal
reaction would be that there should be one consistent behaviour across
all states, that the entangled states’ behaviour trumps the separable
states’ behaviour, and hence quantum states are not consistent with
local realism. However, this approach imposes conditions on product
(separable) states that are simply not applicable to them.

In addition, as seen in Section §13.5.1, questions have been raised
about Bell’s inequality, and this difference in behaviour between sepa-
rable and entangled states may indicate that there is a problem with
our understanding of Bell’s inequality and of entanglement in general.
We explore this question in greater details in the next section, and in
doing so, show that we can in fact derive a robust entanglement process
as observed in the classical scaling of quantum entanglement.

§13.6 A robust entanglement process

The considerations of section §13.5.2 reinforce the underlying physical
building blocks of quantum mechanics: the superposition principle,
Heisenberg’s uncertainty principle and wave-particle duality. These are
crucial to physically understand the entanglement process and demon-
strate why it is a robust process. While the superposition property re-
sults from the linear wave equations used in the theory and Heisenberg’s
uncertainty principle results from the fact that quantum mechanical
canonically conjugate dynamical variables are Fourier transform pairs
of variables [237], wave-particle duality is a purely quantum mechan-
ical property and is undoubtedly the most important of these. The
truly quantum mechanical processes such as the double-slit interference
pattern, potential barrier tunneling, and in particular the entanglement
process as we will see in this section, depend on the quantum mechanical
phenomenon of wave-particle duality. It is critical to analyze quantum
phenomena in terms of wave-particle duality to fully understand them.

§13.6.1 Non-existence of hidden-variables?

Home [162] does an extensive review of all proofs of the non-existence of
hidden-variable theories in quantum mechanics and concludes “[h]aving
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established that contrary to folklore, no a priori compelling argument
excludes the possibility of contextual hidden variable theories, the en-
tire enterprise of developing a more complete description of quantum
phenomena beyond the ambit of the standard interpretation becomes
logically legitimate”, and provides a reference to an example: “A ped-
agogically instructive model example of how a contextual hidden vari-
able model can reproduce the standard quantum mechanical results is
discussed by [164], who show in detail how such a model can provide
an objectively real treatment of decaying, oscillating, and regenerating
kaons” [162, p. 37].

A contextual hidden variable model is one “in which the value ob-
tained by a measurement is a function of the premeasurement value
as well as the measurement context.” [162, pp. 195–196]. Furthermore,
“Given that a contextual hidden variable theory can provide an objec-
tively real description of individual microphysical events, such a model
is often referred to as a realistic interpretation of quantum mechan-
ics.” [162, p. 37].

In addition, the basic deficiency of hidden-variable non-existence
proofs is that they are derived within the context of quantum mechanics.
By its very nature, quantum mechanics is a probabilistic theory – so it is
not surprising that such “proofs” find that deterministic results cannot
be derived from quantum mechanics. The reader is referred to [247]
for an example of this approach in the assumptions used by Bell in the
derivation of his inequality, which leads to the conclusion that “it is not
surprising that Bell’s inequality is not satisfied in systems that obey
quantum mechanics”.

It is important to note that the label “hidden-variable theories” is
attached indiscriminately to more complete theories of quantum me-
chanics. However, as in the case of Bohmian mechanics, a deterministic
quantum physics theory does not need to include hidden variables. The
proper path to such a theory is to start outside of quantum mechan-
ics, derive a deterministic microscopic theory, and show that quantum
mechanics can be derived from it – see [244] for an example of this
approach.

Home [162] continues “[t]here are strong physical grounds for sus-
pecting that the standard framework (formalism and interpretation) of
quantum mechanics is fundamentally inadequate, though its empirical
success to date is unquestionably impressive” [162, p. 37]. Home identi-
fies the following aspects of quantum mechanics that are not well under-
stood in the standard framework: the quantum measurement paradox,
the classic limit of quantum mechanics, nonlocality of quantum mechan-



§13.6 A robust entanglement process 249

ics arising from entanglement, and wave-particle duality [162, pp. 37-38].
These are the very factors at play in the robustness of the entanglement
process as discussed in this paper.

§13.6.2 Wave-particle q-objects

Entanglement experiments compare the behaviour of classical particles
with quantum mechanical results that are unknowingly assumed to rep-
resent the particle aspect of the wave-particle quantum object (which
for brevity we refer to as a “q-object”). It is important to realize
that a q-object does not behave as a classical object due to its explicit
wave-particle nature. For the wave aspect of a macroscopic object, its
de Broglie wavelength is extremely small and its effect is negligible –
however, in the quantum mechanical domain the impact of the wave-
particle nature of the q-object becomes significant as observed in quan-
tum physics. It is interesting to note that the impact of wave-particle
duality has been observed at mesoscopic scales as reported in [5]. Thus
a q-object is an object where the effect of wave-particle duality cannot
be neglected.

In entanglement experiments, the quantum mechanical results ob-
tained are from the wave aspect of the wave-particle q-object, just
like the interference pattern in double-slit experiments. Hence, the
results obtained in Bell experiments [6] and other entanglement ex-
periments devised since then are the quantum mechanical results of
the wave aspect of the wave-particle q-objects which are different from
the particle results, again as seen in double-slit experiments (classical
double-particle pattern versus quantum mechanical wave interference
pattern). Similarly in Hardy experiments [148], the non-zero proba-
bility P (A1, B1) [143] obtained in contradistinction to the local realist
probability of zero is due to the wave aspect of the wave-particle q-
object.

Wave-particle duality is still somewhat of a mystery in quantum
mechanics. It is still understood mostly in terms of Bohr’s principle
of wave-particle complementarity which holds that the wave aspect
and the particle aspect of an object are complementary aspects of a
quantum object [162, see Chapter 5]. However, wave-particle duality
arises naturally in the theory of Spacetime Continuum Elastodynamics
(STCED) [238, 254] and is covered in greater detail in Chapter 12 and
in [244]. This model provides a natural explanation for wave-particle
duality, where an object, represented as a spacetime deformation, is
composed of transverse and longitudinal modes, with the transverse
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mode corresponding to the wave aspects of the deformation and the
longitudinal mode corresponding to the particle aspects of the deforma-
tion.

A wave-particle q-object is thus a hybrid object consisting of both
wave and particle aspects which manifest themselves differently in ex-
periments, depending on the type of measurement. We examine the
experiments of Aspect et al. [7, 8, 139] using single-photon states cov-
ered in Home [162, Section 5.4] to demonstrate how they can be fully
understood in terms of STCED wave-particle duality.

In the “light pulses on a beam splitter” experiment (Home’s Fig. 5.2),
for a pulsed photodiode light pulse, the wave aspect is expected to ap-
ply from the STCED wave-particle model – indeed, as Home comments
“[t]he striking feature is that even under this apparently quantum con-
dition, light pulses arriving at the beam splitter continued to behave as
classical waves, and the inequality [PC ≥ PTPR] was never observed to
be violated” [162, p. 288], where PT is the probability that a single count
is transmitted, PR is the probability that a single count is reflected, and
PC is the probability of a coincidence for that single count.

For a source of single photon pulses from an excited atom transition,
using the same experimental setup, the particle aspect is expected to
apply from the STCED wave-particle model – indeed, “a clear-cut vi-
olation of the inequality [PC ≥ PTPR]” was observed. “This confirmed
single particle behavior of the single-photon states.” [162, p. 288].

The experiment was then modified as per Home’s Fig. 5.3 by remov-
ing the detectors on either side of the beam splitter and recombining
the two beams using mirrors and a second beam splitter. Using the
source of single photon pulses from an excited atom transition as previ-
ously, this time the wave aspect is expected to apply from the STCED
wave-particle model as it is being treated as a wave (recombining the
two beams) – indeed, the experiment “showed interference effects de-
pendent on the difference in path lengths along two possible routes of
single-photon pulses.” [162, p. 288].

This provides experimental confirmation of the STCED wave-parti-
cle model where the wave-particle q-object consists of both wave and
particle aspects which manifest themselves differently depending on the
type of measurement. The behaviour is physical and logical. In addi-
tion, nothing precludes the wave-particle q-object from having the full
physical properties encoded in the q-object. The results obtained in the
case of non-rotated detectors are in agreement with local results that
would be obtained classically, because there are no specific quantum
effects coming out of the quantum mechanical calculations in this case.
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This indicates that the entangled q-objects are emitted with deter-
ministic physical properties. The wave aspect gives rise to the non-local
behaviour (within causality requirements due to the particle aspect of
the q-object) as would be expected from the quantum mechanical calcu-
lations, while the particle aspect exhibits local causal behaviour [244].
This explains why the entanglement process is robust: the wave-particle
q-objects of entangled states have definite physical, not evanescent,
characteristics at emission time.

§13.6.3 Physical approach

This leads us to consider a physical approach which posits that the pho-
tons (for example), as wave-particle q-objects, are emitted with specific
properties, but that due to our lack of knowledge of their detailed char-
acteristics, can only be probabilistically characterized with the wave-
function ψ as a combination of the possible states and their probabil-
ities (the realistic viewpoint [213]). Once a measurement is performed
on one of the photons, its properties are resolved, thereby increasing our
knowledge of the system, and allowing us to specify the properties of
the other photon – a simple physical understanding of the process [247].
Such a process can easily scale to classical objects and distances, and
is undeniably very robust as the q-objects’ properties are determined
at emission time, not evanescent depending either on an experimenter’s
whim or thought process, or on not having an interaction that would
destroy the entanglement on its way to measurement resolution. The
classical-scale experiments considered previously are then seen to be a
confirmation of this approach.

The wavefunction is thus seen to be a probabilistic description of our
(limited) knowledge of a quantum mechanical system, not a complete
physical description of the system, with this probability being propor-
tional to the intensity of the wavefunction as seen in [244]. This explains
the laws of quantum probability [120,123]. We note the same behaviour
for electromagnetic radiation, where the intensity is proportional to the
energy density of the field, which can be converted to a probability by
normalization, as seen in [244].

As a result of the measurement process, the original wavefunction de-
scription is superceded (the so-called collapse of the wavefunction) and
is replaced by a more accurate wavefunction description of the quantum
mechanical system that takes into account the results of the measure-
ment process. As [160] puts it, “When a detector clicks the wavefunction
does not ‘collapse’ from all over space to a point, it is simply that only
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part of it is now relevant.”. It is important to note that this mea-
surement process is effected (done) by the interaction of the quantum
mechanical system with an outside agency, whether it is a measurement
apparatus or an interaction with another quantum mechanical system.

This is a simple logical description of the physical process that does
not require metaphysical “spooky action at a distance” explanations
and, by the principle of Occam’s razor, is a superior explanation of the
entanglement process. It should be noted that the imaginary actors
“Bob” and “Alice” which are used in the explanation of entanglement
and SAAD, even though the explanation is presented as a sequential
series of events, are both aware of the same experimental information
within the same time window, as mentioned in Section §13.5.1, and
hence fully satisfy Jaynes’ analysis of entanglement experiments as dis-
cussed in [182,247].

As Home points out, “[c]ontrary to a widely held misconception,
we stress that no experiment probing quantum locality has yet tested
quantum correlations measured across spacelike separation unambigu-
ously.” [162, p. 233]. In photon polarization correlation experiments [6],
“[t]he claim of spacelike separation is usually based on ensuring that a
photon on one side reaching a photomultiplier detector is spacelike sep-
arated from its partner passing the polarization analyzer on the other
side.” However, a typical photomultiplier detector requires about 30
ns for a current pulse to be generated following the arrival of a pho-
ton, which provides a different spacelike separation than that obtained
from the resolution time of a photomultiplier which is usually of order
1 ns [162, p. 233].

It should be noted that the model proposed in this paper is inde-
pendent of these so-called “loopholes”. They are mentioned to indicate
the difficulty of performing such experiments which raises cautionary
notes on the concomitant dangers of wishful thinking and unrecognized
assumptions, limitations and interpretation of the results.

§13.6.4 Evidence for SAAD?

So why introduce a mysterious agent, “spooky action at a distance”,
when none is required? As we asked in Section §13.5, what prompts the
acceptance of this description as part of the orthodox interpretation?
The reason is that SADD is believed to be supported by the experi-
mental evidence. However, the aforementioned considerations and the
analysis of Jaynes [182, 183, 247] show that the experimental evidence
can be explained without resorting to metaphysics, that the problem
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results from the assumption that a conditional probability represents a
physical influence instead of the physically-correct logical inference that
it is.

As Home and Whitaker write [163, p. 238],

In one out of four cases, Alice is lucky with her measurement,
and Bob’s particle immediately becomes an identical replica of
Alice’s original. Then it might seem as if information has traveled
instantly from Alice to Bob. Yet this strange feature cannot be
used to send usable information instantaneously, because Bob
has no way of knowing that his particle is already an identical
replica. Only when he learns the result of Alice’s Bell-state
measurement, which is transmitted to him via classical means,
can he exploit the information in the teleported quantum state.

where the emphasis is in the original text and we have in addition
highlighted the word “learns”.

In other words, what is believed to be “spooky action at a distance”
is actually the experimenters’ knowledge of the system suddenly in-
creasing as a result of the measurement process, and the experimenters
being in a position to logically infer the properties of the distant compo-
nent, which is confirmed in the measurement performed on the distant
component. In actual practice, in entanglement experiments, both mea-
surements are done in the same time window (see Sections §13.5.1 and
§13.6.3).

There is also a certain intellectual inertia at play. As Bell [21] com-
mented, “Why is the pilot wave picture [Bohm’s] ignored in text books?
Should it not be taught, not as the only way, but as an antidote to
the prevailing complacency? To show that vagueness, subjectivity, and
indeterminism, are not forced on us by experimental facts, but by de-
liberate theoretical choice?” All very good questions.

§13.7 Quantum information causality

The emerging concept of information causality [131, 284, 306] is an at-
tempt to preserve causality based on the underlying premise that it is
information that is the core element in the analysis of the entanglement
process. The approach followed is to impose this concept as a principle
of nature to avoid the special relativistic causality problems raised by
SAAD. This concept unwittingly reflects Jaynes’ analysis of entangle-
ment experiments in that it focuses on information – however, Jaynes’
analysis [182,183] already accomplishes this without having to introduce
an additional constraint in the guise of a new causality principle, and
in so doing, also eliminates the need for SAAD.
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§13.8 Weak quantum measurements

Weak quantum measurements [130,336,339,358,359] is another emerg-
ing concept in quantum mechanics that has an impact on the under-
standing of the entanglement process. What is interesting with this ap-
proach is that it is possible to make minimal-interacting measurements,
which leaves the collapse of the wavefunction in the literal interpreta-
tion of the mathematical standard formalism of quantum mechanics in
a quandary: how can any measurement be done without collapsing the
wavefunction?

The accepted explanation [339] is that the quantum state is not
collapsed into eigenvectors, but instead, by a weak coupling of the mea-
surement device and the system, is biased by a small angle such that the
measurement device shows a superposition of several eigenvalues. The
current status is summarized as follows: “weak measurement theory
presents a plethora of strange quantum phenomena, not yet completely
understood.” [339]. There is no doubt that even a weak interaction
measurement will have an impact on the system, and this approach,
certainly experimentally valid, puts the wavefunction collapse of the
literal interpretation of quantum mechanics into question.

The proposal of weakly interacting measurements was also intro-
duced in [237] and in section §13.3 in the context of the application
of the Nyquist-Shannon Sampling Theorem to quantum measurements.
The author showed that Brillouin zones in the solid state in Condensed
Matter Physics are a manifestation of the Nyquist-Shannon Sampling
Theorem at the quantum level, where the translational symmetry of
atoms in a solid resulting from the regular lattice spacing, is equiva-
lent to an effective sampling of the atoms of the solid giving rise to the
Brillouin zones. This raised the possibility of investigating new exper-
imental conditions leading to new measurements previously considered
unreachable, a possibility that is also considered possible in the litera-
ture on weak quantum measurements.

§13.9 Physically realistic quantum mechanics

In this chapter, we have reviewed the physical difficulties present in
quantum mechanics. One finds that, invariably, the problems arise be-
cause it is assumed that the mathematical theory represents a physical
reality that is simply not the case. And we have not covered the more
esoteric ideas such as the Everett multiple universe, multiverse, etc in-
terpretations of the mathematical theory that give even more credence
to the physicality of the mathematics, which are just larger cohorts of



§13.9 Physically realistic quantum mechanics 255

angels dancing on a pinhead. The paradoxes are seen to result from as-
signing physical reality to the probabilities of quantum mechanics rather
than the logical inferences that they are.

As it should by now be evident to the reader, at this time quantum
mechanics can only deal with probabilities associated with quantum
physical processes until a dynamic theory is developed that explains the
probabilistic results that are obtained. This book proposes such a the-
ory – consequently, we had to take this detour in the basic methodology
of quantum mechanics to highlight its nature and problems. The cur-
rent orthodox interpretation of quantum mechanics does not deter from
the success of the theory when results are compared to the probabilistic
predictions of quantum theory. The problem resides with the interpre-
tation of those probabilities which has resulted in the stultification of
further progress in quantum physics. We need to bring physics back
into quantum mechanics to get a physically realistic theory of quantum
physics.

In particular, we have reviewed the nature of quantum entanglement,
a key quantum mechanical concept, and have considered the difference
between separable (product) and non-separable (entangled) states. Mix-
tures of product (separable) states always satisfy Bell’s inequality i.e.
separable states can have definite physical properties when they are pre-
pared. Bell’s inequality fails only for entangled (non-separable) states.
Hence separable states are consistent with local realism – they can be
physical and local, while entangled states are not consistent with local
realism, based on their violation of Bell’s inequality.

These considerations reinforce the importance of the underlying phy-
sical building blocks of quantum mechanics: the superposition principle,
Heisenberg’s uncertainty principle and wave-particle duality which is
the most important of these. The truly quantum mechanical processes
such as the double-slit interference pattern, potential barrier tunneling,
and in particular the entanglement process as we have seen in this chap-
ter, depend on the quantum mechanical phenomenon of wave-particle
duality.

It is thus critical to analyze quantum phenomena in terms of wave-
particle duality to fully understand them. We have noted that in en-
tanglement experiments, the quantum mechanical results obtained are
from the wave aspect of the wave-particle quantum object (which for
brevity we refer to as a “q-object”), just like the interference pattern in
double-slit experiments. The wave aspect then gives rise to the non-local
behaviour (within causality requirements due to the particle aspect of
the q-object) as would be expected from the quantum mechanical cal-
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culations, while the particle aspect exhibits local causal behaviour.
As demonstrated in Section §13.6, the resolution of the robustness

of the entanglement process in classical scale quantum entanglement
experiments is achieved within the wave-particle q-object explanation
of the process in which entangled state q-objects have definite physical
characteristics at emission time. Strong evidence has been provided to
support this proposal.

It should be noted that quantum cryptography and quantum com-
puting are then seen to depend on the wave aspect of the wave-particle
q-object. This fundamental understanding should help accelerate the
progress of these new development programs.

The design of experiments to provide experimental evidence requires
that experimentalists shift the paradigm used to test quantum theories.
Currently experiments are designed to try to prove the applicability of
quantum mechanics to entangled states by verifying various inequalities
such as Bell’s. The experiments suggested by Zhao [381] try to clarify
the physical properties of quantum entanglement and includes experi-
mental tests of the locality of the measurements of Bell states, experi-
mental tests of the constituents of Bell states, and experimental tests of
determinism in quantum measurements. In addition, even though the
entanglement experiments currently performed agree with the model
proposed in this book, specific experiments need to be performed to
test the model under conditions that emphasize that quantum entan-
glement behaviour results from the wave aspect of the wave-particle
q-objects.



Chapter 14

STCED Framework for Quantum Physics

In this chapter, we cover the relation of spacetime continuum defects
to quantum physics. The framework of quantum physics, based on
dislocations and disclinations in the spacetime continuum is covered
in the sections of this chapter. This covers the basic characteristics
of quantum physics, including quantization, bosons and fermions and
quantum electrodynamics. Subsequent chapters cover various aspects
of quantum physics as covered by STCED.

In Chapter 15, screw dislocations in quantum physics are consid-
ered in section §15.1 and edge dislocations are covered in section §15.2.
Wedge disclinations are considered in section §15.3 and twist disclina-
tions in section §15.4. The association of these defects to fundamental
quantum particles are covered in Chapter 16. Chapter 17 covers defect
interactions in quantum physics.

Chapter 18 provides physical explanations of QED phenomena pro-
vided by defects in the spacetime continuum. We conclude with a sum-
mary of the framework used for the development of a physical descrip-
tion of physical processes at the quantum level, based on dislocations
and disclinations in the spacetime continuum within the theory of the
Elastodynamics of the Spacetime Continuum (STCED).

There is no doubt that the task we have set for ourselves is a tall or-
der. The theories of quantum mechanics and quantum electrodynamics
have been very successful at reproducing the results of quantum exper-
imental measurements. In addition, electroweak and quantum chromo-
dynamics theories have been derived from those. Reproducing these
results within a new physical framework is a significant challenge. The
possibility of providing a physical description of quantum physics is the
driving force behind this effort which, if we are successful, can take us
to the next level in our description of the subquantum level. In the
following chapters, we will show that the characteristics of the proposed
physical framework match those derived from quantum mechanics and
can lay the foundation for quantum physical calculations.

§14.1 Framework for quantum physics

In a solid, dislocations represent the fundamental displacement pro-
cesses that occur in its atomic structure. A solid viewed in electron
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microscopy or other microscopic imaging techniques is a tangle of screw
and edge dislocations [172, see p. 35 and accompanying pages]. Simi-
larly, dislocations in the spacetime continuum are taken to represent the
fundamental displacement processes that occur in its structure.

In a similar fashion, disclinations represent the fundamental rota-
tional processes that occur in the spacetime continuum structure. These
fundamental displacement and rotational processes should thus corre-
spond to basic quantum phenomena and provide a framework for the
description of quantum physics in STCED.

We find that dislocations and disclinations have fundamental proper-
ties that reflect those of particles at the quantum level. Dislocations, as
translational processes, are found to correspond to bosons, while discli-
nations, as rotational processes, are found to correspond to fermions,
based on their characteristics and symmetry transformations. In addi-
tion, the fundamental properties of defects in the spacetime continuum
are found to include self-energy and interactions mediated by the strain
energy density of the dislocations and disclinations.

§14.2 Quantization

The Burgers vector as defined by expression (9.1) has similarities to the
Bohr-Sommerfeld quantization rule∮

C

p dq = nh (14.1)

where q is the position canonical coordinate, p is the momentum canon-
ical coordinate and h is Planck’s constant. This leads us to consider the
following quantization rule for the spacetime continuum: at the quan-
tum level, we assume that the spacetime continuum has a granularity
characterized by a length b0 corresponding to the smallest elementary
Burgers dislocation-displacement vector possible in the spacetime con-
tinuum.

The idea that the existence of a shortest length in nature would lead
to a natural cut-off to generate finite integrals in QED has been raised
before [147]. The smallest elementary Burgers dislocation-displacement
vector introduced here provides a lower bound as shown in calculations
in forthcoming chapters. Then the magnitude of a Burgers vector can
be expressed as a multiple of the elementary Burgers vector:

b = nb0 . (14.2)
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We find that b is usually divided by 2π in dislocation equations, and
hence we define

b̄ =
b

2π
, (14.3)

and similarly for the elementary Burgers dislocation-displacement vec-
tor b0,

b̄0 =
b0
2π

. (14.4)

Similarly, the disclination Frank vector Ω is usually divided by 2π in
disclination equations, and hence we define the symbol

Ω− =
Ω

2π
. (14.5)

The question of quantization in STCED is a thorny issue, as it im-
plies a certain discreteness to the spacetime continuum. As we see
in various chapters in this book, indications are that this discreteness
would be lattice-like, possibly leading to the consideration of additional
smaller spacetime continuum structures, similar to what is observed in
the solid state in Condensed Matter Physics. It may be possible that
there is no need to introduce discreteness in STCED, but at this time
there are arguments that militate in favour of that requirement.

§14.3 Symmetry considerations

It has become de rigueur in physics books to specify the applicable
symmetry principles such as U(1), SO(3), SU(2), SU(3) upfront to assist
in the symmetry characterization of the subject matter. While it is
useful to understand the symmetry representation of our theories, it
does not provide a complete physical description of the theory. As
noted by Georgi [132, p. 155] [375, p. 77],

A symmetry principle should not be an end in itself. Sometimes
the physics of a problem is so complicated that symmetry ar-
guments are the only practical means of extracting information
about the system. Then, by all means use them. But, do not
stop looking for an explicit dynamical scheme that makes more
detailed calculation possible. Symmetry is a tool that should
be used to determine the underlying dynamics, which must in
turn explain the success (or failure) of the symmetry arguments.
Group theory is a useful technique, but it is no substitute for
physics.

Hence we will include symmetry considerations in this book as an ad-
junct to our physical theories where justified.
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As symmetry principles are associated with specific conservation
laws, we list the main ones in the table below.

Symmetry principle Invariance Conservation law

Time translation Time invariance Mass-energy

Space translation Translation symm. Linear momentum

SO(3)∗ Rotation invariance Angular momentum

U(1)† Gauge invariance Electric charge

SU(2)‡ Gauge invariance Isospin

SU(3)§ Gauge invariance Color charge

∗Group of special orthogonal transformations of three (real) variables.

†Group of unitary transformations of one complex variable.

‡Group of special unitary transformations of two complex variables.

§Group of special unitary transformations of three complex variables.

Table 14.1: Symmetry principles and conservations laws.

We have already used the conservation of energy-momentum and
angular momentum to deduce that the spacetime continuum is isotropic
and homogeneous as seen in section §2.1.

§14.4 Bosons and fermions

Elementary quantum particles are classified into bosons and fermions
based on integral and half-integral multiples of ~ respectively. Bosons
obey Bose-Einstein statistics while fermions obey Fermi-Dirac statistics
and the Pauli Exclusion Principle. These determine the number of non-
interacting indistinguishable particles that can occupy a given quantum
state: there can only be one fermion per quantum state while there is
no such restriction on bosons.

This is explained in quantum mechanics using the combined wave-
function of two indistinguishable particles when they are interchanged:

Bosons : Ψ(1, 2) = Ψ(2, 1)

Fermions : Ψ(1, 2) = −Ψ(2, 1) .
(14.6)

Bosons commute and as seen from (14.6) above, only the symmetric part
contributes, while fermions anticommute and only the antisymmetric
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part contributes. There have been attempts at a formal explanation of
this phenomemon, the spin-statistics theorem, with Pauli’s being one of
the first [283]. Jabs [175] provides an overview of these and also offers
his own attempt at an explanation.

However, as Feynman comments candidly in [123, see p. 4-3],

We apologize for the fact that we cannot give you an elementary
explanation. An explanation has been worked out by Pauli from
complicated arguments of quantum field theory and relativity.
He has shown that the two must necessarily go together, but we
have not been able to find a way of reproducing his arguments
on an elementary level. It appears to be one of the few places in
physics where there is a rule which can be stated very simply, but
for which no one has found a simple and easy explanation. The
explanation is deep down in relativistic quantum mechanics. This
probably means that we do not have a complete understanding
of the fundamental principle involved. For the moment, you will
just have to take it as one of the rules of the world.

The question of a simple and easy explanation is still outstanding.
Eq. (14.6) is still the easily understood explanation, even though it is
based on the exchange properties of particles, rather than on how the
statistics of the particles are related to their spin properties. At this
point in time, it is an empirical description of the phenomenon.

Ideally, the simple and easy explanation should be a physical expla-
nation to provide a complete understanding of the fundamental prin-
ciples involved. STCED provides such an explanation, based on dis-
locations and disclinations in the spacetime continuum. Part of the
current problem is that there is no understandable physical picture of
the quantum level. STCED provides such a picture.

The first point to note is that based on their properties, bosons obey
the superposition principle in a quantum state. The location of quantum
particles is given by the deformation displacement uµ. Dislocations
are translational displacements that commute, satisfy the superposition
principle and behave as bosons. As we saw in section §3.6, particles with
spin 0, 1 and 2 are described by (3.50) and (3.51) which are equations
in terms of uµ;ν .

Disclinations, on the other hand, are rotational displacements that
do not commute and that do not obey the superposition principle. You
cannot have two rotational displacements in a given quantum state.
Hence their number is restricted to one per quantum state. They behave
as fermions. Spinors represent spin one-half fermions. Dirac spinor fields
represent electrons. Weyl spinors, derived from Dirac’s four complex
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components spinor fields, are a pair of fields that have two complex
components. Interestingly enough, “[u]sing just one element of the pair,
one gets a theory of massless spin-one-half particles that is asymmetric
under mirror reflection and ... found ... to describe the neutrino and its
weak interactions” [375, p. 63].

“From the point of view of representation theory, Weyl spinors are
the fundamental representations that occur when one studies the rep-
resentations of rotations in four-dimensional space-time... spin-one-half
particles are representation of the group SU(2) of transformations on
two complex variables.” [375, p. 63]. To clarify this statement, each ro-
tation in three dimensions (an element of SO(3)) corresponds to two
distinct elements of SU(2). Consequently, the SU(2) transformation
properties of a particle are known as the particle’s spin.

Hence, the unavoidable conclusion is that bosons are dislocations in
the spacetime continuum, while fermions are disclinations in the space-
time continuum.

§14.5 Quantum electrodynamics

In STCED, the role played by virtual particles in quantum electrody-
namics (QED) is replaced by the interaction of the strain energy density
of the dislocations and disclinations. QED is a perturbative theory, and
the virtual particles are introduced as an interpretation of the pertur-
bative expansion represented by Feynman diagrams.

Although the existence of virtual particles in QED is generally ac-
cepted, there are physicists who still question this interpretation of QED
perturbation expansions. Weingard [366] “argues that if certain ele-
ments of the orthodox interpretation of states in QM are applicable
to QED, then it must be concluded that virtual particles cannot exist.
This follows from the fact that the transition amplitudes correspond to
superpositions in which virtual particle type and number are not sharp.
Weingard argues further that analysis of the role of measurement in re-
solving the superposition strengthens this conclusion. He then demon-
strates in detail how in the path integral formulation of field theory no
creation and annihilation operators need appear, yet virtual particles
are still present. This analysis shows that the question of the existence
of virtual particles is really the question of how to interpret the propaga-
tors which appear in the perturbation expansion of vacuum expectation
values (scattering amplitudes).” [36]

The basic Feynman diagrams can be seen to represent screw dislo-
cations as photons, edge dislocations as bosons, twist and wedge discli-
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nations as fermions, and their interactions. Virtual particles would re-
quire the presence of virtual dislocations and virtual disclinations in the
spacetime continuum, which clearly does not make sense. Instead, the
exchange of virtual particles in interactions can be seen to be a pertur-
bation expansion representation of the forces resulting from the overlap
of the defects’ strain energy density, with suitably modified diagrams.
The perturbative expansions are thus replaced by finite analytical ex-
pressions.

This theory is not perturbative as in QED, but rather calculated
from analytical expressions. The analytical equations can become very
complicated, and in some cases, perturbative techniques are used to
simplify the calculations, but the availability of analytical expressions
permits a better understanding of the fundamental processes involved.





Chapter 15

Properties of Defects in STCED

In this chapter, we collect and summarize the properties of the screw
dislocation, the edge dislocation, the wedge disclination and the twist
disclination to help in the identification of these spacetime defects in
quantum physics.

§15.1 Properties of screw dislocations

Screw dislocations are covered in section §9.2 and in section §9.5 on
deWit’s dislocation line for the case where bx = by = 0. Using the
parity operator P defined according to [87, see section 3.3]

f(x, t)→ g(x, t) = Pf(x, t) = f(−x, t) , (15.1)

on (9.2) or (9.130) for bx = by = 0, we obtain

P(uz) = P
(
bz
2π

tan−1 y

x

)
=
−bz
2π

tan−1

(
−y
−x

)
= −uz . (15.2)

Hence the screw dislocation has odd parity under parity reversal as
expected [87, see p. 71].

The rotation vector for the screw dislocation is given by (9.5)

ωr = − bz
4π

. (15.3)

As seen in section §3.6, the trace of the antisymmetric field ωµν is zero,
and hence massless. The field ωµν is of spin 1, and since it is massless,
it does not have a spin 0 component. From section §9.2.3, the rest-
mass density of the screw dislocation is indeed ρ = 0, and from section
§9.2.4, so is its charge density % = 0 and its current density jν = 0.
Screw dislocations are the easiest defect to analyze.

Screw dislocations in the spacetime continuum are massless, trans-
verse deformations, and are hence identified specifically with photons.
Consider the displacement of a stationary screw dislocation as derived
in section §9.2.1:

uz =
b

2π
θ = b̄ θ . (15.4)
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Figure 15.1: A wavelength of a screw dislocation.

Taking the derivative with respect to time, we obtain

u̇z = vz =
b

2π
θ̇ =

b

2π
ω . (15.5)

The speed of the transverse displacement is c, the speed of light. Sub-
stituting for ω = 2πν, (15.5) becomes

c = b ν . (15.6)

Hence

b = λ , (15.7)

the wavelength of the screw dislocation. This result is illustrated in
Fig. 15.1. It is important to note that this relation applies only to screw
dislocations.

The strain energy density of the screw dislocation is given by the
transverse distortion energy density derived in section §9.2.3. For a
stationary screw dislocation, substituting (14.3) into (9.22),

E⊥ =
µ̄0 b̄

2

2

1

r2
. (15.8)

As we have seen previously in section §9.2.3, the longitudinal strain
energy density is given by E‖ = 0.
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§15.2 Properties of edge dislocations

Edge dislocations are covered in section §9.3 and in section §9.5 on
deWit’s dislocation line for the case where bz = 0. Using the parity
operator P as per (15.1) on (9.130) for bz = 0, we obtain

P(ux) = P
(
bx
2π

(
θ + β̄0

xy

r2

)
+

by
2π

(
ᾱ0 ln r + β̄0

y2

r2

))
= − bx

2π

(
θ + β̄0

xy

r2

)
− by

2π

(
ᾱ0 ln r + β̄0

y2

r2

)
= −ux

P(uy) = P
(
− bx

2π

(
ᾱ0 ln r + β̄0

x2

r2

)
+

by
2π

(
θ − β̄0

xy

r2

))
=
bx
2π

(
ᾱ0 ln r + β̄0

x2

r2

)
− by

2π

(
θ − β̄0

xy

r2

)
= −uy

uz = 0

(15.9)

where ᾱ0 and β̄0 are as per (9.128) and both r and θ are unchanged by
the substitution of (15.1). Hence the edge dislocation has odd parity
under parity reversal.

The rotation vector for the edge dislocation is given by (9.138)

ωz =
1

2π

bxx+ byy

r2
. (15.10)

From section §9.5, the mass energy density of the discrete dislocation
line is given by (9.134)

ρc2 =
4

π

κ̄0µ̄0

2µ̄0 + λ̄0

bxy − byx
r2

, (15.11)

and from section §9.5.2, the non-zero components of the current density
are given by (9.157)

jx =
ϕ0

2πµ0

byr
2 + 2x (bxy − byx)

r4

jy = − ϕ0

2πµ0

bxr
2 − 2y (bxy − byx)

r4

(15.12)

and the charge density by (9.160)

% = ± 1

4π
ϕ0ε0c

1

r2

√
b2x + b2y . (15.13)
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.
The strain energy density of the edge dislocation is derived in section

§9.3.3. The dilatation (massive) strain energy density of the edge dislo-
cation is given by the longitudinal strain energy density E‖ (9.50) and
the distortion (massless) strain energy density of the edge dislocation is
given by the transverse strain energy density E⊥ (9.51).

The discrete dislocation line longitudinal dilatation strain energy
density is given by (9.139)

E‖ =
1

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

(bxy − byx)2

r4
. (15.14)

The discrete dislocation line distortion strain energy density, which in-
cludes the screw dislocation, is given by (9.149)

E⊥ =
µ̄0

8π2

b2z
r2

+
µ̄0

4π2
ᾱ2

0

(bxy − byx)2

r4
+

+
µ̄0

2π2
β̄2

0

(bxx+ byy)2

r4
− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(15.15)

As done in §9.5.1, substituting from (9.138) and (9.139), (15.15) be-
comes

E⊥ =
µ̄0

8π2

b2z
r2

+
1

2

µ̄0

κ̄0
E‖ + 2µ̄0

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2

ω2
z−

− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(15.16)

The first term is the screw dislocation strain energy density of (9.22),
the second term is proportional to the edge dislocation distortion strain
energy density arising from the longitudinal strain energy density of
(9.139), the third term is the edge dislocation distortion strain energy
density arising from the rotation vector of (9.138) and the last term
is a moment distortion strain energy density term. It is interesting to
note that there are no interaction terms (cross-terms) between screw
and edge dislocations for a dislocation line.

§15.3 Properties of wedge disclinations

Wedge disclinations are covered in section §10.6 on deWit’s disclination
line for the case where Ωx = Ωy = 0. Using the parity operator P as
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per (15.1) on the non-zero components of (10.99), we obtain

P(ux) = P
(
− Ωz

2π
(y θ − ᾱ0 x (ln r − 1))

)
= −Ωz

2π
(y θ − ᾱ0 x (ln r − 1)) = ux

P(uy) = P
(

Ωz
2π

(x θ + ᾱ0 y (ln r − 1))

)
=

Ωz
2π

(x θ + ᾱ0 y (ln r − 1)) = uy

(15.17)

where ᾱ0 and β̄0 are as per (9.128) and both r and θ are unchanged by
the substitution of (15.1). Hence the wedge disclination has even parity
under parity reversal as expected from an axial vector.

The rotation vector for the wedge disclination is given by (10.104)

ωz =
Ωz
2π

. (15.18)

From section §10.6, the mass energy density of the wedge disclination
is given by (10.107)

ρc2 =
4κ̄0Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)
, (15.19)

and from section §10.6.1, the non-zero components of the current density
are given by (10.114)

jx =
ϕ0Ωz
2πµ0

x

r2
=
ϕ0Ωz
2πµ0

cos θ

r

jy = −ϕ0Ωz
2πµ0

y

r2
=
ϕ0Ωz
2πµ0

sin θ

r

(15.20)

and the charge density by (10.115)

% = ± 1

4π
ϕ0ε0c

Ωz
r2

. (15.21)

The strain energy density of the wedge disclination is derived in sec-
tion §10.6. The dilatation (massive) strain energy density of the wedge
disclination is given by the longitudinal strain energy density E‖ and the
distortion (massless) strain energy density of the wedge disclination is
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given by the transverse strain energy density E⊥. The wedge disclination
longitudinal dilatation strain energy density is given by (10.109)

E‖ =
κ̄0Ω2

z

2π2

(
ᾱ0 ln r +

1

2
β̄0

)2

(15.22)

and the wedge disclination distortion strain energy density is given by
(10.113)

E⊥ =
µ̄0Ω2

z

4π2

[(
ᾱ0 ln r +

3

2
β̄0

)2

−
(

3

2
β̄0

)2
]
. (15.23)

§15.4 Properties of twist disclinations

Twist disclinations are covered in section §10.7 on deWit’s disclination
line for the case where Ωz = 0. Using the parity operator P as per (15.1)
on (10.119), we obtain

P(ux) = ux

= −Ωx
2π

z

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

z
(
θ + β̄0

xy

r2

)
P(uy) = uy

= −Ωx
2π

z
(
θ − β̄0

xy

r2

)
− Ωy

2π
z

(
ᾱ0 ln r + β̄0

x2

r2

)
P(uz) = uz

=
Ωx
2π

(y θ − ᾱ0 x (ln r − 1))− Ωy
2π

(x θ + ᾱ0 y (ln r − 1))

(15.24)

where ᾱ0 and β̄0 are as per (9.128) and both r and θ are unchanged by
the substitution of (15.1). Hence the twist disclination has even parity
under parity reversal as expected for an axial vector.

The rotation vector for the twist disclination is given by (10.125)

ωx =
Ωx
2π

θ

ωy =
Ωy
2π

θ

ωz =
Ωx
2π

yz

r2
− Ωy

2π

xz

r2
.

(15.25)
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From section §10.7, the mass energy density of the wedge disclination
is given by (10.128)

ρc2 =
4κ̄0

π

µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
, (15.26)

and from section §10.7.1, the non-zero components of the current density
are given by (10.134)

jx = − ϕ0

2πµ0

Ωxzr
2 − 2xz (Ωxx+ Ωyy)

r4

jy = − ϕ0

2πµ0

Ωyzr
2 − 2yz (Ωxx+ Ωyy)

r4

jz = − ϕ0

2πµ0

Ωxx+ Ωyy

r2

(15.27)

and the charge density by (10.135)

% = ± 1

4π
ϕ0ε0c

1

r2

√(
Ω2
x + Ω2

y

)
z2 + (Ωxx+ Ωyy)

2
. (15.28)

The strain energy density of the twist disclination is derived in sec-
tion §10.7. The dilatation (massive) strain energy density of the twist
disclination is given by the longitudinal strain energy density E‖ and
the distortion (massless) strain energy density of the twist disclination
is given by the transverse strain energy density E⊥. The twist disclina-
tion longitudinal dilatation strain energy density is given by (10.129)

E‖ =
κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2

)2

(15.29)

and the twist disclination distortion strain energy density is given by
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(10.132)

E⊥ =
µ̄0Ω2

x

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

y2

r2
ln r+

+
[(
ᾱ2

0 − 1
2 β̄

2
0

)
x2 + β̄2

0y
2
] z2

r4

]
+

+
µ̄0Ω2

y

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

x2

r2
ln r+

+
[
β̄2

0x
2 +

(
ᾱ2

0 − 1
2 β̄

2
0

)
y2
] z2

r4

]
−

− µ̄0ΩxΩy
π2

[
β̄0

(
ᾱ0 ln r + 1

2 β̄0

)
+
(
β̄2

0 − 1
2 ᾱ

2
0

) z2

r2

]
.

(15.30)

In the next chapter, we consider the strain energy of these defects
as it applies to quantum physics.
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Defect Strain Energy in STCED

Strain energy is the fundamental defining energy characteristic of
defects and their interactions in the spacetime continuum. In this chap-
ter, we calculate the total strain energy W for the spacetime continuum
defects, namely the screw dislocation, the edge dislocation, the wedge
disclination and the twist disclination. These include both longitudi-
nal dilatation strain energy W‖ and transverse distortion strain energy
W⊥, except for the screw dislocation, where E‖ = 0. The interaction of
defects is mediated by their strain energy, and will be considered in the
next chapter.

In general, the longitudinal dilatation strain energy W‖ is easier to
calculate than the transverse distortion strain energy W⊥. The sim-
plest case is the calculation of the screw dislocation strain energy. We
consider stationary defects, that is defects that have no explicit time
dependence. In the general case of moving dislocations, the derivation
of the screw dislocation transverse strain energy and the edge disloca-
tion transverse and longitudinal strain energies is much more difficult.
In this chapter, we provide an overview discussion of the topic, and
directions of possible exploration of the problem.

§16.1 Screw dislocation transverse strain energy

The total strain energy is calculated by integrating the strain energy
density over the volume of the screw dislocation.

§16.1.1 Stationary screw dislocation

The total strain energy of the stationary screw dislocation is given by

WS
⊥ =

∫
V

ES⊥ dV (16.1)

where the volume element dV in cylindrical polar coordinates is given
by rdr dθ dz. Substituting for ES⊥ from (15.8), (16.1) becomes

WS
⊥ =

∫
V

µ̄0 b̄
2

2r2
rdr dθ dz. (16.2)
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From (14.2), b̄ can be taken out of the integral to give

WS
⊥ =

µ̄0 b̄
2

2

∫ Λ

b0

1

r
dr

∫
θ

dθ

∫
z

dz (16.3)

where Λ is a cut-off parameter corresponding to the radial extent of the
dislocation, limited by the average distance to its nearest neighbours.
The strain energy per wavelength is then given by

WS
⊥
λ

=
µ̄0 b̄

2

2
ln

Λ

b0

∫ 2π

0

dθ (16.4)

and finally
WS
⊥
λ

=
µ̄0 b

2

4π
ln

Λ

b0
. (16.5)

The implications of the total strain energy of the screw disloca-
tion are discussed further in comparison to Quantum Electrodynamics
(QED) in section §18.3.1.

§16.1.2 Moving screw dislocation

The transverse strain energy of a moving screw dislocation, which also
corresponds to its total strain energy, is given by

WS
⊥ =

∫
V

ES⊥ dV (16.6)

where the strain energy density ES⊥ is given by (9.24), viz.

ES⊥ =
1

2
b̄2 µ̄0

α2

(x− vt)2 + α2y2
(16.7)

and V is the volume of the screw dislocation. The volume element dV
in cartesian coordinates is given by dxdy dz d(ct).

Substituting for ES⊥, (16.6) becomes

WS
⊥ =

∫
V

1

2
b̄2 µ̄0

α2

(x− vt)2 + α2y2
dx dy dz d(ct). (16.8)

As before, b̄ is taken out of the integral from (14.2), and the integral
over z is handled by considering the strain energy per unit length of the
dislocation:

WS
⊥
`

=
b̄2 µ̄0

2

∫
ct

∫
y

∫
x

b20≤x2+y2≤Λ2

α2

(x− vt)2 + α2y2
dx dy d(ct) (16.9)
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where ` is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the dislocation, limited
by the average distance to its nearest neighbours.

Evaluating the integral over x [376],

WS
⊥
`

=
b̄2 µ̄0

2
α2

∫
ct

∫
y

dy d(ct)

[
1

αy
arctan

(
x− vt
αy

)]√Λ2−y2

√
y2−b20

(16.10)

where the limits corresponding to the maximum cut-off parameter Λ
and minimum cut-off parameter b0 are stated explicitly. Applying the
limits of the integration, we obtain

WS
⊥
`

=
b̄2 µ̄0

2
α2

∫
ct

∫
y

dy d(ct){
1

αy
arctan

(√
Λ2 − y2 − vt

αy

)
−

− 1

αy
arctan

(√
y2 − b20 − vt

αy

)}
.

(16.11)

This integration over y is not elementary and likely does not lead to
a closed analytical form. If we consider the following simpler integral,
the solution is given by∫

y

1

αy
arctan

(
x− vt
αy

)
dy =

− i
2

[
Li2

(
−i x− vt

αy

)
− Li2

(
i
x− vt
αy

)] (16.12)

where Lin(x) is the polylogarithm function. As pointed out in [377],
“[t]he polylogarithm arises in Feynman diagram integrals (and, in par-
ticular, in the computation of quantum electrodynamics corrections to
the electrons gyromagnetic ratio), and the special cases n = 2 and n = 3
are called the dilogarithm and the trilogarithm, respectively.” This is a
further indication that the interaction of strain energies are the phys-
ical source of quantum interaction phenomena described by Feynman
diagrams as is discussed further in section §18.1.
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§16.2 Edge dislocation longitudinal strain energy

The total longitudinal strain energy of the edge dislocation is calculated
by integrating the edge dislocation dilatation strain energy density over
the volume of the edge dislocation.

§16.2.1 Stationary edge dislocation

The longitudinal strain energy of the stationary edge dislocation is given
by

WE
‖ =

∫
V

EE‖ dV. (16.13)

Substituting for E‖ from (9.69), this equation becomes

WE
‖ =

∫
V

b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2
dV. (16.14)

Similarly to the previous derivation of section §16.1.1, this integral gives

WE
‖

`
=

1

2π
b2 κ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

ln
Λ

b0
. (16.15)

The total strain energy of the stationary screw and edge dislocations
have similar functional forms, with the difference residing in the propor-
tionality constants. This is due to the simpler nature of the stationary
dislocations and their cylindrical polar symmetry. This similarity is
not present for the general case of moving dislocations as evidenced in
equations (9.24), (9.87) and (9.89).

§16.2.2 Moving edge dislocation

The longitudinal strain energy of a moving edge dislocation is given by

WE
‖ =

∫
V

EE‖ dV (16.16)

where the strain energy density EE‖ is given by (9.87), viz.

EE‖ =
1

2
κ̄0 b̄

2

(
2µ̄0

2µ̄0 + λ̄0

αly

(x− vt)2 + α2
l y

2

)2

(16.17)

and V is the volume of the edge dislocation. The volume element dV
in cartesian coordinates is given by dxdy dz d(ct).
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Substituting for EE‖ , (16.16) becomes

WE
‖ =

∫
V

1

2
κ̄0 b̄

2

(
2µ̄0

2µ̄0 + λ̄0

αly

(x− vt)2 + α2
l y

2

)2

×

×dxdy dz d(ct).

(16.18)

As before, b̄ is taken out of the integral from (14.2), and the integral
over z is handled by considering the strain energy per unit length of the
dislocation:

WE
‖

`
= 2 κ̄0 b̄

2 µ̄2
0

(2µ̄0 + λ̄0)2∫
ct

∫
y

∫
x

b20≤x2+y2≤Λ2

(αly)2

((x− vt)2 + α2
l y

2)
2 dxdy d(ct)

(16.19)

where ` is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the dislocation, limited
by the average distance to its nearest neighbours.

The integrand has a functional form similar to that of (16.9), and
a similar solution behaviour is expected. Evaluating the integral over
x [376],

WE
‖

`
= 2 κ̄0 b̄

2 µ̄2
0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct)[
1

2

x− vt
(x− vt)2 + (αly)2

+

+
1

2αly
arctan

(
x− vt
αly

)]√Λ2−y2

√
y2−b20

(16.20)

where the limits corresponding to the maximum cut-off parameter Λ
and minimum cut-off parameter b0 are stated explicitly. Applying the
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limits of the integration, we obtain

WE
‖

`
= 2 κ̄0 b̄

2 µ̄2
0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct)[
1

2

√
Λ2 − y2 − vt

(
√

Λ2 − y2 − vt)2 + (αly)2
−

−1

2

√
y2 − b20 − vt

(
√
y2 − b20 − vt)2 + (αly)2

+

+
1

2αly
arctan

(√
Λ2 − y2 − vt

αly

)
−

− 1

2αly
arctan

(√
y2 − b20 − vt

αly

)]
.

(16.21)

The integration over y is again found to be intractable. It includes
that of (16.11) in its formulation, and likely does not lead to a closed
analytical form. In the arctan Λ integral of (16.11) and (16.21), we can

make the approximation
√

Λ2 − y2 ' Λ and evaluate this term as seen
in (16.12): ∫

y

1

αly
arctan

(
Λ− vt
αly

)
dy =

− i
2

[
Li2

(
−i Λ− vt

αly

)
− Li2

(
i

Λ− vt
αly

)] (16.22)

where Lin(x) is the polylogarithm function as seen previously.

§16.2.3 deWit dislocation line

The longitudinal strain energy of the deWit dislocation line is obtained
from

WE
‖ =

∫
V

EE‖ dV. (16.23)

Substituting for EE‖ from (9.139), this equation becomes

WE
‖ =

∫
V

1

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

(bxy − byx)2

r4
dV (16.24)

where V is the volume of the deWit line dislocation, with dV given by
dx dy dz in cartesian coordinates. As before, b̄ can be taken out of the
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integral from (14.2), and the integral over z is handled by considering
the strain energy per unit length of the dislocation:

WE
‖

`
=

2κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2

∫
y

∫
x

b20≤x2+y2≤Λ2

(b̄xy − b̄yx)
2

r4
dxdy (16.25)

where ` is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the dislocation, limited
by the average distance to its nearest neighbours.

In cylindrical polar coordinates, (16.25) is written as

WE
‖

`
=

2κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2

∫ 2π

0

∫ Λ

b0

(b̄x sin θ − b̄y cos θ)
2

r2
rdr dθ . (16.26)

Evaluating the integral over r, (16.26) becomes

WE
‖

`
=

2κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2
ln

Λ

b0∫ 2π

0

(
b̄2x sin2 θ − 2b̄xb̄y sin θ cos θ + b̄2y cos2 θ

)
dθ .

(16.27)

Evaluating the integral over θ [376], we obtain

WE
‖

`
=

2κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2
ln

Λ

b0

(
b̄2xπ + b̄2yπ

)
(16.28)

which is rewritten as

WE
‖

`
=

1

2π

κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2

(
b2x + b2y

)
ln

Λ

b0
. (16.29)

This equation reduces to (16.15) for the stationary edge dislocation of
section §16.2.1.

§16.3 Edge dislocation transverse strain energy

The total transverse strain energy of the edge dislocation is calculated
by integrating the edge dislocation distortion strain energy density over
the volume of the edge dislocation. As mentioned previously, the dis-
tortion strain energy is in general more complicated to calculate than
the simpler dilatation strain energy.
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§16.3.1 Stationary edge dislocation

The transverse distortion strain energy of a stationary edge dislocation
is given by

WE
⊥ =

∫
V

EE⊥ dV (16.30)

where the volume element dV in cylindrical polar coordinates is given
by rdr dθ dz. Substituting for EE⊥ from (9.79) and taking b̄ out of the
integral, (16.30) becomes

WE
⊥ =

b̄2µ̄0

(2µ̄0 + λ̄0)2∫
z

∫
θ

∫ Λ

b0

2(µ̄0 + λ̄0)2 cos2 θ + µ̄2
0 sin2 θ

r2
rdr dθ dz

(16.31)

where again Λ is a cut-off parameter corresponding to the radial ex-
tent of the dislocation, limited by the average distance to its nearest
neighbours. This equation can also be written as

WE
⊥ = b̄2µ̄0

∫
z

∫
θ

∫ Λ

b0

(
ᾱ2

0

sin2 θ

r2
+ 2β̄2

0

cos2 θ

r2

)
rdr dθ dz (16.32)

where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
(16.33)

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
. (16.34)

Evaluating the integral over r, (16.32) becomes

WE
⊥ = b̄2µ̄0 ln

Λ

b0

∫
z

∫ 2π

0

(
ᾱ2

0 sin2 θ + 2β̄2
0 cos2 θ

)
dθ dz . (16.35)

Evaluating the integral over θ [376], we obtain

WE
⊥ = b̄2µ̄0 ln

Λ

b0

∫
z

[
ᾱ2

0

2
(θ − sin θ cos θ) +

+ β̄2
0 (θ + sin θ cos θ)

]2π

0

dz .

(16.36)
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Applying the limits of integration, (16.36) becomes

WE
⊥ = b̄2µ̄0 ln

Λ

b0

∫ `

0

(
πᾱ2

0 + 2πβ̄2
0

)
dz , (16.37)

and evaluating the integral over z, we obtain the stationary edge dislo-
cation transverse strain energy per unit length

WE
⊥
`

=
1

4π
b2µ̄0

(
ᾱ2

0 + 2β̄2
0

)
ln

Λ

b0
(16.38)

where ` is the length of the edge dislocation. We find that the stationary
edge dislocation transverse strain energy per unit length is similar to
the stationary screw dislocation transverse strain energy per unit length

WS
⊥
`

=
1

4π
b2µ̄0 ln

Λ

b0
(16.39)

except for the proportionality constant.

§16.3.2 Moving edge dislocation

The transverse strain energy of a moving edge dislocation is given by

WE
⊥ =

∫
V

EE⊥ dV (16.40)

where the strain energy density EE⊥ is given by (9.89) and V is the
volume of the edge dislocation. The volume element dV in cartesian
coordinates is given by dx dy dz d(ct).

Substituting for EE⊥ from (9.89), taking b̄ out of the integral from
(14.2), and handling the integral over z by considering the strain energy
per unit length of the dislocation, (16.40) becomes

WE
⊥
`

= 4µ̄0 b̄
2 c

4

v4

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

dxdy d(ct)

[
α4

2

2α2

(
(1 + α2)2 − v2/c2

)
(x− vt)2 + 2α4(1 + α2

2) y2

r∗4
−

− 2αl α
2
2 α

(
1 + α2

2/α
2
)

(x− vt)2 +
(
α2

2 + α2
l

)
y2

r∗2 r∗2l
+

+α2
l

(1 + α2
2) (x− vt)2 +

(
α2

2 + α4
l − 1

4 v
4/c4l

)
y2

r∗4l

]
(16.41)
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where

r∗2 = (x− vt)2 + α2y2 (16.42)

r∗2l = (x− vt)2 + α2
l y

2 , (16.43)

` is the length of the dislocation and as before, Λ is a cut-off parameter
corresponding to the radial extent of the dislocation, limited by the
average distance to its nearest neighbours.

Again, the integrand has functional forms similar to that of (16.9)
and (16.19). A similar, but more complex, solution behaviour is ex-
pected, due to the additional complexity of (16.41).

We consider the moving edge dislocation in the limit as v → 0.
Subsituting for (9.102) in (16.30) and using (14.3), we obtain

WE
⊥ → 2b̄2µ̄0

∫
z

∫
θ

∫ Λ

b0

rdr dθ dz{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

5

4

µ̄2
0

(2µ̄0 + λ̄0)2

)
sin2 θ

r2
+

+
1

2

(
1− 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
cos2 θ

r2

} (16.44)

where again Λ is a cut-off parameter corresponding to the radial ex-
tent of the dislocation, limited by the average distance to its nearest
neighbours.

Evaluating the integral over r,

WE
⊥ → 2b̄2µ̄0 ln

Λ

b0

∫
z

∫ 2π

0

dθ dz{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

5

4

µ̄2
0

(2µ̄0 + λ̄0)2

)
sin2 θ+

+
1

2

(
1− 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
cos2 θ

}
.

(16.45)

Evaluating the integral over θ [376] and applying the limits of the inte-
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gration, we obtain

WE
⊥ → 2b̄2µ̄0 ln

Λ

b0

∫ `

0

dz{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

5

4

µ̄2
0

(2µ̄0 + λ̄0)2

)
(π) +

+
1

2

(
1− 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
(π)

} (16.46)

and evaluating the integral over z, we obtain the moving edge dislocation
transverse strain energy per unit length in the limit as v → 0

WE
⊥
`
→ 3

4π
b2µ̄0

(
1 +

2

3

µ̄0

2µ̄0 + λ̄0
+

+
7

6

µ̄2
0

(2µ̄0 + λ̄0)2

)
ln

Λ

b0

(16.47)

where ` is the length of the edge dislocation.

§16.3.3 deWit dislocation line

The transverse strain energy of the deWit dislocation line is obtained
from

WE
⊥ =

∫
V

EE⊥ dV. (16.48)

Substituting for EE⊥ from (9.149), this equation becomes

WE
⊥ =

∫
V

[
µ̄0

8π2

b2z
r2

+
µ̄0

4π2
ᾱ2

0

(bxy − byx)2

r4
+

+
µ̄0

2π2
β̄2

0

(bxx+ byy)2

r4
− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4

]
dV

(16.49)

where V is the volume of the deWit line dislocation, with dV given by
dx dy dz in cartesian coordinates. The first term in the integral is the
screw dislocation transverse strain energy density which is as expected,
given that the dislocation line includes both screw and edge dislocations.
As before, b̄ can be taken out of the integral from (14.2), and the integral
over z is handled by considering the strain energy per unit length of the
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dislocation:

WE
⊥
`

=
µ̄0

4π2

∫
y

∫
x

b20≤x2+y2≤Λ2

[
1

2

b2z
r2

+ ᾱ2
0

(bxy − byx)2

r4
+

+ 2β̄2
0

(bxx+ byy)2

r4
− 6

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4

]
dxdy

(16.50)

where ` is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the dislocation, limited
by the average distance to its nearest neighbours.

In cylindrical polar coordinates, (16.50) is written as

WE
⊥
`

=
µ̄0

4π2

∫ 2π

0

∫ Λ

b0

[
1

2

b2z
r2

+ ᾱ2
0

(bx sin θ − by cos θ)2

r2
+

+ 2β̄2
0

(bx cos θ + by sin θ)2

r2
−

− 6
µ̄0λ̄0

2µ̄0 + λ̄0

bxby cos θ sin θ

r2

]
rdr dθ .

(16.51)

Evaluating the integral over r, (16.51) becomes

WE
⊥
`

=
µ̄0

4π2
ln

Λ

b0

∫ 2π

0

[
1

2
b2z + ᾱ2

0 (bx sin θ − by cos θ)2+

+ 2β̄2
0 (bx cos θ + by sin θ)2−

− 6
µ̄0λ̄0

2µ̄0 + λ̄0
bxby cos θ sin θ

]
dθ .

(16.52)

Evaluating the integral over θ [376], we obtain

WE
⊥
`

=
µ̄0

4π2
ln

Λ

b0

[
πb2z + ᾱ2

0 (πb2x + πb2y)+

+ 2β̄2
0 (πb2x + πb2y)− 0

] (16.53)

where we have preserved the structure of four terms of the distortion
strain energy density of (9.156) corresponding to the screw dislocation
strain energy of (16.5), the edge dislocation distortion strain energy
arising from the longitudinal strain energy density of (9.139), the edge
dislocation distortion strain energy arising from the rotation vector of
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(9.138) and a moment distortion strain energy term which is zero. This
expression is simplified to give

WE
⊥
`

=
µ̄0

4π

[
b2z +

(
ᾱ2

0 + 2β̄2
0

) (
b2x + b2y

)]
ln

Λ

b0
. (16.54)

This equation reduces to the sum of (16.5) for the stationary screw dislo-
cation of section §16.1.1 and (16.15) for the stationary edge dislocation
of section §16.3.1.

§16.4 Wedge disclination longitudinal strain energy

The longitudinal strain energy of the deWit wedge disclination is ob-
tained from

WW
‖ =

∫
V

EW‖ dV. (16.55)

Substituting for EW‖ from (10.109), this equation becomes

WW
‖ =

∫
V

2κ̄0Ω−2
z

(
ᾱ0 ln r +

1

2
β̄0

)2

dV (16.56)

where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω− out of
the integral from (14.5), and the integral over z is handled by considering
the strain energy per unit length of the disclination:

WW
‖

`
= 2κ̄0Ω−2

z

∫ 2π

0

∫ Λ

bc

(
ᾱ0 ln r +

1

2
β̄0

)2

rdr dθ (16.57)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over θ, (16.57) becomes

WW
‖

`
=

1

π
κ̄0 Ω2

z

∫ Λ

bc

[
ᾱ2

0 ln2 r + ᾱ0β̄0 ln r +
1

4
β̄2

0

]
rdr . (16.58)

Evaluating the integral over r [376], we obtain

WW
‖

`
=

1

4π
κ̄0 Ω2

z

[
ᾱ2

0 r
2 (2 (ln r − 1) ln r + 1) +

+ ᾱ0β̄0r
2 (2 ln r − 1) + β̄2

0

r2

2

]Λ

bc

.

(16.59)
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Applying the limits of integration and rearranging, (16.59) becomes

WW
‖

`
=

1

4π
κ̄0 Ω2

z

[
ᾱ2

0

(
2Λ2 ln2 Λ− 2b2c ln2 bc

)
−

−
(
ᾱ2

0 − ᾱ0β̄0

) (
2Λ2 ln Λ− 2b2c ln bc

)
+

+
(
ᾱ2

0 − ᾱ0β̄0 + 1
2 β̄

2
0

) (
Λ2 − b2c

) ]
.

(16.60)

Using the relations ᾱ2
0−ᾱ0β̄0 = −ᾱ0γ̄0 and ᾱ2

0−ᾱ0β̄0+ 1
2 β̄

2
0 = 1

2 (ᾱ2
0+γ̄2

0)
where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
, (16.61)

(16.60) is rewritten as

WW
‖

`
=

1

4π
κ̄0 Ω2

z

[
ᾱ2

0

(
2Λ2 ln2 Λ− 2b2c ln2 bc

)
+

+ ᾱ0γ̄0

(
2Λ2 ln Λ− 2b2c ln bc

)
+

+ 1
2 (ᾱ2

0 + γ̄2
0)
(
Λ2 − b2c

) ]
.

(16.62)

In most cases Λ� bc, and (16.62) reduces to

WW
‖

`
' 1

2π
κ̄0 Ω2

zΛ
2
[
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 ln Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]

(16.63)

which, using the definitions of ᾱ0, β̄0 and γ̄0, can be rewritten as

WW
‖

`
' 1

2π

κ̄0µ̄
2
0

(2µ̄0 + λ̄0)2
Ω2
z Λ2

[
ln2 Λ +

λ̄0

µ̄0
ln Λ +

1

4

(
1 +

λ̄2
0

µ̄2
0

)]
.

(16.64)

The proportionality constant of this equation is similar to that of the
longitudinal strain energy (16.15) for the stationary edge dislocation
although the functional form is different for a disclination compared to
a dislocation.
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§16.5 Wedge disclination transverse strain energy

The transverse strain energy of the deWit wedge disclination is obtained
from

WW
⊥ =

∫
V

EW⊥ dV. (16.65)

Substituting for EW⊥ from (10.112), this equation becomes

WW
⊥ =

∫
V

µ̄0Ω2
z

4π2

(
ᾱ2

0 ln2 r + 3ᾱ0β̄0 ln r +
3

4
β̄2

0

)
dV (16.66)

where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and the integral over z is handled by considering
the strain energy per unit length of the disclination:

WW
⊥
`

=
µ̄0Ω2

z

4π2

∫ 2π

0

∫ Λ

bc

(
ᾱ2

0 ln2 r + 3ᾱ0β̄0 ln r +
3

4
β̄2

0

)
rdr dθ (16.67)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over θ, (16.67) becomes

WW
⊥
`

=
µ̄0Ω2

z

2π

∫ Λ

bc

(
ᾱ2

0 ln2 r + 3ᾱ0β̄0 ln r +
3

4
β̄2

0

)
rdr . (16.68)

This integral is similar to (16.58), but with coefficients that differ and
impact the final expression. Evaluating the integral over r [376], we
obtain

WW
⊥
`

=
µ̄0Ω2

z

8π

[
ᾱ2

0 r
2 (2 (ln r − 1) ln r + 1) +

+ 3ᾱ0β̄0r
2 (2 ln r − 1) + 3β̄2

0

r2

2

]Λ

bc

.

(16.69)
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Applying the limits of integration and rearranging, (16.69) becomes

WW
⊥
`

=
µ̄0Ω2

z

4π

[
ᾱ2

0

(
Λ2 ln2 Λ− b2c ln2 bc

)
−

−
(
ᾱ2

0 − 3ᾱ0β̄0

) (
Λ2 ln Λ− b2c ln bc

)
+

+
1

2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3

2
β̄2

0

)(
Λ2 − b2c

) ]
.

(16.70)

In most cases Λ� bc, and (16.70) reduces to

WW
⊥
`
' µ̄0Ω2

z

4π

[
ᾱ2

0 Λ2 ln2 Λ−
(
ᾱ2

0 − 3ᾱ0β̄0

)
Λ2 ln Λ+

+
1

2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3

2
β̄2

0

)
Λ2
] (16.71)

which is rearranged as

WW
⊥
`
' µ̄0

4π
ᾱ2

0 Ω2
z Λ2

[
ln2 Λ−

(
1− 3

β̄0

ᾱ0

)
ln Λ +

1

2

(
1− 3

β̄0

ᾱ0
+

3

2

β̄2
0

ᾱ2
0

)] (16.72)

and finally, using the definitions of ᾱ0 and β̄0, can be rewritten as

WW
⊥
`
' µ̄0

4π

(
µ̄0

2µ̄0 + λ̄0

)2

Ω2
z Λ2

[
ln2 Λ−

(
1− 3

µ̄0 + λ̄0

µ̄0

)
×

× ln Λ +
1

2

(
1− 3

µ̄0 + λ̄0

µ̄0
+

3

2

(
µ̄0 + λ̄0

µ̄0

)2
)]

.

(16.73)

The proportionality constant of this equation is similar to that of the
transverse strain energy (16.38) for the stationary edge dislocation al-
though the functional form is different for a disclination compared to a
dislocation.

§16.6 Twist disclination longitudinal strain energy

The longitudinal strain energy of the deWit twist disclination is ob-
tained from

WT
‖ =

∫
V

ET‖ dV. (16.74)
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Substituting for ET‖ from (10.129), this equation becomes

WT
‖ =

∫
V

κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2

)2

dV (16.75)

where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and (16.75) becomes

WT
‖ =

κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0

)2

∫ `

0

∫ 2π

0

∫ Λ

bc

(Ωxx+ Ωyy)
2 z2

r4
rdr dθ dz

(16.76)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over r, (16.76) becomes

WT
‖ =

κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0

)2

ln
Λ

bc∫ `

0

∫ 2π

0

(Ωx cos θ + Ωy sin θ)
2
z2 dθ dz

(16.77)

where we have used the relations cos θ = x/r and sin θ = y/r. Evaluat-
ing the integral over θ [376], we obtain

WT
‖ =

κ̄0

2π2

(
µ̄0

2µ̄0 + λ̄0

)2

ln
Λ

bc

∫ `

0

[
Ω2
x

2
(θ + sin θ cos θ)−

−ΩxΩy cos2 θ +
Ω2
y

2
(θ − sin θ cos θ)

]2π

0

z2 dz .

(16.78)

Applying the limits of integration and rearranging, (16.78) becomes

WT
‖ =

κ̄0

2π

(
µ̄0

2µ̄0 + λ̄0

)2

ln
Λ

bc

(
Ω2
x + Ω2

y

) ∫ `

0

z2 dz . (16.79)

Evaluating the integral over z, (16.79) becomes

WT
‖ =

κ̄0

6π

(
µ̄0

2µ̄0 + λ̄0

)2 (
Ω2
x + Ω2

y

)
`3 ln

Λ

bc
. (16.80)
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One interesting aspect of this equation is that the twist disclination
longitudinal strain energy WT

‖ is proportional to the cube of the length

of the disclination (`3), and we can’t dispose of it by considering the
strain energy per unit length of the disclination as this would still be
proportional to `2. We can say that the twist disclination longitudi-
nal strain energy WT

‖ is thus proportional to the space volume of the
disclination. This is a dependence that we will consider in greater detail
later.

It is interesting to note that WT
‖ has the familiar dependence ln Λ/bc

of dislocations, different from the functional dependence obtained for
wedge disclinations in §16.4 and §16.5. The form of this equation is
similar to that of the longitudinal strain energy (16.15) for the stationary
edge dislocation except for the factor `3/3.

§16.7 Twist disclination transverse strain energy

The transverse strain energy of the deWit twist disclination is obtained
from

WT
⊥ =

∫
V

ET⊥ dV. (16.81)

Substituting for ET⊥ from (10.132), this equation becomes

WT
⊥ =

∫
V

{
µ̄0Ω2

x

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

y2

r2
ln r+

+
[(
ᾱ2

0 − 1
2 β̄

2
0

)
x2 + β̄2

0y
2
] z2

r4

]
+

+
µ̄0Ω2

y

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

x2

r2
ln r+

+
[
β̄2

0x
2 +

(
ᾱ2

0 − 1
2 β̄

2
0

)
y2
] z2

r4

]
−

− µ̄0ΩxΩy
π2

[
β̄0

(
ᾱ0 ln r + 1

2 β̄0

)
+
(
β̄2

0 − 1
2 ᾱ

2
0

) z2

r2

]}
dV

(16.82)

where V is the volume of the twist disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5). As in the case of the twist disclination longitu-
dinal strain energy, the integral over z cannot be handled by considering
the strain energy per unit length of the disclination as (16.82) also de-
pends on z2, again indicating an `3 dependence in the twist disclination
transverse strain energy, in addition to the ` dependence.
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The volume integral then becomes

WT
⊥ =

∫ `

0

∫ 2π

0

∫ Λ

bc

{
µ̄0Ω2

x

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+

+ 2ᾱ0β̄0
y2

r2
ln r +

[(
ᾱ2

0 − 1
2 β̄

2
0

)
x2 + β̄2

0y
2
] z2

r4

]
+

+
µ̄0Ω2

y

2π2

[
ᾱ2

0 ln2 r +
β̄2

0

r2
+ 2ᾱ0β̄0

x2

r2
ln r+

+
[
β̄2

0x
2 +

(
ᾱ2

0 − 1
2 β̄

2
0

)
y2
] z2

r4

]
−

− µ̄0ΩxΩy
π2

[
β̄0

(
ᾱ0 ln r + 1

2 β̄0

)
+
(
β̄2

0 − 1
2 ᾱ

2
0

) z2

r2

]}
rdr dθ dz

(16.83)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over θ [376] using the relations cos2 θ = x2/r2

and sin2 θ = y2/r2 and re-arranging, (16.83) becomes

WT
⊥ =

µ̄0

π

∫ `

0

∫ Λ

bc

{(
Ω2
x + Ω2

y

) [
ᾱ2

0 ln2 r +
β̄2

0

r2
+

+ ᾱ0β̄0 ln r + 1
2

[(
ᾱ2

0 − 1
2 β̄

2
0

)
+ β̄2

0

] z2

r2

]
−

− 2 ΩxΩy

[
β̄0

(
ᾱ0 ln r + 1

2 β̄0

)
+
(
β̄2

0 − 1
2 ᾱ

2
0

) z2

r2

]}
rdr dz .

(16.84)

Evaluating the integral over z and simplifying, (16.84) becomes

WT
⊥ =

µ̄0

π

∫ Λ

bc

{(
Ω2
x + Ω2

y

) [
`
(
ᾱ2

0 r ln2 r + ᾱ0β̄0 r ln r+

+ β̄2
0

1

r

)
+

1

2

`3

3

(
ᾱ2

0 + 1
2 β̄

2
0

) 1

r

]
−

− 2 ΩxΩy

[
`
(
ᾱ0β̄0 r ln r + 1

2 β̄
2
0 r
)

+
`3

3

(
β̄2

0 − 1
2 ᾱ

2
0

) 1

r

]}
dr .

(16.85)
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Evaluating the integral over r [376], we obtain

WT
⊥ =

µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln r

∣∣∣∣Λ
bc

+

+
µ̄0

2π
`

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 r
2 ln2 r − ᾱ0

(
ᾱ0 − β̄0

)
r2 ln r+

+
1

2
ᾱ0

(
ᾱ0 − β̄0

)
r2 + 2β̄2

0 ln r
)
−

− 2 ΩxΩy
(
ᾱ0β̄0 r

2 ln r − 1
2 β̄0

(
ᾱ0 − β̄0

)
r2
) ] ∣∣∣∣Λ

bc

.

(16.86)

Using ᾱ0− β̄0 = −γ̄0 where γ̄0 is defined in (9.155), applying the limits
of integration and rearranging, (16.86) becomes

WT
⊥ =

µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln

Λ

bc
+

+
µ̄0

2π
`

[ (
Ω2
x + Ω2

y

)(
ᾱ2

0

(
Λ2 ln2 Λ− b2c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 ln Λ− b2c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2c

)
+

+ 2 β̄2
0 ln

Λ

bc

)
− 2 ΩxΩy

(
ᾱ0β̄0

(
Λ2 ln Λ− b2c ln bc

)
+

+
1

2
β̄0γ̄0

(
Λ2 − b2c

) )]
.

(16.87)

In most cases Λ� bc, and (16.87) reduces to

WT
⊥ '

µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln

Λ

bc
+

(16.88)
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+
µ̄0

2π
`Λ2

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 ln Λ−

− 1

2
ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0β̄0 ln Λ +

1

2
β̄0γ̄0

)]
which can be rearranged as

WT
⊥ '

µ̄0

2π
ᾱ2

0

`3

3

[ (
Ω2
x + Ω2

y

)(
1 +

1

2

β̄2
0

ᾱ2
0

)
+

+ 2 ΩxΩy

(
1− 2

β̄2
0

ᾱ2
0

)]
ln

Λ

bc
+

+
µ̄0

2π
ᾱ2

0 `Λ2

[ (
Ω2
x + Ω2

y

) (
ln2 Λ +

γ̄0

ᾱ0
ln Λ−

− 1

2

γ̄0

ᾱ0

)
− 2 ΩxΩy

( β̄0

ᾱ0
ln Λ +

1

2

β̄0γ̄0

ᾱ2
0

)]
(16.89)

and from the definitions of ᾱ0, β̄0 and γ̄0, finally

WT
⊥ '

µ̄0

2π
ᾱ2

0

`3

3

[ (
Ω2
x + Ω2

y

)(
1 +

1

2

(µ̄0 + λ̄0)2

µ̄2
0

)
+

+ 2 ΩxΩy

(
1− 2

(µ̄0 + λ̄0)2

µ̄2
0

)]
ln

Λ

bc
+

+
µ̄0

2π
ᾱ2

0 `Λ2

[ (
Ω2
x + Ω2

y

) (
ln2 Λ +

λ̄0

µ̄0
ln Λ−

− 1

2

λ̄0

µ̄0

)
− 2 ΩxΩy

( µ̄0 + λ̄0

µ̄0
ln Λ +

1

2

(µ̄0 + λ̄0)λ̄0

µ̄2
0

)]
(16.90)

We see that the twist disclination transverse strain energy WT
⊥ has a

portion which is proportional to the length of the disclination, and one
which is proportional to the space volume of the disclination. This trans-
verse strain energy for the twist disclination shows the most functional
diversity of all defects considered in this chapter.

The quantum physics implications of the longitudinal and transverse
strain energy for the screw and edge dislocations and for the wedge and
twist disclination are considered in Chapter 18.





Chapter 17

Defect Interactions in STCED

§17.1 Defect interactions in STCED

In Chapter 14, we saw how STCED provides a framework for quantum
physics based on defects in the spacetime continuum. In particular,
dislocations and disclinations were identified with bosons and fermions
respectively in section §14.4. We have discussed the quantum and en-
ergy characteristics of stationary dislocations and disclinations and the
association of these defects to fundamental quantum particles in Chap-
ter 15, and their strain energy in the stationary and moving case in
Chapter 16.

In this chapter, we consider the interactions of defects in STCED,
and how they relate to quantum physics. We have briefly considered this
topic in section §14.5. In STCED, the interaction of dislocations and
disclinations is mediated through the interaction of their strain energy
density.

We find that this interaction of the strain energy density results
from the overlap of the strain energy densities of defects, a process akin
to the wavefunction overlap of quantum mechanics, which is physically
explained by this process in STCED. One source of this overlap inter-
action comes from displacement defect interactions of different types of
defects, characterized by their Burgers and Frank vectors as derived in
the next section §17.2. Another source results from the overlap of the
strain energy densities of multiple defects, including of the same type
as shown in section §17.4.

We will then explore in greater details how Feynman diagrams are
relevant to STCED quantum physics. As discussed in section §14.5, the
role played by virtual particles in quantum electrodynamics (QED) will
be shown to be replaced by the interaction of the strain energy density
of the dislocations and disclinations in STCED.

§17.2 Displacement defect interactions

As mentioned in section §10.5, we consider the interaction terms of dislo-
cations and disclinations arising from the general displacements derived
from the general combined deWit dislocation displacements (9.130) and
disclination displacements (10.76).
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As seen in section §10.2 for the combined Volterra dislocation and
disclination displacements, the combined deWit dislocation and discli-
nation displacements are obtained by adding the dislocation displace-
ments (9.130) and disclination displacements (10.76) to obtain

ux =
bx
2π

(
θ + β̄0

xy

r2

)
+

by
2π

(
ᾱ0 ln r + β̄0

y2

r2

)
−

− Ωx
2π

z

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

z
(
θ + β̄0

xy

r2

)
−

− Ωz
2π

(y θ − ᾱ0 x (ln r − 1))

uy = − bx
2π

(
ᾱ0 ln r + β̄0

x2

r2

)
+

by
2π

(
θ − β̄0

xy

r2

)
−

− Ωx
2π

z
(
θ − β̄0

xy

r2

)
− Ωy

2π
z

(
ᾱ0 ln r + β̄0

x2

r2

)
+

+
Ωz
2π

(x θ + ᾱ0 y (ln r − 1))

uz =
bz
2π

θ +
Ωx
2π

(y θ − ᾱ0 x (ln r − 1))−

− Ωy
2π

(x θ + ᾱ0 y (ln r − 1))

(17.1)

where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
(17.2)

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
. (17.3)

The components of the strain tensor in cartesian coordinates are
derived from εµν = 1

2 (uµ;ν + uν;µ). As this is a linear operation, the
combined components of the strain tensor are obtained by adding the
dislocation strain tensor components (9.131) and the disclination strain
tensor components (10.79):

εxx = − bx
2π

(
ᾱ0

y

r2
+ β̄0

2x2y

r4

)
+

by
2π

(
ᾱ0

x

r2
− β̄0

2xy2

r4

)
−

− Ωx
2π

z

(
ᾱ0

x

r2
− 2β̄0

xy2

r4

)
−

(17.4)
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− Ωy
2π

z

(
ᾱ0

y

r2
+ 2β̄0

x2y

r4

)
+

Ωz
2π

(
ᾱ0 ln r + β̄0

y2

r2

)
εyy = − bx

2π

(
ᾱ0

y

r2
− β̄0

2x2y

r4

)
+

by
2π

(
ᾱ0

x

r2
+ β̄0

2xy2

r4

)
−

− Ωx
2π

z

(
ᾱ0

x

r2
+ 2β̄0

xy2

r4

)
−

− Ωy
2π

z

(
ᾱ0

y

r2
− 2β̄0

x2y

r4

)
+

Ωz
2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzz = 0

εxy =
bx
2π

β̄0

(
x

r2
− 2xy2

r4

)
− by

2π
β̄0

(
y

r2
− 2x2y

r4

)
+

+
Ωx
2π

z β̄0

(
y

r2
− 2x2y

r4

)
+

+
Ωy
2π

z β̄0

(
x

r2
− 2xy2

r4

)
− Ωz

2π
β̄0
xy

r2

εyz =
bz
4π

x

r2
+

Ωx
2π

β̄0
xy

r2
− Ωy

2π

(
ᾱ0 ln r + β̄0

x2

r2

)
εzx = − bz

4π

y

r2
− Ωx

2π

(
ᾱ0 ln r + β̄0

y2

r2

)
+

Ωy
2π

β̄0
xy

r2
.

The volume dilatation ε for the discrete dislocation line is then given
by

ε = εαα = εxx + εyy + εzz . (17.5)

Substituting for εxx, εyy and εzz from (17.4), we obtain

ε = − 1

π

µ̄0

2µ̄0 + λ̄0

bxy − byx
r2

−

− 1

π

µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
+

+
Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

)
.

(17.6)

The mass energy density is calculated from (2.24), viz.

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε .



298 Chapter 17 Defect Interactions in STCED

Substituting for ε from (17.6), using the absolute value of ε as per
section §9.3.4, the mass energy density of the discrete dislocation line is
given by

ρc2 =

∣∣∣∣ 4π κ̄0µ̄0

2µ̄0 + λ̄0

bxy − byx
r2

−

+
4

π

κ̄0µ̄0

2µ̄0 + λ̄0
(Ωxx+ Ωyy)

z

r2
+

− 4κ̄0Ωz
π

(
µ̄0

2µ̄0 + λ̄0
ln r +

1

2

µ̄0 + λ̄0

2µ̄0 + λ̄0

) ∣∣∣∣
(17.7)

and using ᾱ0 and β̄0,

ρc2 =

∣∣∣∣ 4π κ̄0ᾱ0
bxy − byx

r2
−

+
4

π
κ̄0ᾱ0 (Ωxx+ Ωyy)

z

r2
+

− 4κ̄0Ωz
π

(
ᾱ0 ln r +

1

2
β̄0

) ∣∣∣∣ .
(17.8)

The rest-mass density is thus the sum of the rest-mass density of edge
dislocations, wedge and twist disclinations. Screw dislocations are not
present as they are massless. The negative terms indicate a decrease in
total rest-mass energy due to bound states.

§17.2.1 Dislocation-dislocation interactions

The strain energy density of the discrete dislocation line is calculated
using (9.133) in (9.50) as seen previously in §9.5. The discrete disloca-
tion line longitudinal dilatation strain energy density is then given by
(9.139),

E‖ =
1

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

(bxy − byx)2

r4
. (17.9)

There is no longitudinal interaction strain energy density between edge
dislocations and screw dislocations, as the latter are massless.

Comparing this result with (9.68) corresponding to an edge dislo-
cation with the Burgers vector along the x − axis as per Fig. 9.4, the
result is the same as the bxy term of (17.9). Similarly, we see that the
byx term of (17.9) corresponds to an edge dislocation with the Burgers
vector along the y − axis. Considering (17.9), we note that in the case
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of two edge dislocations with Burgers vectors bx and by respectively, the
longitudinal overlap interaction strain energy density between the edge
dislocations along bx and by respectively would be given by

EE−E‖ int = −4κ̄0ᾱ
2
0

b̄xxb̄yy

r4
(17.10)

where b̄ = b/2π. The negative sign represents a reduction in the overall
interaction energy of the two edge dislocations.

As seen previously in §9.5, the distortion strain energy density is
calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ ,

and using (9.20), viz.
eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (17.11)

This expression is expanded using the non-zero elements of the strain
tensor (9.131) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εxz

2 − 1
4 ε

2
)
. (17.12)

Substituting from (9.131) and (9.133) in the above and simplifying, we
obtain (9.149):

E⊥ =
µ̄0

8π2

b2z
r2

+
µ̄0

4π2
ᾱ2

0

(bxy − byx)2

r4
+

+
µ̄0

2π2
β̄2

0

(bxx+ byy)2

r4
− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(17.13)

As seen previously in §9.5, setting bz = 0 and by = 0 in the above,
we obtain the distortion strain energy density expression (9.75) for the
stationary edge dislocation.

Substituting from (9.138) and (9.139), (17.13) becomes

E⊥ =
µ̄0

8π2

b2z
r2

+
1

2

µ̄0

κ̄0
E‖ + 2µ̄0

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2

ω2
z−

− 3

2π2

µ̄0λ̄0

2µ̄0 + λ̄0

bxbyxy

r4
.

(17.14)



300 Chapter 17 Defect Interactions in STCED

The first term is the screw dislocation strain energy density of (9.22),
the second term is proportional to the edge dislocation distortion strain
energy density arising from the longitudinal strain energy density of
(9.139), the third term is the edge dislocation distortion strain energy
density arising from the rotation vector of (9.138) and the last term
is a moment distortion strain energy density term. It is interesting to
note that there are no interaction terms (cross-terms) between screw
and edge dislocations for a dislocation line. However, as we will see in
section §18.6, a dislocation line does exhibit self-energy processes.

§17.2.2 Disclination-disclination interactions

The strain energy density of the discrete disclination line is calculated
using (10.82) in (9.50) as seen previously in §10.5. The discrete discli-
nation longitudinal dilatation strain energy density is then given by

E‖ =
κ̄0

2π2

[
Ωz

(
ᾱ0 ln r +

1

2
β̄0

)
− ᾱ0 (Ωxx+ Ωyy)

z

r2

]2

. (17.15)

This can be written as

E‖ = EW‖ + ET‖ + EW−T‖ int (17.16)

where EW‖ is given by (10.109), ET‖ is given by (10.129) and

EW−T‖ int = − κ̄0

π2
ᾱ0 (Ωxx+ Ωyy)

Ωzz

r2

(
ᾱ0 ln r +

1

2
β̄0

)
(17.17)

is the interaction longitudinal strain energy density between the wedge
and twist disclinations. The negative sign indicates an attractive force.

The distortion strain energy density is calculated from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (17.18)

This expression is expanded using the non-zero elements of the strain
tensor (10.79) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 − 1
4 ε

2
)
. (17.19)
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Substituting from (10.79) and (10.82) in the above, we note that E⊥ can
be separated in the following terms:

E⊥ = EW⊥ + ET⊥ + EW−T⊥ int (17.20)

where EW⊥ is the wedge disclination distortion strain energy density
given by (10.113), ET⊥ is the twist disclination distortion strain energy
density given by (10.132) and EW−T⊥ int is the wedge-twist disclination
interaction distortion strain energy density between the wedge and twist
disclinations given by (10.97):

EW−T⊥ int = − µ̄0ΩxΩz
2π2

xz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0 + β̄2
0

y2

r2

(
1− 2y2

r2

)]
− µ̄0ΩyΩz

2π2

yz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0 + β̄2
0

x2

r2

(
1− 2x2

r2

)]
.

(17.21)

It is important to note that the interactions involve separate longitudinal
and distortion expressions.

§17.2.3 Dislocation-disclination interactions

In this section, we consider the interaction terms of dislocations and
disclinations arising from the general displacements derived from the
general combined deWit dislocation displacements (9.130) and disclina-
tion displacements (10.76) given by (17.1).

We calculate the dislocation-disclination interaction strain energy
density by first calculating the longitudinal dilatation strain energy den-
sity (E‖) of the general dislocation-disclination using (10.82) in (9.50)
as seen previously in §10.5, from the general strain tensor (17.4). Using
the non-zero elements of the strain tensor (17.4) in the dilatation (17.5),
we use

E‖ = 1
2 κ̄0

(
εxx

2 + εyy
2 + 2εxxεyy

)
. (17.22)

We also calculate the distortion strain energy density (E⊥) as done
previously from (9.51), viz.

E⊥ = µ̄0e
αβeαβ .

As seen previously, using (9.20), viz.

eαβ = εαβ − esgαβ

where es = 1
4 ε, (9.51) simplifies to

E⊥ = µ̄0

(
εαβεαβ − 1

4 ε
2
)
. (17.23)
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This expression is expanded using the non-zero elements of the strain
tensor (17.4) to give

E⊥ = µ̄0

(
εxx

2 + εyy
2 + 2εxy

2 + 2εyz
2 + 2εyz

2 − 1
4 ε

2
)
. (17.24)

Some of the terms resulting from the computation have already
been calculated for dislocations only and for disclinations only, includ-
ing the dislocation-dislocation interaction terms and the disclination-
disclination interaction terms as seen in the previous sections §17.2.1
and §17.2.2 respectively. In calculating the dislocation-disclination in-
teraction terms from the general strain tensor (17.4), we will group
together the terms combining Burgers and Frank vector components.

We first provide a complete high-level overview of the strain energy
density terms that will be obtained from the above computation. We
include the terms that have already been calculated with a reference to
the equation numbers for the results.

The strain energy density E is first separated into the dislocation
strain energy density EDt where Dt represents the dislocation (a trans-
lation), the disclination strain energy density EDr where Dr represents
the disclination (a rotation), and the dislocation-disclination interaction
strain energy density EDt−Dr

int , according to

E = EDt + EDr + EDt−Dr
int . (17.25)

Dislocations (Dt) consist of screw (S) and edge (E) dislocations, and
disclinations (Dr) consist of wedge (W ) and twist (T ) disclinations.
This is summarized as follows:

Dt = {S,E} (17.26)

Dr = {W,T} . (17.27)

The strain energy density E is further separated into a longitudi-
nal dilatation strain energy density (E‖) and a distortion strain energy
density (E⊥) as seen above. This applies to both dislocations and discli-
nations, and hence we can write (17.25) as

E = EDt

‖ + EDt

⊥ + EDr

‖ + EDr

⊥ + EDt−Dr
int . (17.28)

The interaction term EDt−Dr
int can also be separated along similar lines,

and the details are covered further in this section. We now consider the
individual terms of (17.25).
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The dislocation strain energy density EDt can be further separated
into the following terms:

EDt = ES‖︸︷︷︸
=0

+ EE‖︸︷︷︸
(9.68)︸ ︷︷ ︸

(9.139)

+ ES⊥︸︷︷︸
(9.22)

+ EE⊥︸︷︷︸
(9.78)︸ ︷︷ ︸

(9.156)

(17.29)

where ES‖ is the screw dislocation dilatation strain energy density, which

is equal to 0, EE‖ is the edge dislocation dilatation strain energy density,

ES⊥ is the screw dislocation distortion strain energy density, and EE⊥ is
the edge dislocation distortion strain energy density. It is important
to note that there is no interaction strain energy density arising from
the dislocation displacements, due to their translation nature, although
there is an interaction strain energy density that arises from the overlap
of dislocations of the same type as we will see in later sections.

The disclination strain energy density EDr can be further separated
into the following terms:

EDr = EW‖︸︷︷︸
(10.108)

+ ET‖︸︷︷︸
(10.129)︸ ︷︷ ︸

(10.92)

+ EW−T‖ int︸ ︷︷ ︸
(17.17)

+ EW⊥︸︷︷︸
(10.113)

+ ET⊥︸︷︷︸
(10.133)

+ EW−T⊥ int︸ ︷︷ ︸
(17.21)︸ ︷︷ ︸

(10.98)

(17.30)

where EW‖ is the wedge disclination dilatation strain energy density, ET‖
is the twist disclination dilatation strain energy density, EW−T‖ int is the

wedge-twist interaction dilatation strain energy density, EW⊥ is the wedge
disclination distortion strain energy density, ET⊥ is the twist disclination
distortion strain energy density, and EW−T⊥ int is the wedge-twist inter-
action distortion strain energy density. It is important to note that
in this case there is interaction strain energy density arising from the
disclination displacements, due to their rotational nature.

The dislocation-disclination interaction strain energy densityEDt−Dr
int

will be calculated in this section, and can be further separated into the
following terms:

EDt−Dr
int = EE−W‖ int︸ ︷︷ ︸

bx,yΩz

+ EE−T‖ int︸ ︷︷ ︸
bx,yΩx,y︸ ︷︷ ︸

EDt−Dr
‖ int

+ ES−T⊥ int︸ ︷︷ ︸
bzΩx,y

+ EE−W⊥ int︸ ︷︷ ︸
bx,yΩz

+ EE−T⊥ int︸ ︷︷ ︸
bx,yΩx,y︸ ︷︷ ︸

EDt−Dr
⊥ int

(17.31)

where EE−W‖ int is the edge-wedge interaction dilatation strain energy den-

sity (bx,yΩz terms), EE−T‖ int is the edge-twist interaction dilatation strain
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energy density (bx,yΩx,y terms), ES−T⊥ int is the screw-twist interaction dis-

tortion strain energy density (bzΩx,y terms), EE−W⊥ int is the edge-wedge

interaction distortion strain energy density (bx,yΩz terms), and EE−T⊥ int

is the edge-twist interaction distortion strain energy density (bx,yΩx,y
terms).

We calculate the individual dislocation-disclination interaction terms
of (17.31) by substituting for the strain tensor (17.4) and the dilatation
(17.6) in (17.22) and (17.24) to calculate the combination of Burgers
and Frank vector components indicated in (17.31) for each term.

The edge-wedge interaction dilatation strain energy density EE−W‖ int
is calculated from the bx,yΩz terms to obtain

EE−W‖ int = − κ̄0bxΩz
4π2

y

r2

[
3ᾱ0

(
2ᾱ0 ln r + β̄0

)
+ β̄2

0

x2(x2 − y2)

r4

]
+
κ̄0byΩz

4π2

x

r2

[
3ᾱ0

(
2ᾱ0 ln r + β̄0

)
− β̄2

0

y2(x2 − y2)

r4

] (17.32)

which can be simplified to

EE−W‖ int = − κ̄0Ωz
4π2

[
3ᾱ0

bxy − byx
r2

(
2ᾱ0 ln r + β̄0

)
+

+ β̄2
0 (bxx− byy)

xy(x2 − y2)

r6

]
.

(17.33)

The edge-twist interaction dilatation strain energy density EE−T‖ int is

calculated from the bx,yΩx,y terms to obtain

EE−T‖ int =
κ̄0bxΩx

2π2
z

(
3ᾱ2

0

xy

r4
+ 4β̄2

0

x3y3

r8

)
−

− κ̄0byΩy
2π2

z

(
3ᾱ2

0

xy

r4
+ 4β̄2

0

x3y3

r8

)
+

+
κ̄0bxΩy

2π2
z

(
3ᾱ2

0

y2

r4
− 4β̄2

0

x4y2

r8

)
−

− κ̄0byΩx
2π2

z

(
3ᾱ2

0

x2

r4
− 4β̄2

0

x2y4

r8

)
(17.34)
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which can be simplified to

EE−T‖ int =
κ̄0

2π2
(bxΩx − byΩy)

xyz

r4

(
3ᾱ2

0 + 4β̄2
0

x2y2

r4

)
+

+
κ̄0bxΩy

2π2

y2z

r4

(
3ᾱ2

0 − 4β̄2
0

x4

r4

)
−

− κ̄0byΩx
2π2

x2z

r4

(
3ᾱ2

0 − 4β̄2
0

y4

r4

)
.

(17.35)

The screw-twist interaction distortion strain energy density ES−T⊥ int

is calculated from the bzΩx,y terms to obtain

ES−T⊥ int =
µ̄0bzΩx

2π2

y

r2

(
ᾱ0 ln r + β̄0

)
−

− µ̄0bzΩy
2π2

x

r2

(
ᾱ0 ln r + β̄0

) (17.36)

which can be simplified to

ES−T⊥ int =
µ̄0bz
2π2

Ωxy − Ωyx

r2

(
ᾱ0 ln r + β̄0

)
. (17.37)

The edge-wedge interaction distortion strain energy density EE−W⊥ int

is calculated from the bx,yΩz terms to obtain

EE−W⊥ int = − µ̄0bxΩz
2π2

y

r2

[
ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0

x2y2

r4

]
+

+
µ̄0byΩz

2π2

x

r2

[
ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0

x2y2

r4

] (17.38)

which can be simplified to

EE−W⊥ int = − µ̄0Ωz
2π2

bxy − byx
r2

[
ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0

x2y2

r4

]
. (17.39)

The edge-twist interaction distortion strain energy density EE−T⊥ int is
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calculated from the bx,yΩx,y terms to obtain

EE−T⊥ int =
µ̄0bxΩx
π2

(
ᾱ2

0 − β̄2
0

) xyz
r4
−

− µ̄0byΩy
π2

(
ᾱ2

0 − β̄2
0

) xyz
r4

+

+
µ̄0bxΩy
π2

(
β̄2

0x
2 + ᾱ2

0y
2
) z

r4
−

− µ̄0byΩx
π2

(
ᾱ2

0x
2 + β̄2

0y
2
) z

r4

(17.40)

which can be simplified to

EE−T⊥ int = − µ̄0γ̄0

π2
(bxΩx − byΩy)

xyz

r4
+

+
µ̄0ᾱ

2
0

π2

(
bxΩyy

2 − byΩxx
2
) z

r4
+

+
µ̄0β̄

2
0

π2

(
bxΩyx

2 − byΩxy
2
) z

r4

(17.41)

where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
. (17.42)

These elements form the basis of the calculation of defect displace-
ment interactions in quantum physics in the following sections.

§17.3 Displacement defect interaction strain energy

In this section, we consider the interaction of defects as mediated by
their strain energy. We consider the longitudinal dilatation strain energy
W‖ and the transverse distortion strain energy W⊥ for the dislocation-
dislocation, disclination-disclination and dislocation-disclination displa-
cement defect interactions considered in section §17.2.

§17.3.1 Dislocation-dislocation interactions

There is no longitudinal interaction strain energy density between edge
dislocations and screw dislocations, as the latter are massless. As we saw
in (17.14) for the transverse interaction strain energy density, there are
no displacement interaction terms (cross-terms) either between screw
and edge dislocations for a general dislocation line. Hence there is no
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displacement interaction strain energy for dislocation-dislocation inter-
actions. However, as we will see in section §18.6, a dislocation line does
exhibit self-energy processes.

§17.3.2 Disclination-disclination interactions

Wedge disclination - twist disclination interaction. The lon-
gitudinal strain energy for the interaction between the wedge and twist
disclinations is calculated from

WW−T
‖ int =

∫
V

EW−T‖ int dV. (17.43)

Substituting for EW−T‖ int from (17.17), this equation becomes

WW−T
‖ int = −

∫
V

κ̄0

π2
ᾱ0 (Ωxx+ Ωyy)

Ωzz

r2

(
ᾱ0 ln r +

1

2
β̄0

)
dV (17.44)

where V is the volume of the interacting disclinations, with dV given
by rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out
of the integral from (14.5), and write (17.44) as

WW−T
‖ int =

κ̄0

π2
ᾱ0Ωz

∫ `

0

∫ 2π

0

∫ Λ

bc

(Ωxx+ Ωyy)

z

r2

(
ᾱ0 ln r +

1

2
β̄0

)
rdr dθ dz

(17.45)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over z, (17.45) becomes

WW−T
‖ int =

κ̄0

2π2
ᾱ0Ωz`

2

∫ 2π

0

∫ Λ

bc

(Ωx cos θ + Ωy sin θ)(
ᾱ0 ln r +

1

2
β̄0

)
dr dθ

(17.46)

where we have used the relations cos θ = x/r and sin θ = y/r. Again,
the integral over z cannot be handled by considering the strain energy
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per unit length of the disclination due to the `2 (area) dependence.
Evaluating the integral over θ [376], we obtain

WW−T
‖ int =

κ̄0

2π2
ᾱ0Ωz`

2

∫ Λ

bc

[
(Ωx sin θ − Ωy cos θ)(

ᾱ0 ln r +
1

2
β̄0

)]2π

0

z2 dz .

(17.47)

Applying the limits of integration, (17.47) becomes

WW−T
‖ int = 0 . (17.48)

Hence there is no longitudinal interaction between wedge and twist
disclinations. Considering Fig. 10.1, we see that the Frank vectors are
perpendicular for those disclinations, and hence the result is to be ex-
pected.

The transverse strain energy for the interaction between the wedge
and twist disclinations is calculated from

WW−T
⊥ int =

∫
V

EW−T⊥ int dV. (17.49)

Substituting for EW−T⊥ int from (17.21), this equation becomes

WW−T
⊥ int = − µ̄0Ωz

2π2

∫
V

{
Ωxxz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0+

+ β̄2
0

(
y2

r2
− 2y4

r4

)]
+

Ωyyz

r2

[
2ᾱ2

0 ln r+

+ ᾱ0β̄0 + β̄2
0

(
x2

r2
− 2x4

r4

)]}
dV

(17.50)

where V is the volume of the interacting disclinations, with dV given
by rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out
of the integral from (14.5), and write (17.50) as

WW−T
⊥ int = − µ̄0Ωz

2π2

∫ `

0

∫ 2π

0

∫ Λ

bc

{
Ωxxz

r2

[
2ᾱ2

0 ln r + ᾱ0β̄0+

+ β̄2
0

(
y2

r2
− 2y4

r4

)]
+

Ωyyz

r2

[
2ᾱ2

0 ln r+

+ ᾱ0β̄0 + β̄2
0

(
x2

r2
− 2x4

r4

)]}
rdr dθ dz

(17.51)
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where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over z, (17.51) becomes

WW−T
⊥ int = − µ̄0Ωz

4π2
`2
∫ 2π

0

∫ Λ

bc

{
Ωx cos θ

[
2ᾱ2

0 ln r + ᾱ0β̄0+

+ β̄2
0

(
sin2 θ − 2 sin4 θ

) ]
+ Ωy sin θ

[
2ᾱ2

0 ln r+

+ ᾱ0β̄0 + β̄2
0

(
cos2 θ − 2 cos4 θ

) ]}
dr dθ

(17.52)

where we have used the relations cos θ = x/r and sin θ = y/r. Again,
the integral over z cannot be handled by considering the strain energy
per unit length of the disclination due to the `2 (area) dependence.
Evaluating the integral over θ [376], we obtain

WW−T
⊥ int = − µ̄0Ωz

4π2
`2
∫ Λ

bc

{
Ωx

[
2ᾱ2

0 ln r sin θ + ᾱ0β̄0 sin θ+

+ β̄2
0

(
1

3
sin3 θ − 2

5
sin5 θ

)]
− Ωy

[
2ᾱ2

0 ln r cos θ+

+ ᾱ0β̄0 cos θ + β̄2
0

(
1

3
cos3 θ − 2

5
cos5 θ

)]}∣∣∣∣2π
0

(17.53)

Applying the limits of integration, (17.53) becomes

WW−T
⊥ int = 0 . (17.54)

Hence we find that there is no transverse interaction between wedge and
twist disclinations, in agreement with the perpendicularity of the dislo-
cation Frank vectors as seen in Fig. 10.1. As in the case of dislocation-
dislocation interactions, there is no displacement interaction strain en-
ergy for disclination-disclination interactions.

§17.3.3 Dislocation-disclination interactions

In this section, we consider the interaction terms of dislocations and
disclinations.
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Edge dislocation - wedge disclination interaction. The longitu-
dinal strain energy for the interaction between the edge dislocation and
the wedge disclination is calculated from

WE−W
‖ int =

∫
V

EE−W‖ int dV. (17.55)

Substituting for EE−W‖ int from (17.33), this equation becomes

WE−W
‖ int = −

∫
V

κ̄0Ωz
4π2

[
3ᾱ0

bxy − byx
r2

(
2ᾱ0 ln r + β̄0

)
+

+ β̄2
0 (bxx− byy)

xy(x2 − y2)

r6

]
dV

(17.56)

where V is the volume of the interacting defects, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and the integral over z is handled by considering
the strain energy per unit length of the interaction:

WE−W
‖ int

`
= − κ̄0Ωz

4π2

∫ 2π

0

∫ Λ

bc

[
3ᾱ0

bxy − byx
r2

(
2ᾱ0 ln r + β̄0

)
+

+ β̄2
0 (bxx− byy)

xy(x2 − y2)

r6

]
rdr dθ

(17.57)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Using the relations cos θ = x/r and sin θ = y/r, (17.57) can be
written as

WE−W
‖ int

`
= − κ̄0Ωz

4π2

∫ 2π

0

∫ Λ

bc

[
3ᾱ0 (bx sin θ − by cos θ)(

2ᾱ0 ln r + β̄0

)
+ β̄2

0 (bx cos θ − by sin θ)

cos θ sin θ
(
cos2 θ − sin2 θ

) ]
dr dθ .

(17.58)
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Evaluating the integral over θ [376], we obtain

WE−W
‖ int

`
= − κ̄0Ωz

4π2

∫ Λ

bc

[
3ᾱ0 (−bx cos θ − by sin θ)

(
2ᾱ0 ln r + β̄0

)
+ β̄2

0 bx

(
−1

5
cos5 θ − 1

30
cos3 θ (3 cos 2θ − 7)

)
−

− β̄2
0 by

(
1

30
sin3 θ (3 cos 2θ + 7)− 1

5
sin5 θ

)]2π

0

dr .

(17.59)

Applying the limits of integration, (17.59) becomes

WE−W
‖ int

`
= 0 . (17.60)

Hence we find that there is no longitudinal interaction between the edge
dislocation and the wedge disclination. We note that the Burgers and
Frank vectors are perpendicular.

The transverse strain energy for the interaction between the edge
dislocation and the wedge disclination is calculated from

WE−W
⊥ int =

∫
V

EE−W⊥ int dV. (17.61)

Substituting for EE−W⊥ int from (17.39), this equation becomes

WE−W
⊥ int = −

∫
V

µ̄0Ωz
2π2

bxy − byx
r2[

ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0

x2y2

r4

]
dV

(17.62)

where V is the volume of the interacting defects, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and the integral over z is handled by considering
the strain energy per unit length of the disclination:

WE−W
⊥ int

`
= − µ̄0Ωz

2π2

∫ 2π

0

∫ Λ

bc

bxy − byx
r2[

ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0

x2y2

r4

]
rdr dθ

(17.63)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
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vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Using the relations cos θ = x/r and sin θ = y/r, (17.63) can be
written as

WE−W
⊥ int

`
= − µ̄0Ωz

2π2

∫ 2π

0

∫ Λ

bc

(bx sin θ − by cos θ)[
ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
+ 2β̄2

0 cos2 θ sin2 θ
]

dr dθ .

(17.64)

Evaluating the integral over θ [376], we obtain

WE−W
⊥ int

`
=
µ̄0Ωz
2π2

∫ Λ

bc

[
ᾱ0

(
ᾱ0 ln r + 1

2 β̄0

)
(bx cos θ + by sin θ) +

+ 2β̄2
0 bx

1

30
cos3 θ (3 cos 2θ − 7)−

− 2β̄2
0 by

1

30
sin3 θ (3 cos 2θ + 7)

]2π

0

dr .

(17.65)

Applying the limits of integration, (17.65) becomes

WE−W
⊥ int

`
= 0 . (17.66)

Hence we find that there is no transverse interaction between the edge
dislocation and the wedge disclination and there is no displacement
interaction strain energy for edge dislocation-wedge disclination inter-
actions.

Edge dislocation - twist disclination interaction. The longitu-
dinal strain energy for the interaction between the edge dislocation and
the twist disclination is calculated from

WE−T
‖ int =

∫
V

EE−T‖ int dV. (17.67)

Substituting for EE−T‖ int from (17.35), this equation becomes

WE−T
‖ int =

∫
V

[
κ̄0

2π2
(bxΩx − byΩy)

xyz

r4

(
3ᾱ2

0 + 4β̄2
0

x2y2

r4

)
+

+
κ̄0bxΩy

2π2

y2z

r4

(
3ᾱ2

0 − 4β̄2
0

x4

r4

)
−

− κ̄0byΩx
2π2

x2z

r4

(
3ᾱ2

0 − 4β̄2
0

y4

r4

)]
dV

(17.68)
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where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and write (17.68) as

WE−T
‖ int =

κ̄0

2π2

∫ `

0

∫ 2π

0

∫ Λ

bc

[
bxΩx

xyz

r4

(
3ᾱ2

0 + 4β̄2
0

x2y2

r4

)
−

− byΩy
xyz

r4

(
3ᾱ2

0 + 4β̄2
0

x2y2

r4

)
+

+ bxΩy
y2z

r4

(
3ᾱ2

0 − 4β̄2
0

x4

r4

)
−

− byΩx
x2z

r4

(
3ᾱ2

0 − 4β̄2
0

y4

r4

)]
rdr dθ dz

(17.69)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over z, (17.69) becomes

WE−T
‖ int =

κ̄0

4π2
`2
∫ 2π

0

∫ Λ

bc[
bxΩx
r

cos θ sin θ
(
3ᾱ2

0 + 4β̄2
0 cos2 θ sin2 θ

)
−

− byΩy
r

cos θ sin θ
(
3ᾱ2

0 + 4β̄2
0 cos2 θ sin2 θ

)
+

+
bxΩy
r

sin2 θ
(
3ᾱ2

0 − 4β̄2
0 cos4 θ

)
−

− byΩx
r

cos2 θ
(
3ᾱ2

0 − 4β̄2
0 sin4 θ

) ]
dr dθ

(17.70)

where we have used the relations cos θ = x/r and sin θ = y/r. Again,
the integral over z cannot be handled by considering the strain energy
per unit length of the disclination due to the `2 (area) dependence.
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Evaluating the integral over θ [376], we obtain

WE−T
‖ int =

κ̄0

4π2
`2
∫ Λ

bc

[
− bxΩx

r
3ᾱ2

0

(
1

2
cos2 θ

)
+

+
bxΩx
r

4β̄2
0

(
1

192
(cos 6θ − 9 cos 2θ)

)
+

+
byΩy
r

(
3ᾱ2

0

1

2
cos2 θ − 4β̄2

0

1

192
(cos 6θ − 9 cos 2θ)

)
+

+
bxΩy
r

3ᾱ2
0

(
1

2
(θ − sin θ cos θ)

)
−

− bxΩy
r

4β̄2
0

(
θ

16
+

1

64
sin 2θ − 1

64
sin 4θ − 1

192
sin 6θ

)
−

− byΩx
r

3ᾱ2
0

(
1

2
(θ + sin θ cos θ)

)
+

+
byΩx
r

4β̄2
0

(
θ

16
− 1

64
sin 2θ − 1

64
sin 4θ +

1

192
sin 6θ

)]2π

0

dr .

(17.71)

Applying the limits of integration, (17.71) becomes

WE−T
‖ int =

κ̄0

4π2
`2
∫ Λ

bc

[
bxΩy
r

(
3πᾱ2

0 −
π

2
β̄2

0

)
−

− byΩx
r

(
3πᾱ2

0 −
π

2
β̄2

0

)]
dr .

(17.72)

Integrating over r, we obtain

WE−T
‖ int =

κ̄0

4π
`2
(
3ᾱ2

0 − 1
2 β̄

2
0

)
(bxΩy − byΩx) ln

Λ

bc
. (17.73)

Hence we find that there is a longitudinal interaction between the edge
dislocation and the twist disclination which depends on the area of the
defect. Only bx,y and Ωx,y cross-terms interact. The displacement inter-
action strain energy for edge dislocation-twist disclination interactions
is of the form b×Ω.

The transverse strain energy for the interaction between the edge
dislocation and the twist disclination is calculated from

WE−T
⊥ int =

∫
V

EE−T⊥ int dV. (17.74)
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Substituting for EE−T⊥ int from (17.41), this equation becomes

WE−T
⊥ int = −

∫
V

µ̄0γ̄0

π2
(bxΩx − byΩy)

xyz

r4
+

+
µ̄0ᾱ

2
0

π2

(
bxΩyy

2 − byΩxx
2
) z

r4
+

+
µ̄0β̄

2
0

π2

(
bxΩyx

2 − byΩxy
2
) z

r4
dV

(17.75)

where as per (17.42)

γ̄0 =
λ̄0

2µ̄0 + λ̄0

and where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and write (17.75) as

WE−T
⊥ int =

µ̄0

π2

∫ `

0

∫ 2π

0

∫ Λ

bc

[
− γ̄0 (bxΩx − byΩy)

xyz

r4
+

+ ᾱ2
0

(
bxΩyy

2 − byΩxx
2
) z

r4
+

+ β̄2
0

(
bxΩyx

2 − byΩxy
2
) z

r4

]
rdr dθ dz

(17.76)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Evaluating the integral over z, (17.76) becomes

WE−T
⊥ int =

µ̄0

2π2
`2
∫ 2π

0

∫ Λ

bc

[
− γ̄0

bxΩx − byΩy
r

cos θ sin θ+

+ ᾱ2
0

(
bxΩy
r

sin2 θ − byΩx
r

cos2 θ

)
+

+ β̄2
0

(
bxΩy
r

cos2 θ − byΩx
r

sin2 θ

)]
dr dθ

(17.77)

where we have used the relations cos θ = x/r and sin θ = y/r. Again,
the integral over z cannot be handled by considering the strain energy
per unit length of the disclination due to the `2 (area) dependence.
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Evaluating the integral over θ [376], we obtain

WE−T
⊥ int =

µ̄0

2π2
`2
∫ Λ

bc

[
γ̄0
bxΩx − byΩy

r

(
1

2
cos2 θ

)
+

+
ᾱ2

0

2

(
bxΩy
r

(θ − sin θ cos θ)− byΩx
r

(θ + sin θ cos θ)

)
+

+
β̄2

0

2

(
bxΩy
r

(θ + sin θ cos θ)− byΩx
r

(θ − sin θ cos θ)

)]2π

0

dr .

(17.78)

Applying the limits of integration, (17.78) becomes

WE−T
⊥ int =

µ̄0

2π2
`2
∫ Λ

bc

[
πᾱ2

0

(
bxΩy
r
− byΩx

r

)
+

+πβ̄2
0

(
bxΩy
r
− byΩx

r

)]
dr .

(17.79)

Integrating over r, we obtain

WE−T
⊥ int =

µ̄0

2π
`2
(
ᾱ2

0 + β̄2
0

)
(bxΩy − byΩx) ln

Λ

bc
. (17.80)

Hence we find that there is also a transverse interaction between the
edge dislocation and the twist disclination which depends on the area
of the defect. Again only bx,y and Ωx,y cross-terms interact. The differ-
ence between the longitudinal and the transverse interaction lies in the
proportionality constants. In both cases, the displacement interaction
strain energy for edge dislocation-twist disclination interactions is of the
form b×Ω.

Screw dislocation - twist disclination interaction. We recall
that there is no longitudinal interaction between the screw dislocation
and the twist disclination as the screw dislocation does not have a lon-
gitudinal component.

The transverse strain energy for the interaction between the screw
dislocation and the twist disclination is calculated from

WS−T
⊥ int =

∫
V

ES−T⊥ int dV. (17.81)

Substituting for ES−T⊥ int from (17.37), this equation becomes

WS−T
⊥ int =

∫
V

µ̄0bz
2π2

Ωxy − Ωyx

r2

(
ᾱ0 ln r + β̄0

)
dV (17.82)
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where V is the volume of the wedge disclination, with dV given by
rdr dθ dz in cylindrical polar coordinates. As before, we take Ω out of
the integral from (14.5), and the integral over z is handled by considering
the strain energy per unit length of the disclination:

WS−T
⊥ int

`
=
µ̄0bz
2π2

∫ 2π

0

∫ Λ

bc

Ωxy − Ωyx

r2

(
ᾱ0 ln r + β̄0

)
rdr dθ (17.83)

where ` is the length of the disclination, bc is the size of the core of
the disclination, of order b0, the smallest spacetime dislocation Burgers
vector, and Λ is a cut-off parameter corresponding to the radial ex-
tent of the disclination, limited by the average distance to its nearest
neighbours.

Using the relations cos θ = x/r and sin θ = y/r, (17.83) can be
written as

WS−T
⊥ int

`
=
µ̄0bz
2π2

∫ 2π

0

∫ Λ

bc

(Ωx sin θ − Ωy cos θ)(
ᾱ0 ln r + β̄0

)
dr dθ .

(17.84)

Evaluating the integral over θ [376], we obtain

WS−T
⊥ int

`
=
µ̄0bz
2π2

∫ Λ

bc

(−Ωx cos θ − Ωy sin θ)

(
ᾱ0 ln r + β̄0

) ∣∣∣∣2π
0

dr .

(17.85)

Applying the limits of integration, (17.85) becomes

WS−T
⊥ int

`
= 0 . (17.86)

Hence we find that there is no transverse interaction between the screw
dislocation and the twist disclination and there is no displacement inter-
action strain energy for screw dislocation-twist disclination interactions.
Again we note the perpendicularity of the Burgers and Frank vectors.

§17.4 Overlap interaction of multiple defects

In this section, we consider the interactions of dislocations of multiple
defects, including of the same type, which are seen to result from the
force resulting from the overlap of their strain energy density in the
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spacetime continuum [159, see p. 112]. As we have seen in §17.2.1, there
is no longitudinal interaction strain energy density between edge dislo-
cations and screw dislocations in a mixed dislocation, as the latter are
massless. In addition, as shown in that section, there are no interaction
terms (cross-terms) between screw and edge dislocations for a disloca-
tion line which is a mixed dislocation. This is due to the perpendicu-
larity of the two types of dislocations. However, multiple dislocations
separated by a distance R can undergo defect interactions due to the
overlap of their strain energy densities, both dislocation and disclination
interactions.

These interactions can be calculated using various methods. Till
now, we have concentrated on the calculation of the strain energy of the
overlap based on the defect displacements. Another approach [364, see
Chapter 3] that can be used is to calculate the force between the defects
from the stress tensor, and obtain the strain energy of the overlap based
on the work W performed by the application of the force F over a given
distance d, from the well-known relation

W = F · d . (17.87)

Conversely, the force can be calculated from the negative of the deriva-
tive of the strain energy W with position. For example, for a dislocation
line parallel to the z-axis positive along the z-axis, the force on the dis-
location line can be written as

F = −
(
∂W

∂x
,
∂W

∂y

)
. (17.88)

This allows us to calculate the overlap interaction strain energy.
We consider the total strain energy W for two neighbouring defects.

This can be written in terms of the strain energy density E for the two
neighbouring defects as an integral over the volume

W =

∫
V

E dV . (17.89)

E can be expressed in terms of the stress density σ using the stress
tensor portion of (9.49) to (9.51). Following Weertman [364, see p. 62],
as the stress density equations are linear (see section §8.5), we separate
the stress density σ into a sum of two terms

W =

∫
V

(σ1 + σ2)2 dV (17.90)
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where we have not included the proportionality factor and where σ2 is
the stress density of the defect (dislocation or disclination) of interest
in an otherwise strain-free continuum, and σ1, known as the internal
stresses, is the stress density of the rest of the continuum including the
neighbouring defect(s), but excluding the defect of σ2. Then σ1 + σ2

represents the stress density of a continuum including a defect of interest
and internal stresses.

The total strain energy W can then be written as

W =

∫
V

σ2
1 dV +

∫
V

σ2
2 dV + 2

∫
V

σ1σ2 dV . (17.91)

The first two terms are position independent. Only the third term is
position dependent, and leads to a force on the defect as per (17.88)
and contributes to the interaction strain energy W12 :

W12 = 2

∫
V

σ1σ2 dV . (17.92)

§17.4.1 Overlap interaction strain energy

From (1.19) to (1.21) the energy-momentum stress tensor Tαβ is de-
composed into a stress deviation tensor tαβ and a scalar ts, according
to

Tαβ = tαβ + tsg
αβ (17.93)

where ts = 1
4 T

α
α. Separating Tαβ into the sum of two terms as per

(17.90), we have
Tαβ = 1T

αβ + 2T
αβ , (17.94)

and using (17.93), we obtain

Tαβ = 1t
αβ + 1tsg

αβ + 2t
αβ + 2tsg

αβ . (17.95)

Hence we can write
tαβ = 1t

αβ + 2t
αβ

ts = 1ts + 2ts .
(17.96)

Going back to (17.89) and using (9.49) to (9.51), we have

W =

∫
V

(
E‖ + E⊥

)
dV (17.97)

where

E‖ =
1

32κ̄0

(
ρc2
)2 ≡ 1

2κ̄0
t2s (17.98)
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where ρ is the mass energy density of the edge dislocation, and

E⊥ =
1

4µ̄0
tαβtαβ . (17.99)

Substituting (17.98) and (17.99) into (17.97), we obtain

W =

∫
V

(
1

2κ̄0
t2s +

1

4µ̄0
tαβtαβ

)
dV (17.100)

and using (17.96), (17.100) becomes

W =

∫
V

[
1

2κ̄0
(1ts + 2ts)

2
+

+
1

4µ̄0

(
1t
αβ + 2t

αβ
)

(1tαβ + 2tαβ)

]
dV .

(17.101)

Expanding and re-arranging, we obtain

W =

∫
V

[
1

2κ̄0
1t

2
s +

1

4µ̄0
1t
αβ

1tαβ +

+
1

2κ̄0
2t

2
s +

1

4µ̄0
2t
αβ

2tαβ +

+
1

κ̄0
1ts 2ts +

1

4µ̄0

(
1t
αβ

2tαβ + 2t
αβ

1tαβ
) ]

dV

(17.102)

which can be written as

W =

∫
V

[
E‖ + E⊥

]
1

dV +

∫
V

[
E‖ + E⊥

]
2

dV+

+

∫
V

[
E‖ + E⊥

]
12

dV

(17.103)

which is equivalent to

W = W1 +W2 +W12 . (17.104)

Hence the overlap interaction strain energy is given by the third
term from (17.102):

W12 =

∫
V

[
1

κ̄0
1ts 2ts +

1

4µ̄0

(
1t
αβ

2tαβ + 2t
αβ

1tαβ
)]

dV . (17.105)
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Substituting from (17.93) (see (1.20) and (1.21)) into (17.105), we obtain

W12 =
1

16κ̄0

∫
V

1T
α
α 2T

α
α dV+

+
1

4µ̄0

∫
V

[(
1T

αβ − 1

4
1T

α
αg

αβ

)(
2Tαβ −

1

4
2T

α
αgαβ

)
+

+

(
2T

αβ − 1

4
2T

α
αg

αβ

)(
1Tαβ −

1

4
1T

α
αgαβ

)]
dV .

(17.106)

Expanding the second integral, we obtain

W12 =
1

16κ̄0

∫
V

1T
α
α 2T

α
α dV+

+
1

4µ̄0

∫
V

[
1T

αβ
2Tαβ −

1

4
1T

αβ
2T

α
α gαβ−

− 1

4
1T

α
α g

αβ
2Tαβ +

1

16
1T

α
α 2T

α
α g

αβgαβ+

+ 2T
αβ

1Tαβ −
1

4
2T

αβ
1T

α
α gαβ−

− 1

4
2T

α
α g

αβ
1Tαβ +

1

16
2T

α
α 1T

α
α g

αβgαβ

]
dV .

(17.107)

Using gαβgαβ = ηαβηαβ = 4, expanding and simplifying the second
integral, we obtain

W12 =
1

16κ̄0

∫
V

1T
α
α 2T

α
α dV+

+
1

4µ̄0

∫
V

[
1T

αβ
2Tαβ + 2T

αβ
1Tαβ −

1

2
1T

α
α 2T

α
α

]
dV

(17.108)

where 1T
α
α = ρ1c

2 and 2T
α
α = ρ2c

2.

Hence the overlap interaction strain energy can be written as

W12 = Wmass
12 +W field

12 (17.109)

where Wmass
12 is a pure mass longitudinal term given by

Wmass
12 =

1

16κ̄0

∫
V

1T
α
α 2T

α
α dV (17.110)
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and W field
12 is a pure massless transverse field term given by

W field
12 =

1

4µ̄0

∫
V

[
1T

αβ
2Tαβ + 2T

αβ
1Tαβ−

− 1

2
1T

α
α 2T

α
α

]
dV

(17.111)

Alternatively, (17.108) can be written as

W12 =
1

4µ̄0

∫
V

[
1T

αβ
2Tαβ + 2T

αβ
1Tαβ −

− λ̄0

µ̄0 + 2λ̄0
1T

α
α 2T

α
α

]
dV .

(17.112)

It is important to note that the overlap interaction strain energy is
usually expressed as energy per unit length of the defect W12/`.

§17.4.2 Parallel dislocation interactions

From Hirth [159, see pp. 117-118], the energy of interaction per unit
length between parallel dislocations (including screw and edge disloca-
tion components) is given by

W12

`
= − µ̄0

2π
(b1 · ξ) (b2 · ξ) ln

R

RΛ
−

− µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ) ln

R

RΛ
−

− µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

[(b1 × ξ) ·R] [(b2 × ξ) ·R]

R2

(17.113)

where ξ is parallel to the z axis, (bi · ξ) are the screw components,
(bi × ξ) are the edge components, R is the separation between the
dislocations, and RΛ is the distance from which the dislocations are
brought together, resulting in the decrease in energy of the “system”.

The components of the interaction force per unit length between the
parallel dislocations are obtained by differentiation:

FR
`

= −∂(W12/`)

∂R

Fθ
`

= − 1

R

∂(W12/`)

∂θ
.

(17.114)
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Substituting from (17.113), (17.114) becomes

FR
`

=
µ̄0

2πR
(b1 · ξ) (b2 · ξ) +

+
µ̄0

πR

µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ)

Fθ
`

=
µ̄0

πR3

µ̄0 + λ̄0

2µ̄0 + λ̄0

[
(b1 ·R) [(b2 × R) · ξ] +

+ (b2 ·R) [(b1 × R) · ξ]
]
.

(17.115)

§17.4.3 Curved dislocation interactions

In this section, we extend the investigation of curved dislocations ini-
tiated in section §9.5, to the interaction energy and interaction force
between curved dislocations [159, see pp. 106-110]. The derivation con-
siders the interaction between two dislocation loops, but has much more
extensive applications, being extendable to the interaction energy be-
tween two arbitrarily positioned segments of dislocation lines.

If a dislocation loop 1 is brought in the vicinity of another dislocation
loop 2, the stresses originating from loop 2 do work −W12 on loop 1
where W12 is the interaction energy between the two dislocation loops.
The work done on loop 1 represents a decrease in the strain energy of
the total system. In that case, if W12 is negative, the energy of the
system decreases and an attractive force exists between the loops [159,
see p. 106].

The interaction energy between the two dislocation loops is given
by [159, see p. 108]

W12 = − µ̄0

2π

∮
C1

∮
C2

(b1 × b2) · (dl1 × dl2)

R
+

+
µ̄0

4π

∮
C1

∮
C2

(b1 · dl1) (b2 · dl2)

R
+

+
µ̄0

2π

µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1

∮
C2

(b1 × dl1) ·T · (b2 × dl2)

R

(17.116)

where T is given by

Tij =
∂2R

∂xi∂xj
. (17.117)

The force produced by an external stress acting on a dislocation loop
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is given by [159, see p. 109]

dF = (b · σ)× dl (17.118)

where σ is the stress tensor in the medium, b is the Burgers vector, and
dl is the dislocation element. This equation can be used with the Peach
and Koehler stress equation (9.163) to determine the interaction force
between dislocation segments.

As each element dl of a dislocation loop is acted upon by the forces
caused by the stress of the other elements of the dislocation loop, the
work done against these corresponds to the self-energy of the disloca-
tion loop. The self-energy of a dislocation loop can be calculated from
(17.116) to give [159, see p. 110]

Wself =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)

R
+

+
µ̄0

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b× dl1) ·T · (b× dl2)

R

(17.119)

where T is as defined in (17.117).
More complicated expressions can be obtained for interactions be-

tween two non-parallel straight dislocations [159, see pp. 121-123] and
between a straight segment of a dislocation and a differential element
of another dislocation [159, see pp. 124-131]. This latter derivation can
be used for more arbitrary dislocation interactions.



Chapter 18

Quantum Physics in STCED

In this chapter, we synthesize the analysis of defects in the spacetime
continuum considered in the previous ten chapters to model quantum
physics within the framework of STCED. As we will see in the forth-
coming sections, this model provides a physical explanation of quantum
phenomena, quantum electrodynamics, and other quantum dynamic in-
teractions that currently remain unexplained in quantum physics.

§18.1 Quantum particles from defects and their interactions

As seen previously in section §14.4, dislocations are translational dis-
placements that commute, satisfy the superposition principle and be-
have as bosons. Disclinations, on the other hand, are rotational displace-
ments that do not commute, do not obey the superposition principle and
behave as fermions.

§18.1.1 Dislocations (bosons)

Dislocations, due to their translational nature, are defects that are easier
to analyze than disclinations.

Screw dislocation. The screw dislocation was analyzed in sections
§9.2 and §15.1. It is the first defect that we identified with the photon
due to its being massless and of spin-1. Consequently, its longitudinal
strain energy is zero

WS
‖ = 0. (18.1)

Its transverse strain energy is given by (16.5)

WS
⊥ =

µ̄0

4π
b2 ` ln

Λ

bc
(18.2)

where ` = λ, the photon’s wavelength, bc is the size of the core of the dis-
location, of order b0, the smallest spacetime dislocation Burgers vector,
and Λ is a cut-off parameter corresponding to the radial extent of the
dislocation, limited by the average distance to its nearest neighbours.

Edge dislocation. The edge dislocation was analyzed in §9.3, §9.5
and §15.2. The longitudinal strain energy of the edge dislocation is
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given by (16.29)

WE
‖ =

κ̄0

2π
ᾱ2

0

(
b2x + b2y

)
` ln

Λ

bc
(18.3)

where bx is the Burgers vector for the edge dislocation proper and by
is the Burgers vector for the gap dislocation (see §9.5). The transverse
strain energy is given by (16.54)

WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

) (
b2x + b2y

)
` ln

Λ

bc
. (18.4)

The total longitudinal (massive) dislocation strain energy WDt
‖ is

given by (18.3), as the screw dislocation longitudinal strain enrgy is
zero, while the total transverse (massless) dislocation strain energy is
given by the sum of the screw (along the z axis) and edge (in the x− y
plane) dislocation transverse strain energies

WDt
⊥ =

µ̄0

4π

[
b2z +

(
ᾱ2

0 + 2β̄2
0

) (
b2x + b2y

)]
` ln

Λ

bc
, (18.5)

which can be rewritten as a sum of physical terms

WDt
⊥ =

µ̄0

4π

[
b2z + ᾱ2

0 (b2x + b2y) + 2β̄2
0 (b2x + b2y)

]
` ln

Λ

bc
(18.6)

where the first term of the distortion strain energy corresponds to the
screw dislocation strain energy of (16.5), the second term to the edge
dislocation distortion strain energy arising from the longitudinal strain
energy density of (9.139) and the last term to the edge dislocation dis-
tortion strain energy arising from the rotation vector of (9.138). We
note that the strain energy of dislocations is proportional to the length
` of the dislocations and has a functional dependence of ln Λ/bc.

The total strain energy of dislocations

WDt = WDt
‖ +WDt

⊥ (18.7)

provides the total energy of massive bosons, with WDt
‖ corresponding to

the longitudinal particle aspect of the bosons and WDt
⊥ corresponding

to the wave aspect of the bosons. As seen in Chapter 12, the latter is
associated with the wavefunction of the boson. The spin characteristics
of these was considered in §3.6, where they were seen to correspond to
spin-0 and spin-2 solutions.
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§18.1.2 Disclinations (fermions)

Disclinations are defects that are more difficult to analyze than disloca-
tions, due to their rotational nature. This mirrors the case of fermions,
which are more difficult to analyze than bosons.

Wedge disclination. The wedge disclination was analyzed in §10.6
and §15.3. The longitudinal strain energy of the wedge disclination is
given by (16.62)

WW
‖ =

κ̄0

4π
Ω2
z `
[
ᾱ2

0

(
2Λ2 ln2 Λ− 2b2c ln2 bc

)
+

+ ᾱ0γ̄0

(
2Λ2 ln Λ− 2b2c ln bc

)
+

+ 1
2 (ᾱ2

0 + γ̄2
0)
(
Λ2 − b2c

) ]
.

(18.8)

In most cases Λ� bc, and (18.8) reduces to

WW
‖ '

κ̄0

2π
Ω2
z `Λ2

[
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 ln Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]

(18.9)

which can be rearranged as

WW
‖ '

κ̄0

2π
ᾱ2

0 Ω2
z `Λ2

[
ln2 Λ +

γ̄0

ᾱ0
ln Λ +

1

4

(
1 +

γ̄2
0

ᾱ2
0

)]
. (18.10)

The transverse strain energy of the wedge disclination is given by
(16.70)

WW
⊥ =

µ̄0

4π
Ω2
z `

[
ᾱ2

0

(
Λ2 ln2 Λ− b2c ln2 bc

)
−

−
(
ᾱ2

0 − 3ᾱ0β̄0

) (
Λ2 ln Λ− b2c ln bc

)
+

+
1

2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3

2
β̄2

0

)(
Λ2 − b2c

) ]
.

(18.11)

In most cases Λ� bc, and (18.11) reduces to

WW
⊥ '

µ̄0

4π
Ω2
z `

[
ᾱ2

0 Λ2 ln2 Λ−
(
ᾱ2

0 − 3ᾱ0β̄0

)
Λ2 ln Λ+

+
1

2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3

2
β̄2

0

)
Λ2

] (18.12)
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which is rearranged as

WW
⊥ '

µ̄0

4π
ᾱ2

0 Ω2
z `Λ2

[
ln2 Λ−

(
1− 3

β̄0

ᾱ0

)
ln Λ +

1

2

(
1− 3

β̄0

ᾱ0
+

3

2

β̄2
0

ᾱ2
0

)]
.

(18.13)

We first note that both the longitudinal strain energy WW
‖ and the

transverse strain energy WW
⊥ are both proportional to the length ` of

the disclination, and to Λ2 in the limit Λ � bc. The parameter Λ is
equivalent to the extent of the wedge disclination, and we find that as
it becomes more extended, its strain energy is increasing parabolically.
This behaviour is similar to that of quarks (confinement) which are
fermions. In addition, as Λ → bc, the strain energy decreases and
tends to 0, again in agreement with the behaviour of quarks (asymptotic
freedom).

We thus identify wedge disclinations with quarks. The total strain
energy of wedge disclinations

WW = WW
‖ +WW

⊥ (18.14)

provides the total energy of the massive quarks, withWW
‖ corresponding

to the longitudinal particle aspect of the quarks and WW
⊥ corresponding

to the wave aspect of the quarks. We note that the current classification
of quarks include both ground and excited states – the current analysis
needs to be extended to excited higher energy states.

We note also that the rest-mass energy density ρW c2 of the wedge
disclination is proportional to ln r which also increases with increasing r,
while the rest-mass energy density ρEc2 of the edge dislocation and ρT c2

of the twist disclination are both proportional to 1/r2 which decreases
with increasing r as expected of bosons and leptons.

Twist disclination. The twist disclination was analyzed in §10.7 and
§15.4. Note that as mentioned in that section, we do not differentiate
between twist and splay disclinations in this subsection as twist disclina-
tion expressions include both splay disclinations and twist disclinations
proper.

The longitudinal strain energy of the twist disclination is given by
(16.80)

WT
‖ =

κ̄0

6π
ᾱ2

0

(
Ω2
x + Ω2

y

)
`3 ln

Λ

bc
(18.15)
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where Ωx is the Frank vector for the splay disclination and Ωy is the
Frank vector for the twist disclination proper (see §10.5). The transverse
strain energy of the twist disclination is given by (16.87)

WT
⊥ =

µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln

Λ

bc
+

+
µ̄0

2π
`

[ (
Ω2
x + Ω2

y

)(
ᾱ2

0

(
Λ2 ln2 Λ− b2c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 ln Λ− b2c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2c

)
+

+ 2 β̄2
0 ln

Λ

bc

)
− 2 ΩxΩy

(
ᾱ0β̄0

(
Λ2 ln Λ− b2c ln bc

)
+

+
1

2
β̄0γ̄0

(
Λ2 − b2c

) )]
.

(18.16)

In most cases Λ� bc, and (18.16) reduces to

WT
⊥ '

µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln

Λ

bc
+

+
µ̄0

2π
`Λ2

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 ln Λ−

− 1

2
ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0β̄0 ln Λ +

1

2
β̄0γ̄0

)]
(18.17)

which can be rearranged to give

WT
⊥ '

µ̄0

2π
ᾱ2

0

`3

3

[ (
Ω2
x + Ω2

y

)(
1 +

1

2

β̄2
0

ᾱ2
0

)
+

+ 2 ΩxΩy

(
1− 2

β̄2
0

ᾱ2
0

)]
ln

Λ

bc
+

+
µ̄0

2π
ᾱ2

0 `Λ2

[ (
Ω2
x + Ω2

y

) (
ln2 Λ +

γ̄0

ᾱ0
ln Λ−

− 1

2

γ̄0

ᾱ0

)
− 2 ΩxΩy

( β̄0

ᾱ0
ln Λ +

1

2

β̄0γ̄0

ᾱ2
0

)]
.

(18.18)
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As noted previously, WT
‖ depends on the space volume `3 of the

disclination and has a functional dependence of ln Λ/bc as do the dislo-
cations. The strain energy WT

⊥ depends on the space volume `3 of the
disclination with a functional dependence of ln Λ/bc, but it also includes
terms that have a dependence on the length ` of the disclination with a
functional dependence similar to that of the wedge disclination including
Λ2 in the limit Λ � bc. The difference in the case of the twist discli-
nation is that its transverse strain energy WT

⊥ combines `3 terms with
the functional dependence ln Λ/bc of dislocations, associated with the
electromagnetic interaction and ` terms with the functional dependence
Λ2 ln2 Λ of wedge disclinations, associated with the strong interaction.
This, as we will see in later sections, seems to be the peculiar nature
of the weak interaction, and uniquely positions twist disclinations to
represent leptons and neutrinos as participants in the weak interaction.

This leads us to thus separate the longitudinal strain energy of the
twist disclination as

WT
‖ = W `3

‖ +W `
‖ = W `3

‖ (18.19)

given that W `
‖ = 0, and the transverse strain energy of the twist discli-

nation as

WT
⊥ = W `3

⊥ +W `
⊥ . (18.20)

We consider both `3 twist disclination and ` twist disclination terms in
the next subsections.

`3 twist disclination. The longitudinal strain energy of the `3 twist
disclination is thus given by the `3 terms of (18.15)

W `3

‖ =
κ̄0

6π
ᾱ2

0

(
Ω2
x + Ω2

y

)
`3 ln

Λ

bc
. (18.21)

The transverse strain energy of the `3 twist disclination is given by
the `3 terms of (18.16)

W `3

⊥ =
µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln

Λ

bc
.

(18.22)

In most cases Λ� bc, and (18.22) is left unchanged due to its functional
dependence on ln Λ/bc.
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The total strain energy of the `3 twist disclination terms is given by

W `3 = W `3

‖ +W `3

⊥ . (18.23)

It is interesting to note that W `3

‖ of (18.21) and W `3

⊥ of (18.22) are

proportional to ln Λ/bc, as are the screw dislocation (photon) and edge
dislocation (bosons). This, and the results of the next subsection, leads
us to identify the `3 twist disclination terms with the charged leptons
(electron, muon, tau) fermions, where the heavier muon and tau are
expected to be excited states of the electron.

` twist disclination. The longitudinal strain energy of the ` twist
disclination terms in this case is zero as mentioned previously

W `
‖ = 0 . (18.24)

The transverse strain energy of the ` twist disclination is thus also
given by the ` terms of (18.16):

W `
⊥ =

µ̄0

2π
`

[ (
Ω2
x + Ω2

y

)(
ᾱ2

0

(
Λ2 ln2 Λ− b2c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 ln Λ− b2c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2c

)
+

+ 2 β̄2
0 ln

Λ

bc

)
− 2 ΩxΩy

(
ᾱ0β̄0

(
Λ2 ln Λ− b2c ln bc

)
+

+
1

2
β̄0γ̄0

(
Λ2 − b2c

) )]
.

(18.25)

In most cases Λ� bc, and (18.25) reduces to

W `
⊥ =

µ̄0

2π
`Λ2

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 ln Λ−

− 1

2
ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0β̄0 ln Λ +

1

2
β̄0γ̄0

)] (18.26)

which can be rearranged to give

W `
⊥ =

µ̄0

2π
ᾱ2

0 `Λ2

[ (
Ω2
x + Ω2

y

) (
ln2 Λ +

γ̄0

ᾱ0
ln Λ−

− 1

2

γ̄0

ᾱ0

)
− 2 ΩxΩy

( β̄0

ᾱ0
ln Λ +

1

2

β̄0γ̄0

ᾱ2
0

)]
.

(18.27)
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The total strain energy of the ` twist disclination is given by

W ` = W `
‖ +W `

⊥ = W `
⊥ (18.28)

given that the ` twist disclination does not have a longitudinal (massive)
component. Since the ` twist disclination is a massless fermion, this
leads us to identify the ` twist disclination with the neutrino.

There is another aspect to the strain energy WT
⊥ given by (18.16)

that is important to note. As we have discussed, the `3 twist disclination
terms and the ln Λ/bc functional dependence as observed for the screw
dislocation (photon) and edge dislocation (bosons) has led us to identify
the `3 portion with the charged leptons (electron, muon, tau) fermions,
where the heavier muon and tau are expected to be excited states of the
electron. These are coupled with transverse ` twist disclination terms
which are massless and which have a functional dependence similar to
that of the wedge disclination, which has led us to identify the ` portion
with the weakly interacting neutrino. If the muon and tau leptons are
excited states of the electron derivable from (18.16), this would imply
that the neutrino portion would also be specific to the muon and tau
lepton excited states, thus leading to muon and tau neutrinos.

We will perform numerical calculations in a later section which will
show that the dominance of the ` and `3 twist disclination terms depend
on the extent ` of the disclination, with the ` “weak interaction” terms
dominating for small values of ` and the `3 “electromagnetic interaction”
terms dominating for larger values of `. The ` twist disclination terms
would correspond to weak interaction terms while the `3 twist disclina-
tion terms would correspond to electromagnetic interaction terms. The
twist disclination represents the unification of both interactions under
a single “electroweak interaction”.

This analysis also shows why leptons (twist disclinations) are par-
ticipants in the weak interaction but not the strong interaction, while
quarks (wedge disclinations) are participants in the strong interaction
but not the weak interaction.

It should be noted that even though the mass of the neutrino is cur-
rently estimated to be on the order of 10’s of eV, this estimate is based
on assuming neutrino oscillation between the currently known three lep-
ton generations, to explain the anomalous solar neutrino problem. This
is a weak explanation for that problem, which more than likely indicates
that we do not yet fully understand solar astrophysics. One can only
hope that a fourth generation of leptons will not be discovered! Until
the anomaly is fully understood, we can consider the twist disclination
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physical model where the mass of the neutrino is zero to be at least a
first approximation of the neutrino STC defect model.

Twist disclination numerical sample calculation. In this sec-
tion, we give a numerical sample calculation that shows the lepton-
neutrino connection for the twist disclination. We start by isolating
the common strain energy elements that don’t need to be calculated in
the example. Starting from the longitudinal strain energy of the twist
disclination (18.15) and making use of (5.53), (18.15) can be simplified
to

WT
‖ =

µ̄0

2π
ᾱ2

0 2Ω2

[
32
`3

3
ln

Λ

bc

]
(18.29)

where the non-descript Ω is used instead of Ωx and Ωy. Defining K as

K =
µ̄0

2π
ᾱ2

0 2Ω2 , (18.30)

then (18.29) is written as

WT
‖

K
= 32

`3

3
ln

Λ

bc
. (18.31)

Similarly for the transverse strain energy of the twist disclination,
starting from (18.18), the equation can be simplified to

WT
⊥ '

µ̄0

2π
ᾱ2

0 2Ω2

{[
`3

3

(
1 +

1

2

β̄2
0

ᾱ2
0

+ 1− 2
β̄2

0

ᾱ2
0

)
ln

Λ

bc

]
+

+

[
`Λ2

(
ln2 Λ +

γ̄0

ᾱ0
ln Λ− 1

2

γ̄0

ᾱ0
−

− β̄0

ᾱ0
ln Λ− 1

2

β̄0γ̄0

ᾱ2
0

)]}
.

(18.32)

Using the definition of K from (18.30), this equation becomes

WT
⊥
K
' `3

3

(
2− 3

2

β̄2
0

ᾱ2
0

)
ln

Λ

bc
+

+ `Λ2

(
ln2 Λ +

γ̄0 − β̄0

ᾱ0
ln Λ− 1

2

γ̄0

ᾱ0

(
1 + β̄0

))
.

(18.33)

Using the numerical values of the constants ᾱ0, β̄0 and γ̄0 from (19.14)
and (19.35) to be determined in the next chapter, (18.33) becomes

WT
⊥
K
' `3

3
(1.565) ln

Λ

bc
+

+ `Λ2
(
ln2 Λ− ln Λ− 0.62

)
.

(18.34)
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For this numerical sample calculation, we use bc ∼ 10−35 m of the
order of the spacetime Burgers dislocation constant, and the extent of
the disclination Λ ∼ 10−18 m of the order of the range of the weak force.
Then

WT
‖

K
=

32

3
(39.1) `3 = 417 `3 . (18.35)

and
WT
⊥
K
' 0.522 (39.1) `3+

+ Λ2 (1714 + 41.4− 0.62) `

(18.36)

which becomes
WT
⊥
K
' 20.4 `3 + 1755 Λ2 ` (18.37)

and finally

WT
⊥
K
' 20.4 `3 + 1.76× 10−33 ` . (18.38)

We consider various values of ` to analyze its effect on the strain
energy. For ` = 10−21 m,

WT
‖

K
= 4.2× 10−61 (`3 term) (18.39)

WT
⊥
K

= 2.0× 10−62 + 1.8× 10−54 (`3 term + ` term) . (18.40)

For ` = 10−18 m,

WT
‖

K
= 4.2× 10−52 (`3 term) (18.41)

WT
⊥
K

= 2.0× 10−53 + 1.8× 10−51 (`3 term + ` term) . (18.42)

For ` = 10−15 m,

WT
‖

K
= 4.2× 10−43 (`3 term) (18.43)

WT
⊥
K

= 2.0× 10−44 + 1.8× 10−48 (`3 term + ` term) . (18.44)
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For ` = 10−12 m,

WT
‖

K
= 4.2× 10−34 (`3 term) (18.45)

WT
⊥
K

= 2.0× 10−35 + 1.8× 10−45 (`3 term + ` term) . (18.46)

In the sum of WT
⊥/K above, the first term `3 represents the elec-

tromagnetic interaction, while the second term ` represents the weak
interaction. Thus we find that at low values of `, the weak force pre-
dominates up to about 10−18 m, which is the generally accepted range of
the weak force. At larger values of `, the electromagnetic force predom-
inates. The value of ` at which the two interactions in the transverse
strain energy are equal is given by

20.4 `3 = 1.76× 10−33 ` , (18.47)

from which we obtain

` = 0.9× 10−17 m ∼ 10−17 m . (18.48)

At that value of `, the strain energies are given by

WT
‖

K
= 3.0× 10−49 (18.49)

WT
⊥
K

= 3.1× 10−50 . (18.50)

The longitudinal (massive) strain energy predominates over the trans-
verse strain energy by a factor of 10.

Alternatively, including the longitudinal `3 strain energy in the cal-
culation, the value of ` at which the two interactions in the total strain
energy are equal is given by

417 `3 + 20.4 `3 = 1.76× 10−33 ` , (18.51)

from which we obtain

` = 2.0× 10−18 m . (18.52)

At that value of `, the strain energies are given by

WT
‖

K
= 3.3× 10−51 (18.53)

WT
⊥
K

= 3.7× 10−51 . (18.54)
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The longitudinal (massive) strain energy and the transverse strain en-
ergy are then of the same order of magnitude.

§18.1.3 Quantum particles and their associated spacetime
defects

Table 18.1 below provides a summary of the identification of quantum
particles and their associated spacetime defects.

STC defect Type of particle Particles

Screw dislocation Massless boson Photon

Edge dislocation Massive boson Spin-0 particle

Spin-1 Proca eqn

Spin-2 graviton

Wedge disclination Massive fermion Quarks

`3 twist disclination Massive fermion Leptons

` twist disclination Massless fermion Neutrino

Table 18.1: Identification of quantum particles and their associated de-
fects.

§18.2 Feynman diagrams and defect interactions

As mentioned in section §14.5 and developed further in this chapter, the
basic Feynman diagrams can be seen to represent screw dislocations as
photons, edge dislocations as bosons, twist and wedge disclinations as
fermions, and their interactions. More specifically, the external legs of
Feynman diagrams that are on mass-shell representing real particles cor-
respond to dislocations and disclinations, while the virtual off mass-shell
particles are replaced by the interaction of the strain energy densities.

The exchange of virtual particles in QED interactions can be taken
as the perturbation expansion representation of the forces resulting from
the overlap of the strain energy density of the dislocations and discli-
nations. The Feynman diagram propagators are replaced by the defect
strain energy density interaction expressions.

The properties of Burgers vectors and dislocations [159, see pp. 25-
26] have rules similar to those of Feynman diagrams, but not equivalent
as virtual particles are replaced by defect strain energy density inter-
actions. A Burgers vector is invariant along a dislocation line. Two



§18.3 Interpretation of defect strain energy interactions 337

Burgers circuits are equivalent if one can be deformed into the other
without crossing dislocation lines. The resultant Burgers vector within
equivalent Burgers circuits is the same.

Dislocation nodes are points where multiple dislocations meet. If all
the dislocation vectors ξi are taken to be positive away from a node,
then

N∑
i=1

ξi = 0 (18.55)

for the N dislocations meeting at the node. Burgers vectors are con-
served at dislocation nodes. Frank vectors also satisfy a Kirchhoff rela-
tion at disclination nodes, as do Burgers vectors at dislocation nodes.

§18.3 Interpretation of defect strain energy interactions

As seen in section §14.5, the role played by virtual particles in quantum
electrodynamics (QED) is replaced by the interaction of the strain en-
ergy density of the dislocations and disclinations. QED is a perturbative
theory, and the virtual particles are introduced as an interpretation of
the perturbative expansion represented by Feynman diagrams.

Although the existence of virtual particles in QED is generally ac-
cepted, there are physicists who still question this interpretation of QED
perturbation expansions. As noted previously in section §9.5, Wein-
gard [366] “argues that if certain elements of the orthodox interpretation
of states in QM are applicable to QED, then it must be concluded that
virtual particles cannot exist. This follows from the fact that the tran-
sition amplitudes correspond to superpositions in which virtual particle
type and number are not sharp. Weingard argues further that analysis
of the role of measurement in resolving the superposition strengthens
this conclusion. He then demonstrates in detail how in the path integral
formulation of field theory no creation and annihilation operators need
appear, yet virtual particles are still present. This analysis shows that
the question of the existence of virtual particles is really the question
of how to interpret the propagators which appear in the perturbation
expansion of vacuum expectation values (scattering amplitudes).” [36]

The basic Feynman diagrams can be seen to represent screw dislo-
cations as photons, edge dislocations as bosons, twist and wedge discli-
nations as fermions, and their interactions. Virtual particles would re-
quire the presence of virtual dislocations and virtual disclinations in
the spacetime continuum, which clearly does not make sense. Instead,
the exchange of virtual particles in interactions can be seen to be a
perturbation expansion representation of the forces resulting from the
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interaction of the defects’ strain energy density, with suitably modi-
fied diagrams. The perturbative expansions are thus replaced by finite
analytical expressions.

The analysis presented in the following sections is not perturba-
tive as in QED, but rather calculated from analytical expressions. The
analytical equations can become very complicated, and in some cases,
perturbative techniques are used to simplify the calculations, but the
availability of analytical expressions permit a better understanding of
the fundamental quantum processes involved.

In quantum electrodynamics, these correspond to particle-particle
and particle-photon interactions, which are taken to be mediated by
virtual particles. This is in keeping with the QED picture, but as shown
above, particle-particle and particle-photon interactions physically re-
sult from the overlap of their strain energy density which results in an
interaction force. Again, this improved understanding of the physical
nature of dislocation interactions demonstrates that the interactions do
not need to be represented by virtual particle exchange as discussed in
section §14.5.

This theory provides a straightforward physical explanation of part-
icle-particle and particle-photon interactions that is not based on per-
turbation theory, but rather on a direct evaluation of the interactions.

§18.3.1 Photons and screw dislocation interactions

Screw dislocations interact via the force resulting from the overlap of
the strain energy density of the dislocations and disclinations in the
spacetime continuum [159, see p. 112].

As seen in section §15.1, screw dislocations in the spacetime con-
tinuum are identified with the massless, transverse deformations corre-
sponding to photons. As pointed out in [222], it has been known since
the 1960s that photons can interact with each other in atomic media
much like massive particles do. A review of collective effects in photon-
photon interactions is given in [227].

In QED, photon-photon interactions are known as photon-photon
scattering, which is thought to be mediated by virtual particles. This
reflects the perturbative calculation used to evaluate the scattering, but
as shown in this work, photon-photon interactions physically result from
the overlap of their strain energy density. This improved understand-
ing of the physical nature of photon-photon interactions demonstrates
that the interaction does not need to be represented by virtual particle
exchanges, in that the nature of the physical processes involved is now
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understood, and can be calculated directly.
From (17.113), the energy of interaction per unit length between

parallel screw dislocations (photons) is given by

WS−S
12

`
= − µ̄0

2π
(b1 · ξ) (b2 · ξ) ln

R

RΛ
(18.56)

where ξ is parallel to the z axis, (bi · ξ) are the screw components, R
is the separation between the dislocations, and RΛ is the distance from
which the dislocations are brought together, resulting in the reduction
in the energy of the 2-photon “system”.

From (17.115), the components of the interaction force per unit
length between the parallel screw dislocations are given by:

FS−SR

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ)

FS−Sθ

`
= 0.

(18.57)

The interaction force is radial in nature, independent of the angle θ, as
expected.

§18.3.2 Photon-neutrino interactions

It is surprising to find that the massless, electrically neutral, weakly in-
teracting neutrino would interact with the massless, electrically neutral,
electromagnetic interacting photon. Photon-neutrino interactions have
been considered, in particular by [190,233,281] and others. STCED pro-
vides for their interaction via the force resulting from the interaction
of their strain energy density, i.e. the interaction of screw dislocations
and pure twist disclinations, which correspond to photon-neutrino in-
teractions.

§18.4 Physical explanations of QED phenomena

As we have seen in previous sections, spacetime continuum disloca-
tions and disclinations have fundamental properties that reflect those
of phenomena at the quantum level. In particular, the improved under-
standing of the physical nature of interactions mediated by the strain
energy density of the defects. Quantum Electrodynamics is a pertur-
bative theory of the electromagnetic quantum vacuum [255], and the
virtual particles are introduced as an interpretation of the propagators
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which appear in the perturbation expansion of vacuum expectation val-
ues represented by Feynman diagrams. In STCED, the role played by
virtual particles in Quantum Electrodynamics is replaced by the work
done by the forces resulting from the defect stresses, and the resulting
interaction of the strain energy density of the dislocations and discli-
nations. In the following sections, we examine the physical explanation
of QED phenomena provided by this theory, including self-energy, vac-
uum polarization and mass renormalization. First we briefly recap the
aspects of STCED that are relevant to these phenomena.

§18.4.1 Mass and wave-particle duality in the spacetime
continuum

In STCED, energy propagates in the spacetime continuum (STC ) as
wave-like deformations which can be decomposed into dilatations and
distortions. Dilatations involve an invariant change in volume of the
spacetime continuum which is the source of the associated rest-mass
energy density of the deformation. On the other hand, distortions cor-
respond to a change of shape (shearing) of the spacetime continuum
without a change in volume and are thus massless. Thus the defor-
mations propagate in the continuum by longitudinal (dilatation) and
transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle duality, with
the massless transverse mode corresponding to the wave aspects of the
deformations and the massive longitudinal mode corresponding to the
particle aspects of the deformations. The rest-mass energy density of
the longitudinal mode is given by [238, see Eq.(32)]

ρc2 = 4κ̄0ε (18.58)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is the bulk
modulus of the STC (the resistance of the spacetime continuum to
dilatations), and ε is the volume dilatation

ε = εαα (18.59)

which is the trace of the STC strain tensor obtained by contraction.
The volume dilatation ε is defined as the change in volume per original
volume ∆V/V [320, see pp. 149–152] and is an invariant of the strain
tensor, as is the rest-mass energy density. Hence (see section §5.5.1)

mc2 = 4κ̄0 ∆V (18.60)
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where m is the mass of the deformation and ∆V is the dilatation change
in the spacetime continuum’s volume corresponding to mass m. This
demonstrates that mass is not independent of the spacetime continuum,
but rather mass is part of the spacetime continuum fabric itself.

§18.4.2 Energy in the spacetime continuum

In STCED, energy is stored in the spacetime continuum as strain en-
ergy [242]. As seen in section §5.2, the strain energy density of the
spacetime continuum is separated into two terms: the first one expresses
the dilatation energy density (the mass longitudinal term) while the sec-
ond one expresses the distortion energy density (the massless transverse
term):

E = E‖ + E⊥ (18.61)

where

E‖ =
1

2
κ̄0ε

2 ≡ 1

32κ̄0
ρ2c4 , (18.62)

ρ is the rest-mass density of the deformation, and

E⊥ = µ̄0e
αβeαβ =

1

4µ̄0
tαβtαβ , (18.63)

with the strain distortion

eαβ = εαβ − esgαβ (18.64)

and the strain dilatation es = 1
4ε
α
α. Similarly for the stress distortion

tαβ and the stress dilatation ts. Then the dilatation (massive) strain
energy density of the deformation is given by the longitudinal strain
energy density (18.62) and the distortion (massless) strain energy den-
sity of the deformation is given by the transverse strain energy density
(18.63).

The strain energy W of the deformation is obtained by integrating
(18.61) over the volume V of the deformation to give

W = W‖ +W⊥ (18.65)

where W‖ is the (massive) longitudinal strain energy of the deformation
given by

W‖ =

∫
V

E‖ dV (18.66)
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and W⊥ is the (massless) transverse distortion strain energy of the de-
formation given by

W⊥ =

∫
V

E⊥ dV (18.67)

where the volume element dV in cylindrical polar coordinates is given
by rdr dθ dz for a stationary deformation.

§18.4.3 Quantum particles from STC defects

In [245, 250, 254] and section §18.1, we show that quantum particles
can be represented as defects in the spacetime continuum, specifically
dislocations and disclinations. Dislocations are translational deforma-
tions, while disclinations are rotational deformations. In particular, we
consider the simplest quantum particle defect given by the edge dislo-
cation [250].

The strain energy density of a stationary edge dislocation is given
by

WE = WE
‖ +WE

⊥ . (18.68)

The longitudinal strain energy of the edge dislocation WE
‖ is given by

[250, eq. (8)]

WE
‖ =

κ̄0

2π
ᾱ2

0 b
2 ` log

Λ

bc
(18.69)

where

ᾱ0 =
µ̄0

2µ̄0 + λ̄0
, (18.70)

` is the length of the dislocation, bc is the size of the core of the disloca-
tion, of order b0, the smallest spacetime Burgers dislocation vector [246]
and Λ is a cut-off parameter corresponding to the radial extent of the
dislocation, limited by the average distance to its nearest neighbours.
In (18.69), the edge dislocation is along the z-axis with Burgers vector
b along the x-axis.

The transverse strain energy WE
⊥ is given by [250, eq. (10)]

WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
(18.71)

where

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
(18.72)

and the other parameters are as defined previously.
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§18.5 QED mass renormalization

The basic Feynman diagrams can be seen to represent screw dislocations
as photons, edge dislocations as bosons, twist and wedge disclinations as
fermions [250], and their interactions. The interaction of defects results
from the overlap of the defects’ strain energy densities. In QED, the
exchange of virtual particles in interactions can be seen to be a pertur-
bation expansion representation of the forces resulting from the overlap
of the strain energy densities of the dislocations and disclinations.

Similarly, the phenomena of self-energy and vacuum polarization can
be understood to result from the strain energy densities of individual
defects. QED again represents this situation as a perturbation expan-
sion of an interaction of a photon with the vacuum (photon self-energy
also known as vacuum polarization) or of a particle such as an electron
with its field (self-energy). In STCED, the perturbative expansions are
replaced by finite analytical expressions for the strain energy density of
individual screw dislocations as photons, edge dislocations as bosons,
twist and wedge disclinations as fermions [250].

Quantum mechanics and QED only deal with the transverse compo-
nent of spacetime continuum deformations as they are only concerned
with the wave aspect of wave-particle duality (see [251] for a discussion
of this topic). The energy terms used in QED thus correspond to the
transverse strain energy WE

⊥ . Hence there is no equivalent dilatation
massive longitudinal strain energy term (WE

‖ ) used in QED, and no
possibility of properly deriving the mass from the theory, as QED uses
an incomplete description of particle energies at the quantum level.

The mass term used in the QED equations is external to and not
derived from quantum equations. It is thus found to not correspond to
the actual mass of the particle and is characterized instead as the bare
mass m0 [318]. To this mass is added the interaction of the particle with
the medium or the field, δm, the result of which mqm is “renormalized”
(the value of m0 and the field corrections are infinite) and replaced with
the actual experimental mass m according to

mqm = m0 + δm→ m. (18.73)

Comparing this equation with (18.68), we find that

m = WE

m0 = WE
‖ =

κ̄0

2π
ᾱ2

0 b
2 ` log

Λ

bc

(18.74)
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δm = WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
.

The interaction of the particle with the medium or the field, δm, is
the transverse strain energy present in the spacetime continuum (or
vacuum), essentially a field energy.

We note that the bare mass (i.e. the massive longitudinal strain
energy) and the field correction (i.e. the transverse strain energy) are
both finite in this approach and there is no need for the subtraction of
infinities as both terms are well-behaved. If integrated over all of space-
time, they would be divergent, with the divergence being logarithmic
in nature. However, contrary to QED, the strain energies are bounded
by the density of defects present in the spacetime continuum, which
results in an upperbound to the integral of half the average distance
between defects. As mentioned by Hirth [159], this has little impact on
the accuracy of the results due to the logarithmic dependence. Hence
including the longitudinal dilatation mass density term as derived in
STCED along with the transverse distortion energy density term in the
strain energy density provides the expression for the mass m and elimi-
nates the need for mass renormalization as the theory is developed with
the correct mass term.

Eq. (18.74) applies to massive bosons as shown in [250]. For elec-
trons, we have

W `3 = W `3

‖ +W `3

⊥ , (18.75)

where the defect in this case is the `3 twist disclination [250] and where
(18.74) is replaced with the following:

m = W `3

m0 = W `3

‖ =
κ̄0

6π
ᾱ2

0

(
Ω2
x + Ω2

y

)
`3 log

Λ

bc

δm = W `3

⊥ =
µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc

(18.76)

where Ωµ is the spacetime Frank vector. The same considerations as
seen previously for bosons apply to (18.76) due to the logarithmic de-
pendence of the expressions.

For quarks, we have

WW = WW
‖ +WW

⊥ (18.77)
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where the defect in this case is the wedge disclination [250]. In most
cases Λ� bc, and we have

m = WW

m0 = WW
‖ '

κ̄0

2π
Ω2
z `Λ2

[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]

δm = WW
⊥ '

µ̄0

4π
Ω2
z `Λ2

[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]

(18.78)

where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
. (18.79)

In this case, both the longitudinal strain energy WW
‖ and the transverse

strain energy WW
⊥ are proportional to Λ2 in the limit Λ � bc. The

parameter Λ is equivalent to the extent of the wedge disclination, and
we find that as it becomes more extended, its strain energy is increasing
parabolically. This behaviour is similar to that of quarks (confinement).
In addition, as shown in [250, see eqs. (16) and (20)], as Λ → bc, the
strain energy decreases and tends to 0, again in agreement with the
behaviour of quarks (asymptotic freedom).

§18.6 Dislocation self-energy and QED self-energies

The dislocation self-energy is related to the dislocation self-force. The
dislocation self-force arises from the force on an element in a disloca-
tion caused by other segments of the same dislocation line. This process
provides an explanation for the QED self-energies without the need to
resort to the emission/absorption of virtual particles. It can be un-
derstood, and is particular to, dislocation dynamics as dislocations are
defects that extend in the spacetime continuum [159, see p. 131]. Self-
energy of a straight-dislocation segment of length L is given by [159, see
p. 161]:

Wself =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L

(
ln
L

b
− 1

)
(18.80)
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where there is no interaction between two elements of the segment when
they are within ±b, or equivalently

Wself =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L ln

L

eb
(18.81)

where e = 2.71828... is Euler’s number. These equations provide an-
alytic expressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for the virtual
particle perturbative approach.

In particular, the pure screw (photon) self-energy

WS
self =

µ̄0

4π
(b · ξ)2 L

(
ln
L

b
− 1

)
(18.82)

and the pure edge (boson) self-energy

WE
self =

µ̄0

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L

(
ln
L

b
− 1

)
(18.83)

are obtained from (18.81), while (18.81) is also the appropriate equation
to use for the dual wave-particle “system”.

We can relate (18.83) to (18.68) and (18.74) by evaluating WE from
(18.68) using (18.69) and (18.71):

WE =
b2

4π

[
2κ̄0ᾱ

2
0 + µ̄0

(
ᾱ2

0 + 2β̄2
0

)]
` log

Λ

bc
. (18.84)

Substituting for κ̄0 from (2.3), for ᾱ0 from (18.70) and for β̄0 from
(18.72), the factor in square brackets in the above equation becomes

[] =
µ̄0

(2µ̄0 + λ̄0)2

(
4µ̄2

0 + 6µ̄0λ̄0 + 2λ̄2
0

)
(18.85)

which can be factored as

[] =
2µ̄0

(2µ̄0 + λ̄0)2
(2µ̄0 + λ̄0)(µ̄0 + λ̄0) . (18.86)

Substituting back into (18.84), we obtain

WE
self =

1

2
WE =

µ̄0

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0
b2 ` log

Λ

bc
. (18.87)

As noted in [39, see p. 178], the self-energy and the interaction energies
are described by the same equations in the non-singular theory, except
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that the self-energy is half of the interaction energy. We thus see that the
above result (18.84) is essentially the same as (18.83) from Hirth [159,
see p. 161] except that the log factors are slightly different, but similar
in intent (log Λ/bc compared to log `/eb).

Dislocation self energies are thus found to be similar in structure
to Quantum Electrodynamics self energies. They are also divergent if
integrated over all of spacetime, with the divergence being logarith-
mic in nature. However, contrary to QED, dislocation self energies are
bounded by the density of dislocations present in the spacetime contin-
uum, which results in an upperbound to the integral of half the average
distance between dislocations.

As seen previously in section §17.4.3, for a dislocation loop, as each
element dl of the dislocation loop is acted upon by the forces caused
by the stress of the other elements of the dislocation loop, the work
done against these corresponds to the self-energy of the dislocation loop.
The self-energy of a dislocation loop can be calculated from Eq. (4-44)
of [159, see p. 110] to give

Wself =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)

R
+

+
µ̄0

4π

µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b× dl1) ·T · (b× dl2)

R

(18.88)

where T is as defined in Eq. (4-44) of [159, see p. 110].
The photon self-energy also known as vacuum polarization is ob-

tained from the strain energy density of screw dislocations. The longi-
tudinal strain energy of the screw dislocation WS

‖ = 0 as given by [250,

eq. (6)] i.e. the photon is massless. The photon self-energy is given
by half the transverse strain energy of the screw dislocation WS

⊥ given
by [250, eq. (7)]

WS
self =

1

2
WS
⊥ =

µ̄0

8π
b2 ` log

Λ

bc
(18.89)

which again includes the log Λ/bc factor. Comparing this expression
with (18.82) and with (18.88), we find that (18.82) is likely off by a factor
of 2, being proportional to 1/8π as per Hirth’s (18.88) and (18.89), not
1/4π as given in Hirth’s (18.80) and Hirth’s (18.82).

§18.7 Disclination self-energy and QED self-energies

From dislocation self-energies, we can calculate the photon self-energy
(also known as the vacuum polarization) and, in the general case, the
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boson self-energy.
The fermion self-energies are calculated from the corresponding dis-

clination self-energies, with the lepton self-energy calculated from the
interaction energy W `3 of the `3 twist disclination, the neutrino self-
energy calculated from the interaction energy W ` of the ` twist discli-
nation and the quark self-energy calculated from the interaction energy
WW of the wedge disclination, using the result that self-energy is half
of the interaction energy as seen previously in Section 18.6.

§18.7.1 The `3 twist disclination self-energy and lepton self-
energies

The lepton (electron) self-energy is calculated from the interaction en-

ergy W `3 of the `3 twist disclination by evaluating W `3 from (18.75)

using W `3

‖ and W `3

⊥ from (18.76):

W `3 =
κ̄0

6π
ᾱ2

0

(
Ω2
x + Ω2

y

)
`3 log

Λ

bc
+

+
µ̄0

2π

`3

3

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc
.

(18.90)

Substituting for κ̄0 from (2.3), for ᾱ0 from (18.70) and for β̄0 from
(18.72), (18.90) becomes

W `3 =
`3

6π

µ̄0

(2µ̄0 + λ̄0)2
×

×
[ (

Ω2
x + Ω2

y

) (
2µ̄2

0 + 2µ̄0λ̄0 + 1
2 λ̄

2
0

)
−

− 2 ΩxΩy
(
µ̄2

0 + 4µ̄0λ̄0 + 2λ̄2
0

) ]
log

Λ

bc

(18.91)

which can be factored as

W `3 =
`3

12π

µ̄0

(2µ̄0 + λ̄0)2

{(
Ω2
x + Ω2

y

) (
2µ̄0 + λ̄0

)2−
− 4ΩxΩy

[(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

]}
log

Λ

bc
.

(18.92)
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The lepton self-energy is then given by

W `3

self =
1

2
W `3 =

µ̄0

24π

{(
Ω2
x + Ω2

y

)
−

− 4 ΩxΩy

(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

(2µ̄0 + λ̄0)2

}
`3 log

Λ

bc
,

(18.93)

where we have used the result that self-energy is half of the interaction
energy as seen previously in Section 18.6.

§18.7.2 The ` twist disclination self-energy and the neutrino
self-energy

The neutrino self-energy is calculated from the strain energy W ` of the
` twist disclination. The longitudinal strain energy of the ` twist discli-
nation W `

‖ = 0 as given by [250, eq. 33)] i.e. the neutrino is massless. In

most cases Λ� bc, and the strain energy W ` of the ` twist disclination is
given by the transverse strain energy W ` = W `

⊥ given by [250, eq. (35)]:

W ` =
µ̄0

2π
`Λ2

[ (
Ω2
x + Ω2

y

) (
ᾱ2

0 log2 Λ + ᾱ0γ̄0 log Λ−

− 1
2 ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0 β̄0 log Λ + 1

2 β̄0γ̄0

)]
.

(18.94)

Substituting for ᾱ0 from (18.70), for β̄0 from (18.72) and for γ̄0 from
(18.79), (18.94) becomes

W ` =
µ̄0

2π

`Λ2

(2µ̄0 + λ̄0)2

{(
Ω2
x + Ω2

y

) [
µ̄2

0 log2 Λ+

+ µ̄0λ̄0

(
log Λ− 1

2

) ]
−

− 2 ΩxΩy
[
µ̄0

(
µ̄0 + λ̄0

)
log Λ + 1

2 λ̄0

(
µ̄0 + λ̄0

)]}
.

(18.95)

The neutrino self-energy is then given by

W `
self =

1

2
W ` =

µ̄0

4π

`Λ2

(2µ̄0 + λ̄0)2
×

×

{(
Ω2
x + Ω2

y

) [
µ̄2

0 log2 Λ + µ̄0λ̄0

(
log Λ− 1

2

) ]
−

(18.96)
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− 2 ΩxΩy
(
µ̄0 + λ̄0

) (
µ̄0 log Λ + 1

2 λ̄0

)}

where we have used the result that self-energy is half of the interaction
energy as seen previously in Section 18.6.

§18.7.3 The wedge disclination self-energy and quark self-
energies

The quark self-energy is calculated from the interaction energy WW of
the wedge disclination by evaluating WW from (18.77) using WW

‖ and

WW
⊥ from (18.78). In most cases Λ� bc, and we have

WW ' κ̄0

2π
Ω2
z `Λ2

[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]
+

+
µ̄0

4π
Ω2
z `Λ2

[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]
.

(18.97)

Substituting for κ̄0 from (2.3), for ᾱ0 from (18.70) for β̄0 from (18.72)
and for γ̄0 from (18.79), (18.97) becomes

WW ' Ω2
z

2π

`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+ µ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

)
log Λ+

+ 1
4 λ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

) ]
(18.98)

which can be factored as

WW ' Ω2
z

2π

`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+
(
µ̄0 + λ̄0

)2 (
µ̄0 log Λ + 1

4 λ̄0

) ]
.

(18.99)
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The quark self-energy is then given by

WW
self =

1

2
WW ' Ω2

z

4π

(µ̄0 + λ̄0)2

(2µ̄0 + λ̄0)2
`Λ2×

×
[

µ̄2
0

µ̄0 + λ̄0
log2 Λ + µ̄0 log Λ + 1

4 λ̄0

] (18.100)

where we have used the result that self-energy is half of the interaction
energy as seen previously in Section 18.6.

§18.7.4 Summary

In Sections §18.4 to §18.7, we have considered how the Elastodynamics
of the Spacetime Continuum (STCED) explains the Quantum Electro-
dynamics (QED) phenomena of self-energy, vacuum polarization and
mass renormalization. We have derived the strain energy equivalence
for QED mass renormalization for bosons, leptons and quarks, and we
have also derived the self-energy expressions for bosons including pho-
tons, leptons including neutrinos, and quarks.

It is important to note that

1. The expressions derived are for stationary (time independent) de-
fects.

2. The case of time-dependent screw and edge dislocations moving
with velocity v is covered in §16.1.2 and §16.2.2 of [254] respec-
tively. The calculations involve integrals of the form∫

y

1

αy
arctan

(
x− vt
αy

)
dy =

− i
2

[
Li2

(
−i x− vt

αy

)
− Li2

(
i
x− vt
αy

)] (18.101)

where

α =

√
1− v2

c2
(18.102)

and where Lin(x) is the polylogarithm function which arises in
Feynman diagram integrals. For n = 2 and n = 3, we have the
dilogarithm and the trilogarithm special cases respectively. This
is a further indication that the interaction of strain energies are
the physical source of quantum interaction phenomena described
by Feynman diagrams as discussed in Section §18.5.
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The results obtained are found to provide a physical explanation of
QED phenomena in terms of the interaction resulting from the overlap
of defect strain energies in the spacetime continuum in STCED.

§18.8 Nonlocality of quantum phenomena

Defects in the spacetime continuum give rise to nonlocal effects and
nonlocal continuum field theories [112]. Discrete line defects extend
in the spacetime continuum, and hence interact nonlocally, much as
nonlocal interactions between distant atoms determine the properties
of materials in solid-state physics.

§18.9 Entangled states in quantum physics

As noted in the previous section §18.5, the physical extension of defects
in the spacetime continuum gives rise to nonlocal effects and to what
are referred to as “entangled states” in quantum physics. Entangled
states correspond to the overlap of defects in the spacetime continuum,
overlaps that can extend between distant defects, and are characterized
by the interaction of their strain energy densities. Entangled states are
treated in detail in §13.5 and in particular in §13.5.3.



Chapter 19

Spacetime Continuum Fundamentals

§19.1 The spacetime Burgers dislocation constant b0 and
Planck’s constant

In this section, we explore the relation between the spacetime Burgers
dislocation constant b0 and Planck’s constant, and derive the value of
the spacetime continuum constants.

Based on our identification of screw dislocations in the spacetime
continuum with photons, we can determine the relation between the
Burgers constant b0 and Planck’s constant h.

Even though the photon is massless, its energy is given by the strain
energy density of the screw dislocation, equivalent to the transverse
distortion energy density. As shown in [238, Eq. (147)],

p̂2c2 = 32κ̄0 E⊥, (19.1)

where p̂ is the momentum density. For a screw dislocation, substituting
for E⊥ from (9.22) in (19.1), we obtain

p̂2c2 = 32κ̄0
µ̄0 b

2

8π2

1

r2
. (19.2)

The kinetic energy density p̂c has to be equivalent to the wave energy

density ĥν for the screw dislocation (photon):

p̂c = ĥν. (19.3)

The photon’s energy is given by

hν =

∫
V

ĥν dV = ĥν V (19.4)

where V is the volume of the screw dislocation. We consider the smallest
Burgers dislocation vector possible and replace b with the elementary
Burgers dislocation vector b0 and V with the smallest volume V0 to
derive Planck’s constant. Combining (19.4), (19.3) and (19.2), (19.4)
becomes

h =

√
16κ̄0 µ̄0 b0

2

(2πr)2

V0

ν
. (19.5)
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Using (15.7), the frequency ν = c/λ becomes ν = c/b0 for the small-
est Burgers dislocation vector considered. Substituting into (19.5), the
equation becomes

h =
4
√
κ̄0 µ̄0 b0
2πr

V0b0
c
. (19.6)

The volume of one wavelength of the screw dislocation can be approxi-
mated by a cylinder and, using (15.7), written as

V = πr2λ = πr2b, (19.7)

which in the limit as b→ b0, becomes

V0 = πr2b0. (19.8)

Substituting for V0 into (19.6), the equation becomes

h =
4
√
κ̄0 µ̄0 b0
2πr

πr2b20
c

. (19.9)

Simplifying,

h =
2
√
κ̄0 µ̄0

c
rb30, (19.10)

and in the limit as r approaches b0, becomes

h = 2

√
κ̄0 µ̄0 b

4
0

c
(19.11)

where the units of h are [J · s] as expected. This is the basic definition
of Planck’s constant h in terms of the Lamé spacetime constants and
the Burgers spacetime dislocation constant b0.

This relation can be further simplified using µ̄0 = 32κ̄0 from [238,
Eq. (150)]. Then

h = 8
√

2
κ̄0 b0

4

c
=

1

2
√

2

µ̄0 b0
4

c
. (19.12)

Numerically,

µ̄0 b0
4 = 2

√
2hc = 5.8× 10−25 J m. (19.13)

The value of the spacetime shear modulus µ̄0 is not a known physical
constant, neither is the value of the spacetime bulk modulus κ̄0. How-
ever, Macken [223] has derived a value of κ̄0 = 4.6×10113 J/m3 which as
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we will see in section §19.2.1 is expected to be a valid estimate. Using
µ̄0 = 32κ̄0 from Millette [238, Eq. (150)], this yields a value of

µ̄0 = 1.5× 10115 J/m3. (19.14)

Note that the units can be expressed equivalently as [N ·m−2] or as
[J ·m−3]. Substituting for µ̄0 in (19.13), we obtain the value of the
elementary Burgers vector

b0 = 1.4× 10−35 m. (19.15)

This value compares very favorably with the Planck length 1.6 × 10−35

m. Given the approximations used in its derivation, this suggests that
the elementary Burgers vector b0 and the Planck length are equivalent.

§19.2 Spacetime continuum constants

With these constants, we are now in a position to calculate the re-
maining unknown spacetime constants, the density of the spacetime
continuum ρ̄0 and the speed of longitudinal deformations cl. Using the
relation [238]

c =

√
µ̄0

ρ̄0
, (19.16)

the density of the spacetime continuum is

ρ̄0 = 1.7× 1098 kg/m3. (19.17)

This value is in the same ballpark as the vacuum energy density cal-
culated by Carroll [52, see p. 173] (∼ 10112 ergs/cm3) from quantum
mechanical considerations. From

cl =

√
2µ̄0 + λ̄0

ρ̄0
, (19.18)

(2.3) and (5.53), the speed of longitudinal deformations is given by

cl =
7

4
√

2
c = 1.24 c. (19.19)

cl = 3.7× 108 m/s. (19.20)

Note that the speed of light is still the limiting speed in spacetime as
discussed in [159,245].
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§19.2.1 Analytic form of constants b0 and κ̄0

Blair [27, p. 3–4] writes Einstein’s field equation as

T =
c4

8πG
G,

where T is the stress energy tensor, G is the Einstein curvature ten-
sor and G is the universal gravitational constant. He notes the very
large value of the proportionality constant. This leads him to point out
that spacetime is an elastic medium that can support waves, but its
extremely high stiffness means that extremely small amplitude waves
have a very high energy density. He notes that the coupling constant
c4/8πG can be considered as a modulus of elasticity for spacetime, and
identifies the quantity c3/G with the characteristic impedance of space-
time [27, p. 45].

From this, Macken [223] derives an “interactive bulk modulus of
spacetime”, which we identify with the spacetime continuum bulk mod-
ulus, given by

κ̄0 =
c7

~G2
. (19.21)

The result obtained for the numerical value of b0 and its close corre-
spondance to the Planck length suggests that the value of κ̄0 proposed
in [223] is correct. From Millette [238, Eq. (150)] we then have

µ̄0 = 32
c7

~G2
. (19.22)

From (19.13), we can write

b0
4 = 2

√
2
hc

µ̄0
. (19.23)

Substituting from (19.22), this relation becomes

b0
4 =

√
2π

8

~2G2

c6
(19.24)

and finally

b0 =

(
π

4
√

2

) 1
4

√
~G
c3

= 0.86 `P (19.25)

where `P is Planck’s length, defined as [189]

`P =

√
~G
c3
. (19.26)
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Hence, as mentioned in section §19.1, this suggests that the elementary
Burgers dislocation vector b0 and the Planck length `P are equivalent
within the approximations of the derivation.

§19.2.2 Recommended constants

Starting from the statement that the Burgers spacetime dislocation con-
stant b0 is equivalent to the Planck length `P , we derive the constant of
proportionality of (19.11). We thus set

h = k

√
κ̄0 µ̄0 b

4
0

c
(19.27)

where k is the improved constant of proportionality for the relation.
Substituting for κ̄0 from (19.21), for µ̄0 from (19.22), and setting b0 = `P
from (19.26), the equation becomes

h = k
√

32
c7

~G2

1

c

~2G2

c6
(19.28)

from which we obtain
k =

π

2
√

2
. (19.29)

Hence, with the Burgers spacetime dislocation constant b0 equivalent
to the Planck length `P , the basic definition of Planck’s constant h
in terms of the Lamé spacetime constants and the Burgers spacetime
dislocation constant b0 is given by

h =
π

2
√

2

√
κ̄0 µ̄0 b

4
0

c
. (19.30)

In terms of κ̄0, we have

h = 2π
κ̄0 b

4
0

c
(19.31)

or

~ =
κ̄0 b

4
0

c
(19.32)

and in terms of µ̄0, we have

h =
π

16

µ̄0 b
4
0

c
. (19.33)

As stated, the Burgers spacetime dislocation constant b0 is given by

b0 = `P =

√
~G
c3

(19.34)
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and the spacetime continuum Lamé constants are as per (19.21) and
(19.22):

κ̄0 =
c7

~G2

µ̄0 = 32
c7

~G2
.

(19.35)

From (19.16) and the value of µ̄0 above, the density of the spacetime
continuum is given by

ρ̄0 = 32
c5

~G2
. (19.36)

It is recommended that the relations in this section be retained as the
official definition of these constants.

§19.3 Action in the spacetime continuum

We consider (19.32) in greater details, viz.

~ =
κ̄0 b

4
0

c
. (19.37)

Interestingly enough, this equation can be considered to be a definition
of Planck’s reduced constant ~.

On the R.H.S. of the equation, we have the spacetime continuum
bulk modulus constant κ̄0 in units of energy density [J · m−3], that is
energy per 3-D volume. We multiply κ̄0 by a 3-D volume to convert it
to energy. However, κ̄0 is a spacetime continuum constant. We need a
conversion in terms of the 4-D spacetime volume.

The R.H.S. of (19.37) also includes the term b40 which can be taken to
be the 4-D volume of a four-dimensional elementary hypercube of side
b0 = 1.616×10−35 m. This 4-D hypervolume has units of [m4] while the
four-dimensional spacetime continuum hypervolume consists of three
space dimensions and one time dimension with units [m3 · s]. This
requires that one of the space elementary dimensions b0 be divided by c
to convert it to a time elementary dimension t0 = b0/c = 5.39× 10−44 s
as seen in (19.37). Equation (19.37) can thus be written as

~ = κ̄0 b
3
0

b0
c

= κ̄0 b
3
0 t0 = κ̄0 V

STC
0 (19.38)

where V STC0 is the four-dimensional elementary spacetime continuum
hypervolume and ~ has units of [J · s] which are units of action S.
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Hence multiplying κ̄0 by a 3-D space volume converts it to energy,
while multiplying it by a 4-D spacetime volume converts it to action.
Energy applies to three-dimensional space, while action applies to four-
dimensional spacetime. From (19.38), we see that Planck’s reduced
constant corresponds to an elementary quantum of action S0:

~ = κ̄0 V
STC
0 = S0 (19.39)

which has units of [J · s]. Action units are the same as those of angular
momentum, but this equivalence is accidental. The basic nature of ~ is
an action, not an angular momentum. Calling ~ a “spin” quantity is an
unfortunate misnomer from the early days of quantum mechanics. It
needs to be called more appropriately an action quantity, i.e. a quantum
of action.

We thus find that action is the fundamental four-dimensional space-
time scalar quantity corresponding to energy for three-dimensional spa-
ce. This helps explain why equations of motion are determined by min-
imizing action, not energy, using the principle of least (or stationary)
action given by

δS = 0 (19.40)

where the action S is expressed in terms of the Lagrangian L of the
system as

S =

∫ t2

t1

L (q(t), q̇(t), t) dt (19.41)

where q = (q1, q2, ..., qN ) are the N generalized coordinates defining the
configuration of the system and q̇ denotes the time derivative of q.

In Lagrangian field theory, the action is written in terms of the
Lagrangian density L specified in terms of one or more fields φ(x) and
their derivatives ∂µφ as [286, see p. 15ff]

S =

∫ x2

x1

L (φ(x), ∂µφ) d4x . (19.42)

The path integral formulation of quantum mechanics and quantum
field theory is a generalization of the action principle of classical me-
chanics [280]. Interestingly enough, Feynman who developed this for-
mulation [120]

... belie[ved] that the path integral captures the fundamental
physics, and that hamiltonians and Hilbert space are merely
mathematical methods for evaluating path integrals. [333, see
p. 143]
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In STCED, the path integral between two points x1 and x2 can be
understood to be equivalent to the different possible wave paths between
the two points.

The propagation amplitude G(x2;x1) between the two points is de-
termined from the path integral using the appropriate action for the
system under consideration. One can see that since the contribution of
a path is proportional to eiS/~ [333, see p. 146], then, from (19.39), it is
equivalent to eiS/S0 . In other words, the contribution of a path depends
on the number of elementary quanta of action S0 in the path.

§19.4 Volume dilatation and rest-mass energy density

In this section we explore in greater details the relation between the
volume dilatation and rest-mass energy density. We recall the relation
(2.24) between these quantities, viz.

ρc2 = 4κ̄0 ε (19.43)

which we rewrite as

ρ =
4κ̄0

c2
ε . (19.44)

Substituting for κ̄0 from (19.35),

ρ =
4c5

~G2
ε (19.45)

and numerically,
ρ = 2.06× 1097 ε kg/m3 . (19.46)

Since the dilatation 0 ≤ ε ≤ 1, the range of values of the rest-mass
density is 0 ≤ ρ ≤ ρmax, where ρmax = 2.06× 1097 kg/m3.

Recalling that the density of the spacetime continuum is given by
(19.36), viz.

ρ̄0 = 32
c5

~G2
(19.47)

or numerically

ρ̄0 = 8 ρmax = 1.65× 1098 kg/m3 , (19.48)

we see that the rest-mass density is always less than the spacetime
continuum density which itself is a limiting density that applies only to
massless distortion displacements. Dilatations result in a dilatation of
the spacetime continuum, with a resulting reduction in its local density
in the dilatation.
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We define ρε as the effective spacetime continuum density inside the
dilatation. In the case of a massless transverse distortion displacement,
then ε = 0 and the effective STC density ρε in this case is the same as
the density of the spacetime continuum ρ̄0, i.e. ρε = ρ̄0. As the volume
dilatation ε increases, the effective STC density becomes increasingly
smaller than the density of the spacetime continuum ρ̄0. The maximum
reduction in the effective STC density occurs for the maximum dilata-
tion ε = 1 for which the effective STC density ρε is equal to the density
of the spacetime continuum ρ̄0 = 8 ρmax minus the maximum rest-mass
density ρmax, i.e. ρε = ρ̄0 − ρmax. Hence the smallest effective STC
density ρε is equal to 7 ρmax and the range of effective STC density ρε
is given by

ρ̄0 − ρmax ≡ 7 ρmax ≤ ρε ≤ 8 ρmax ≡ ρ̄0 (19.49)

for the dilatation in the range 1 ≥ ε ≥ 0 respectively, or numerically,

1.44× 1098 kg/m3 ≤ ρε ≤ 1.65× 1098 kg/m3 . (19.50)

This is illustrated graphically in the following table.

Object Dilatation Rest-mass Effective STC

ε ρ (kg/m3) ρε (kg/m3)

Massless 0 0 1.65× 1098

distortion (ρ̄0)

· · ·
Classical 4.7× 10−85 9.72× 1012 1.65× 1098

electron (∆ in 85th digit)

· · ·
Theoretical 1 2.06× 1097 1.44× 1098

maximum (ρmax) (ρ̄0 − ρmax)

Table 19.1: Relation between volume dilatation, rest-mass density and
effective STC density.

As seen previously, Blair [27, p. 3–4] pointed out that spacetime is an
elastic medium that can support waves, but its extremely high stiffness
means that extremely small amplitude waves have a very high energy
density. This results in extremely small values of ε and correspondingly
very high values of rest-mass density from (19.46). The effective STC
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density ρε is itself in the range of the density of the spacetime continuum
ρ̄0. It is important to note that this is applicable to elementary particles.
For macroscopic bodies, one has to consider that they are composed of
elementary particles, and that the applicable mechanics are those that
govern the aggregate bodies.

For example, using the classical radius of the electron, 2.82×10−15 m,
and assuming a sphere, one gets a rest-mass density of 9.72×1012 kg/m3

and an ε = 4.7×10−85 for an electron. The effective STC density ρε in-
side the electron is essentially the same as the density of the spacetime
continuum ρ̄0, with a reduction only in the 85th digit of ρ̄0. A more
point-like electron will have a smaller radius, a larger rest-mass den-
sity and a larger ε. Still, the values of ε are extremely small, reflecting
the extremely high stiffness of the spacetime continuum. Macroscopic
bodies are composed of elementary particles and are governed by the
applicable existing physical laws and ultimately by the spacetime con-
tinuum methods of the General Theory of Relativity.

§19.5 Dark matter and dark energy

As mentioned previously in section §2.5.1, we now return to the question
of dark matter and dark energy, which is a major concern to modern
cosmologists.

One of the major drivers of the concept of dark matter, the hy-
pothetical unseen matter in the universe, has been the missing mass
of the galaxies inferred from the difference between the visual mass
of galaxies estimated from luminosity measurements and that mea-
sured from the rotational speed of stars in the galaxies. Numerous
theories have been proposed to explain the galactic rotational curve
problem [25, 158, 225, 350], ranging from exotic non-baryonic matter to
MOND, a modification of Newton’s theory. The dark matter to visible
matter ratio in the universe is estimated to be about 5.5 [158, 290], so
the discrepancy is substantial.

Recently, Heymann [158] has proposed an elegant resolution to the
missing dark matter problem based on basic physical theory. The New-
tonian inverse square law of gravitation is known to apply between
masses based on the distance between their barycenters, and similarly
applies to bodies in the case of spherical geometry (known as the shell
theorem). Heymann notes that the shape of spiral galaxies is better
approximated by a disk and in that case a correction factor ηdisk must
be applied to Newton’s law which he shows numerically to be about
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7.44± 0.83 at a 99% confidence interval

F = ηdiskG
Mm

R2
(19.51)

where the symbols have their usual significance and

ηdisk =
1

π

∫ 1

u=0

∫ 2π

α=0

u− u2 cosα

(u2 + 1− 2u cosα)
3
2

du dα . (19.52)

This model could be tweaked to account for the arms of spiral galaxies
(instead of a disk) and for the density profile across a cross-section of a
spiral galaxy. These corrections would reduce the value of ηdisk which
currently overestimates the assumed dark matter to visible matter ratio
in our galaxy by ∼ 35%.

A recent 2012 study of the European Southern Observatory on the
presence of dark matter in our solar neighbourhood concluded:

The most accurate study so far of the motions of stars in the
Milky Way has found no evidence for dark matter in a large
volume around the Sun... The amount of mass that we derive
matches very well with what we see – stars, dust and gas – in
the region around the Sun. But this leaves no room for the extra
material – dark matter – that we were expecting. Our calcu-
lations show that it should have shown up very clearly in our
measurements. But it was just not there! ... Theories predict
that the average amount of dark matter in the Sun’s part of the
galaxy should be in the range 0.4–1.0 kilograms of dark matter
in a volume the size of the Earth. The new measurements find
0.00 ± 0.07 kilograms of dark matter in a volume the size of the
Earth. [118,260]

Fundamental questions are still being raised about dark matter and
dark energy [267]. The question of dark matter is being discussed in
this book in relation to STCED as the question has been raised whether
STCED can provide an answer to the mystery of dark matter.

§19.5.1 Cosmological constant energy density

In section §2.5.1, we saw how the introduction of the cosmological con-
stant term +Λgµν in Einstein’s field equations is equivalent to intro-
ducing additional rest-mass energy density in the spacetime continuum.
In section §19.2, we derived the density of the spacetime continuum
ρ̄0 = 1.7× 1098 kg/m3 and found this value to be in the same ballpark
as the vacuum energy density calculated by Carroll [52, see pp. 173]
(∼ 10112 ergs/cm3) from quantum mechanical considerations.



364 Chapter 19 Spacetime Continuum Fundamentals

Carroll [52, see pp. 174,358] also calculates the vacuum energy den-
sity from the cosmological constant (≈ 10−8 ergs/cm3) required by cur-
rent cosmological observations. Comparing the two values, he points
out, leads to “the origin of the famous discrepancy of 120 orders of
magnitude between the theoretical and observational values of the cos-
mological constant.” Hence any postulated cosmological constant vac-
uum energy density does not provide an explanation for the required
source of dark matter.

§19.5.2 Spacetime continuum energy density

From the theory of STCED derived in this book, it is also evident that
the spacetime continuum energy density (19.17) is not the source of
dark matter. Notwithstanding the 120 orders of magnitude discrepancy,
any source of dark matter would be embedded as deformations in the
spacetime continuum itself, and manifest itself solely as rest-mass energy
density associated with dilatations in the spacetime continuum as given
by (2.24), not the STC itself. This rest-mass energy density does not
provide the necessary source of dark matter.

Hence it would seem that the Elastodynamics of the Spacetime Con-
tinuum cannot shed any light on the subject of dark matter and dark
energy. This in itself is not surprising as STCED does not deal with the
cosmological scale, which is the sole domain of the Theory of General
Relativity as covered in §2.5.



Chapter 20

A Work in Progress

§20.1 A new spacetime physics theory

This book lays the foundations of a new theory of spacetime physics.
STCED (Spacetime Continuum Elastodynamics) is a natural extension
of Einstein’s Theory of General Relativity. Whereas General Relativ-
ity concentrates on the curvature of the spacetime continuum, STCED
analyses the deformations of the spacetime continuum resulting in its
curvature. This gives rise to an integrated theory of gravitation and
electromagnetism. At the microscopic level, STCED leads to the anal-
ysis of defects in the spacetime continuum, which gives rise to quan-
tum physics. STCED is thus found to be a spacetime physics theory of
gravitation, electromagnetism and quantum physics. This book lays the
theoretical foundations of the Elastodynamics of the Spacetime Contin-
uum, allowing physicists to study and perform research in this new area
of spacetime physics.

§20.2 Physical explanations

The theory presented in this book provides physical explanations for
many of the phenomena that are currently unexplained or only partially
explained in physics. This spacetime physics theory of gravitation, elec-
tromagnetism and quantum physics is based on a linear elastic theory
of the Elastodynamics of the Spacetime Continuum for the analysis of
the deformations of the spacetime continuum. Quantum physics is tied
to defects in the spacetime continuum.

This book provides an integrated physical explanation derived from
STCED of numerous currently unexplained phenomena including:

Nature and properties of the spacetime continuum. The
spacetime continuum of Einstein’s Theory of General Relativity, from
the macroscopic to the microscopic, is not an empty canvas, but rather
has physical properties of its own. One can always create an empty un-
derlying mathematical structure used to “measure” the deviations of the
spacetime continuum from a reference state, but there is no doubt that
the spacetime continuum of physical theory is characterized by physical
dynamic properties. Einstein himself published similar statements. See
section §1.1.
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Demonstration of strained spacetime. The presence of the
energy-momentum stress tensor in Einstein’s field equations implies that
forces are being applied to the spacetime continuum by the energy-
momentum present in its structure. From continuum mechanics, we
know that the application of stresses to the spacetime continuum must
result in strains in its structure, hence the terminology strained space-
time. The strains present in the spacetime continuum result in the
displacement of the elements of the spacetime continuum from equilib-
rium, corresponding to spacetime continuum deformations. See sections
§1.1.1 and §1.1.2. In section §1.2, we demonstrate from first principles
that spacetime is indeed strained by the presence of mass.

Stress-strain relation of the spacetime continuum. The
introduction of strains in the spacetime continuum as a result of the
energy-momentum stress tensor leads us to derive the stress-strain re-
lation of the spacetime continuum, which is found to be similar to Ein-
stein’s field equations in structure. The stress-strain relation is linear,
implying a linear elastic continuum that obeys Hooke’s law. One of
the consequences of linearity is that the principle of superposition is
applicable, as observed in physical laws. See section §2.2.

Decomposition of the metric tensor. We solve a long-standing
problem of general relativity. There is no straightforward definition of
local energy density of the gravitational field in general relativity. This
arises because the spacetime metric tensor includes both the background
spacetime metric and the local dynamical effects of the gravitational
field. No natural way of decomposing the spacetime metric tensor into
its background and dynamical parts is known. We obtain a natural
decomposition of the spacetime metric tensor into its background and
dynamical parts. The dynamical part corresponds to the strains gener-
ated in the spacetime continuum by the energy-momentum stress tensor.
See section §1.2.

Decomposition of spacetime tensor fields of rank 2. The
decomposition of spacetime tensor fields can be done in many ways.
The application of continuum mechanics to the spacetime continuum
offers a natural decomposition of tensor fields, in terms of dilatations
and distortions. A dilatation corresponds to a change of volume of
the spacetime continuum without a change of shape while a distortion
corresponds to a change of shape of the spacetime continuum without
a change in volume. This decomposition of spacetime tensor fields of
rank 2 in terms of dilatation and distortion components allows us to also
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decompose relations involving these tensor fields into separate dilatation
and distortion relations. See section §1.3.

Decomposition of the Ricci tensor. The Ricci tensor used in
general relativity is separated into dilatation and distortion components,
by applying the natural decomposition of spacetime continuum tensor
fields of rank 2 as seen previously. From this, we show that this results in
a separation of the field equations of general relativity into a dilatation
relation and a distortion relation. This shows that the geometry of
the spacetime continuum used in general relativity is generated by the
combination of all deformations present in the spacetime continuum.
We then evaluate these equations in the weak field approximation to
show that the longitudinal dilatation mass relation leads to Poisson’s
equation for a newtonian gravitational potential, and that the transverse
distortion wave relation leads to the linearized field equation of gravity
in the Transverse Traceless gauge. Hence the results derived in STCED
also apply to general relativity. See section §2.4.

Wave-particle duality. Every excitation of the spacetime con-
tinuum can be separated into a transverse (distortion) and a longitudi-
nal (dilatation) mode of propagation. This decomposition of spacetime
continuum deformations into a massive dilatation (“particle”) and a
massless transverse wave distortion (“wave”) provides a mechanism for
wave-particle duality. This provides an explanation of why dilatation-
measuring apparatus measure the massive “particle” properties of the
deformation, while distortion-measuring apparatus measure the mass-
less transverse “wave” properties of the deformation. See section §2.2,
section §3.3 and Chapter 12, in particular section §12.4.

Nature of rest-mass energy. The longitudinal mode of propa-
gation involves an invariant change in volume of the spacetime contin-
uum. Rest-mass energy, and hence matter, arises from this invariant
volume dilatation of the spacetime continuum. The rest-mass energy is
equivalent to the energy required to dilate the volume of the spacetime
continuum. It is a measure of the energy stored in the spacetime contin-
uum that is perceived as mass. The volume dilatation is an invariant,
as is the rest-mass energy density. Mass is thus part of the spacetime
continuum fabric itself. In essence, matter does not warp spacetime,
but rather, matter is warped spacetime (i.e. dilated spacetime). The
universe consists of the spacetime continuum and energy-momentum
that propagates in it by deformation of its (i.e. STC ) structure. See
sections §2.3 and §5.5.1.
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Definition of mass. Another important consequence of this re-
lation is that it provides a definition of mass. The definition of mass is
still one of the open questions in physics, with most authors adopting
an indirect definition of mass based on the ratio of force to acceleration.
However, mass is one of the fundamental dimensions of modern systems
of units, and as such, should be defined directly, not indirectly. This is
a reflection of the current lack of understanding of the nature of mass in
modern physics. STCED provides a direct physical definition of mass:
mass is the invariant change in volume of spacetime in the longitudi-
nal propagation of energy-momentum in the spacetime continuum. See
section §2.3 and §5.5.2.

Point particles. The fact that the mass of a particle corresponds
to a finite spacetime volume dilatation Vεs shows that a singular “point”
particle is not physically valid. All particles occupy a finite volume,
even if that volume can be very small. Problems arising from point
particles are thus seen to result from the abstraction of representing
some particles as point objects. Instead, particles need to be given a
finite volume to give physically realistic results and avoid invalid results..
See section §5.5.3.

Mach’s principle. Mach’s principle, a terminology first used by
Einstein [282, p. 287], was not explicitly stated by Mach, and hence var-
ious takes on its statement exist. One of the better formulation holds
that one can determine rotation and hence define inertial frames with
respect to the fixed stars [365, see pp. 86–88]. By extension, inertia
would then be due to an interaction with the average mass of the uni-
verse [365, see p. 17]. The macroscopic description of the gravitational
field in terms of the curvature of the spacetime continuum results from
the combination of the many microscopic displacements of the space-
time continuum from equilibrium. The source of the inertia is thus in
the massive dilatation associated with each deformation, and Mach’s
principle (or conjecture as it is also known) is seen to be incorrect. See
sections §5.5.5.

Dynamics of the spacetime continuum. The dynamics of the
spacetime continuum is described by the displacement wave equation,
which includes the accelerations from the applied forces. This equation
can be separated into longitudinal and transverse components, which
correspond to wave and particle displacement equations respectively,
and hence include wave-particle duality in their formulation. See section
§2.2 and section §2.3.
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Nature of the graviton. We recall that the transverse mode
of propagation involves no volume dilatation and is thus massless. The
strain wave equation is a nonhomogeneous symmetric tensor field equa-
tion. The quanta of this tensor field are equivalent to massless trans-
verse waves of spin 2 and massive particles of spin 0. This explains
wave-particle duality, with the spin 2 transverse mode corresponding to
the wave aspects and the spin 0 longitudinal mode corresponding to the
particle aspects. The massless transverse waves of spin 2 are the grav-
itational waves of General Relativity with the corresponding graviton
quanta. See section §3.6, in particular section §3.6.4.

Electromagnetic potential four-vector. The theory provides a
physical explanation of the electromagnetic potential, which arises from
transverse (shearing) displacements of the spacetime continuum, in con-
trast to mass which arises from longitudinal (dilatational) displacements
of the spacetime continuum. Sheared spacetime is manifested as elec-
tromagnetic potentials and fields. The constant of proportionality ϕ0

between the electromagnetic potential Aν and the transverse displace-
ment (perpendicular to the direction of motion) uν⊥ is referred to as the
“STC electromagnetic shearing potential constant”, and it has units of
[V · s ·m−2] or equivalently [T]. See section §4.1.

Current density four-vector. The theory provides a physical
explanation of the current density four-vector, which arises from the
spacetime volume dilatation current (the dilatation current) which is
given by the 4-gradient of the volume dilatation of the spacetime con-
tinuum. A corollary of this relation is that massless (transverse) waves
cannot carry an electric charge. See section §4.5.

Maxwell’s equations. Maxwell’s equations are derived from the
theory, and a generalization is obtained when a volume force Xν is
present in the spacetime continuum. The current density four-vector is
the only quantity affected by the volume force, with the addition of a
second term proportional to the volume force. See section §4.2.

Lorenz condition. The Lorenz condition is obtained directly from
the theory. The reason for the value of zero is that transverse displace-
ments are massless because such displacements arise from a change of
shape (distortion) of the spacetime continuum, not a change of volume
(dilatation). See section §4.4.

Electromagnetic waves. The transverse mode of propagation
involves no volume dilatation and is thus massless. Electromagnetic
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waves are transverse waves propagating in the spacetime continuum
itself. These massless transverse waves are solutions of the rotational
wave equation which is a nonhomogeneous antisymmetric tensor field
equation equivalent to a massless vector wave equation. The quanta of
the vector field are equivalent to massless spin 1 transverse waves. See
section §3.6, in particular section §3.6.3, sections §5.5.6 and §5.5.7, and
section §12.1.

Speed of light. Energy propagates through the spacetime contin-
uum as deformations of the continuum. The maximum speed at which
the transverse distortions can propagate through the spacetime contin-
uum is c, the speed of light. See section §3.2.2, section §9.2 and section
§15.1.

Electromagnetic mass. From STCED, we see that the concept
of electromagnetic mass that was pursued in the nineteenth century is
not valid as electromagnetism is transverse and massless, and has no
massive longitudinal component. The charge density is a manifestation
of the spacetime fabric itself, however it does not depend on the volume
dilatation ε, only on its gradient, and it does not contribute to inertial
mass. The electromagnetic field contributes to the particle’s total en-
ergy, but not to its inertial mass which STCED shows originates in the
particle’s dilatation energy density (the mass longitudinal term) which
is zero for the electromagnetic field. See sections §5.5, §5.5.6 and §5.5.7.

Special relativistic quadratic energy relation. This rela-
tion is derived from the strain energy density which is separated into
a dilatation energy density term (the “mass” longitudinal term) and a
distortion energy density term (the “massless” transverse term), which
are quadratic terms. The kinetic energy pc is carried by the distor-
tion part of the deformation, while the dilatation part carries only the
rest-mass energy. See section §5.2.

Mass of the photon. The longitudinal strain energy density
(mass term) of the electromagnetic field is calculated and found to be
equal to 0. Hence the rest-mass energy density of the photon is zero, i.e.
the photon is massless. The transverse strain energy density (massless
term) of the electromagnetic field is calculated and found to be pro-
portional to the sum of the square of the electromagnetic field energy
density and the square of the Poynting vector. See section §5.3.

Poynting four-vector. By analogy with the current density four-
vector jν = (c%, j), where % is the charge density, and j is the current
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density vector, we define the Poynting four-vector Sν = (cUem,S) where
Uem is the electromagnetic field energy density, and S is the Poynting
vector. Furthermore, Sν satisfies ∂νS

ν = 0 and SνS
ν is an invariant,

confirming that Sν as defined is a four-vector. See section §5.4.

Location of electromagnetic field energy. The indefiniteness
of the location of the field energy referred to by Feynman [122, see
p. 27-6] is resolved: the electromagnetic field energy resides in the dis-
tortions (transverse displacements) of the spacetime continuum. See
section §5.4.

Nature of photons. The strain energy density of the electromag-
netic field includes a longitudinal electromagnetic energy flux which is
massless as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direction of
propagation (i.e. longitudinal), it gives rise to the photon, the particle
aspect of the electromagnetic field. See section §5.4 and sections §12.2
and §12.3.

Nature of the wavefunction. The quantum mechanical wave-
function describes wave propagations in the spacetime continuum. The-
se can be, depending on the particular wave equation considered, either
longitudinal wave propagations corresponding to the volume dilatation
associated with the particle property of an object, or transverse wave
propagations corresponding to the wave property of an object. In gen-
eral, the appropriate physical interpretation of |Ψ|2 is that it represents
the physical intensity (energy density) of the transverse (distortion)
wave, rather than the probability density of quantum theory. It cor-
responds to the transverse field energy of the deformation. It is not
the same as the particle, which corresponds to the longitudinal (dilata-
tion) wave displacement and is localized within the deformation via the
massive volume dilatation. However, |Ψ|2 can be normalized with the
system energy and converted into a probability density, thus allowing
the use of the existing probabilistic formulation of quantum theory. Ad-
ditionally, the physical intensity waves of STCED help us understand
the physics of wave-particle duality and resolve the paradoxes of quan-
tum theory. See section §7.3 and Chapter 12, in particular section §12.4.

Klein-Gordon-like equation. The longitudinal wave equation
derived from a quantum mechanically derived volume force corresponds
to a Klein-Gordon-like equation with a source term corresponding to an
interaction term of the form A · j. This term is interpreted in electro-
magnetism as energy in the static magnetic induction field to establish
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the steady current distribution. It is also the form of the interaction
term introduced in the vacuum Lagrangian for classical electrodynam-
ics. See section §7.3.1.

Magnetic torque density equation. The transverse wave equa-
tion derived from a quantum mechanically derived volume force is a new
equation of the electromagnetic field strength Fµν , which includes an
interaction term of the form A × j. In electromagnetism, this term is
the volume density of the magnetic torque (magnetic torque density),
and is interpreted as the “longitudinal tension” between two successive
current elements (Helmholtz’s longitudinal tension), observed experi-
mentally by Ampère (hairpin experiment). See section §7.3.2.

Proca-like equation. The displacement wave equation in the
case of a quantum mechanically derived volume force is similar to a
Proca-like vector field equation. See sections §4.8 and §7.3.5.

Quantum physics and defects in the spacetime continuum.
Dislocation and disclination defects in the spacetime continuum repre-
sent the fundamental displacement processes that occur in its structure.
These fundamental displacement processes correspond to basic quantum
phenomena and provide a framework for the description of quantum
physics in STCED. Dislocations are translational deformations, while
disclinations are rotational deformations. These provide a description
of basic quantum processes in the microscopic description of the space-
time continuum. See section §8.1.

Spacetime continuum quantization. At the quantum level,
we assume that the spacetime continuum has a granularity character-
ized by a length b0 corresponding to the smallest elementary Burgers
dislocation-displacement vector possible in the spacetime continuum.
The calculated value of b0 is found to be equivalent to the Planck length
`P within the approximations of the derivation. The existence of a short-
est length in nature leads to a natural cut-off to generate finite integrals
in QED. The smallest elementary Burgers dislocation-displacement vec-
tor thus provides a lower bound in QED calculations. See section §14.2
and sections §19.1 and §19.2.

Nature of bosons and fermions. We find that dislocations and
disclinations have fundamental properties that reflect those of parti-
cles at the quantum level. Dislocations are translational displacements
that commute, satisfy the superposition principle and behave as bosons.
Disclinations, on the other hand, are rotational displacements that do
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not commute, do not obey the superposition principle and behave as
fermions. Dislocations, as translational processes, are found to corre-
spond to bosons, while disclinations, as rotational processes, are found
to correspond to fermions, based on their characteristics and symmetry
transformations. See sections §14.1 and §14.4.

Quantum particles as spacetime continuum defects. We find
that dislocations and disclinations have fundamental properties that re-
flect those of particles at the quantum level. Dislocations, as transla-
tional processes, are found to correspond to bosons, while disclinations,
as rotational processes, are found to correspond to fermions, based on
their characteristics and symmetry transformations. See sections §14.1
and §14.4.

Screw dislocations and photons. Screw dislocations are trans-
lational displacements that commute, satisfy the superposition principle
and behave as bosons. Screw dislocations in the spacetime continuum
are massless, transverse deformations, and are hence identified specifi-
cally with photons. The speed of the transverse displacement is c, the
speed of light. The field ωµν is of spin 1, and since it is massless, it
does not have a spin 0 component. From section §9.2.3, the rest-mass
density of the screw dislocation is ρ = 0, and from section §9.2.4, so is
its charge density % = 0 and its current density jν = 0. See sections
§3.6, §9.2, §15.1, §18.1.1 and §18.3.1.

Edge dislocations and bosons. Edge dislocations are trans-
lational displacements that commute, satisfy the superposition princi-
ple and behave as bosons. Edge dislocations are equivalent to massive
longitudinal wave solutions propagating along the direction of motion
and massless transverse wave solutions. The quanta of the longitudinal
waves are spin 0 massive particles, while the quanta of the massless
transverse waves are of spin 2. This explains wave-particle duality, with
the spin 2 transverse mode corresponding to the wave aspects and the
spin 0 longitudinal mode corresponding to the particle aspects. The
massless transverse waves of spin 2 are the gravitational waves of Gen-
eral Relativity with the corresponding graviton quanta. The total strain
energy of edge dislocations gives the total energy of the bosons, as the
sum of the longitudinal particle aspect of the bosons and the wave as-
pect of the bosons. As seen in Chapter 12, the latter is associated with
the wavefunction of the boson. The spin characteristics of these are seen
to correspond to a combination of spin 0 (mass as deformation particle
aspect) and spin-2 (deformation wave aspect) solutions. There are also
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longitudinal and transverse wave solutions of a Proca-like vector field
equation, of spin 0 and 1 respectively, in the case of a non-zero volume
force as is expected at the quantum level. See sections §3.6, §??, §7.3.5,
§9.3, §15.2 and §18.1.1.

Wedge disclinations and quarks. Wedge disclinations, as ro-
tational processes, are found to correspond to fermions, based on their
characteristics and symmetry transformations. Both the longitudinal
strain energy and the transverse strain energy are proportional to Λ2

in the limit Λ � bc. The parameter Λ is equivalent to the extent of
the wedge disclination, and we find that as it becomes more extended,
its strain energy is increasing parabolically. This behaviour is similar
to that of quarks (confinement) which are fermions. In addition, as
Λ→ bc, the strain energy decreases and tends to 0, again in agreement
with the behaviour of quarks (asymptotic freedom). We thus identify
wedge disclinations with quarks. See sections §10.6, §15.3 and §18.1.2.

`3 twist disclinations and leptons. Splay disclinations, as ro-
tational processes, are found to correspond to fermions, based on their
characteristics and symmetry transformations. The longitudinal (mas-
sive) strain energy of the splay disclination is proportional to ln Λ/bc, as
are the screw dislocation (photon) and edge dislocation (bosons). How-
ever, the transverse (massless) strain energy does not have this simpler
dependence, but a more complicated functional dependence. This, and
the results of the next subsection, leads us to identify the splay disclina-
tions with the charged leptons (electron, muon, tau) fermions, where the
heavier muon and tau are expected to be excited states of the electron.
See sections §10.7, §15.4 and §18.1.2.

` twist disclinations and neutrinos. Pure twist disclinations,
as rotational processes, are found to correspond to fermions, based on
their characteristics and symmetry transformations. The longitudinal
strain energy of the pure twist disclination is equal to zero and hence
massless. Since the pure twist disclination is a massless fermion, this
leads us to identify the pure twist disclination with the neutrino. It
should be noted that even though the mass of the neutrino is currently
estimated to be on the order of 10’s of eV, this estimate is based on
assuming neutrino oscillation between the currently known three lepton
generations, to explain the anomalous solar neutrino problem. This is
still a tentative explanation. Until the anomaly is fully understood, we
can consider the pure twist disclination physical model where the mass
of the neutrino is zero to be at least a first approximation of the neutrino
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STC defect model, subject to refinement as the nature of the anomalous
solar neutrino problem is better understood. See sections §10.7, §15.4
and §18.1.2.

Identification of quantum particles summary. The identi-
fication of the quantum particles based on their associated spacetime
defects is summarized in the following table (see §18.1.3). See sections
§18.1 and §18.1.3.

STC defect Type of particle Particles

Screw dislocation Massless boson Photon

Edge dislocation Massive boson Spin-0 particle

Spin-1 Proca eqn

Spin-2 graviton

Wedge disclination Massive fermion Quarks

`3 twist disclination Massive fermion Leptons

` twist disclination Massless fermion Neutrino

Nature of QED interactions. Strain energy is the fundamental
defining energy characteristic of defects and their interactions in the
spacetime continuum. In STCED, the interaction of dislocations and
disclinations is mediated through the interaction of their strain energy
density. We find that this interaction of the strain energy density results
from the overlap of the strain energy densities of defects, a process akin
to the wavefunction overlap of quantum mechanics, which is physically
explained by this process in STCED. The calculation of time-dependent
dislocation strain energy involves polylogarithms which also arise in
Feynman diagram integrals (and, in particular, in the computation of
quantum electrodynamics corrections to the electron gyromagnetic ra-
tio). This is a further indication that the interaction of strain energies
are the physical source of quantum interaction phenomena described by
Feynman diagrams. See section §14.5, sections §16.1.2 and §16.2.2 and
section §17.1.

Nature of virtual particles. In STCED, the role played by
virtual particles in quantum electrodynamics (QED) is replaced by the
interaction of the strain energy density of the dislocations and disclina-
tions. As stated by Weingard [366], “the question of the existence of
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virtual particles is really the question of how to interpret the propaga-
tors which appear in the perturbation expansion of vacuum expectation
values (scattering amplitudes)”. The exchange of virtual particles in
interactions can be seen to be a perturbation expansion representation
of the forces resulting from the overlap of the defects’ strain energy
density. QED is a perturbative theory, and the virtual particles are in-
troduced as an interpretation of the perturbative expansion represented
by Feynman diagrams. See section §14.5.

Explanation of Feynman diagrams. The basic Feynman di-
agrams can be seen to represent screw dislocations as photons, edge
dislocations as bosons, twist and wedge disclinations as fermions, and
their interactions. More specifically, the external legs of Feynman di-
agrams that are on mass-shell representing real particles correspond
to dislocations and disclinations, while the virtual off mass-shell parti-
cles are replaced by the interaction of the strain energy densities. The
Feynman diagram propagators are replaced by the defect strain energy
density interaction expressions. See section §18.2.

Explanation of photon-photon scattering. In QED, photon-
photon interactions are known as photon-photon scattering and are
thought to be mediated by virtual particles. This reflects the pertur-
bative calculation used to evaluate the scattering, but as shown in this
work, photon-photon interactions physically result from the overlap of
their strain energy density, and can be calculated directly. See section
§18.3.1.

Explanation of photon-neutrino interactions. It is surpris-
ing to find that the massless, electrically neutral, weakly interacting
neutrino would interact with the massless, electrically neutral, electro-
magnetic interacting photon. STCED provides for their interaction via
the force resulting from the interaction of the strain energy densities
of screw dislocations and pure twist disclinations, which correspond to
photon-neutrino interactions. See section §18.3.2.

QED self-energies. The dislocation self-energy is related to the
dislocation self-force. The dislocation self-force arises from the force
on an element in a dislocation caused by other segments of the same
dislocation line. This process provides an explanation for the QED self-
energies without the need to resort to the emission/absorption of virtual
particles. It can be understood, and is particular to, dislocation dynam-
ics as dislocations are defects that extend in the spacetime continuum.
See section §18.5.
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QED mass renormalization. Mass renormalization arises in
QED due to the incomplete description of particle energies at the quan-
tum level. In this book, we show that the strain energy density of an
edge dislocation, which corresponds to a particle, consists of a longitu-
dinal dilatation mass density term and a transverse distortion energy
density term. QED, in its formulation, only uses the transverse dis-
tortion strain energy density in its calculations, which is referred to as
the bare mass m0. However, there is no dilatation mass density term
used in QED, and hence no possibility of properly deriving the mass.
The bare mass m0 is thus renormalized by replacing it with the actual
experimental mass m. Using the longitudinal dilatation mass density
term provides the correct mass m and eliminates the need for mass
renormalization. See sections §18.6 and §18.7.

Non-locality of quantum phenomena. Defects in the space-
time continuum give rise to nonlocal effects. Discrete line defects ex-
tend in the spacetime continuum, and hence interact nonlocally, much
as nonlocal interactions between distant atoms determine the properties
of materials in solid-state physics. See section §18.8.

Entangled states in quantum physics. As noted in §18.5, the
physical extension of defects in the spacetime continuum gives rise to
nonlocal effects and to what are referred to as “entangled states” in
quantum physics. Entangled states correspond to the overlap of defects
in the spacetime continuum, overlaps that can extend between distant
defects, and are characterized by the interaction of their strain energy
densities. See section §18.9 and in particular sections §13.5 and §13.6.

Spacetime continuum constants. Based on the identification
of screw dislocations in the spacetime continuum with photons, the
relation between the Burgers constant b0 and Planck’s constant h is
determined. Planck’s constant is expressed in terms of the spacetime
continuum constants. The calculated value of b0 is found to be equiva-
lent to the Planck length `P within the approximations of the derivation.
Numerical values of the spacetime constants are derived and a consis-
tent set of analytical forms of the spacetime constants is proposed. See
sections §19.1 and §19.2.

Nature of Action in the spacetime continuum. We eluci-
date the nature of Action in the spacetime continuum. Energy applies
to three-dimensional space, while Action applies to four-dimensional
spacetime, where it has a role in four-dimensional spacetime similar to
energy in three-dimensional space. We thus find that Action is the fun-
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damental four-dimensional spacetime scalar quantity corresponding to
energy for three-dimensional space. This helps explain why equations
of motion are determined by minimizing action, not energy, using the
principle of least (or stationary) action. See section §19.3.

§20.3 Evolution of the theory

A solid foundation of a new theory of spacetime physics, the theory of
the Elastodynamics of the Spacetime Continuum has been laid, from
which further development can be achieved. This book lays the theo-
retical foundations of Spacetime Continuum Elastodynamics (STCED),
to encourage physicists to study and perform research in this new area
of spacetime physics.

The underlying principle of this theory is that the spacetime contin-
uum is the source and the seat of all physical processes. The dynamics
of the spacetime continuum is represented by the energy-momentum
propagating as deformations in its structure. This thread is the guiding
principle in the development of STCED.

Certainly much progress has been achieved towards this goal, but,
however, more, much more, remains to be developed. Suggested future
directions of investigation and areas of exploration to extend the theory
include as candidates worthy of further study:

– Detailed application and calculations using the theoretical devel-
opments derived in this book.

– Exploration of alternative volume forces Xν derived from other
identifications of related physical results.

– Development of the theory in Einstein-Cartan spaces beyond the
preliminary incorporation of torsion considered in this book, based
on Élie Cartan’s differential forms formulation.

– Further derivation of quantum electrodynamics results based on
the presence of defects, such as dislocations and disclinations, in
the spacetime continuum.

– Extension of the theory based on the evolution of Continuum Me-
chanics in the last one hundred years, including Eshelbian Me-
chanics [230] and the Mechanics of Generalized Continua [4].

Further development of STCED is expected to provide additional in-
sight into the fundamental nature of the spacetime continuum and of
physical theory.



Glossary of Physical Symbols

This book uses symbols across the fields of continuum mechanics,
elasticity, general relativity, electromagnetism and quantum mechanics.
The symbols used need to be applicable across these disciplines and be
self-consistent. A glossary of the physical symbols is included below to
facilitate the reading of this book.

α Fine-structure constant.

α Reciprocal of Lorentz gamma-factor.

αl Reciprocal of Lorentz longitudinal gamma-factor.

α2 Reciprocal of Lorentz half-velocity gamma-factor.

ᾱ0 Reduced µ̄0 constant.

αµν Dislocation density.

β̄0 Reduced µ̄0 + λ̄0 constant.

βµν Distortion tensor.
∗βµν Effective distortion tensor.

/βµν Defect distortion tensor.

γ Lorentz gamma-factor.

γl Lorentz longitudinal gamma-factor.

γ2 Lorentz half-velocity gamma-factor.

γ̄0 Reduced λ̄0 constant.

Γλµν Connection coefficient.

Γµνλ Modified connection coefficient.

δµν Kronecker delta.

εαβµν Permutation symbol in four-dimensional spacetime.

ε0 Electromagnetic permittivity of free space (STC ).

ε Volume dilatation.

εµν Strain tensor.
∗εµν Effective strain tensor.

/εµν Defect strain tensor.

ηµν Flat spacetime or Minkowski metric tensor.

θµν Disclination density.
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Θµν Symmetric electromagnetic stress tensor.

κ̄0 Bulk modulus of the STC.

κµν Bend-twist tensor.
∗κµν Effective bend-twist tensor.

/κµν Defect bend-twist tensor.

λ Wavelength.

λ Quantum mechanical hidden variable.

λ̄0 Lamé elastic constant of the STC.

λc Compton wavelength of the electron.

Λ Cutoff parameter corresponding to the extent of a defect.

µ̄0 Shear modulus Lamé elastic constant of the STC.

µ0 Electromagnetic permeability of free space (STC ).

µB Bohr magneton.

{µν, λ} Christoffel symbol of the first kind.{
λ
µ ν

}
Christoffel symbol of the second kind.

ν Frequency.

ν Poisson ratio.

(ξ, η, ζ) Cartesian coordinates.

ξν Dislocation line direction.

ξν Dilatation current.

ρ Rest-mass density.

ρ̄0 STC density.

% Charge density.

σij Cauchy stress tensor / Maxwell stress tensor.

σµν Stress tensor.

υ Dilatation/wavefunction proportionality constant.

φ Electromagnetic scalar potential.

ϕ0 STC electromagnetic shearing potential constant.

Φ Static newtonian gravitational field.

ων Rotation or spin vector.

ωµν Rotation tensor.
∗ωµν Effective rotation tensor.

/ωµν Defect rotation tensor.
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Ων Frank vector.

Ω−ν Reduced Frank vector.

Ωµν Associated Frank rotation tensor.

ψ Quantum mechanical wavefunction.

Ψ Multi-component quantum mechanical wavefunction.

Ψ Energy density of the transverse (distortion) wave.

A Vector potential.

Aµ Four-vector potential.

A∗ν Reduced four-vector potential..

b0 STC elementary Burgers displacement vector.

bc Size of defect core.

bν Burgers four-vector.

b̄ν Reduced Burgers vector.

bij Eshelby stress tensor.

B Magnetic field.

c Speed of light.

cl Speed of longitudinal waves.

ct Speed of transverse waves equivalent to the speed of light.

D Electric displacement field.

Dr Disclinations (rotation) consisting of { Screw , Edge }.
Dt Dislocations (translation) consisting of { Wedge , Twist }.
e Electrical charge of the electron.

es Strain scalar.

eµν Strain deviation tensor.

eαβµν Covariant Levi-Civita pseudotensor.

E Electric field.

Ê Total energy density.

E Strain energy density.

E‖ Dilatation strain energy density.

E⊥ Distortion strain energy density.

Eµναβ Elastic moduli tensor of the STC.

F Interaction force.

F(r, t) Riemann-Silberstein electromagnetic vector.
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Fµν Electromagnetic field strength tensor.

gi Momentum density vector.

gµν Metric tensor.

G Gravitational constant.

Gµν Einstein tensor in General Relativity.

Gµν Einstein tensor in Riemann-Cartan space.

Ḡµν Einstein tensor in Riemann space.

h Planck’s constant.

~ Reduced Planck’s constant.

hµν Perturbation of the flat spacetime metric tensor.

H Total energy density.

ı̇µν Incompatibility tensor.

j Current density vector.

jµ Current density four-vector.

j∗ν Reduced current density four-vector.

k̄0 Elastic force constant of the STC volume force.

kL STC longitudinal dimensionless ratio.

kT STC transverse dimensionless ratio.

k Wavevector.

kν Wavevector four-vector.

Kλ
µν Contortion tensor.

Kµνλ Modified contortion tensor.

` Length of a defect.

`P Planck length.

L Disclination line (axis).

Lin(x) Polylogarithm function.

L Lagrangian.

L Lagrangian density.

m Mass of the electron.

p Momentum 3-vector.

p̂ Momentum density.

P ν Energy-momentum four-vector.

P Projection operator.
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Q Total charge.

(r, θ, ϕ) Spherical polar coordinates.

(r, θ, z) Cylindrical polar coordinates.

rs Ricci scalar.

rµν Ricci deviation tensor.

R Contracted Ricci curvature tensor.

R Defect separation.

Rµν Ricci curvature tensor.

Rµναβ Curvature tensor.

sj Energy flux vector.

S Action.

S0 STC elementary quantum of action.

S Poynting vector (electromagnetic field energy flux).

Sµ Poynting four-vector.

Sλµν Torsion tensor.

Sµνλ Modified torsion tensor.

ts Stress scalar.

tµν Stress deviation tensor.

T Contracted energy-momentum stress tensor.

Tµν Energy-momentum stress tensor.

uµ Displacement four-vector.

u‖
µ Longitudinal displacement four-vector.

u⊥
µ Transverse displacement four-vector.

Uem Electromagnetic field energy density.

v Velocity.

W Strain energy.

W‖ Dilatation strain energy.

W⊥ Distortion strain energy.

W12 Interaction strain energy.

(x, y, z) Cartesian coordinates.

xµ Position four-vector.

Xν Volume (or body) force.

Z0 Characteristic impedance of the vacuum (STC ).
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häuser, Boston, 2002.

18. Bell J. S. Speakable and Unspeakable in Quantum Mechanics. Cam-
bridge University Press, Cambridge, 1987.

19. Bell J. S. On the Einstein–Podolsky–Rosen Paradox. Physics, 1964, v. 1,
195–200. Reprinted in Bell J. S. Speakable and Unspeakable in Quantum
Mechanics. Cambridge University Press, Cambridge, 1987, pp. 14–21.

20. Bell J. S. How to Teach Special Relativity. Progress in Scientific Cul-
ture, 1976, v. 1 (2). Reprinted in Bell J. S. Speakable and Unspeakable
in Quantum Mechanics. Cambridge University Press, Cambridge, 1987,
pp. 67–80.

21. Bell J. S. On the Impossible Pilot Wave. Foundations of Physics, 1982,
v. 12, 989–999. Reprinted in Bell J. S. Speakable and Unspeakable in
Quantum Mechanics. Cambridge University Press, Cambridge, 1987,
pp. 159–168.

22. Belli S., Bonsignori R., D’Auria G., Fant L., Martini M. and Peirone
S. Entangling macroscopic diamonds at room temperature: Bounds
on the continuous-spontaneous-localization parameters. arXiv: quant-
ph/1601.07927v3.

23. Berdichevsky V. L. Variational Principles of Continuum Mechanics I –
Fundamentals. Springer-Verlag, Berlin, 2009.

24. Berdichevsky V. L. Variational Principles of Continuum Mechanics II –
Applications. Springer-Verlag, Berlin, 2009.

25. Bergström L. Non-Baryonic Dark Matter: Observational Evidence and
Detection Methods. Reports on Progress in Physics, 2000, v. 63 (5), 793–
841. arXiv: hep-ph/0002126.

26. Bethe H. A. and Salpeter E. E. Quantum Mechanics of One- and Two-
Electron Atoms. Plenum Publishing Corp., New York, NY, 1977.

27. Blair D. G., ed. The Detection of Gravitational Waves. Cambridge Uni-
versity Press, Cambridge, 1991.

28. Bohm D. A Suggested Interpretation of the Quantum Theory in Terms
of “Hidden” Variables I, II. Physical Review, 1952, v. 85, 166-–179, 180–
193.

29. Bohr N. Can Quantum Mechanical Description of Reality Be Considered
Complete? Phys. Rev., 1935, v. 48, 696.

30. Boi L. The Quantum Vacuum. The John Hopkins University Press,
Baltimore, 2011.

31. Borzou A. and Sepangi H. R. Unification of Gravity and Electromag-
netism Revisited. arXiv: gr-qc/0904.1363v3.

32. Bramm P. J. How Empty is the Vacuum? In Saunders S. and Brown
H. R., eds. The Philosophy of Vacuum. Clarendon Press, Oxford, 2002,
pp. 280–285.



Bibliography 387

33. Brans C. and Dicke R. H. Mach’s Principle and a Relativistic Theory of
Gravitation. Physical Review, 1961, vol. 124 (3), 925–935.

34. Brekhovskikh L. M., Goncharov V. Mechanics of Continua and Wave
Dynamics, 2nd ed. Springer-Verlag, Berlin, 1994.

35. Brigham E. O. The Fast Fourier Transform. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1974.
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90. Dürr D., Teufel, S. Bohmian Mechanics: The Physics and Mathematics
of Quantum Theory. Springer-Verlag, Berlin, 2009.

91. Eddington A. S. Space, Time & Gravitation. Cambridge University
Press, Cambridge, (1920) 1987.

92. Eddington A. S. The Mathematical Theory of Relativity. Cambridge
University Press, Cambridge, 1957.

93. Edelen, D. G. B. and Lagoudas D. C. Gauge Theory and Defects in
Solids. North-Holland Publishing, Amsterdam, 1988.

94. Einstein A. Zur Electrodynamik bewegter Körper. Annalen der Physik,
1905, vol. 17. English translation (On the Electrodynamics of Moving
Bodies) reprinted in Lorentz H. A., Einstein A., Minkowski H, and Weyl
H. The Principle of Relativity: A Collection of Original Memoirs on
the Special and General Theory of Relativity. Dover Publications, New
York, 1952, pp. 37–65.
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Missevitch O. V. Novel Mössbauer Experiment in a Rotating System and
the Extra Energy Shift Between Emission and Absorption Lines. arXiv:
physics.gen-ph/1503.05853.

196. Yarman T., Kholmetskii A. L., Arik M. Mössbauer Experiments in a Ro-
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