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Summary: — This book introduces a mathematical theory of the internal constitution
of stars and sources of stellar energy, created using the mathematical methods of Gen-
eral Relativity. This is an alternative to the traditional theory of gaseous stars, which
was introduced in the 1920s based on classical mechanics and thermodynamics. On the
contrary, the consideration of a star and its field in the framework of General Relativity,
which is presented in this book, comes to a model of liquid stars. Such a star is homo-
geneous inside, with a tiny core (about a few kilometers in radius) in the centre. The
core is separated from the main substance of the star by a collapse surface with a radius
corresponding to the star’s mass. Despite the fact that almost all the mass of the star is
outside the core (the core is not a black hole), the gravitational force tends to infinity
on the surface of the core due to the space breaking in the star’s internal field. Such a
superstrong gravitational force is sufficient to transfer the necessary kinetic energy to
the light atomic nuclei of stellar substance in order to start the process of thermonu-
clear fusion. The energy produced by thermonuclear fusion is the energy with which
stars glow: each star’s tiny core is its glowing “inner sun”, and the stellar energy pro-
duced in it is then transferred to the star’s physical surface by thermal conduction. A
new classification of stars according to the space breaking in their fields has been intro-
duced: ordinary stars (ranging from dwarfs to supergiants), Wolf-Rayet stars, neutron
stars (and pulsars), and also black holes are considered. The introduced liquid model
of stars is consistent with new observational evidence for the state of condensed matter
inside stars; in particular, that the Sun is composed of high-temperature liquid metallic
hydrogen.
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Preface

A scientist often encounters established ideas that were once the sub-
ject of debate, sometimes controversy. Often, we use those ideas with
no knowledge of their historical development, nor of the assumptions on
which they are based. We rarely stop to ponder the validity of an estab-
lished idea. This is not surprising as this is how we have been building
our edifice of physical theories, by standing on the shoulders of giants,
to paraphrase Isaac Newton.

Yet established ideas and theories need to be challenged and revis-
ited when new data or new theories that contradict or shed new light on
them, become available. We need not be afraid of new information that
risk overturning accepted ideas. After all, this is how new paradigms
arise and how progress is achieved.

The question of whether stars are gaseous or liquid is one debate
that most scientists are oblivious to. Yet this was a subject of vigorous
debate in the late 19th and early 20th centuries, with well-known physi-
cists lining up behind both sides of the question. Larissa Borissova and
Dmitri Rabounski provide a summary of the history of this debate and
a personal perspective on how they were pulled into it.

Recent evidence for liquid stars, in particular the extensive research
performed by Pierre-Marie Robitaille who has proposed the liquid
metallic hydrogenmodel of the Sun*, leads us to revisit this question. In-
terestingly enough, stellar plasmas are modelled using Magnetohydro-
dynamics, i.e. magnetic fluid dynamics, a combination of Maxwell’s
equations of electromagnetism and the Navier-Stokes equations of fluid
mechanics†. Magnetohydrodynamics is also used to model liquid met-

*Robitaille P.-M. A high temperature liquid plasma model of the Sun. Progress in
Physics, 2007, vol. 3, no. 1, 70–81.

†Tajima T. and Shibata K. Plasma Astrophysics. Perseus Publishing, Cambridge,
2002; Kulsrud R.M. Plasma Physics for Astrophysics. Princeton University Press,
Princeton, 2005.
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als. This is an indication that the theory of liquid stars is highly plausible
as an explanation of solar and stellar astrophysical data.

My personal interest in this research area stems from the astrophys-
ical research I performed on stellar atmospheres of Wolf-Rayet stars
at the University of Ottawa’s Department of Physics for my thesis on
“Laser Action in C IV, NV and OVI Plasmas Cooled by Adiabatic Ex-
pansion”. Wolf-Rayet stars exhibit mass loss and an expanding stellar
atmosphere. This results in population inversion of certain atomic tran-
sitions due to the rapid cooling of the expanding plasma and the recom-
bination of the free electrons into higher excited ionic states and laser
action in the corresponding emission lines. This physical mechanism
has been proposed as the explanation for the prominent spectral lines
observed in the spectra of Wolf-Rayet stars.

In this book, Larissa Borissova and Dmitri Rabounski provide a
general relativistic theory of the internal constitution of liquid stars, a
model that was lacking till now. This they accomplish by using a math-
ematical formalism first introduced by Abraham L. Zelmanov for cal-
culating physically observable quantities in a four-dimensional pseudo-
Riemannian space, known as the “theory of chronometric invariants”.
This mathematical formalism allows to calculate physically observable
(chronometrically invariant) tensors of any rank, based on operators of
projection onto the time line and the spatial section of the observer. The
basic idea is that physically observable quantities obtained by an ob-
server should be the result of a projection of four-dimensional quantities
onto the time line and onto the spatial section (local three-dimensional
space) of the observer.

This analysis allows them to propose a classification of stars based
on three main types: ordinary stars (ranging fromwhite dwarfs to super-
giants), of which Wolf-Rayet stars are a subtype, neutron stars and pul-
sars and collapsars (i.e. black holes). Their theory also provides a model
of the internal constitution of our solar system. It provides an explana-
tion for the presence of the asteroid belt, the general structure of the
planets inside and outside that orbit and the net emission of energy by
the planet Jupiter.

The ultimate test of any theory of stellar structure is the stellar mass-
luminosity relationwhich is themain empirical relation of observational
astrophysics. Using their theory, the authors can calculate the pressure
inside stars as a function of radius, including the central pressure. As
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pointed out by the authors, the temperature of an incompressible liquid
star does not depend on the pressure, but only on the source of stellar
energy (as opposed to a gas, in particular as given by the equation of
state of an ideal gas). The authors compare the calculated energy release
by the proposed mechanism of thermonuclear fusion of the light atomic
nuclei in the Hilbert core (the “inner sun”) of stars with the empirical
mass-luminosity relation of observational astrophysics, to determine the
density of the liquid stellar substance in the Hilbert core.

Pulsars and neutron stars are found to be stars whose physical ra-
dius is close to the radius of their Hilbert core. They are modelled by
introducing an electromagnetic field in the theory due to their rotation
and gravitation. Electromagnetic radiation is found to be emitted only
from the poles of those stars, along the axis of rotation of the stars.

This book represents a solid contribution to our understanding of
stellar structure from a general relativistic perspective. It provides a
general relativistic underpinning to the theory of liquid stars. It raises
new ideas on the constitution of stars and planetary systems and pro-
poses a new approach to stellar structure and evolution which is bound
to help us better understand stellar astrophysics.

Ottawa, September 2, 2013 Pierre Millette
Astrophysics research on stellar atmo-
spheres, Department of Physics, Uni-
versity of Ottawa



Foreword

Three decades ago, in 1983, I began to study the history of the theory
of gaseous stars. I was inspired to do this by Prof. Kyril Stanyukovich
(1916–1989), an outstanding scientist in the field of gas dynamics and
General Relativity, with whom Larisa and I were on friendly terms for
long time. Stanyukovich told me that soon after Hans Bethe proposed
thermonuclear fusion as a source of stellar energy, in 1939 astrophysi-
cists began trying to adapt the gas model of stars to thermonuclear fu-
sion. In many cases their assumptions were so artificial in relation to
gas dynamics itself that only the absence of another theory could justify
their models. Stanyukovich also talked about many of the obvious evi-
dence for gas dynamics that would inherently contradict the gas model
of stars.

Then I read the primary papers on the theory of gaseous stars pub-
lished in the early 20th century. I found that the “core” of this theory,
consisting of the equations of mechanical and thermal equilibrium in-
side stars, does not depend onwhether the stars aremade of gas or some-
thing else. Only then, introducing into these equations the equation of
state of an ideal gas, the theory gives the so-called gaseous stars and all
the variety of the gas models.

Then we got carried away with other research studies, mainly on
General Relativity, so that astrophysics fell behind our attention by al-
most 25 years.

In the summer of 2007, Prof. Pierre-Marie Robitalle visited us for
the first time. Working in the Ohio State University, Pierre spent many
years doing deep experimental research in the fields of thermal physics
and nuclear magnetic resonance (which produces microwave radiation).
He drew our attention to new astrophysical evidence for the liquid Sun
and stars, which appeared only in the last decade. When Pierre-Marie
was walking with me in the afternoon in a nearby park, he pointed to
the disc of the Sun in the sky and said: “Look, it is a liquid ball.” But
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that summer did not allow us to create a detailed mathematical theory
of liquid stars.

A few months after this event, in the same 2007, Larisa and I un-
dertook to translate into English two classic papers on General Relativ-
ity written in 1916 by Karl Schwarzschild. In one of the works men-
tioned above, he introduced the space metric of a sphere filled with an
incompressible liquid, which then brought him great posthumous fame.
We knew that the Schwarzschild metric of a liquid sphere could not be
used as a model for liquid stars. This is due to the specific limitation
contained in the metric. However, immediately after reading the initial
derivation of the metric, published in his 1916 paper, we found that the
limitation was introduced artificially by him in order to make the grav-
itational field of the liquid sphere free from a breaking (discontinuity).
If it were possible to deduce a real metric of a liquid sphere, free from
any artificial limitations pre-imposed on the geometry of the space, we
could create a mathematical theory of liquid stars.

The way forward was finally found: we knew what to do next. To
check, Larisa immediately deduced the true metric of a liquid sphere,
then calculated some consequences for the liquid Sun. She found that
when the Sun is represented as a liquid sphere, its gravitational field
has a space breaking corresponding to the maximum concentration of
substance in the asteroid belt; thus the space breaking in the Sun’s grav-
itational field prevents substance from forming as a planet in that orbit.
So, we made sure that we are on the right path. (David Jones, Editor
of the New Scientist, wrote in 1981: “As is known, all major scientific
discoveries had been made in the course of working on other problems
or as a result of random observations.”)

That is the story in a nutshell. In the spring of 2013, we completed
the mathematical theory of liquid stars. This theory provides three ba-
sic liquid models according to General Relativity, which together cover
all known types of stellar objects ranging from supergiants to neutron
stars and black holes. This book presents the main elements of this the-
ory, with the exception of the details of the stellar energy mechanism
(this is left outside the scope of a book devoted mainly to the internal
constitution of stars).

Puschino, August 6, 2013 Dmitri Rabounski
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Chapter 1 Problem Statement

1.1 A new theory of the internal constitution of stars

In this book, we introduce a new mathematical theory of the internal
constitution of stars and sources of stellar energy. The theory is based
on the joint consideration of a star and its field according to General
Relativity.

This is an alternative to the traditional theory of stars introduced
in the 1920s by Arthur Eddington [1] and others in the framework of
classical mechanics and thermodynamics.

As is known, the conventional theory has led to themodel of gaseous
stars: stars are considered as gaseous spheres, consisting mainly of hy-
drogen and a very inhomogeneous interior, so that the hydrogen of the
extremely hot and dense central region is used as fuel for the stellar en-
ergy generation process. It is assumed, following Hans Bethe [2], that
this exothermic process is a thermonuclear fusion producing helium
from hydrogen. The other two variants of the gas model differ in de-
tail from Eddington’s theory. Edward Milne [3] had proposed that there
are two (or more) different states of substance inside a star. Nikolai
Kozyrev [4] had come up with a peculiar picture of low density and
temperature inside stars and a non-nuclear source of stellar energy.

Another theory of the internal constitution of stars became wide-
spread in the 1920s and 1930s thanks to James Jeans [5, 6]. This is a
model of liquid stars. The public discussion between Jeans, who de-
fended the liquid model, and Eddington, the follower of the gas model,
was recorded in dozens of short messages published by them in scien-
tific journals. Indeed, Eddington won in the end. Despite a lot of as-
trophysical evidence for liquid stars, Jeans’ theory did not have a solid
mathematical foundation. His theory was based on observational anal-
ysis and arguments rather than a mathematical model. On the contrary,
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the theory of gaseous stars was mathematically well founded by Ed-
dington. In particular, the mathematical model of gaseous stars gives
a theoretical derivation of the mass-luminosity relation, which is one
of the main relations of observational astrophysics*. This was a “trump
card”: as soon as the gas model predicted the mass-luminosity relation,
this model was declared correct in general, and all its inconsistencies
with observational analysis were only some “difficulties” that had to be
resolved in the future. Thus, the model of gaseous stars has become the
generally accepted model for decades to come, up to the present.

We must now make an important remark. As is known, the core of
the mathematical theory of the internal constitution of stars consists of
two equations: the equation of mechanical equilibrium and the equation
of thermal equilibrium. Mechanical equilibrium means that the weight
of any unit volume of stellar substance is brought into equilibrium with
the pressure fromwithin the star. Thermal equilibrium (energy balance)
means that the energy produced in any unit volume of stellar substance
is brought into balance with the flow of energy (radiation, convection
or heat conduction) from within the star to its surface. These two basic
equations of the theory are taken from general physics and are inde-
pendent of whether stars are composed of gas, liquid, or anything else.
Only then, by introducing the equation of state of an ideal gas (andmany
other partial assumptions) into the basic equations, does the traditional
theory lead to gaseous stars and other conclusions, including the mass-
luminosity relation.

Jeans’ theory of liquid stars cannot follow this path. The equation
of state of an ideal liquid, given by classical physics, is so simple that
it does not contain the characteristics of stellar substance necessary for
further derivation using the equilibrium equations.

Instead of all these considerations using classical mechanics and
thermodynamics, we propose a completely different approach to the
problem. It is based on the joint consideration of a star and its field
according to General Relativity. We are considering liquid stars: this
corresponds to some new observational evidence for the state of con-
densed matter inside stars; in particular, that the Sun is composed of
high-temperature liquid metallic hydrogen [7–10].

*The most comprehensive derivation of the mass-luminosity relation in the frame-
work of the model of gaseous stars is given in Part I of Kozyrev’s paper [4].
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In the framework of General Relativity, the structure, substance and
field of such a star are characterized by the Schwarzschild metric of a
sphere filled with an incompressible liquid. A recent theoretical result
obtained by L. Borisova [11, 12] showed that if the Sun is represented
as a liquid sphere according to the Schwarzschild metric, then the Sun’s
field has a space breaking (discontinuity) in the asteroid belt: this means
that the space breaking prevents the formation of substance in the form
of a planet in this orbit. Therefore, we are confident that we are on the
right path.

First, we deduce Einstein’s field equations in a form that models
stars as liquid spheres. This is a particular form of the field equations
that may or may not satisfy a particular spacemetric. Therefore, we then
prove that the resulting particular form of the field equations satisfies the
Schwarzschild metric of a liquid sphere.

Then, based on the energy-momentum tensor of an ideal liquid (con-
tained in the right hand side of the field equations), we deduce the con-
servation law for the liquid substance of ordinary stars. Solving the ob-
tained energy-momentum conservation equations, we obtain the pres-
sure and density of the liquid substance inside stars. Then we obtain a
formula for the luminosity of stars according to the liquid model. Next,
we study how this theoretical formula can be compatible with the mass-
luminosity relation (one of the basic empirical relations of observational
astrophysics). As a result, we obtain the physical characteristics of the
mechanism that produces energy inside stars.

Concerning the stellar energy mechanism itself, we conclude that it
is the transformation of substance into radiation on the surface of a tiny
central “core” inside each star. The core may have a density different
from the density of the rest of the star’s substance (a liquid sphere in-
side is homogeneous) and is distinguished by a collapse surface with a
radius determined by the star’s mass. Despite the fact that almost all the
mass of the star is outside the core (since the core is not a black hole),
the gravitational force tends to infinity on the surface of the core due to
the space breaking in the star’s field on this surface. The super-strong
gravitational force is sufficient to transfer the necessary kinetic energy
to the light atomic nuclei of stellar substance in order to start the pro-
cess of thermonuclear fusion. The energy produced by thermonuclear
fusion is the same energy that stars emit. In other words, the tiny core of
each star is its luminous “inner sun”, and the produced stellar energy is
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then transferred to the physical surface of the star by thermal conduction
(usual in liquid media).

Neutron stars and pulsars, being rapidly rotating objects, are a spe-
cial type of stars. The structure, substance, and field of such stars must
be described by another metric, namely, — the metric of a rotating liq-
uid sphere under special physical conditions (specific for neutron stars
and pulsars). We will introduce such a metric. According to the metric,
the liquid substance of neutron stars and pulsars is in the same state as
the high-density physical vacuum. We then deduce a particular form of
Einstein’s field equations, which satisfies the metric. We show that the
energy-momentum tensor of the obtained field equations satisfies the
conservation law only in the case, where the energy flow from within
the star is highly anisotropic and directed towards the South and North
Poles, and the magnetic field axis does not coincide with the star’s rota-
tion axis. This coincides with the known observational data on neutron
stars and pulsars.

This is our plan for the upcoming Chapters. As a result, we obtain a
mathematical theory of liquid stars and sources of stellar energy based
on General Relativity.

Before moving on to these steps, in the next §1.2 we will consider
the space metrics that we use in our theory. Then we introduce a new
classification of stars. This classification is based on the location of the
space breaking in the star’s field relative to its surface (the space break-
ing is calculated based on the space metric and the proper parameters
of the star).

At the end of this Chapter, in §1.3 we will give a detailed overview
of the mathematical apparatus of physically observable quantities in the
space-time of General Relativity, which we will need for our further
calculations.

1.2 Modelling a star in terms of General Relativity

Stars are spherical bodies filled with substance and light. Their fields
are also spherically symmetrical. Therefore, when considering a star in
terms of General Relativity, the structure, substance and field of such
an object must be given by a spherically symmetric space metric.

Among the space (space-time) metrics known in General Relativity,
three basic metrics describe spherically symmetric fields. These are the
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Schwarzschild metric of a material point, the Schwarzschild metric of
a sphere filled with an incompressible liquid, and the de Sitter metric
describing the spherical distribution of the physical vacuum (λ-field,
determined by the λ-term in Einstein’s field equations). All three of
these metrics will be used when considering stars.

1.2.1 The mass-point metric

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
(1.1)

was introduced in 1916 by Karl Schwarzschild [13]. The metric de-
scribes the field of a spherically symmetric massive body at such a large
distance from it that the physical sizes of the body are neglected (as-
suming that the body is a material point). The metric is written in the
spherical coordinates r, ϕ, θ, the origin of which coincides with the
mass-point. Here rg = 2GM

c2 is the Hilbert radius of the massive body*,
and M is the body’s mass (i.e, the mass of the field source).

According to the metric (1.1), such a space does not rotate or de-
form. The gravitational inertial force (see §1.3 for detail) in such a space
is due only to the g00 component of the fundamental metric tensor gαβ.
As is seen from the mass-point metric (1.1),

g00 = 1 −
rg
r
. (1.2)

Differentiating the gravitational potential w= c2(1−
√
g00) with re-

spect to xi, we obtain the gradient of the potential

∂w
∂xi = −

c2

2
√
g00

∂g00

∂xi . (1.3)

Then substitute it into the general formula for the gravitational iner-
tial force (1.42), taking the absence of rotation of the space into account.

*This is not the same as the physical radius of the body. At a distance of the Hilbert
radius from the centre of gravity of a massive body (r= rg), a gravitational collapse
occurs: in a space without rotation, this is the state in which the component g00 of the
fundamental metric tensor gαβ is zero (g00= 0). See §5.1 and §5.2 for detail. TheHilbert
radius was introduced by David Hilbert (1862–1944), who considered it in 1917 [15]
based on the Schwarzschild mass-point metric. It is also known as the Schwarzschild
radius, despite the fact that Karl Schwarzschild (1873–1916) never considered gravita-
tional collapse in his works [13, 14].
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We obtain the formulae for the covariant and contravariant components
of the gravitational inertial force

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 . (1.4)

As is seen from the formulae, the gravitational inertial force in the
space of a mass-point is due only to the Newtonian gravitational field
created by the mass and is inversely proportional to the square of the
distance r from it.

The curvature of the space of a mass-point is due to the Newtonian
gravitational field created by a massive body located at the coordinate
origin. This is not a constant curvature space; its curvature decreases
with distance from the massive body (source of the field). At an infin-
itely large distance from the body, the space is flat.

1.2.2 A space filled with a spherically symmetric homogeneous
distribution of the physical vacuum (determined by the λ-field in Ein-
stein’s field equations) without an island of mass represented in it is
described by the de Sitter metric

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (1.5)

The metric was introduced in 1918 by Willem de Sitter [16] as a
static model of the Universe. It is assumed that λ< 10−56 in such a space,
so the physical vacuum has a very low density in it. The modern version
of the static model of the Universe is presented in [17].

The fundamental metric tensor through its components according
to the de Sitter metric (1.5) shows that such a space does not rotate or
deform. Therefore, the gravitational inertial force (1.42) in such a space
is due only to the g00 component of gαβ, which is

g00 = 1 −
λr2

3
. (1.6)

Accordingly, after the same algebra as previously, we obtain

F1 =
λc2

3
r

1 − λr2

3

, F1 =
λc2

3
r . (1.7)
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This is a non-Newtonian force of gravitation proportional to dis-
tance: the force (λ-force) increases with the distance r over which it
acts. If λ< 0 (the observed vacuum density is positive), then this is a
force of attraction. If λ> 0 (the observed vacuum density is negative),
then this is a force of repulsion. See Chapter 5 of our book [18], where
we considered the physical vacuum in detail.

The curvature of a de Sitter space is due to the non-Newtonian grav-
itational field created by the physical vacuum (λ-field) homogeneously
filling the space. The curvature is the same everywhere in the space. In
other words, it is a constant curvature space.

1.2.3 The metric of a sphere filled with an incompressible liquid
was first introduced in 1916 by Karl Schwarzschild [14] in a truncated
form containing significant limitations. He artificially pre-constrained
the derivation of the metric to free the field from a breaking*. The true
metric of a sphere filled with an incompressible liquid remained un-
known until 2009, when L. Borisova deduced it in the most complete
form [11, 12], which is free of any limitations and thus takes a space
breaking into account.

The model of stars as liquid spheres plays a key rôle in our theory.
Therefore, we consider the metric of a sphere filled with an incompress-
ible liquid in the complete form [11,12]

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.8)

where a= const is the physical radius of the liquid sphere, and rg = 2GM
c2

is the Hilbert radius, calculated from the liquid sphere’s mass M (i.e.,
the mass of the field source). The derivation of this metric, containing
all the necessary details, will be reproduced in §2.1 of the book, where
we apply this metric to ordinary stars.

The metric (1.8) is written for distances r< a. This is the “internal
metric” of a liquid sphere. On the surface of the sphere (r= a) the metric

*In fact, as soon as any limitation is pre-imposed on the metric of a space, the
geometry of the metric space is artificially truncated. In this sense, the Schwarzschild
metric, introduced in 1916, is not a true metric of the space of a liquid sphere.
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coincides with the mass-point metric. Moreover, as was proved in [11]
(this derivation will be reproduced in §2.1 of this book), the “external
metric” of a liquid sphere (r> a) also coincides with themass-point met-
ric: the external field of a liquid sphere coincides with the Newtonian
gravitational field of a material point.

As is seen from the liquid sphere metric (1.8), such a space does not
rotate or deform. Therefore, according to the definition of the gravita-
tional inertial force (1.42), the force in such a space is due only to g00.
Thus, in the metric (1.8) we have

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

. (1.9)

After the same algebra as previously, we obtain

F1 = −
c2rgr

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (1.10)

F1 = −
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (1.11)

Since r< a inside the sphere, F1< 0 in it. Therefore, this is a force
of attraction. Its numerical value is proportional to the distance r over
which the force acts. The force is zero at the centre of the sphere and
reaches its limit at the surface of the sphere.

It can be shown that the curvature of such a space, due to the men-
tioned field of gravitation, increases with distance from the centre of
the liquid sphere to its surface. In other words, the space inside a liq-
uid sphere is not a constant curvature space. We will give a proof and
discuss both the four-dimensional curvature and the observable three-
dimensional curvature of such a space in §2.3.

1.2.4 Here we propose a new method for modelling stars, which
is based on the mathematical methods of General Relativity.

Let us consider stars as spherical bodies consisting of a liquid. Ac-
cording to the model of liquid stars, the internal structure, substance,
and field of a star are described by the metric of a sphere filled with an
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incompressible liquid. This is the formula (1.8). As shown above, the
gravitational force in this case increases with distance from the centre of
the star. The external field of such a star is described by the mass-point
metric (1.1). In the external field, the ordinary Newtonian gravitational
force acts: the force is inversely proportional to the square of the dis-
tance from the star.

The field of a liquid sphere as such is not continuous everywhere.
According to the external metric (1.1) and the internal metric (1.8) of a
liquid sphere, its field has a space breaking that appears at two distances
from its centre. In this regard, we are now introducing a new classifi-
cation of stars based on General Relativity. We hereby explain how to
build this classification.

A space breaking occurs due to the violation of the signature con-
ditions characteristic of the space metric. This means that the space has
a singularity in that region (surface or volume) in which at least one of
the signature conditions is violated. The signature conditions for the
sign-alternating diagonal metric (+−−−) such as the metric of the four-
dimensional pseudo-Riemannian space (which is the basic space-time
of General Relativity) have the form

g00 > 0

g00 g11 < 0

g00 g11g22 > 0

g = g00 g11g22 g33 < 0


. (1.12)

The first three are known as the weak signature conditions. The
fourth is known as the strong signature condition. If one or all of the
weak signature conditions are violated, but the strong signature condi-
tion remains valid, then this is a removable singularity. If the strong
signature condition is violated, then the space-time has an irremovable
singularity: in this case, the solution is usually dropped from consider-
ation, since it “does not have a physical sense”. Yes, perhaps someone
could not see the physical sense in this. However, these cases are of
great mathematical significance. Therefore, we will consider any space
singularity (space breaking).

Consider now the space of a liquid sphere. The external metric (1.1)
of the sphere violates the first signature condition (g00= 0) at the dis-
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tance r= rg from the centre

g00 = 1 −
rg
r
= 0

g00 g11 = −1 < 0

g00 g11g22 = r2 > 0

g = −r4 sin2θ < 0


. (1.13)

The internal metric (1.8) of the sphere shows that the second, third
and fourth signature conditions are violated at the distance

r = rbr =

√
a3

rg
(1.14)

from the centre, at which the above three functions tend to infinity

g00 =
9
4

(
1 −

rg
a

)
> 0

g00 g11 → −∞

g00 g11g22 → ∞

g = g00 g11g22 g33 → −∞


. (1.15)

This means that the field of a liquid sphere has a space breaking at
two distances from its centre:

1. The first space breaking occurs on a spherical surface around the
centre of gravity of the liquid sphere at a distance of the Hilbert
radius r= rg. This is the surface of gravitational collapse accord-
ing to the condition g00= 0 in this space breaking. In other words,
although the liquid sphere itself may not be a collapsar, it always
contains a central “core”, which is separated from the other liq-
uid substance by the surface of gravitational collapse. In the case,
where the liquid sphere is a star (as in the model of liquid stars),
each star contains such a core. The core is much smaller than the
physical radius of ordinary stars: while the radius of the collapsed
core (Hilbert radius) of the Sun is rg = 2.9 × 105 cm (2.9 km), the
Sun’s physical radius is 7.0 × 1010 cm (700,000 km). Therefore,
we call the first space breaking the inner space breaking;
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2. The second space breaking occurs on a spherical surface around
the liquid body at the distance rbr =

√
a3/rg from it. This distance

is much greater than the physical radius of ordinary stars. There-
fore, we call it the outer space breaking (as opposed to the in-
ner space breaking at the Hilbert radius). For example, the outer
space breaking in the Sun’s field occurs at the distance rbr = 3, 4×
1013 cm= 340,000,000 km= 2.3 AU from the Sun. This space
breaking is located in the asteroid belt, near the orbit of the max-
imum concentration of asteroids (the asteroid belt extends from
2.1 AU to 4.3 AU from the Sun). This means that the outer space
breaking in the Sun’s field does not allow substance to form into
a joint physical body (such as a planet) in this orbit.

If the physical radius a of a liquid star coincides with its Hilbert
radius rg = 2GM

c2 , the star is a gravitational collapsar. In this case (rg = a),
the internal metric of a liquid sphere (1.8) takes the form

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
. (1.16)

This metric under the particular condition a2 = 3
λ > 0 (where λ> 0)

has the same form as the de Sitter metric (1.5)

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
(1.17)

that describes a spherical distribution of the physical vacuum (λ-field).
This means that such an object, which is a liquid sphere in the state of
gravitational collapse, consists of a liquid, the state of which is close to
the high-density state of the physical vacuum.

As a result, the new model of liquid stars allows us to introduce a
new classification of stars according to the location of the space break-
ings in the star’s field relative to its physical surface:
Type I: Ordinary stars including the Sun

The radius of the collapsed core, i.e., the Hilbert radius rg of an
ordinary star is many orders of magnitude smaller than its phys-
ical radius (rg≪ a). The outer space breaking rbr is far from an
ordinary star, in the outer cosmos (rbr≫ a). These are almost all



1.2 Modelling a star in terms of General Relativity 23

O
bj
ec
t

M
as
s

Ra
di
us

H
ilb

er
tr
ad
iu
s

r g a
Sp

ac
e
br
ea
ki
ng

r b
r a

Ty
pe

M
,g

ra
m

a,
cm

r g
,c
m

r b
r
,c
m

Re
d
su
pe
r-g

ia
nt
∗

4.
0
×

10
34

7.
0
×

10
13

5.
9
×

10
6

8.
4
×

10
−

8
2.

4
×

10
17

3.
4
×

10
3

I
W
hi
te
su
pe
r-g

ia
nt
†

3.
4
×

10
34

4.
8
×

10
12

5.
0
×

10
6

1.
0
×

10
−

6
4.

7
×

10
15

9.
8
×

10
2

I
Su

n
2.

0
×

10
33

7.
0
×

10
10

2.
9
×

10
5

4.
1
×

10
−

6
3.

4
×

10
13

4.
9
×

10
2

I
Ju
pi
te
r(
pr
ot
o-
sta

r)
1.

9
×

10
30

7.
1
×

10
9

2.
8
×

10
2

4.
0
×

10
−

8
3.

4
×

10
13

4.
8
×

10
3

I
W
hi
te
dw

ar
f‡

2.
0
×

10
33

6.
4
×

10
8

3.
0
×

10
5

4.
7
×

10
−

4
2.

9
×

10
10

0.
45
×

10
2

I
Re

d
dw

ar
fs

6.
7
×

10
32

2.
3
×

10
10

9.
9
×

10
4

4.
3
×

10
−

6
1.

1
×

10
13

4.
8
×

10
2

I
Br
ow

n
dw

ar
fs

1.
5
×

10
32

7.
0
×

10
9

2.
2
×

10
4

3.
1
×

10
−

6
4.

0
×

10
14

5.
7
×

10
4

I
W
ol
f-R

ay
et
sta

rs
1.

0
×

10
35

1.
4
×

10
12

1.
5
×

10
7

1.
1
×

10
−

5
4.

3
×

10
14

3.
1
×

10
2

Ia
N
eu
tro

n
sta

rs
2.

6
×

10
33

1.
0
×

10
6

3.
9
×

10
5

0.
39

1.
6
×

10
6

1.
6

II
Pu

lsa
r§

3.
9
×

10
33

1.
6
×

10
6

5.
8
×

10
5

0.
36

2.
7
×

10
6

1.
7

II
Bl
ac
k
ho
le
s

va
rio

us
va
rio

us
va
rio

us
1

1
1

III

∗
Be

te
lg
eu
se
.
†
Ri
ge
l.
‡
Si
riu

sB
.
§
Ra

di
o-
pu
lsa

rJ
19
03
+
03
27
.

Ta
bl
e
1.
1:

Th
e
cl
as
sifi

ca
tio

n
of

sta
rs

ac
co
rd
in
g
to

G
en
er
al

Re
la
tiv

ity
.T

hi
s
cl
as
sifi

ca
tio

n
is

re
pr
es
en
te
d
by

th
e

nu
m
er
ic
al
va
lu
es

of
th
e
pa
ra
m
et
er
so

fs
ta
rs
,w

hi
ch

w
e
ha
ve

ca
lc
ul
at
ed

fo
rt
yp
ic
al
m
em

be
rs

of
th
e
kn
ow

n
fa
m
ili
es

of
sta

rs
.



24 Chapter 1 Problem Statement

visible stars: supergiants, the Sun, brown dwarfs and even white
dwarfs. Ordinary stars will be considered in Chapter 2;

Type Ia: Wolf-Rayet stars
They are almost the same as ordinary stars, except that a powerful
stellar wind must be taken into account, consisting of the particles
of stellar substance permanently flying out of the stars (this is a
property that characterizes Wolf-Rayet stars). Such stars and their
stellar wind will be considered in Chapter 3;

Type II: Neutron stars and pulsars
The radius of the Hilbert core is close to the physical radius of
such a star (rg ≲ a), but does not reach it (otherwise the star would
be invisible to observation). The outer space breaking rbr is also
close to the physical surface of such a star, but does not reach it
(rbr ≳ a). In addition, pulsars rotate at high velocities close to rel-
ativistic. As a result, the metric and energy-momentum tensor of
such a star differ from those of ordinary stars. We will consider
neutron stars and pulsars in Chapter 4;

Type III: Black holes
The Hilbert radius rg (radius of the inner space breaking) and the
outer space breaking radius rbr for such an object coincide on its
physical surface (rg = rbr = a). These are gravitational collapsars
(black holes): on the physical surface of such an object, the state
of gravitational collapse occurs (g00= 0), so all its mass is concen-
trated under the collapsed surface. Black holes will be the focus
of Chapter 5 of the book.

This classification is presented in Table 1.1 with the numerical val-
ues of the parameters calculated for typical members of the known fam-
ilies of stars.

The new model of liquid stars, which we have just introduced on the
basis of General Relativity and considered in the new classification of
stars, will be developed in the following Chapters.

1.3 Physically observable quantities

Before considering stars from the point of view of General Relativity,
it is necessary to explain the basics of the mathematical apparatus of
physically observable quantities in the four-dimensional curved pseudo-
Riemannian space (space-time). A detailed overview of this theory had
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already been given in the corresponding Chapters of our books [18,19].
We now give only the necessary foundations of this theory, with some
additions necessary for our current research study*.

To draw a visual picture of any physical theory, we must express the
obtained results in terms of real physical quantities that can bemeasured
in an experiment (they are called physically observable quantities). In
General Relativity, this problem is not at all trivial, because we consider
objects in the four-dimensional space (space-time) and therefore must
determine which components of four-dimensional tensor quantities are
actually physically observable.

Here is the problem in a nutshell. All equations of the General The-
ory of Relativity are given in the general covariant form, which does
not depend on our choice of a reference frame. The equations, like the
variables they contain, are four-dimensional. Thus, we ask what compo-
nents of these four-dimensional variables are actually observable in real
physical experiments, i.e., what components are truly physically observ-
able quantities? Intuitively, we could, at first glance, easily assume that
the three-dimensional components of a four-dimensional tensor consti-
tute a physically observable quantity. But at the same time, we cannot
be absolutely sure that we observe only three-dimensional components
of four-dimensional quantities, and not more complex variables that de-
pend on other factors, such as the properties of the physical standards
of our reference space.

As is known, a four-dimensional vector (tensor of the 1st rank) has
only 4 components: 1 time component and 3 spatial components. A ten-
sor of the 2 rank, such as a rotation tensor or a deformation tensor, has
16 components: 1 time component, 9 spatial components and 6 mixed
(space-time) components. Now, are the mixed components really phys-
ically observable quantities? Higher rank tensors have even more com-
ponents; for example, the Riemann-Christoffel curvature tensor has 256
components, so the problem of heuristically recognizing truly physically
observable components becomes much more difficult. In addition, there

*To date, the most complete description (compendium) of the mathematical ap-
paratus of physically observable quantities in General Relativity is given in our recent
article. In this article, we have collected everything (or almost everything) that we know
on this topic fromZelmanov andwhat has been obtained over the past decades: Raboun-
ski D. and Borissova L. Physical observables in General Relativity and the Zelmanov
chronometric invariants. Progress in Physics, 2023, vol. 19, no. 1, 3–29.
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is an obstacle associated with recognizing the observable components
of covariant tensors (which have lower indices) and mixed-type tensors
with both lower and upper indices.

We see that the recognition of physically observable quantities in
General Relativity is not a trivial task. Ideally, we would like to have a
mathematical method for unambiguously calculating physically observ-
able quantities for any tensors of any given rank.

Numerous attempts to develop such a mathematical method were
made in the 1930s by some researchers of that time. A certain con-
tribution was made by L.D. Landau and E.M. Lifshitz in their famous
The Classical Theory of Fields [20], first published in 1939. In addi-
tion to discussing the problem of physically observable quantities, in
§84 of their book they introduced the physically observable time in-
terval along with the physically observable three-dimensional interval,
which depend on the physical properties (physical standards) of the ob-
server’s reference space. But all such attempts made in the 1930s were
very limited to solving some particular problems. None of them led to
a complete mathematical apparatus.

The complete mathematical apparatus for calculating physically ob-
servable quantities in the four-dimensional pseudo-Riemannian space
was first introduced by Abraham L. Zelmanov and is known as the the-
ory of chronometric invariants, or the chronometrically invariant for-
malism. It was first presented in 1944 in his PhD thesis [21], then — in
his short articles of 1956–1957 [22, 23].

The essence of Zelmanov’s mathematical apparatus of physically
observable quantities (chronometric invariants), developed specifically
for the four-dimensional curved inhomogeneous pseudo-Riemannian
space (space-time), is as follows.

At any point in the space-time, we can place a three-dimensional
spatial section x0 = ct= const (three-dimensional space), orthogonal to
a given time line xi = const. If a spatial section is everywhere orthogonal
to the time lines piercing it at every point, then such a space is called
holonomic. Otherwise, if the spatial section is non-orthogonal to the
above time lines, then the space is said to be non-holonomic.

The reference frame of a real observer includes a coordinate grid
spanned over a real physical body (the reference body of the observer
near him) and real clocks located at each point of the coordinate grid.
Both the coordinate grid and the clocks are a set of real references with
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which the observer compares the results of his measurements. There-
fore, the physically observable quantities registered by the observer
must be the result of projecting four-dimensional quantities onto the
time line and the spatial section associated with him.

The operator projecting onto the time line of an observer is the vec-
tor of the four-dimensional velocity

bα =
dxα

ds
(1.18)

of the observer’s reference body with respect to him. This vector is
tangential to the world line of the observer at every point. Therefore, it
is a unit length vector

bαbα = gαβ
dxα

ds
dxβ

ds
=
gαβ dxαdxβ

ds2 = + 1 . (1.19)

The operator projecting onto the spatial section of the observer (his
local three-dimensional space) is defined as a four-dimensional sym-
metric tensor hαβ, which has the form

hαβ = −gαβ + bαbβ

hαβ = −gαβ + bαbβ

hβα = −g
β
α + bαbβ

 . (1.20)

The vector bα and the tensor hαβ are orthogonal to each other. Math-
ematically this means that their contraction with each other is zero, i.e.,
hαβbα = 0, hαβbα = 0, hαβ bα = 0, hβα bα = 0. Therefore, the main proper-
ties of the operators projecting onto the time line and the spatial section
of an observer are expressed, obviously, as follows

bαbα = +1 , hβα bα = 0 . (1.21)

If the observer is at rest with respect to his reference body, his ref-
erence frame is called the accompanying reference frame. In this case,
bi = 0 in his reference frame, and the coordinate grids of his spatial sec-
tion are connected with each other by the transformations

x̃0 = x̃0
(
x0, x1, x2, x3

)
x̃i = x̃i

(
x1, x2, x3

)
,
∂x̃i

∂x0 = 0

 , (1.22)
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where the third equation shows the fact that the spatial coordinates of
the tilde-marked grid are independent of time in the non-tilded grid,
which is equivalent to a coordinate grid in which the time lines are fixed
(xi = const) at each point. A transformation of the spatial coordinates
is nothing more than the transition from one coordinate grid to another
within the same spatial section. A transformation of time means the
change of the entire set of clocks, i.e., the transition to another spatial
section (another three-dimensional reference space). In practice, this
means replacing one reference body with all its physical standards by
another reference body having its own physical standards. But when us-
ing different standards, the observer will obtain different results (other
observed values). Therefore, physically observable projections in the
accompanying reference frame must be invariant under time transfor-
mations, which entails the invariance under the transformations (1.22).
In other words, such quantities must have the property of chronometric
invariance.

Therefore, we call physically observable quantities determined in
the accompanying reference frame chronometrically invariant quanti-
ties, or chronometric invariants in short.

The projection tensor hαβ, considered in the reference space accom-
panying an observer, has all the properties attributed to the fundamental
metric tensor, namely

hαi hk
α = δ

k
i − bi bk = δki , δki =

 1 0 0
0 1 0
0 0 1

 , (1.23)

where δki is the unit three-dimensional tensor*. Therefore, in the accom-
panying reference frame the three-dimensional tensor hik can lift and
lower indices in chronometrically invariant quantities.

Thus, in the accompanying reference frame the main properties of
the projection operators are

bαbα = +1 , hi
αbα = 0 , hαi hk

α = δ
k
i . (1.24)

Calculate the components of the projection operators in the accom-
panying reference frame. The component b0 is obtained from the ob-

*The tensor δk
i is the three-dimensional part of the four-dimensional unit tensor δαβ ,

which can be used to replace indices in four-dimensional quantities.
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vious condition bαbα = gαβbαbβ = 1, which in the accompanying refer-
ence frame (bi = 0) has the form bαbα = g00 b0b0 = 1. This component
and the remaining components of bα are

b0 =
1
√
g00
, bi = 0

b0 = g0αbα =
√
g00 , bi = giαbα =

gi0
√
g00

 , (1.25)

and the components of hαβ are

h00 = 0 , h00 = −g00 +
1
g00
, h0

0 = 0

h0i = 0 , h0i = −g0i, hi
0 = δ

i
0 = 0

hi0 = 0 , hi0 = −gi0, h0
i =
gi0

g00

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = −g
i
k = δ

i
k


. (1.26)

Zelmanov had created a mathematical method for calculating the
chronometrically invariant (physically observable) projections of any
general covariant (four-dimensional) tensor quantity. He had formulated
this method as a theorem, which we call Zelmanov’s theorem:
Zelmanov’s theorem

Let there be a four-dimensional tensor Qµν...ραβ...σ of the r-th rank,
where Qik...p

00...0 is the three-dimensional part of Qµν...ρ00...0 , in which
all upper indices are non-zero and all m lower indices are zeroes.
Then,

T ik...p = (g00)−
m
2 Qik...p

00...0 (1.27)

is a chronometrically invariant three-dimensional contravariant
tensor of the (r−m)-th rank. This means that the chr.inv.-tensor
T ik...p is the result of m-fold projection of the initial tensor Qµν...ραβ...σ

onto the time line by the indices α, β . . . σ and onto the spatial sec-
tion by r−m indices µ, ν . . . ρ.

According to this theorem, the chronometrically invariant (physi-
cally observable) projections of a four-dimensional vector Qα are

bαQα =
Q0
√
g00
, hi

αQα = Qi, (1.28)
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and the chr.inv.-projections of a symmetric tensor of the 2nd rank Qαβ

are the following quantities

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00
, hi

αhk
βQαβ = Qik. (1.29)

The chr.inv.-projections of a four-dimensional coordinate interval
dxα are the physically observable time interval

dτ =
√
g00 dt +

g0i

c
√
g00

dxi (1.30)

and the intervals dxi of each of the three-dimensional (spatial) coordi-
nates. Accordingly, the physically observable velocity of a particle is
the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vi vi = hik vivk = v2, (1.31)

which at isotropic trajectories becomes the three-dimensional chr.inv.-
vector of the physically observable velocity of light

ci = vi =
dxi

dτ
, ci ci = hik cick = c2. (1.32)

Projecting the covariant and contravariant fundamental metric ten-
sor onto the spatial section associated with an observer, in the reference
frame accompanying him (bi = 0) we have

hαi hβk gαβ = gik − bi bk = −hik

hi
αhk
β g
αβ = gik − bibk = gik = −hik

 , (1.33)

which means that the chr.inv.-quantity

hik = −gik + bi bk (1.34)

is the chr.inv.-metric tensor, i.e., the physically observable metric ten-
sor, using which we can lift and lower indices in any three-dimensional
chr.inv.-object. The contravariant and mixed components of the chr.inv-
metric tensor are, obviously,

hik = −gik, hi
k = −g

i
k = δ

i
k . (1.35)
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Formulating gαβ through the definition of hαβ =−gαβ + bαbβ, we
obtain the formula for the four-dimensional interval

ds2 = bαbβ dxαdxβ − hαβ dxαdxβ, (1.36)

expressed through the projection operators bα and hαβ. In this formula,
we have bαdxα = cdτ. Therefore, the first term is bαbβ dxαdxβ = c2dτ2.
The second term hαβ dxαdxβ = dσ2 is the square of the physically ob-
servable three-dimensional interval*

dσ2 = hik dxidxk. (1.37)

Thus, the four-dimensional interval, represented through physically
observable quantities, is

ds2 = c2dτ2 − dσ2. (1.38)

Zelmanov had also deduced the main physically observable proper-
ties characteristic of the accompanying reference space associated with
an observer. He proceeded from the property of non-commutativity
(non-zero difference) of the mixed second chr.inv.-derivatives

∗∂2

∂xi∂t
−
∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
, (1.39)

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
, (1.40)

where the chr.inv.-derivation operators that he had introduced are
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 . (1.41)

The first two physically observable properties of the observer’s ref-
erence space are characterized by the chr.inv.-vector Fi of the gravita-
tional inertial force and the antisymmetric chr.inv.-tensor Aik of the an-
gular velocity with which the reference space rotates

Fi =
1
√
g00

(
∂w
∂xi −

∂vi
∂t

)
, (1.42)

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) , (1.43)

*Since hαβ in the accompanying reference frame has all properties of gαβ.
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where the quantities w and vi characterize the reference body and its
reference space. These are the gravitational potential

w = c2 (
1 −
√
g00

)
, 1 −

w
c2 =

√
g00 (1.44)

and the linear velocity with which the reference space rotates

vi = −c
g0i
√
g00
, vi = −cg0i√g00

vi = hik v
k, v2 = vk v

k = hik v
ivk

 . (1.45)

It should be noted that the quantities w and vi do not have the prop-
erty of chronometric invariance, despite the fact that vi = hik v

k can be
obtained as for any chr.inv.-quantity through lowering the index by the
chr.inv.-metric tensor hik.

Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
connected by two identities, which we call Zelmanov’s identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (1.46)

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 . (1.47)

In the framework of quasi-Newtonian approximation, i.e., in a weak
gravitational field at velocities much lower than the velocity of light and
in the absence of rotation of the space, Fi (1.42) becomes an ordinary
non-relativistic gravitational force Fi =

∂w
∂x i .

Zelmanov had also introduced the following theorem setting up the
space holonomity condition:
Zelmanov’s theorem on the space holonomity condition

For a four-dimensional region of a space (space-time), the identi-
cal equality to zero of the tensor Aik is the necessary and sufficient
condition for the orthogonality of the spatial sections to the time
lines everywhere in this region.

In other words, the necessary and sufficient condition for a space to
be holonomic is achieved by setting the tensor Aik equal to zero. Natu-
rally, if the spatial sections are everywhere orthogonal to the time lines
(in this case the space is holonomic), then the quantities g0i are zero.
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Since g0i= 0, we have vi = 0 and Aik= 0. Therefore, we call the tensor
Aik the space non-holonomity tensor.

If the conditions Fi = 0 and Aik= 0 are satisfied in a space region,
then the conditions g00 = 1 and g0i= 0 are also satisfied there. In such
a region, according to (1.30), dτ= dt: the difference between the coor-
dinate time t and the physically observable time τ disappears, since the
space is free from gravitational fields and rotation. In other words, ac-
cording to the theory of chronometric invariants, the difference between
the coordinate time t and the physically observable time τ comes from
both the gravitational field and rotation of the observer’s reference space
(which is the local space of the Earth for an Earth-bound observer), or
each of these physical factors separately.

On the other hand, it is unrealistic to find such a region in the Uni-
verse, where the background space would have neither gravitational
fields nor rotation. Therefore, in practice, the physically observable time
τ and the coordinate time t differ from each other. This means that the
real space of our Universe is non-holonomic, and a holonomic space
can only be its local approximation.

The space holonomity condition is directly related to the problem
of integrability of time. The formula for the physically observable time
interval (1.30) does not have an integrating factor. In other words, this
formula cannot be reduced to the form

dτ = Adt , (1.48)

where the multiplier A depends on only t and xi. This is because in
a non-holonomic space, the formula (1.30) has a non-zero second term
depending on the coordinate interval dxi and also on g0i. In a holonomic
space, we have Aik= 0 and g0i= 0, so the second term of (1.30) is zero,
while the first term is the elementary time interval dt with an integrat-
ing multiplier

A =
√
g00 = f

(
x0, xi

)
, (1.49)

which allows us to write the integral

dτ =
∫
√
g00 dt . (1.50)

Therefore, time is globally integrable in a holonomic space (Aik= 0),
but cannot be globally integrated in a non-holonomic space (Aik, 0). In
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the case, where time is integrable (a holonomic space), we can synchro-
nize clocks at two distant points in the space by moving a control clock
along the path between these two points. In the case, where time cannot
be globally integrated (a non-holonomic space), the clock synchroniza-
tion at two distant points is impossible: the greater the distance between
these two points, the greater the time deviation on these clocks.

The space of our planet Earth is non-holonomic due to its daily ro-
tation around the Earth’s axis. Therefore, two clocks located at different
points on the Earth’s surface must show a deviation between the time
intervals registered on each of them. The greater the distance between
these clocks, the greater the deviation of the physically observed time
registered on them. This effect was undoubtedly verified by the Hafele-
Keating experiment [24–29] on moving a set of standard atomic clocks
by a jet airplane around the globe. In this experiment, the rotation of
the Earth’s space significantly changed the measured time. When flying
along the Earth’s rotation, the local space of an observer on board the
airplane had a greater rotation than the local space of another observer,
who remained motionless on the ground. During the flight against the
Earth’s rotation, it was the other way around. All the atomic clocks on
board the airplane showed a significant deviation of the observed time
depending on the velocity with which the observer’s space rotates.

Since the synchronization of clocks at various points on the Earth’s
surface is the most important task of maritime navigation, as well as
aviation, in the old days, desynchronization corrections were introduced
in the form of tables containing empirically obtained corrections that
take the Earth’s rotation into account. Now, thanks to the theory of
chronometric invariants, we know the origin of these corrections and
can calculate them on the basis of General Relativity.

In addition to gravitation and rotation, the reference body can de-
form thereby changing its coordinate grids over time. This factor must
also be taken into account in measurements. This can be done by select-
ing in the equations the three-dimensional symmetric chr.inv.-tensor of
the deformation rate of the reference space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ∥hik∥

 . (1.51)
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The Christoffel symbols characterize the inhomogeneity of the ob-
server’s reference space. The regular Christoffel symbols of the 2nd
rank Γαµν and those of the 1st rank Γµν,σ, i.e.

Γαµν = g
ασ Γµν,σ =

1
2
gασ

(
∂gµσ

∂xν
+
∂gνσ
∂xµ

−
∂gµν

∂xσ

)
, (1.52)

are related to the corresponding chr.inv.-Christoffel symbols

∆i
jk = him∆jk,m =

1
2

him
( ∗∂hjm

∂xk +
∗∂hkm

∂x j −

∗∂hjk

∂xm

)
, (1.53)

which are determined similarly to the Γαµν and Γµν,σ. The only difference
is that here, instead of the fundamental metric tensor gαβ, the chr.inv.-
metric tensor hik is used.

The components of the regular Christoffel symbols can be expressed
through the chr.inv.-properties of the observer’s reference space. Ex-
pressing the gαβ components and the first derivatives of gαβ in terms of
Fi, Aik, Dik, w and vi, after some algebra we obtain

Γ00,0 = −
1
c3

(
1 −

w
c2

)
∂w
∂t
, (1.54)

Γ00,i =
1
c2

(
1 −

w
c2

)2
Fi +

1
c4 vi
∂w
∂t
, (1.55)

Γ0i,0 = −
1
c2

(
1 −

w
c2

)
∂w
∂xi , (1.56)

Γ0i, j = −
1
c

(
1 −

w
c2

) (
Dij + Aij +

1
c2 Fj vi

)
+

1
c3 vj
∂w
∂xi , (1.57)

Γij,0 =
1
c

(
1 −

w
c2

) [
Dij −

1
2

(
∂vj

∂xi +
∂vi

∂x j

)
+

1
2c2

(
Fi vj + Fj vi

)]
, (1.58)

Γij,k = −∆ij,k +
1
c2

[
vi Ajk + vj Aik +

1
2
vk

(
∂vj

∂xi +
∂vi

∂x j

)
−

−
1

2c2 vk
(
Fi vj + Fj vi

)]
+

1
c4 Fk vi vj , (1.59)

Γ0
00 = −

1
c3

 1

1 − w
c2

∂w
∂t
+

(
1 −

w
c2

)
vk F k

 , (1.60)
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Γk
00 = −

1
c2

(
1 −

w
c2

)2
F k, (1.61)

Γ0
0i =

1
c2

− 1

1 − w
c2

∂w
∂xi + vk

(
Dk

i + A·ki· +
1
c2 vi F k

) , (1.62)

Γk
0i =

1
c

(
1 −

w
c2

) (
Dk

i + A·ki· +
1
c2 vi F k

)
, (1.63)

Γ0
ij = −

1

c
(
1 − w

c2

) {
−Dij +

1
c2 vn ×

×

[
vj

(
Dn

i + A·ni·
)
+ vi

(
Dn

j + A·nj·
)
+

1
c2 vi vj Fn

]
+

+
1
2

(
∂vi

∂x j +
∂vj

∂xi

)
−

1
2c2

(
Fi vj + Fj vi

)
− ∆n

ij vn

}
, (1.64)

Γk
ij = ∆

k
ij −

1
c2

[
vi

(
Dk

j + A·kj·
)
+ vj

(
Dk

i + A·ki·
)
+

1
c2 vi vj F k

]
, (1.65)

from which we obtain

Di
k + A·ik· =

c
√
g00

Γi
0k −
g0kΓ

i
00

g00

 , (1.66)

F k = −
c2 Γk

00

g00
, (1.67)

hiqhks∆m
qs = g

iαgkβ Γm
αβ . (1.68)

By analogy with the respective absolute derivatives, Zelmanov had
also introduced the chr.inv.-derivatives

∗∇i Qk =
∗∂Qk

dxi − ∆
l
ik Ql , (1.69)

∗∇i Qk =
∗∂Qk

dxi + ∆
k
il Ql, (1.70)

∗∇i Qjk =
∗∂Qjk

dxi − ∆
l
ij Qlk − ∆

l
ik Qjl , (1.71)

∗∇i Qk
j =

∗∂Qk
j

dxi − ∆
l
ij Qk

l + ∆
k
il Ql

j , (1.72)
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∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Qlk + ∆k

il Q jl, (1.73)

∗∇i Qi =
∗∂Qi

∂xi + ∆
j
ji Qi, ∆

j
ji =

∗∂ ln
√

h
∂xi , (1.74)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Qil + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi . (1.75)

Zelmanov had also introduced the chr.inv.-curvature tensor. He fol-
lowed the same procedure by which the Riemann-Christoffel curvature
tensor was constructed, based on the non-commutativity of the second
derivatives of an arbitrary vector Qα taken in a given space, the geom-
etry of which is Riemannian.

Taking into account the non-commutativity of the second chr.inv.-
derivatives of an arbitrary three-dimensional vector

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ··· jlki·Qj , (1.76)

where the chr.inv.-covariant differential of the vector is
∗∇k Qidxk = dQi + ∆i

kl Qkdxl, (1.77)

Zelmanov obtained the chr.inv.-tensor

H ··· jlki· =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il ∆

j
km − ∆

m
kl∆

j
im , (1.78)

which is similar to Schouten’s tensor from the theory of non-holonomic
manifolds [30]. The tensor H ··· jlki· differs from the Riemann-Christoffel
tensor R ···αβγδ· due to the presence of the space rotation tensor Aik in the
formula (1.76). Its generalization gives the chr.inv.-tensor

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
, (1.79)

which has all the algebraic properties of the Riemann-Christoffel ten-
sor in the three-dimensional space of the observer (his spatial section).
Since the chr.inv.-tensor Ciklj is in fact the physically observable cur-
vature tensor of the observer’s spatial section, Zelmanov called it the
chr.inv.-curvature tensor. Contracting it step-by-step

Ckj = C ···ikij· = himCkimj , C = C j
j = hljClj , (1.80)
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we obtain the chr.inv.-curvature scalarC, which is the observable three-
dimensional curvature of the space.

The tensor Hlkij is related to the curvature tensor Clkij by

Hlkij = Clkij +
1
c2

(
2Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk
)
, (1.81)

and their contractions Hlk =H ···ilki· and Clk =C ···ilki· are related as

Hlk = Clk +
1
c2

(
Akj D j

l + Alj D j
k + Akl D

)
. (1.82)

In a particular case, where the space does not rotate, the Hlkij and
Clkij are the same. This is as well true for the Hlk and Clk. In this partic-
ular case, the tensor Clk = hijCilkj has the form

Clk =
∗∂

∂xk

 ∗∂ ln
√

h
∂xl

 − ∗∂∆i
kl

∂xi + ∆
m
il ∆

i
km − ∆

m
kl

∗∂ ln
√

h
∂xm . (1.83)

Zelmanov had also deduced the chr.inv.-projections of the Riemann-
Christoffel curvature tensor Rαβγδ. Being a two-pair symmetric ten-
sor (its paired indices are non-symmetric inside each pair, while the
pairs are symmetric with respect to each other), it has three chr.inv.-
projections according to (1.29). They have the form

X ik = −c2 R·i·k0·0·

g00
, Y ijk = −c

R·ijk0···
√
g00
, Z ijkl = c2Rijkl. (1.84)

Substituting the necessary components of the Riemann-Christoffel
tensor Rαβγδ into the formulae for its chr.inv.-projections (1.84) and then
lowering the indices, Zelmanov had obtained the formulae

Xij =
∗∂Dij

∂t
−

(
D l

i + A·li·
) (

Djl + Ajl
)
+

+
(
∗∇i Fj +

∗∇j Fi
)
−

1
c2 Fi Fj , (1.85)

Yijk =
∗∇i

(
Djk + Ajk

)
−∗∇j (Dik + Aik) +

2
c2 Aij Fk , (1.86)

Ziklj = Dik Dlj − Dil Dkj + Aik Alj −

− Ail Akj + 2Aij Akl − c2Ciklj , (1.87)
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where Y(ijk) =Yijk +Yjki +Ykij = 0 just like in the Riemann-Christoffel
tensor. Contraction of the observable spatial projection Ziklj step-by-
step as Zil = hkjZiklj and Z = hilZil gives

Zil = Dik Dk
l − Dil D + Aik A·kl· + 2Aik Ak·

·l − c2Cil , (1.88)

Z = hilZil = Dik Dik − D2 − Aik Aik − c2C . (1.89)

At the end of our overview of the chronometrically invariant for-
malism, consider Einstein’s field equations*

Rαβ −
1
2
gαβR = −κTαβ + λgαβ . (1.90)

Einstein’s field equations, in addition to the fundamental metric ten-
sor gαβ, include: Ricci’s tensor Rαβ =R ···σασβ· (the 2nd rank symmetric
tensor resulting from contraction of the Riemann-Christoffel curvature
tensor), the Riemann curvature scalar R= gαβRαβ, Einstein’s gravita-
tional constant κ= 8πG

c2 = 18.6 × 10−28 cm/gram, Gauss’ gravitational
constantG = 6.672×10−8 cm3gram−1sec−2, the energy-momentum ten-
sor Tαβ of a distributed matter that fills the space, and also the λ-term
[cm−2] that describes the physical vacuum. See §5.2 of the book [18].

Landau and Lifshitz [20] used κ= 8πG
c4 instead of κ= 8πG

c2 as used by
Zelmanov. To understand the reason, assume κ= 8πG

c2 as in Zelmanov’s
theory of chronometric invariants and in our papers. Consider then the
chr.inv.-projections of the energy-momentum tensor

ρ =
T00

g00
, J i =

cT i
0

√
g00
, U ik = c2T ik, (1.91)

which are calculated according to the formula (1.29) as the chr.inv.-
projections of any 2nd rank symmetric tensor. They have the following
physical sense: ρ is the observable mass density, J i is the observable
momentum density, and U ik is the observable stress tensor. Ricci’s ten-
sor has the dimension [cm−2]. Therefore, the scalar chr.inv.-projection
of the field equations, G00

g00
=−

κT00
g00
+ λ, as well as κT00

g00
=

8πGρ
c2 have the

same dimension [cm−2]. Hence, the energy-momentum tensor Tαβ has
the same dimension asmass density [gram/cm3]. Therefore, if wewould

*The left hand side of the field equations (1.90) is often referred to as the Einstein
tensor Gαβ =Rαβ − 1

2 gαβR, in the notation Gαβ =−κTαβ + λgαβ.
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use κ= 8πG
c4 on the right hand side of the field equations, then we used

not the energy-momentum tensor Tαβ but rather c2Tαβ.
The chr.inv.-projections of Einstein’s field equations (1.90) are cal-

culated as for any tensor of the 2nd rank (1.29). They have the form

∗∂D
∂t
+ Djl Dlj + Ajl Alj +

(
∗∇j −

1
c2 Fj

)
F j =

= −
κ

2

(
ρc2 + U

)
+ λc2, (1.92)

∗∇j
(
hijD − Dij − Aij

)
+

2
c2 Fj Aij = κ J i, (1.93)

∗∂Dik

∂t
−

(
Dij + Aij

) (
D j

k + A· jk·

)
+ DDik − Dij D j

k +

+ 3Aij A· jk· +
1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik , (1.94)

which we call the chr.inv.-Einstein equations. Here U = hikUik is the
trace of the stress tensor Uik.

In addition, the energy-momentum tensor Tαβ of a distributedmatter
must satisfy the conservation law

∇σT ασ = 0 . (1.95)

The chr.inv.-projections of the conservation law are calculated as for
any tensor of the 1st rank (1.28). We call them the chr.inv.-conservation
law equations. They have the form

∗∂ρ

∂t
+ Dρ +

1
c2 Dij U ij + ∗∇̃i J i −

1
c2 Fi J i = 0 , (1.96)

∗∂Jk

∂t
+ DJk + 2

(
Dk

i + A·ki·
)

J i + ∗∇̃i U ik − ρF k = 0 , (1.97)

where the chr.inv.-operator ∗∇̃i =
∗∇i −

1
c2 Fi is created on the basis of the

chr.inv.-derivative operator ∗∇i.
With these definitions we can find out how any geometric object of

the four-dimensional pseudo-Riemannian space (space-time of General
Relativity) looks like from the point of view of any observer, located in
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this space. For example, having any equation obtained in the general
covariant tensor analysis, we can calculate its chr.inv.-projections onto
the time line and the spatial section associated with any particular refer-
ence frame, and then formulate the corresponding chr.inv.-projections
in terms of the physically observable properties of this reference space.
Following this way, we will come to the equations containing only quan-
tities measurable in practice.

So, now we have all the mathematical “tools” necessary for our fur-
ther mathematical theory of the internal constitution of stars and sources
of stellar energy based on General Relativity.



Chapter 2 Ordinary Stars and the Sun

2.1 Introducing the space metric of an ordinary star. Einstein’s
equations in the form satisfying the metric

In this Chapter, we present our mathematical theory of liquid stars being
applied to ordinary stars. This means Type I of stars according to the
new classification we have just introduced based on General Relativity
(see §1.2 and Table 1.1 therein). Type I covers the widest variety of
stars, which includes super-giants, sun-like stars (including the Sun),
ordinary dwarfs and also white dwarfs*.

The structure, substance and field of a liquid star are characterized
by the Schwarzschild metric of a sphere filled with an incompressible
liquid. The metric was originally introduced in 1916 by Karl Schwarz-
schild [14]. He, however, introduced it in a truncated form contain-
ing substantial limitations: he artificially pre-imposed these limitations
in his derivation in order to free the field of a breaking; this leads to
an artificial truncation of the geometry of this metric space. In other
words, the metric introduced by Karl Schwarzschild is not exactly the
space metric of a liquid sphere. The true metric of a sphere filled with
an incompressible liquid, which is free of the mentioned limitations
and, thus, takes a space breaking into account, was deduced in 2009
by L. Borissova [11, 12]. Let us now reproduce her derivation, follow-
ing her most detailed explanation [11] along with some recent additions
and comments.

Consider an empty space containing a spherical island, which is
a liquid. The structure, substance and field of such a massive island
should be characterized by a space metric with spherical symmetry. As

*In the framework of Eddington’s theory of gaseous stars, white dwarfs are consid-
ered separately.
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is known, all spherically symmetric metrics have the following general
form

ds2 = eνc2dt2 − eλdr2 − r2
(
dθ2 + sin2θ dϕ2

)
, (2.1)

where eν and eλ are functions of r and t.
The substance and field of the spherical liquid island must satisfy

Einstein’s field equations (1.90), which in the case under consideration
have the λ-field neglected, i.e.

Rαβ −
1
2
gαβR = −κTαβ , (2.2)

where Rαβ is Ricci’s curvature tensor, R is the curvature scalar, κ= 8πG
c2

= 18.6 × 10−28 cm/gram is Einstein’s gravitational constant, and Tαβ is
the energy-momentum tensor of a matter (liquid) distributed over the
space. Note that the energy-momentum tensor of any distributed matter
must satisfy the conservation law

∇σT ασ = 0 , (2.3)

where ∇σ is the general covariant derivative symbol.
Einstein’s field equations connect the components of the fundamen-

tal metric tensor, the space curvature and the distributed matter accord-
ing to Riemannian geometry. In other words, the invariant square form
of Riemannian metric, ds2= gαβ dxαdxβ= inv, together with Einstein’s
field equations characterize Riemannian spaces (i.e., spaces, the geom-
etry of which is Riemannian). Concerning the General Theory of Rela-
tivity, this means the following. Let us have a Riemannian space with a
specific metric ds2. Assume that a matter is distributed over the space
(thereby we assume a specific formula for the energy-momentum ten-
sor Tαβ). Then, the components of the fundamental metric tensor gαβ
(known from the specific formula for the metric ds2) and the compo-
nents of the specific energy-momentum tensor Tαβ, when substituted
into (respectively) the left hand side and the right hand side of Einstein’s
field equations should transform these equations into identities.

Here is how, based on the general formula for the spherically sym-
metric metric (2.1), we can deduce the metric of a sphere filled with an
ideal liquid. First, we take the energy-momentum tensor of an ideal liq-
uid and substitute its components into the right hand side of the field
equations. Then we find the components of the fundamental metric
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tensor from the spherically symmetric metric (2.1) in their general form,
containing the coefficients eν and eλ. We substitute these components
into the left hand side of the field equations. Then we look at what kind
of the coefficients eν and eλ make the left hand side of the field equa-
tions the same as the right hand side (thus turning the field equations into
identities). Finally, we substitute the resulting specific formulae for the
coefficients eν and eλ back into the general formula for the spherically
symmetric metric. As a result, we obtain the true metric of a sphere
filled with an ideal liquid. Voilà!

One might as well ask why Schwarzschild himself did not do just
that? Instead, why did he go down another complicated path full of
speculations? There is no answer to this question. . . Let us come back
to our derivation.

As is known, the energy-momentum tensor of an ideal liquid (which
is incompressible and non-viscous) has the form

T αβ =
(
ρ0 +

p
c2

)
UαU β −

p
c2 g

αβ, (2.4)

where ρ= ρ0 = const is the density of the liquid (which is constant), p
is the pressure inside the liquid, and

Uα =
dxα

ds
, UαUα = 1 (2.5)

is the four-dimensional velocity of the liquid flowwith respect to the ob-
server (his reference space coincides with the space of the liquid sphere,
at the centre of which the coordinate origin is located).

Let us formulate the field equations in component notation, taking
into account the physically observable properties of the space associated
with the liquid sphere.

First, we see that

g00 = eν, g0i = 0

g11 = −eλ, g22 = −r2, g33 = −r2 sin2θ

 (2.6)

in the metric of spherically symmetric spaces (2.1). According to the
chronometrically invariant formalism (see §1.3), the gravitational po-
tential in such a space has the following formula

w = c2
(
1 − e

ν
2
)
. (2.7)
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Since g0i= 0 in the metric, such a space does not rotate: the linear
velocity of its rotation is vi = 0. Therefore, the chr.inv.-tensor of the
angular velocity associated with the space is zero

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) = 0 , (2.8)

and the chr.inv.-vector of the gravitational inertial force has the form

Fi =
c2

c2 − w

(
∂w
∂xi −

∂vi
∂t

)
= −

c2

2
ν′, (2.9)

where the prime denotes differentiation along the radial coordinate r.
With the above, the chr.inv.-metric tensor hik of the space has the fol-
lowing non-zero components

h11 = eλ, h22 = r2, h33 = r2 sin2θ , (2.10)

h11 = e−λ, h22 =
1
r2 , h33 =

1
r2 sin2θ

, (2.11)

h = det ∥hik∥ = eλr4 sin2θ . (2.12)

Since the chr.inv.-tensor Dik of the deformation rate of the space
is determined through the chr.inv.-derivatives of the hik, it has only the
following non-zero components

D11 =
λ̇

2
eλ−

ν
2 , D11 =

λ̇

2
e−λ−

ν
2 , D =

λ̇

2
e−
ν
2 , (2.13)

where the upper dot means differentiation along the time coordinate t.
The chr.inv.-Christoffel symbols (they characterize the physically

observable inhomogeneity of the space) are calculated according to their
definition given in §1.3, using the components of the chr.inv.-metric ten-
sor hik. After some algebra, we obtain formulae for the non-zero com-
ponents of ∆ij,m, which have the form

∆11,1 =
λ′

2
eλ , ∆22,1 = −r , ∆33,1 = −r sin2θ , (2.14)

∆12,2 = r , ∆33,2 = −r2 sin θ cos θ , (2.15)

∆13,3 = r sin2θ , ∆23,3 = r2 sin θ cos θ , (2.16)
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then we obtain the non-zero components of ∆k
ij

∆1
11 =

λ′

2
, ∆1

22 = −re−λ, ∆1
33 = −r sin2θ e−λ, (2.17)

∆2
12 =

1
r
, ∆2

33 = − sin θ cos θ , (2.18)

∆3
13 =

1
r
, ∆3

23 = cot θ . (2.19)

As was shown in §1.3, in a space without rotation, the 2nd rank
chr.inv.-curvature tensor Clk = hijCilkj (physically observable curvature
tensor) has the form (1.83). We are considering a space that does not
rotate. Thus, after some algebra, we obtain the non-zero components
of the chr.inv.-curvature tensor Clk for the spherically symmetric metric
(2.1). They have the form

C11 = −
λ′

r
, C22 =

C33

sin2θ
= e−λ

(
1 −

rλ′

2

)
− 1. (2.20)

Calculate the chr.inv.-projections of the energy-momentum tensor
of an ideal liquid (2.4) according to the general formulae (1.91). The
projections are the observable mass density ρ, the observable momen-
tum density J i and the observable stress tensor U ik of the liquid. Using
the conditions bi= 0 and b0= 1√

g00
(1.25) characteristic of the accom-

panying reference frame (since, in the case under consideration, the ob-
server accompanies the liquid sphere), we obtain

ρ =
T00

g00
= ρ0 , J i =

cT i
0

√
g00
= 0 , U ik = c2T ik = phik. (2.21)

According to the first chr.inv.-component, the liquid medium has a
density ρ= ρ0, which is constant everywhere inside the sphere.

The obtained condition J i= 0 means that the liquid medium has no
flows, and U ik = phik means that the observer’s reference space accom-
panies the liquid.

Also, according to the third chr.inv.-component, the traceU = hikUik

of the observable stress tensor U ik of the liquid medium is expressed
through the pressure p inside it as follows

U = 3p . (2.22)
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The chr.inv.-Einstein equations (1.92–1.94) in a space without rota-
tion take the simplified form

∗∂D
∂t
+ Djl Dlj +

(
∗∇j −

1
c2 Fj

)
F j = −

κ

2

(
ρ0c2 + U

)
, (2.23)

∗∇j
(
hijD − Dij

)
= 0 , (2.24)

∗∂Dik

∂t
− Dij D j

k + DDik − Dij D j
k +

1
2

(∗∇i Fk +
∗∇k Fi

)
−

−
1
c2 Fi Fk − c2Cik =

κ

2

(
ρ0c2hik + 2Uik − Uhik

)
, (2.25)

where ∗∇i is the chr.inv.-derivative symbol. The chr.inv.-conservation
law equations (1.96, 1.97) are also simplified as

Dρ0 +
1
c2 Dij U ij = 0 , (2.26)

∗∇̃i U ik − ρ0 F k = 0 , (2.27)

where we denote ∗∇̃i =
∗∇i −

1
c2 Fi.

Substitute, into the chr.inv.-Einstein equations (2.23–2.25), the ob-
tained chr.inv.-characteristics of a space with the spherically symmetric
metric (2.1), as well as the obtained chr.inv.-components of the energy-
momentum tensor of an ideal liquid. After some algebra, we obtain the
chr.inv.-Einstein equations (2.23–2.25) in component notation

e−ν
λ̈ − λ̇ ν̇2 + λ̇

2

2

 − c2e−λ
[
ν′′ −

λ′ν′

2
+

2ν′

r
+

(ν′)2

2

]
=

= − κ
(
ρ0c2 + 3p

)
eλ, (2.28)

λ̇

r
e−λ−

ν
2 = 0 , (2.29)

eλ−ν
λ̈ − λ̇ ν̇2 + λ̇

2

2

 − c2
[
ν′′ −

λ′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
=

= κ
(
ρ0c2 − p

)
eλ, (2.30)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (2.31)
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The second equation shows that λ̇ = 0 in this case. This means that
the internal space of the liquid sphere does not deform: using λ̇ = 0
we obtain D11= 0, D11= 0 and D= 0 according to (2.13). Taking this
circumstance into account, as well as the stationarity of the λ, we reduce
the field equations (2.28–2.31) to the final form

c2e−λ
[
ν′′ −

λ′ν′

2
+

2ν′

r
+

(ν′)2

2

]
= κ

(
ρ0c2 + 3p

)
eλ, (2.32)

2c2λ′

r
− c2

[
ν′′ −

λ′ν′

2
+

(ν′)2

2

]
= κ

(
ρ0c2 − p

)
eλ, (2.33)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (2.34)

To solve the field equations (2.32–2.34), we need a formula for the
pressure p. To find this formula, consider the conservation equations
(2.26, 2.27). Since the space does not deform (Dik= 0) in the case under
consideration, the chr.inv.-scalar conservation equation (2.26) vanishes.
Only the chr.inv.-vector conservation equation (2.27) remains non-zero.
Under the above conditions that we have assumed, it takes the form

∗∇i
(
phik

)
−

(
ρ0 +

p
c2

)
F k = 0 . (2.35)

Since ∗∇i hik= 0 is true always for the chr.inv.-metric tensor (as well
as ∇σ gασ= 0 for the fundamental metric tensor), the remaining conser-
vation equation (2.35) takes the form

hik
∗∂p
∂xi −

(
ρ0 +

p
c2

)
F k = 0 . (2.36)

Because ∗∂
∂x i =

∂
∂x i in a space without rotation, the above formula re-

duces to the non-trivial equation

p′e−λ +
(
ρ0c2 + p

) ν′
2

e−λ = 0 , (2.37)

where p′ = dp
dr , ν

′= dν
dr , and eλ , 0. Dividing both sides of this formula

by e−λ, we obtain the equation

dp
ρ0c2 + p

= −
dν
2
, (2.38)
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which is an ordinary differential equation with separable variables. It is
integrated easily as

ρ0c2 + p = Be−
ν
2 , B = const. (2.39)

Thus, we obtain the pressure p as a function of the ν

p = Be−
ν
2 − ρ0c2. (2.40)

When looking for the function p(r), we integrate the field equations
(2.32–2.34). Summing up (2.32) and (2.33), we find

c2 (λ′ + ν′)
r

= κBeλ−
ν
2 . (2.41)

Express ν′ from here, then substitute the obtained result into the
third field equation (2.34). We obtain

2c2

r
λ′ +

2c2

r2

(
eλ − 1

)
− κBe−λ−

ν
2 = κ

(
ρ0c2 − p

)
eλ. (2.42)

Substituting the pressure p from (2.40) into (2.42), we obtain the
following differential equation with respect to λ

λ′ +
eλ − 1

r
− κρ0reλ = 0 . (2.43)

Introduce a new variable y = eλ. Thus, we have λ′ = y
′

y . Substi-
tuting these y and y′ into the original equation, we obtain the Bernoulli
equation (see Kamke [31], Part III, Chapter I, §1.34)

y′ + f (r)y2 + g(r)y = 0 , (2.44)

where
f (r) =

1
r
− κρ0r , g(r) = −

1
r
. (2.45)

It has the following solution

1
y
= E(r)

∫
f (r) dr
E(r)

, (2.46)

where
E(r) = e

∫
g(r)dr. (2.47)
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Integrating (2.47), we obtain the function E(r)

E(r) = e−
∫

dr
r = eln L

r =
L
r
, L = const > 0 , (2.48)

so we obtain 1
y = e−λ, which is

e−λ =
L
r

∫
r
L

(
1
r
− κρ0r

)
dr = 1−

κρ0r2

3
+

Q
r
, Q = const. (2.49)

To find the integration constant Q, re-write the equation (2.42) as

e−λ
(
λ′

r
−

1
r2

)
+

1
r2 = κρ0 . (2.50)

This equation has a singularity at the point r= 0, i.e., at the centre
of the sphere, where the numerical value of the right hand side (i.e., the
liquid density) tends to infinity. This contradicts the initially assumed
condition ρ0 = const characteristic of incompressible liquids. In fact,
this contradiction should not exist in the theory. We resolve this contra-
diction (and the singularity) by re-writing (2.50) as

e−λ
(
1 − rλ′

)
=

d
dr

(
re−λ

)
= 1 − κρ0r2. (2.51)

After integration, we obtain

re−λ = r −
κρ0r3

3
+ A , A = const. (2.52)

Since A= 0 at the central point r= 0, it must be zero at any other
point as well. Dividing this equation by r, 0, we obtain

e−λ = 1 −
κρ0r2

3
. (2.53)

Comparing this solution with the formula for e−λ obtained earlier
(2.49), we see that they meet each other if Q= 0. Besides, we must
assume that eλ0= 1 at the central point r= 0, hence λ0 = 0.

So, we have the components h11 = e−λ and h11 = eλ of the chr.inv.-
metric tensor hik expressed through the radial coordinate r, i.e.

h11 = e−λ = 1 −
κρ0r2

3
, h11 = eλ =

1

1 − κρ0 r2

3

. (2.54)
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Introduce the limit condition r= a on the surface of the sphere (since
a is its radius). In this case, we have

e−λa = 1 −
κρ0a2

3
. (2.55)

On the other hand, the solution to this equation is also the mass-
point solution in emptiness. Hence, we have

e−λa = 1 −
2GM
c2a

, (2.56)

where M is the mass of the liquid sphere. Comparing both of these
formulae for e−λa and taking into account that Einstein’s gravitational
constant is κ=8πG

c2 , we obtain

M =
4πa3ρ0

3
= ρ0V, (2.57)

where V = 4πa3

3 is the volume of the sphere. We have obtained the usual
relation between the mass and volume of a homogeneous sphere.

Our next step is to find a solution for e−λ outside the sphere, where
r> a. Since outside the liquid sphere the density of substance is ρ0 = 0,
after integrating (2.51) we obtain

re−λ =
∫ r

0
dr −

∫ a

0
κρ0r2dr = r −

κρ0a3

3
. (2.58)

From this formula we obtain that

e−λ = 1 −
κρ0a3

3r
. (2.59)

Taking (2.55) and (2.56) into account, we arrive at the same solution
as the mass-point solution in emptiness, i.e.

e−λ = 1 −
2GM
c2r

. (2.60)

To obtain the variable ν, we use the equation (2.41). Substituting

λ′ =

2κρ0 r
3

1 − κρ0r2

3

(2.61)
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and the obtained formula for eλ into (2.41), after transformations we
obtain

ν′ +

2κρ0 r2

3

1 − κρ0 r2

3

−
κB
c2

re−
ν
2

1 − κρ0r2

3

= 0 . (2.62)

Introduce a new variable e−
ν
2 = y. Thus, we have ν′ =− 2y′

y . Substi-
tuting the above into (2.62), we obtain the Bernoulli equation

y′ +
κB
2c2

ry2

1 − κρ0r2

3

−

κρ0 r
3 y

1 − κρ0r2

3

= 0 , (2.63)

where

f (r) =
κB
2c2

r

1 − κρ0r2

3

, g(r) = −
κρ0 r

3

1 − κρ0r2

3

. (2.64)

Thus, we have the integral∫
g(r)dr = −

∫ κρ0 r
3

1 − κρ0r2

3

= ln N

√∣∣∣∣∣∣1 − κρ0r2

3

∣∣∣∣∣∣ , N = const, (2.65)

where

E(r) = N

√∣∣∣∣∣∣1 − κρ0r2

3

∣∣∣∣∣∣ . (2.66)

In a region, where the signature condition h11 = eλ > 0 is satisfied,
we have

1 −
κρ0r2

3
> 0 , (2.67)

therefore here we must use the modulus of the function.
Next, we look for 1

y = e
ν
2 , which is

e
ν
2 =
κB
2c2

√
1 −
κρ0r2

3

∫
rdr√(

1 − κρ0r2

3

)3 . (2.68)

After integration, we obtain

e
ν
2 =
κB
2c2

 3
κρ0
+ K

√
1 −
κρ0r2

3

 , K = const. (2.69)
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Find the integration constants B and K. To find the B, re-write the
formula for the pressure p (2.40) using the condition that p= 0 on the
surface of the sphere (r= a). Thus, we have

B = ρ0c2e
νa
2 , (2.70)

where e
νa
2 is the value of the function e

ν
2 on the surface of the sphere.

As a result, we obtain

e
ν
2 =
κρ0

2
e
νa
2

 3
κρ0
+ K

√
1 −
κρ0r2

3

 . (2.71)

To find the K, consider the e
ν
2 on the surface of the sphere (r= a)

e
νa
2 =
κρ0 e

νa
2

2

 3
κρ0
+ K

√
1 −
κρ0a2

3

 , (2.72)

from which we obtain that

K = −
1
κρ0

1√
1 − κρ0 a2

3

. (2.73)

The quantity e
νa
2 means the numerical value of the function e

ν
2 at

r= a, i.e., on the surface of the sphere. Therefore, we can apply it to the
mass-point solution in emptiness at r= a, i.e.

e
νa
2 =

√
1 −

2GM
c2a

. (2.74)

Taking the formulae (2.55) and (2.56) into account, we obtain

e
ν
2 =

1
2

e
νa
2

3 −
√√√√

1 − κρ0r2

3

1 − κρ0 a2

3

 =
=

1
2

3 √
1 −

2GM
c2a

−

√
1 −

2GMr2

c2a3

 . (2.75)

This solution on the surface of the sphere (r= a) meets the mass-
point solution in emptiness: e

νa
2 =

√
1 − 2GM

c2a =

√
1 − κρ0 a2

3 .
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With the obtained formulae for the coefficients eν and eλ, the space
metric of a sphere filled with an ideal liquid takes the form

ds2 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

c2dt2 −

−
dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.76)

Taking (2.55) and (2.56) into account, we can re-write the obtained
space metric (2.76) in the form

ds2 =
1
4

3 √
1 −

2GM
c2a

−

√
1 −

2GMr2

c2a3

2

c2dt2 −

−
dr2

1 − 2GMr2

c2a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.77)

Finally, because 2GM
c2 = rg is the Hilbert radius calculated from the

mass M of the liquid sphere and taking the obtained formula for e
νa
2 into

account, we re-write the resulting metric in the final form

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 − r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.78)

This is the final formula for the “internal” space metric of a sphere
filled with an ideal liquid. As you can see, on the surface of the liquid
sphere (r = a) its “internal” metric completely coincides with the metric
of a material point in emptiness.

From here we can obtain the metric of the space outside the liquid
sphere (r> a). Let us do it.

We have already obtained the “external” solution for e−λ (2.59),
which turned out to be the same as the “external” mass-point solution
for this function (2.60). Outside the sphere we have B= 0 (2.39). There-
fore, (2.41) becomes

λ′ + ν′ = 0 , (2.79)
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where, according to (2.60),

λ′ =
2GM
c2r2

1

1 − 2GM
c2r

. (2.80)

Substituting (2.80) into (2.79) then integrating the resulting equa-
tion, we obtain

ν = ln
(
1 −

2GM
c2r

)
+ P, P = const, (2.81)

therefore
eν = P

(
1 −

2GM
c2r

)
. (2.82)

Since this function has also the form

eν = 1 −
2GM
c2a

, (2.83)

then on the surface (r= a) of the liquid sphere we have P= 1. Substitut-
ing the obtained formulae for eν (2.83) and eλ (2.60) into the spherically
symmetric metric (2.1), we obtain that the “external” space of a sphere
filled with an ideal liquid is described by the metric of a mass-point in
emptiness (1.1), i.e.

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
. (2.84)

2.2 The outer space breaking in the Sun’s field coincides with the
asteroid belt

Herewe propose a newmodel of the Solar System based onGeneral Rel-
ativity. Namely, — the Sun and the planets will be considered as liquid
spheres according to the liquid spheremetric (2.78) obtained above. The
metric was also shown in the formula (1.8) of §1.2, where we consid-
ered the formulation of the star modelling problem in terms of General
Relativity. In addition, as was proved in the previous §2.1, the external
space of a liquid sphere is described by the metric of a mass-point in
emptiness (1.1).

Note that we are not discussing here whether the internal planets
can be represented as liquid spheres or not. Astrophysicists and geolo-
gists can simply refer to magma because it is in the state of liquid stone.
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However, the Jovian planets (Jupiter, Saturn, Uranus and Neptune) in
terms of their density and other parameters may well be considered
stars. Here we limit ourselves to theoretical modeling of the Sun and
the planets without analysing their origin. Let us dwell in detail on the
location of the “inner” and “outer” space breakings of their fields: the
space breaking in the field deep inside and far beyond the physical body
(liquid sphere) of each of them. We will then compare the result with
the observed distribution of the planets in the Solar System.

Our approach to the Solar System is simple. As is known, in a four-
dimensional Riemannian space with a sign-alternating diagonal metric
(+−−−), a breaking occurs in that region (point or surface) wherein at
least one of the four signature conditions

g00 > 0

g00 g11 < 0

g00 g11g22 > 0

g = g00 g11g22 g33 < 0


(2.85)

is violated. The space (space-time) of General Relativity is one of the
above type of Riemannian spaces. Therefore, we consider the signature
conditions in the space inside and outside the liquid Sun.

2.2.1 In the “internal” space metric of a liquid sphere (2.78), tak-
ing into account that

κρ0a3

3r
=

2GM
c2r

=
rg
r

(2.86)

therein*, the fundamental metric tensor has the following non-zero com-
ponents

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

=

=
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

, (2.87)

g11 = −
1

1 − r2rg
a3

= −
1

1 − κρ0 r2

3

, (2.88)

*See formulae (2.59) and (2.60) in §2.1.
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g22 = −r2, (2.89)

g33 = −r2 sin2θ . (2.90)

From these components, we obtain that at a distance of

r = rbr =

√
a3

rg
=

√
3
κρ0
, (2.91)

from the centre of the sphere, the second, third and fourth signature
conditions are violated*

g00 =
9
4

(
1 −

rg
a

)
> 0

g00 g11 → −∞

g00 g11g22 → ∞

g = g00 g11g22 g33 → −∞


. (2.92)

This means that at the distance rbr =

√
a3/rg from the centre of the

liquid spherical body, its field has a space breaking on the surface of the
mentioned radius rbr.

The Hilbert radius rg = 2GM
c2 (gravitational collapse radius) calcu-

lated for ordinary physical bodies is many orders of magnitude smaller
than their physical sizes. Hence, a≫ rg for an ordinary liquid sphere
(such a body is not a collapsar). In this case, we have rbr =

√
a3/rg≫ a :

the spherical surface on which the field has a space breaking is far be-
yond the physical surface of the liquid sphere (field source) and, hence,
far from its internal field. In other words, the internal field and substance
of a liquid sphere form a space breaking in its external field.

What does the outer space breaking in a star’s field mean from a
physical point of view? Does such a space breaking a real action on a
physical body appearing in it, or is it just a mathematical fiction? As
will be shown in the next §2.3, the space (space-time) of a liquid sphere
has a breaking in its four-dimensional curvature tensor Rαβγδ under the
condition r= rbr. Namely, — the component R0101 (2.113), which is the

*Namely, — these three functions tend to infinity. As is known, a function has a
breaking as it tends to infinity.
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four-dimensional curvature of the space in the (r-t)-direction 0101, has
a breaking at the distance r= rbr from the centre of the liquid sphere,
i.e., the curvature becomes infinite (R0101→∞) on a surface of the ra-
dius r= rbr. Since the four-dimensional curvature is determined by the
gravitational field that fills the space (and vice versa), the breaking at
r= rbr means a breaking in the gravitational field of the liquid sphere.

This is the physical sense of the outer space breaking in the field of
a liquid sphere.

2.2.2 The external field of a liquid sphere is due to the same liquid
substance that fills the sphere and produces the field inside the sphere
itself (its internal field). According to the formula for the “external”
space metric (2.84), we see that its fundamental metric tensor has the
following non-zero components

g00 = 1 −
rg
r
, (2.93)

g11 = −
1

1 − rg
r

, (2.94)

g22 = −r2, (2.95)

g33 = −r2 sin2θ . (2.96)

We see that at the distance

r = rg =
2GM

c2 (2.97)

from the centre of the body, the first signature condition (g00> 0) is vi-
olated

g00 = 1 −
rg
r
= 0

g00 g11 = −1 < 0

g00 g11g22 = r2 > 0

g = −r4 sin2θ < 0


. (2.98)

In other words, the external field of a liquid sphere produces a space
breaking deep inside the sphere itself, in its internal space close to the
centre. For example, the calculated Hilbert radius rg = 2GM

c2 is only
2.9 km for the Sun, and for the Earth it is nothing but only 0.88 cm.
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2.2.3 So, according to our model of liquid stars based on General
Relativity, concerning ordinary stars and the Sun in particular, the above
conclusions mean the following:

1. At the centre of every star there is a small core of the Hilbert ra-
dius rg, on the surface of which the aforementioned inner space
breaking in the star’s field occurs. The inner space breaking phys-
ically means that the liquid substance of the star has a singularity
on a spherical surface of the Hilbert radius rg around the centre,
thereby the mentioned small core is physically separated from the
main substance of the star (the physical sense of this phenomenon
will be clearer using the example of the outer space breaking in
the Sun’s field);

2. The field of every star has an outer space breaking on a spherical
surface around the star. This is a “bubble” with a very large radius
rbr =

√
a3/rg, which is many orders of magnitude greater than the

physical radius a of the star. Physically, the outer space breaking
prevents the formation of nearby substance, such as small stones
or dust, rotating around the star, into a single planet in an orbit of
the radius rbr.

Calculate the radius rbr =

√
a3/rg =

√
3/κρ0 (2.91) of the outer space

breaking in the Sun’s field. With the Sun’s density ρ0 = 1.41 gram/cm3

or its mass M = 2.0 × 1033 gram and radius a= 6.95 × 1010 cm,

rbr = 3.4 × 1013 cm = 340,000,000 km = 2.3 AU. (2.99)

We obtain that the spherical surface (bubble) of the outer space
breaking in the Sun’s field is located in the asteroid belt, very close to
the orbit of the maximum concentration of asteroids (the asteroid belt
extends, approximately, from 2.1 to 4.3 AU from the Sun).

This truly amazing theoretical discovery leads us to the conclusion
that the internal structure of the Solar System can be calculated accord-
ing to the liquid model. Namely, — we consider the Sun and the planets
as liquid spheres, then we calculate the space breaking rbr in the field
of each of these cosmic bodies. The results of this calculation are sum-
marized in Table 2.1.

These results related to the planets and the Sun, according to Ta-
ble 2.1, lead to the following conclusions:



60 Chapter 2 Ordinary Stars and the Sun

O
bj
ec
t

M
as
s

D
en
sit
y

Ra
di
us

H
ilb

er
tr
ad
iu
s

O
rb
it,

Sp
ac
e
br
ea
ki
ng

D
ist
an
ce

of
r br

M
,g

ra
m

ρ
0
,g

ra
m
/c
m

3
a,
cm

r g
,c
m

AU
r br

,A
U

fro
m

th
e
Su

n,
AU

Su
n

1.
98
×

10
33

1.
41

6.
95
×

10
10

2.
9
×

10
5

—
2.
3

2.
3

In
te
rn
al
pl
an
et
s

M
er
cu
ry

2.
21
×

10
26

4.
10

2.
36
×

10
8

0.
03

0.
39

1.
3

−
0.

9
–
1.
7

Ve
nu
s

4.
93
×

10
27

5.
10

6.
19
×

10
8

0.
73

0.
72

1.
2

−
0.

5
–
1.
9

Ea
rth

5.
97
×

10
27

5.
52

6.
38
×

10
8

0.
88

1.
00

1.
1

−
0.

1
–
2.
1

M
ar
s

6.
45
×

10
26

3.
80

3.
44
×

10
8

0.
10

1.
52

1.
4

0.
1
–
2.
9

A
ste

ro
id

be
lt

—
—

—
—

2.
5∗

—
—

Jo
vi
an

pl
an
et
s

Ju
pi
te
r

1.
90
×

10
30

1.
38

7.
11
×

10
9

28
0

5.
20

2.
3

2.
9
–
7.
5

Sa
tu
rn

5.
68
×

10
29

0.
72

6.
00
×

10
9

84
9.
54

3.
2

6.
3
–
12
.7

U
ra
nu
s

8.
72
×

10
28

1.
30

2.
55
×

10
9

13
19
.2

2.
4

16
.8
–
21
.6

N
ep
tu
ne

1.
03
×

10
29

1.
20

2.
74
×

10
9

15
30
.1

2.
4

27
.7
–
32
.5

Pl
ut
o

1.
31
×

10
25

2.
00

1.
20
×

10
8

0.
00
2

39
.5

1.
9

37
.6
–
41
.4

K
ui
pe
rb

el
t

—
—

—
—

30
–
10
0

—
—

∗
Th

em
ax
im

um
co
nc
en
tra

tio
n
of

as
te
ro
id
si
n
th
ea

ste
ro
id
be
lt
is
re
gi
ste

re
d
at
∼

2.
5
AU

fro
m
th
eS

un
,w

hi
le
th
ea

ste
ro
id
be
lt
co
nt
in
ue
s

fro
m

2.
1
to

4.
3A

U
(a
pp

ro
xi
m
at
el
y)
.

Ta
bl
e
2.
1:

Th
e
in
te
rn
al
co
ns
tit
ut
io
n
of

th
e
So

la
rS

ys
te
m

ac
co
rd
in
g
to

G
en
er
al
Re

la
tiv

ity
.



2.2 The Sun’s field breaking in the asteroid belt 61

1. The outer space breaking in the Sun’s field is located at the dis-
tance r= 2,3 AU from the Sun, which is near the maximum con-
centration of asteroids in the asteroid belt;

2. The internal planets of the Solar System (Mars, the Earth, Venus
and Mercury) are located inside the “bubble” of the outer space
breaking in the Sun’s field;

3. For each of the internal planets, the “bubble” of the outer space
breaking in its field is as well located inside the “bubble” of the
outer space breaking in the Sun’s field;

4. The outer space breaking in Mars’ field and the outer space break-
ing in the Earth’s field reach the asteroid belt;

5. The outer space breaking in Mars’ field is located at 2.9 AU from
the Sun. It is in the asteroid belt near the orbit of Phaeton, the
hypothetical planet which was once orbiting the Sun according
to the Titius-Bode law at r= 2.8 AU and whose distraction in the
ancient ages gave birth to the asteroid belt;

6. The “bubble” of the outer space breaking in Jupiter’s field meets,
from its internal side, that of Mars at r= 2.9 AU from the Sun
(in the case of a “parade of the planets”). It is very near 2.8 AU,
which is the theoretical orbit of Phaeton according to the Titius-
Bode law;

7. For each of the other Jovian planets (Saturn, Uranus andNeptune),
the “bubble” of the outer space breaking in its field is located in-
side the inner boundary of the Kuiper belt (the belt of the aphelia
of the comets orbiting the Sun);

8. The outer space breaking in Neptune’s field meets, from the exter-
nal side of this “bubble”, the inner boundary of the Kuiper belt;

9. For Pluto, the “bubble” of the outer space breaking in its field is
located entirely inside the Kuiper belt.

The fact that the outer space breaking in the Sun’s field is located in
the asteroid belt, near the maximum concentration of asteroids, allows
us to say: yes, the space breaking considered in this study has a real
physical sense. It is most likely that the outer space breaking in the Sun’s
field prevents the asteroids to merge into a single physical body (called
Phaeton). Alternatively, if Phaeton was an already existing planet that
was orbiting the Sun near the “space breaking orbit” in the past, the force
of gravitation of another massive cosmic body, emerging near the Solar
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System in the ancient ages (for example, another star passing near it),
has displaced Phaeton to the “space breaking orbit” near it, thus leading
to the distraction of Phaeton’s body.

Thus, we arrive at the conclusion that the internal constitution of
the Solar System is formed by the geometric structure of the Sun’s field
according to Riemannian geometry that is manifested in the laws of the
General Theory of Relativity.

2.3 The geometric sense of the outer space breaking

Let us consider the properties attributed to the curvature of the space
of a liquid sphere. To do this, we first need to calculate the components
of the chr.inv.-curvature tensor Clkij, which is the physically observable
curvature tensor.

In the space of a non-rotating liquid sphere under consideration,
Aik= 0 and, hence,Clkij =Hlkij according to the definition of Hlkij (1.81).
Therefore, we calculateClkij =Hlkij = hjmH ···mlki· from the formula for H ···mlki·
(1.78), where we substitute the respective chr.inv.-Christoffel symbols
∆i

jk (2.17–2.19) obtained for the metric of a liquid sphere (2.78). After
some algebra, we obtain that the chr.inv.-curvature tensor Clkij in the
space of a liquid sphere has the following non-zero components

C1212 = H1212 = −
κρ0

3
r2

1 − κρ0r2

3

, (2.100)

C1313 = H1313 = −
κρ0

3
r2 sin2θ

1 − κρ0r2

3

, (2.101)

C2323 = H2323 = −
κρ0

3
r4 sin2θ . (2.102)

We see that in the space of a liquid sphere the non-zero components
of the observable space curvature tensor Ciklj satisfy the condition

Ciklj = −
κρ0

3

(
hkl hij − hil hkj

)
, (2.103)

where the negative constant −κρ0
3 is the observable three-dimensional

curvature of the space in the respective two-dimensional direction. This
means that the three-dimensional space of a non-rotating liquid sphere
has a constant negative curvature.
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Calculating the observable curvature scalar C = hikCik, where the
non-zero components of Cik are

C11 = −
2κρ0

3
1

1 − κρ0r2

3

, (2.104)

C22 =
C33

sin2θ
= −

2κρ0r2

3
, (2.105)

we obtain
C = − 2κρ0 = const < 0 . (2.106)

Hence, according to (2.103), the chr.inv.-curvature tensor Ciklj is
expressed through the observable curvature scalar C as

Ciklj =
C
6

(
hkl hij − hil hkj

)
. (2.107)

Therefore, the observable three-dimensional space of a non-rotating
liquid sphere is a constant negative curvature space, and its curvature
radiusℜ is imaginary: theℜ is formulated in terms of the observable
curvature scalar C as

C = − 2κρ0 =
1
ℜ2 , (2.108)

thus we obtain, finally,
ℜ =

i
2κρ0

. (2.109)

So forth we calculate the components of the Riemann-Christoffel
curvature tensor. As is known, the tensor is determined as

Rαβγδ =
1
2

(
∂gαδ

∂xβ∂xγ
+
∂gβγ

∂xα∂xδ
−
∂gβδ

∂xα∂xγ
−
∂gαγ

∂xβ∂xδ

)
+

+ gστ
(
Γαδ,σΓβγ,τ − Γβδ,σΓαγ,τ

)
. (2.110)

According to the metric of a liquid sphere (2.78), we have gik=−hik

and Γik, j=−∆ik, j. Thus, calculating the non-zero components of Γαβ,δ,

Γ01,0 = −Γ00,1 =
κρ0r
12

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3√
1 − κρ0r2

3

, (2.111)
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Γ11,1 = −
κρ0r

3
1(

1 − κρ0r2

3

)2 , (2.112)

then substituting these into (2.110), we obtain

R0101 = −
κρ0

12

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3√
1 − κρ0r2

3

, (2.113)

R1212 =
κρ0

3
r2

1 − κρ0r2

3

= −C1212 , (2.114)

R1313 =
κρ0

3
r2 sin2θ

1 − κρ0r2

3

= −C1313 , (2.115)

R2323 =
κρ0

3
r4 sin2θ = −C2323 . (2.116)

We see that the component R0101 determining the four-dimensional
curvature in the (r-t)-direction 0101 does not satisfy the condition

Rαβγδ = Q
(
gβγgαδ − gβδgαγ

)
, Q = const, (2.117)

which is specific to four-dimensional constant curvature spaces.
As a result of the above calculations, we arrive at the following con-

clusion about the space of a non-rotating liquid sphere:
The four-dimensional space (space-time) of a non-rotating liquid
sphere is not a constant curvature space. This is in contrast to its
observable three-dimensional space, which, as proven above, is a
constant negative curvature space.

In addition, based on the obtained formulae for C1212 (2.100) and
C1313 (2.101), we also see that the observable three-dimensional curva-
ture Ciklj has a space breaking

C1212 → −∞, C1313 → −∞ (2.118)

under the condition r = rbr =
√

3/κρ0 =

√
a3/rg . By the same condition

r= rbr, according to the formula for R0101 (2.113), we have

R0101 → −∞. (2.119)
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In other words, the three-dimensional chr.inv.-curvature Ciklj and
the four-dimensional Riemannian curvature Rαβγδ have a common space
breaking under the condition r= rbr. Concerning the model of liquid
stars, this means:

Both the observable three-dimensional space curvature Ciklj and
the four-dimensional Riemannian curvature Rαβγδ in the field of
any star have a common space breaking on a spherical surface at
the distance r= rbr =

√
3/κρ0 =

√
a3/rg from the star.

This is the geometric sense of the outer space breaking in a star’s
field (according to the considered model of liquid stars).

2.4 The gravitational force acting inside a liquid star

In a space without rotation, the gravitational inertial force Fi (1.42) is
due only to g00 determined by the gravitational potential w. Let us cal-
culate this force. Since the gravitational potential is w= c2(1−

√
g00),

we have
Fi =

∂w
∂xi = −

c2

2
√
g00

∂g00

∂xi . (2.120)

According to the “internal” metric of a non-rotating liquid sphere
(2.76), we have

g00 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

, (2.121)

or, in the same metric written in the other form (2.78),

g00 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

, (2.122)

hence the force acting inside the sphere is

F1 = −
κρ0c2r

3
1(

3
√

1 − κρ0 a2

3 −

√
1 − κρ0 r2

3

) √
1 − κρ0 r2

3

, (2.123)

F1 = −
κρ0c2r

3

√
1 − κρ0r2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

, (2.124)
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or, in the other form,

F1 = −
c2rgr

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (2.125)

F1 = −
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (2.126)

This is a force of attraction: since r< a inside the sphere, F1< 0 in
it. This force is proportional to distance. Its numerical value is zero at
the centre of the sphere (where r= 0), then increases with distance to a
maximum value on the surface of the star (where r= a)

(F1)r=a = −
κρ0c2a

6
1

1 − κρ0 a2

3

= −
c2rg
2a2

1

1 −
rg
a

, (2.127)

(F1)r=a = −
κρ0c2a

6
= −

c2rg
2a2 . (2.128)

2.5 Solving the conservation law equations: pressure and density
inside the stars

Consider now the pressure p and the density ρ0 inside an ordinary liquid
star. The formula relating pressure and density in a medium is called
the equation of state. It follows as a solution to the conservation law
equations.

We have already obtained almost everything that is needed for this
formula. In §2.1, we solved the conservation law equations with the
energy-momentum tensor of an ideal liquid (2.4), which is characteristic
of the substance of liquid stars. After substituting the physically observ-
able components (2.21) of the energy-momentum tensor, the general
form (1.96–1.97) of the conservation law equations takes the particular
form (2.26, 2.27). In a non-deforming space such as the space of an
ordinary star, only the vector conservation equation remains non-zero.
It has the form (2.36). This equation is solved as (2.40)

p = Be−
ν
2 − ρ0c2. (2.129)
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Substituting the already found integration constant B (2.70) and the
function e

ν
2 (2.75) into the p (2.129), we obtain the following formula

connecting the pressure p and the density ρ0 inside an ordinary star

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

. (2.130)

Find the pressure in the near-surface layer of a star. The constant
κ= 18.6×10−28 cm/gram is a very small value, while ρ0 = 1.4 gram/cm3

for the Sun (yellow dwarf) is much smaller than the ρ0 for larger stars.
Therefore, κρ0a2 is much smaller than 1 even for very large stars. For
example, Betelgeuse, which is one of the largest red super-giants, has
M = 4.0 × 1034 gram, a= 7.0 × 1013 cm and ρ0 = 2.8 × 10−8 gram/cm3.
In this case, we have κρ0a2 = 2.6 × 10−7. As a result, we have√

1 −
κρ0r2

3
≈ 1 −

κρ0r2

6
,

√
1 −
κρ0a2

3
≈ 1 −

κρ0a2

6
. (2.131)

After some algebra, we obtain an approximate formula for the pres-
sure p inside an ordinary star, which has the form

p ≈
κρ2

0c2
(
a2 − r2

)
12

=
ρ0GM

2a2

(
a2 − r2

a

)
. (2.132)

Let h= a− r be the distance from the surface of the sphere to the
point of measurement. Since h≪ r in the near-surface layer, we have

a2 − r2 = (a − r) (a + r) = h (2a + h) ≈ 2ah . (2.133)

Thus, from (2.132), we obtain the ordinary formula for the pressure
in the near-surface layer

p = ρ0gh , (2.134)

where GM
a2 = g is the free-fall acceleration in the near-surface layer.

The pressure p0 = pr=0 in the central region of an ordinary star can
easily be found by assuming r= 0 in the general formula (2.130)

p0 = ρ0c2
1 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 − 1
≈
κρ2

0 a2c2

12
. (2.135)
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Since κ= 8πG
c2 , we can also re-write this formula in the form

p0 ≈
3GM2

8πa4 . (2.136)

Table 2.2 gives the numerical values of the central pressure p0,
which we have calculated according to the above formula for typical
members of the known families of ordinary stars.

We see that, according to our model of liquid stars, the pressure
in the central region of Betelgeuse, which is one of the largest stars, is
only 0.53 atmosphere (1 atm= 106 dynes/cm2). The smaller the star, the
higher the pressure inside it. The pressure in the central region of the
white supergiant Rigel, the radius of which is 14.6 times smaller than
Betelgeuse’s radius, is 1.7× 104 atm. Sun-like dwarfs have a central
pressure of ∼ 109 atm. However, the central pressure in white dwarfs
reaches 1017 atm.

Note that the temperature of a condensed matter does not depend on
the pressure in it. The incompressible liquid of stars is a kind of con-
densedmatter. Therefore, the temperature inside stars depends solely on
the formula of the particular mechanism that produces stellar energy.

This remark is important for understanding the physical conditions
inside stars and sources of stellar energy.

Object Mass Radius Density Pressure
M, gram a, cm ρ0 , gram/cm3 p0 , dynes/cm

2

Red
super-giant∗ 4.0 × 1034 7.0 × 1013 2.8 × 10−8 5.3 × 105

White
super-giant† 3.4 × 1034 4.8 × 1012 7.3 × 10−5 1.7 × 1010

Sun 2.0 × 1033 7.0 × 1010 1.4 1.3 × 1015

Jupiter
(proto-star) 1.9 × 1030 7.1 × 109 1.3 1.2 × 1015

Red dwarfs 6.7 × 1032 2.3 × 1010 13 1.3 × 1016

Brown dwarf ‡ 4.1 × 1031 7.0 × 109 29 5.7 × 1015

White dwarf § 2.0 × 1033 6.4 × 108 1.8 × 106 1.9 × 1023

∗Betelgeuse. †Rigel. ‡Corot-Exo-3. §Sirius B.

Table 2.2: The main characteristics of ordinary stars.
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2.6 The stellar energymechanism according to themodel of liquid
stars and the mass-luminosity relation

Let us turn to the dimensionless characteristics of stars, which are ex-
pressed in fractions of the corresponding characteristics of the Sun

M̄ =
M
M⊙
, ā =

a
a⊙
, ρ̄ =

ρ

ρ⊙
, . . . etc., (2.137)

where M̄ = ρ̄0 ā3 for a liquid sphere*. For the luminosity L of a star,
which is the energy radiated from the entire surface of the star to the
cosmos per one second, we have

L̄ =
L

L⊙
. (2.138)

With the above dimensionless representation of the characteristics
of stars, the analysis is greatly simplified. This is due to the fact that only
significant factors remain in the formulae, and all constant coefficients
disappear.

Let us study what mechanism for the production of stellar energy
can now be proposed based on General Relativity, so that its productiv-
ity satisfies the observed luminosity of stars. In other words, to be a real
mechanism generating energy in stars, the calculated energy production
of the proposed mechanism must correspond to the mass-luminosity
relation, which is the main empirical relation of observational astro-
physics.

Consider the space metric of a liquid star. As we already know, the
space of a liquid star has two primary regions, described by different
space metrics:

1. The internal space metric (metric of a liquid sphere) is valid from
the centre of the star to its surface, except for a singular spheri-
cal surface of the tiny radius rg = 2GM

c2 around the centre of the
star (see below). The internal metric is also valid on a singular
spherical surface of the radius rbr =

√
a3/rg =

√
3/κρ0 in the outer

cosmos: on this spherical surface around the star in the outer cos-
mos, the star’s gravitational field has a space breaking produced
due to its internal metric;

*A liquid star has the same density ρ= ρ0 = const throughout its volume, so its mass
is M = 4

3 πρ0 a3. In fractions of the Sun’s mass, it is M̄ = ρ̄0 ā3.
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2. The external space metric (mass-point metric) is valid from the
surface of the star to infinity, except for a singular spherical surface
of the radius rbr =

√
a3/rg =

√
3/κρ0 around the star in the outer

cosmos (see above). The external metric is also valid deep inside
the star, on a singular spherical surface of the tiny radius rg = 2GM

c2

from the centre of the star: on this spherical surface deep inside
the star, the star’s gravitational field has a space breaking produced
due to its external metric.

As was shown in §2.3, the outer space breaking in the outer cosmos
only implies a breaking of the space curvature. In addition, it can be
shown based on §2.3 that this does not lead to an anomaly in the acting
gravitational force.

However, now we will show that the gravitational force has a very
strong anomaly on the singular spherical surface of the inner space
breaking. Indeed, inside a star at the Hilbert radius rg from its centre,
the external space metric is valid (and the internal metric is valid both
inside the Hilbert radius and outside it). Therefore, all calculations for
the inner singular surface are performed with the external space metric
(mass-point metric) despite the fact that this singular surface is located
deep inside the star near its centre.

According to the fundamental metric tensor of the external metric of
a liquid star (1.1), the physically observable chr.inv.-vector of the grav-
itational force Fi has the form (1.4). On the singular spherical surface
of the Hilbert radius r= rg, deep inside the star, the observed force of
gravity (1.4) reaches an infinitely large value

F1 = −
c2rg
2r2

1

1 −
rg
r

→ −∞ , (2.139)

which means that the gravitational field of the star has a space breaking
on this surface.

Due to its infinitely large magnitude, the force of gravity there, by
definition, is sufficient to transfer the necessary kinetic energy to the
light atomic nuclei of stellar substance in order to start the process of
thermonuclear fusion. The energy released by thermonuclear fusion is
the energy radiated by stars.

The singular spherical surface of the Hilbert radius rg = 2GM
c2 sur-

rounds the geometric centre of each star. This means that at the centre
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of each star there is a luminous “inner sun”. This “inner sun” is tiny
compared to the size of the star. For example, the Hilbert radius of the
Sun is only 2.9 km, while the physical radius of the Sun is 700,000 km.
Thus, the thermonuclear fusion zone is not only a surface layer of the
radius rg, but the entire volume of the “inner sun”. In other words, the
“inner sun” of the radius rg is the very place where, as a result of ther-
monuclear fusion, helium is formed from hydrogen, which provides the
luminosity of the star with energy. Further, the energy is transferred
from the “inner sun” of the star to its surface due to thermal conduc-
tion (the usual heat transfer in liquids); the transmitted energy is then
radiated from the surface of the star into the outer cosmos.

Since the “inner sun” of a star has a radius equal to the Hilbert radius
rg for the star, we will further refer to it as the luminous Hilbert core, or
merely — the Hilbert core.

The luminosity of a star shining due to the proposed mechanism of
stellar energy depends only on two factors: the volume V = 4

3 πr3
g of the

Hilbert core, in which stellar energy is released, and also on the density
ρg of stellar substance in it (which may differ from the density ρ0 of the
main mass of the star, see the explanation below). This means

L̄ = ρ̄g r̄3
g = ρ̄g M̄3. (2.140)

Recall that the proposed mechanism of stellar energy does not de-
pend on the pressure in the central region of a star: the super-strong
force of gravity (2.139) acting in the central region provides the neces-
sary conditions for thermonuclear fusion. But its productivity depends
on the density of stellar substance in the Hilbert core.

Let us calculate such a density of stellar substance in the Hilbert
core, with which the proposed mechanism of stellar energy satisfies the
observed mass-luminosity relation.

We start from the facts of observational astronomy. It shows the
mass-luminosity relation L̄= M̄2.6 for the stars, the masses of which are
in the range between 0.2M⊙ and 0.5M⊙, L̄= M̄4.5 for the star masses
between 0.5M⊙ and 2M⊙, L̄= M̄3.6 in the range between 2M⊙ and 10M⊙,
and also L̄= M̄ for the stars much heavier than 10M⊙. See Table 2.3.

The above empirical data from observational astronomy are consis-
tent with our theoretical formula for the luminosity of stars L (2.140),
if the stellar substance of the Hilbert core (in which stellar energy is
released) has a density as shown in Table 2.4.



72 Chapter 2 Ordinary Stars and the Sun

Observed mass-luminosity Scale of the stellar masses, in fractions
relation L̄= M̄x of the Sun’s mass M⊙

L̄ = M̄2.6 M̄ = 0.2 . . . 0.5
L̄ = M̄4.5 M̄ = 0.5 . . . 2
L̄ = M̄3.6 M̄ = 2 . . . 10
L̄ = M̄ M̄ > 10

Table 2.3: The observed mass-luminosity relation L̄= M̄x.

Density of the Hilbert Scale of the stellar masses, in fractions
core ρ̄g of the Sun’s mass M⊙

ρ̄g = M̄0.4 M̄ = 0.2 . . . 0.5
ρ̄g = M̄1.5 M̄ = 0.5 . . . 2
ρ̄g = M̄0.6 M̄ = 2 . . . 10
ρ̄g = M̄−2 M̄ > 10

Table 2.4: The density of stellar substance inside the Hilbert core.

Object Mass M̄ Density ρ̄0 Ratio ρ̄g/ρ̄0

Betelgeuse (red super-giant) 20 2.0 × 10−8 1.3 × 109

Rigel (white super-giant) 17 5.2 × 10−5 6.7 × 107

Jupiter (proto-star) 9.5 × 10−4 0.9 0.069
Red dwarfs 0.34 9 0.072
Brown dwarf (Corot-Exo-3) 0.021 21 0.010
White dwarf (Sirius B) 1 1.3 × 106 7.7 × 10−7

Table 2.5: The ratio ρ̄g/ρ̄0 for some typical stars.
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Based on the function ρ̄g = M̄y according to Table 2.4, we can find
out how dense the Hilbert core of a star is compared to the main sub-
stance of the star (known from astronomical observations). Thus, we
calculate the following ratio for stars

ρ̄g

ρ̄0

=
M̄y

ρ̄0

. (2.141)

The calculation results are shown in Table 2.5. Based on the calcu-
lated ratio ρ̄g/ρ̄0 shown in Table 2.5, we arrive at the following conclu-
sion. The luminous Hilbert core of a star — its “inner sun” — can have
a density different from that of the main substance of the star. It depends
on the particular type of star. For example, the Hilbert core of a giant or
supergiant is many orders of magnitude denser than the main substance
of these stars. The Hilbert core of a star similar to the Sun has about
the same density as the star itself. As for dwarf stars, the Hilbert core
of such a star is more rarefied than the main substance of the star. The
greater the density of a dwarf star, the lower the density of its core com-
pared to the density of the entire star. In a star such as a white dwarf, the
Hilbert core is many orders of magnitude more rarefied than the main
substance of the star.

Accordingly, the following question arises. All physical bodies have
masses, so every body has a core of the Hilbert radius. Not only stars,
but also planets and even individual elementary particles should have
such a core. But why do not they shine like stars?

The answer comes from the state of the substance of which these
physical bodies are composed. Stars are made up of liquid substance,
consisting mainly of light chemical elements such as hydrogen and he-
lium. Therefore, thermonuclear fusion of such light atomic nuclei is
possible in the Hilbert core of every star. Due to the fact that stellar
substance is liquid, more and more “nuclear fuel” is delivered to the lu-
minous Hilbert core of a star from its other regions, thereby supporting
combustion inside the “nuclear boiler”, until the moment when all the
nuclear fuel of the star runs out. Another thing are planets. They consist
mainly of heavy elements with negligible hydrogen content. Therefore,
as soon as the “nuclear boiler” of the Hilbert core has used up the entire
supply of hydrogen fuel in the central region of a planet, it ceases to
produce energy, but continues to exist in the centre of the planet, in a
latent state.
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Astronomers know that the energy radiated by Jupiter exceeds the
solar energy absorbed by the entire surface of this planet. The same is
true for Saturn. This means, according to our theory, that the Hilbert
core of each of these planets is still converting hydrogen into helium,
thereby releasing nuclear energy.

Concerning individual elementary particles, such as protons, neu-
rons and electrons: as you know, they are stable and indifferent for a
long time until they interact with other particles. In fact, this means that
the Hilbert core of the proton (as well as the neutron and the electron)
does not interact with the main mass of the particle. Why is this happen-
ing? One can only guess that either the substance inside the particles is
in a super-solid state, or there is a layer of very strong vacuum between
the nucleus and the rest of the particle’s mass. On the other hand, the
Hilbert core of the proton (and the core of the neutron) has a tiny radius
(rg)p =

2Gmp

c2 = 2.48 × 10−52 cm, while the Hilbert core of the electron
has an even smaller radius (rg)e =

2Gme
c2 = 1.35 × 10−55 cm. As noted by

Albert Einstein, the geometric laws (space-time geometry) of General
Relativity are probably true up to the scale of elementary particles. On
a subnuclear scale, another geometry may work, asserting its own laws,
different from the laws of General Relativity. Therefore, we cannot now
say something definite about the physical conditions and processes in-
side elementary particles.

But as for theworld of ordinary stars and planets, experimental phys-
ics and observational astronomy show that Einstein’s theory is correct
and works on these scales with high accuracy. Therefore, all our conclu-
sions about the internal constitution of stars and about the mechanism
of energy production in stars must be taken into account.

The specific details of the proposed mechanism of stellar energy is
a separate topic that is outside the scope of this book (which is mainly
about the internal constitution of stars).

2.7 Conclusion

All theoretical conclusions about the source of stellar energy and about
the internal constitution of stars presented in this Chapter were obtained
in the framework of our model of liquid stars. Our model is based on the
concept of stars as space-time objects according to General Relativity.
Below we list the most important conclusions that we thus arrived at:
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1. The field of each star has an outer space breaking on a spherical
surface around the star. The “bubble” of the outer space breaking
in the field of each star has a radius of

rbr =

√
3
κρ0
=

√
a3

rg
, (2.142)

which exceeds the physical radius a of the star by many orders
of magnitude. The observable three-dimensional space curvature
Ciklj and the four-dimensional Riemannian curvature Rαβγδ have a
common space breaking on this surface. The outer space breaking
prevents the formation of nearby substance into a planet in this
orbit. The outer space breaking in the Sun’s field is located in the
asteroid belt, near the maximum concentration of asteroids;

2. The field of each star has an inner space breaking, deep inside the
physical body of the star, on a surface of the Hilbert radius

rg =
2GM

c2 (2.143)

from its centre. This means that there is a small core separated
by a singular surface from the main substance of the star. On the
surface of this core, the force of gravity reaches an infinitely large
value. By definition, the super-strong force of gravity is sufficient
to transfer the necessary kinetic energy to the light atomic nuclei
of stellar substance in order for thermonuclear fusion to begin.
Thus, nuclear energy is released. Liquid “nuclear fuel” is deliv-
ered from other regions of the star to the core, maintaining com-
bustion inside this “nuclear boiler”;

3. Every star has a mass. Therefore, a luminous core of the Hilbert
radius rg = 2GM

c2 — an “inner sun” — exists at the centre of eve-
ry star. We call it the Hilbert core. This is where thermonuclear
fusion produces helium from hydrogen, thus making stars lumi-
nous. The energy is then transferred from the “inner sun” of the
star to its surface by thermal conduction (the usual heat transfer
in liquids) to then be radiated into the cosmos;

4. The Hilbert core is tiny compared to the size of stars. For example,
for the Sun, rg = 2.9 km;

5. The observed mass-luminosity relation of stars is satisfied if the
density of the Hilbert core depends on the particular type of star.
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The Hilbert core of a giant or supergiant must be many orders
of magnitude denser than the main substance of these stars. The
Hilbert core of a star like the Sun should be about the same density
as the star itself. In a dwarf star, the Hilbert core must be more
rarefied than the main substance of the star (the core of a white
dwarf must be extremely rarefied);

6. Every planet has a mass. Therefore, the Hilbert core exists at the
centre of every planet. But planets are made upmostly of heavy el-
ements with a small amount of hydrogen. As soon as the “nuclear
boiler” in the Hilbert core of a planet uses up the entire supply of
hydrogen fuel in its central region, the “nuclear boiler” will cease
to produce energy, but will still exist in the centre of the planet, in
a latent state.
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3.1 Problem statement. The internal space metric of an ordinary
non-rotating star

To understand the description of an ordinary star, recall that in §2.1 we
reproduced the derivation of the true space metric of a liquid sphere,
originally obtained by L. Borissova [11, 12], following the “historical
path” as Schwarzschild did it. Namely, — we considered the metric
of a spherically symmetric space in a general form, then applied the
particular conditions characteristic of a sphere filledwith an ideal liquid.
The only difference from Schwarzschild’s derivation was that we did
not assume any artificial limitations. When following this derivation,
we obtained the observable characteristics of the space in the implicit
form, as an auxiliary result. Then, using the obtained results, we have
deduced the space metric of a liquid sphere in the final form.

Now, we express the observable characteristics of the space in the
explicit form, through the components of the fundamental metric tensor
of the metric obtained in Chapter 2. So, the true space metric of a liquid
sphere obtained by L. Borissova [11, 12] has the form (1.8)

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (3.1)

Let us calculate the chr.inv.-characteristics of the space, according
to their definitions given in §1.3 and taking into account the respective
components of the fundamental metric tensor according to the space
metric (3.1).
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The chr.inv.-metric tensor hik of the metric (3.1) has the following
non-zero components

h11 =
1

1 −
r2rg
a3

, h22 = r2, h33 = r2 sin2θ , (3.2)

h11 = 1 −
r2rg
a3 , h22 =

1
r2 , h33 =

1
r2 sin2θ

, (3.3)

and, hence, its determinant h= det ∥hik∥ and the non-zero spatial deriva-
tives of ln

√
h have the form

h = det ∥hik∥ =
r4 sin2θ

1 −
r2rg
a3

, (3.4)

∗∂ ln
√

h
∂r

=
2
r
+

rgr
a3

1

1 −
r2rg
a3

,
∗∂ ln
√

h
∂θ

= cot θ . (3.5)

After some algebra according to the chronometrically invariant for-
malism (see §1.3), we obtain the following. The chr.inv.-vector of the
gravitational inertial force acting in the space has the form

F1 = −
c2rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

, (3.6)

F1 = −
c2rg
a3

r
√

1 −
rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, (3.7)

where r< a since all of this is inside the sphere. Therefore, F1< 0, i.e.,
this is a force of attraction.

Calculate the non-zero components of the chr.inv.-Christoffel sym-
bols. After some algebra, we obtain

∆1
11 =

rgr
a3

1

1 −
rg r2

a3

, ∆1
22 = −

∆1
33

sin2θ
= −r

1 − rgr2

a3

 , (3.8)

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ , ∆3
23 = cot θ . (3.9)
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Based on the above, we calculate the non-zero components of the
chr.inv.-tensor of the observable three-dimensional curvature Ciklj and
of its contraction Cik. We obtain

C1212 =
C1313

sin2θ
= −

rgr2

a3

1

1 −
rg r2

a3

, C2323 = −
rgr4

a3 sin2θ , (3.10)

C11 = −
2rg
a3

1

1 −
rg r2

a3

, C22 =
C33

sin2θ
= −

2rgr2

a3 . (3.11)

So, with the obtained physically observable chr.inv.characteristics
of the internal space of a liquid sphere, we now have everything we
need to consider Einstein’s equations in the internal field of an ordinary
non-rotating star.

3.2 Einstein’s equations in the internal field of an ordinary non-
rotating star

Let us consider Einstein’s field equations in the internal space of a liquid
sphere, the metric of which is (3.1).

As is known, the energy-momentum tensor of an ideal liquid has the
following form (2.4)

T αβ =
(
ρ0 +

p
c2

)
UαU β −

p
c2 g

αβ, (3.12)

where ρ0 = const is the density of the liquid, p is the pressure inside
the liquid, and Uα is the four-dimensional velocity of the liquid flow
with respect to the observer (the Uα is a unit four-dimensional vector,
therefore UαUα= 1). The chr.inv.-projections of the energy-momentum
tensor have the form (2.21)

ρ =
T00

g00
= ρ0 , J i =

cT i
0

√
g00
= 0 , U ik = c2T ik = phik, (3.13)

where ρ is the observable mass density, J i is the observable momentum
density, and U ik is the observable stress tensor.

Using the above formulae and taking into account the fact that the
space of the liquid sphere under consideration does not rotate or deform
(Aik= 0, Dik= 0), we obtain the chr.inv.-Einstein equations (1.92–1.94)



80 Chapter 3 Description of Ordinary Stars

in the simplified form

∗∇j F j −
1
c2 Fj F j = −

κ

2

(
ρ0c2 + U

)
, (3.14)

J i = 0 , (3.15)

1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρ0c2hik + 2Uik − Uhik

)
, (3.16)

where ∗∇i is the chr.inv.-derivative symbol, Uik = phik and U = 3p.
Substitute the formulae for Fi, Cik and hik calculated for the metric

(3.1) into the above Einstein field equations. We obtain that only two
equations remain non-zero

3c2rg
a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

=
κ

2

(
ρ0c2 + 3p

)
, (3.17)

3c2rg
a3

2
√

1 −
rg
a −

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

=
κ

2

(
ρ0c2 − p

)
. (3.18)

Multiplying (3.18) by 3 then summing up the product with (3.17),
we obtain

κρ0c2 =
3c2rg

a3 . (3.19)

Substituting this result back into (3.18), we obtain the equation of
state* for the liquid substance of ordinary stars

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

. (3.20)

This formula completely coincides with the formula for the pressure
p (2.130), which we have obtained in Chapter 2 as a result of following
Schwarzschild’s derivation.

*The formula connecting pressure and density inside the medium.
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The above formula for the pressure p can also be obtained from the
conservation equations (2.26, 2.27). Since the space metric (3.1) does
not deform (this means that hik , f (t) and, hence, Dik= 0), the chr.inv.-
scalar conservation equation (2.26) vanishes. Only the chr.inv.-vector
conservation equation (2.27) remains non-zero

∗∇i
(
phik

)
−

(
ρ0 +

p
c2

)
F k = 0 . (3.21)

Here ∗∇i hik= 0 is true always for hik, as well as ∇σ gασ= 0 for the
fundamental metric tensor. Therefore and since the chr.inv.-derivation
operator with respect to the spatial coordinates coincides with the ordi-
nary spatial derivation operator in a space without rotation, the remain-
ing conservation equation (3.21) takes the form

hik ∂p
∂xi −

(
ρ0 +

p
c2

)
F k = 0 . (3.22)

Substituting the formulae for h11 and F1, which we have obtained
for the metric (3.1), we transform (3.22) into the differential equation

dp
ρ0c2 + p

= −
rg
a3

rdr(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

. (3.23)

This equation can be re-written in the form

d ln
(
ρ0c2 + p

)
= −d ln

3
√

1 −
rg
a
−

√
1 −

rgr2

a3

 , (3.24)

which is easy to integrate. After integration, we have

p + ρ0c2 =
Q

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, (3.25)

where the integration constant Q can be obtained from the obvious con-
dition p= 0 on the star’s surface (where r= a). Then

Q = 2ρ0c2

√
1 −

rg
a

(3.26)
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and, thus, we obtain the solution

p + ρ0c2 = 2ρ0c2

√
1 −

rg
a

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (3.27)

It is easy to see that this solution leads to the same formula for p as
(3.20) that we have obtained from the Einstein field equations.

3.3 The internal space metric of an ordinary rotating star

Let us now consider the metric of an ordinary liquid star (3.1) with the
only difference that the star rotates with an angular velocity ω along its
equatorial axis — the ϕ axis in the spherical coordinates r, θ, ϕ. In this
case, the metric of a non-rotating liquid sphere (3.1) takes the form

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 +

+
2ωr2 cos θ

c
cdt dφ −

dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (3.28)

Note that we are still considering ordinary stars. This is what we
call such stars, the Hilbert radius of which is much smaller than their
physical radius.

According to the metric (3.28) that we have obtained for an ordinary
rotating space, the linear velocity with which the space rotates is

v1 = v2 = 0 , v3 = −
2ωr2 cos θ

3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (3.29)

As is known from observational astronomy, most stars rotate with
linear velocities v < 420 km/sec. Hence, we have v2/c2 < 2× 10−6: most
stars rotate slowly compared to the velocity of light.

According to the space metric of an ordinary slowly rotating star
(3.28), represented as a rotating liquid sphere, we have

v2 = hikvi vk = h33v3 v3 , h33 = −g33 =
1

r2 sin2θ
. (3.30)
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Thus, v2/c2 in the space metric (3.28) has the form

v2

c2 =
4ω2r2 cot2θ

c2

(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

)2 . (3.31)

Expanding the radicands of this formula into series, after elemen-
tary transformations we obtain

v2

c2 =
ω2r2 cot2θ

c2

1 + 3rg
2a
−

rgr2

2a3

 . (3.32)

Further, we will neglect the higher-order terms of the series, since
they are small due to rg≪ a for ordinary stars. Therefore,

v3 = ωr2 cos θ ,
v2

c2 =
v23
c2 =

ω2r4 cos2θ

c2 . (3.33)

The non-zero components of the chr.inv.-metric tensor hik of the
metric (3.28) have the form

h11 =
1

h11 =
1

1 −
r2rg
a3

, h22 =
1

h22 = r2, (3.34)

h33 =
1

h33 = r2 sin2θ

(
1 +
ω2r2 cot2θ

c2

)
, (3.35)

while the determinant h= det ∥hik∥ of the chr.inv.-metric tensor hik and
the non-zero spatial derivatives of ln

√
h have the form

h = det ∥hik∥ =
r4 sin2θ

1 −
r2rg
a3

(
1 +
ω2r2 cot2θ

c2

)
, (3.36)

∗∂ ln
√

h
∂r

=
2
r
+

rgr
a3

1

1 −
r2rg
a3

, (3.37)

∗∂ ln
√

h
∂θ

= cot θ

1 − ω2r2

c2 sin2θ

1

1 + ω
2r2 cot2θ

c2

 . (3.38)

Following the chronometrically invariant formalism (see §1.3), we
also obtain formulae for the other chr.inv.-characteristics of the space.
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The chr.inv.-vector of the gravitational inertial force Fi acting in the
space takes the form

F1 = −
c2rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

< 0 , (3.39)

F1 = −
c2rg
a3

r
√

1 −
rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

< 0 , (3.40)

which is a non-Newtonian force of attraction acting inside the liquid
sphere (ordinary star). The approximate formula for the force is

F1 = F1 ≈ −
c2rgr
2a3 . (3.41)

The chr.inv.-tensor Aik of the angular velocity with which the space
rotates has the following non-zero components

A13 =
2ωr cos θ

3
√

1 −
rg
a −

√
1 −

rg r2

a3

× (3.42)

×


rgr2

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

− 1

 , (3.43)

A13 =

2ω
(
1 −

rg r2

a3

)
cot θ(

3
√

1 −
rg
a −

√
1 −

rg r2

a3

)
r sin θ

(
1 + ω

2r2 cot2θ
c2

) × (3.44)

×


rgr2

a3

1(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

− 1

 , (3.45)

A23 =
ωr2 sin θ

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, (3.46)
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A23 =
ω(

3
√

1 −
rg
a −

√
1 −

rg r2

a3

)
r2 sin θ

(
1 + ω

2r2 cot2θ
c2

) , (3.47)

the approximate formulae for which have the form

A13 = −ωr cos θ
1 + 3rg

4a
−

rgr2

a3

 , (3.48)

A13 = −
ω cot θ
r sin θ

1 + 3rg
4a
−

2rgr2

a3 −
ω2r2 cot2θ

c2

 , (3.49)

A23 =
ωr2 sin θ

2

1 + 3rg
4a
−

rgr2

4a3

 , (3.50)

A23 =
ω

2r2 sin θ

1 + 3rg
4a
−

rgr2

4a3 −
ω2r2 cot2θ

c2

 . (3.51)

The non-zero chr.inv.-Christoffel symbols for the metric, with the
high-order term ω4r4/c4 withheld, have the form

∆1
11 =

rgr
a3

1

1 −
rg r2

a3

, ∆1
22 = −r

1 − rgr2

a3

 , (3.52)

∆1
33 = −r sin2θ

(
1 +

2ω2r2 cot2θ
c2

) 1 − rgr2

a3

 , (3.53)

∆2
12 =

1
r
, ∆3

13 =
1
r

(
1 +
ω2r2 cot2θ

c2

)
, (3.54)

∆2
33 = − sin θ cos θ

(
1 −
ω2r2

c2

)
, ∆3

23 = cot θ
(
1 −

ω2r2

c2 sin2θ

)
. (3.55)

For these components, neglecting r2
g/a

2 and the product of ω2r2/c2

by rg/a, we obtain the approximate formulae

∆1
11 =

rgr
a3 , ∆1

22 = −r
1 − rgr2

a3

 , (3.56)

∆1
33 = −r sin2θ

1 + 2ω2r2 cot2θ
c2 −

rgr2

a3

 , (3.57)
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∆2
12 =

1
r
, ∆3

13 =
1
r

(
1 +
ω2r2 cot2θ

c2

)
, (3.58)

∆2
33 = − sin θ cos θ

(
1 −
ω2r2

c2

)
, ∆3

23 = cot θ
(
1 −

ω2r2

c2 sin2θ

)
, (3.59)

as well as the non-zero components of the chr.inv.-curvature tensor Ciklj

along with the non-zero components of its contraction Cik

C1212 = −
rgr2

a3

1

1 −
rg r2

a3

, (3.60)

C1313 = r2 sin2θ

3ω2 cot2θ
c2 −

rg
a3

1 + ω
2r2 cot2θ

c2

1 −
rg r2

a3

 , (3.61)

C2323 =

[
−

rgr2

a3

(
1 +
ω2r2 cot2θ

c2

)
+

+
ω2r2

c2

(
cot2θ +

1
sin4θ

)]
r2 sin2θ , (3.62)

C11 = −
2rg
a3

1

1 −
rg r2

a3

+
3ω2 cot2θ

c2 , (3.63)

C22 = −
2rgr2

a3 +
ω2r2 cot2θ

c2

(
cot2θ +

1
sin4θ

)
, (3.64)

C33 =

[
−

2rg
a3

(
1 +
ω2r2 cot2θ

c2

)
+

1 − rgr2

a3

 ×
×

3ω2 cot2θ
c2 +

ω2

c2

(
cot2θ +

1
sin4θ

)]
r2 sin2θ . (3.65)

Since rg/a≪ 1 andω2r2/c2≪ 1 for ordinary stars, we neglect r2
g/a

2

and the product of ω2r2/c2 by rg/a. As a result, we obtain

C1212 = −
rgr2

a3 , C1313 = r2 sin2θ

(
3ω2 cot2θ

c2 −
rg
a3

)
, (3.66)

C2323 =

[
−

rgr2

a3 +
ω2r2

c2

(
cot2θ +

1
sin4θ

)]
r2 sin2θ , (3.67)



3.4 Einstein’s equations for a rotating star 87

C11 = −
2rg
a3 +

3ω2 cot2θ
c2 , (3.68)

C22 = −
2rgr2

a3 +
ω2r2 cot2θ

c2

(
cot2θ +

1
sin4θ

)
, (3.69)

C33 =

(
−

2rg
a3 +

4ω2 cot2θ
c2 +

ω2

c2 sin4θ

)
r2 sin2θ . (3.70)

3.4 Einstein’s equations in the internal field of an ordinary rotat-
ing star

Let us now solve Einstein’s field equations in the internal space of a
rotating ordinary star, i.e., in accordance with the space metric (3.28).
In the absence of rotation (Aik= 0), this problem was considered earlier
in §3.2 for a non-rotating ordinary star.

Consider the chr.inv.-Einstein equations (1.92–1.94) in the space of
a liquid sphere that rotates (Aik, 0), but does not deform (Dik= 0). In
this case, the mentioned chr.inv.-Einstein equations take the form

Ajl Alj + ∗∇j F j −
1
c2 Fj F j = −

κ

2

(
ρc2 + U

)
, (3.71)

∗∇j Aij −
2
c2 Fj Aij = −κ Ji, (3.72)

2Aij A· jk· +
1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
, (3.73)

where ∗∇i is the chr.inv.-derivative symbol, while ρ, J i and U ik are the
physically observable chr.inv.-projections of the energy-momentum ten-
sor Tαβ of the liquid that fills the space.

With the obtained components of Aik and Fi (see §3.2 for detail), the
chr.inv.-Einstein equations (3.71–3.73) take the form

2ω2 cot2θ
1 + 3rg

2a
−

3rgr2

a3 −
ω2r2 cot2θ

c2

 +
+
ω2

2

1 + 3rg
2a
−

rgr2

2a3 −
ω2r2 cot2θ

c2

 + 3c2rg
2a3 =

=
κ

2

(
ρc2 + U

)
, (3.74)
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ω cot θ
r2 sin θ

1 + 3rg
4a
−

4rgr2

a3 −
3ω2r2 cot2θ

c2

 = −κ J3, (3.75)

2ω2 cot2θ
1 + 3rg

2a
−

2rgr2

a3 −
ω2r2 cot2θ

c2

 + 3c2rg
2a3 =

=
κ

2

(ρc2 − U
) 1 − rgr2

a3

 + 2U11

 , (3.76)

ω2r cot θ
1 + 3rg

2a
−

5rgr2

4a3 −
ω2r2 cot2θ

c2

 = −κU12 , (3.77)

ω2r2

2

1 + 3rg
2a
−

rgr2

2a3 −
ω2r2 cot2θ

c2

 + 3c2rgr2

2a3 =

=
κ

2

[(
ρc2 − U

)
r2 + 2U22

]
, (3.78)2ω2 cot2θ

1 + 3rg
2a
−

3rgr2

a3

 + ω2

2

1 + 3rg
2a
−

rgr2

2a3

 ×
× r2 sin2θ +

3c2rgr2 sin2θ

a3 =

=
κ

2

[(
ρc2 − U

)
r2 sin2θ + 2U33

]
. (3.79)

In the framework of our approximation (rg/a≪ 1 and ω2r2/c2≪ 1)
specific for ordinary stars, we neglect r2

g/a
2 and the product of ω2r2/c2

by rg/a. Thus, the chr.inv.-Einstein equations become simplified

2ω2 cot2θ +
ω2

2
=
κ

2

(
ρc2 + U

)
, (3.80)

ω cot θ
r2 sin θ

= −κ J3, (3.81)

2ω2 cot2θ −
κ

2

(
ρc2 − U

)
= κU1

1 , (3.82)

ω2r cot θ = −κU12 , (3.83)

ω2

2
−
κ

2

(
ρc2 − U

)
= κU2

2 , (3.84)

2ω2 cot2θ +
ω2

2
−
κ

2

(
ρc2 − U

)
= κU3

3 . (3.85)
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Summing up (3.82), (3.84), (3.85) and taking U1
1 +U2

2 +U3
3 =U

into account, we have

4ω2 cot2θ + ω2 =
κ

2

(
3ρc2 − U

)
. (3.86)

Summing up the above result (3.86) and (3.80), we obtain

3ω2 cot2θ +
3ω2

4
= κρc2. (3.87)

Multiplying (3.80) by 3, then subtracting it from (3.86), we obtain

ω2 cot2θ +
ω2

4
= κU. (3.88)

As is seen from (3.87) and (3.88), we have

ρc2 = 3U. (3.89)

The energy-momentum tensor Tαβ must satisfy the chr.inv.-conserv-
ation equations (1.96, 1.97). In a space that does not deform they are

∗∂ρ

∂t
+ ∗∇i Ji −

2
c2 Fi Ji = 0 , (3.90)

∗∂Jk

∂t
+ 2A·ki· J

i + ∗∇i U ik −
1
c2 Fi U ik − ρF k = 0 . (3.91)

As follows from the chr.inv.-scalar conservation equation (3.90),
∗∂ρ

∂t
= 0 =⇒ ρ = const. (3.92)

The vector chr.inv.-conservation equation (3.91) with the index i= 3
is satisfied identically. The equations with i= 1 and i= 2 take the form

2A·13· J
3 +
∂U11

∂r
+
∂U12

∂θ
+
∂ ln
√

h
∂θ

U12 + ∆1
22U22 +

+ ∆1
33U33 +

∆1
11 +
∂ ln
√

h
∂r

−
1
c2 F1

 U11 = ρF1, (3.93)

2A·23· J
3 +
∂U12

∂r
+
∂U22

∂θ
+
∂ ln
√

h
∂θ

U22 +

+ ∆2
33U33 +

2∆2
12 +
∂ ln
√

h
∂r

−
1
c2 F1

 U12 = 0 . (3.94)



90 Chapter 3 Description of Ordinary Stars

In the tensor chr.inv.-Einstein equations (3.82–3.85), we take into
account that ρc2 = 3U (3.89) and the formula for U (3.88). We obtain

κU11 = ω2 cot2θ −
ω2

4
, (3.95)

κU12 = −
ω2 cot θ

r
, (3.96)

κU22 =
ω2

4r2 −
ω2 cot2θ

r2 , (3.97)

κU33 =
ω2 cot2θ
r2 sin2θ

+
ω2

4r2 sin2θ
. (3.98)

Substitute the above formulae and the other required quantities into
the remaining conservation equations (3.93) and (3.94). After some al-
gebra, we see that these equations are satisfied identically.

So, we have obtained that the Einstein field equations and the conser-
vation equations satisfy the internal space metric of an ordinary rotating
star, i.e., the space metric (3.28).

3.5 The stationary vortex-free electromagnetic field of an ordi-
nary rotating star

A real star has its own electromagnetic field. Therefore, we must in-
troduce an electromagnetic field into the theory of liquid stars. Elec-
trodynamics in terms of the chronometrically invariant formalism was
presented in Chapter 3 of our book [18]. We are following Chapter 3
of [18] in order to apply it to our theory of liquid stars.

So, as is known from the general covariant formulation of electrody-
namics [20], the energy-momentum tensor of an arbitrary electromag-
netic field has the form

T αβem =
1

4πc2

(
−Fα··σFβσ +

1
4
gαβFµσF µσ

)
, (3.99)

where Fαβ is the electromagnetic field tensor known also as theMaxwell
tensor. The field tensor Fαβ is defined as a curl of the four-dimensional
electromagnetic field potential Aα, i.e.

Fαβ = ∇αAβ − ∇βAα =
∂Aβ
∂xα
−
∂Aα
∂xβ
. (3.100)
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The physically observable projections of the four-dimensional elec-
tromagnetic potential Aα are the chr.inv.-scalar electromagnetic poten-
tial φ and the chr.inv.-vector electromagnetic potential qi

φ =
A0
√
g00
, qi = Ai. (3.101)

The electromagnetic field tensor Fαβ (5.44) has the following phys-
ically observable projections

ρem =
T00

g00
=

Ei Ei + H∗i H∗i

8πc2 , (3.102)

J i
em =

cT i
0

√
g00
=

1
4πc
εikmEk H∗m , (3.103)

U ik
em = c2T ik = ρemc2hik −

1
4π

(
EiEk + H∗iH∗k

)
, (3.104)

where Ei is the three-dimensional chr.inv.-electric field strength vector,
H∗i is the three-dimensional chr.inv.-magnetic field strength pseudovec-
tor, and εimn is the unit completely antisymmetric three-dimensional
chr.inv.-pseudotensor [18]

E∗ik = −εiknEn, En =
∗∂φ

∂xn +
1
c

∗∂qn

∂t
−
φ

c2 Fn

H∗i =
1
2
εimnHmn, Hmn =

∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

 . (3.105)
As is seen from the definitions (3.105), the chr.inv.-electric strength

and the chr.inv.-magnetic strength depend on not only the electromag-
netic field potentials φ and qi, but also on the characteristics of the field’s
home space. These are the gravitational inertial force Fi acting in the
space and the angular velocity Aik with which the space rotates.

Assume that the scalar and vector potentials of the electromagnetic
field are stationary and homogeneously distributed, i.e., the electromag-
netic field under consideration is stationary and vortex-free

∗∂φ

∂t
= 0 ,

∗∂φ

∂xi = 0

∗∂qi

∂t
= 0 , qik =

∗∂qi

∂xk −
∗∂qk

∂xi = 0

 . (3.106)
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In this case, we have

Ei = −
φ

c2 F i, Ei = −
φ

c2 Fi

H∗i = −
2φ
c
Ω∗i , H∗i = −

2φ
c
Ω∗i

 , (3.107)

where Ω∗i is the three-dimensional chr.inv.-pseudovector of the angular
velocity with which the space rotates

Ω∗i =
1
2
εimnAmn , Ω∗i =

1
2
εimn Amn. (3.108)

It is easy to find that in the internal space of an ordinary rotating
star, i.e., according to the space metric (3.28), we have

Ω∗1 = Ω∗1 =
ω

2
, Ω∗2 =

ω cot θ
r
, Ω∗2 = ωr cot θ , (3.109)

Ω∗jΩ
∗j = ω2

(
1
4
+ cot2θ

)
. (3.110)

As is seen from the formulae (3.107), in the stationary vortex-free
electromagnetic field of an ordinary star, the electric field strength Ei

is determined by the scalar electromagnetic potential φ and the grav-
itational inertial force F i acting in the space, and the magnetic field
strength H∗i is determined by the scalar electromagnetic potential φ and
the angular velocity Ω∗i with which the space rotates.

Using the formulae for Ei and H∗i (3.107), we obtain the chr.inv.-
components (3.102–3.104) of the electromagnetic field tensor Fαβ

ρem =
φ2

2πc4

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
, (3.111)

J i
em =

φ2

2πc4 ε
ikmFkΩ∗m , (3.112)

U ik
em =

φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)

hik −
φ2

πc2

(
F iF k

4c2 + Ω
∗iΩ∗k

)
, (3.113)

and the trace Uem= hikU ik
em of the electromagnetic field stress tensor

Uem =
φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
= ρemc2. (3.114)
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As follows from the general form of the energy-momentum tensor
Tαβ satisfying the metric (3.28), this tensor must satisfy the condition
ρc2 = 3U (3.89). This formula differs from ρemc2 =Uem (3.114) that we
have obtained for a stationary vortex-free electromagnetic field. There-
fore, we must find such an electromagnetic field structure that makes the
Uem satisfying ρc2 = 3U.

As follows from ρc2 = 3U (3.89) and ω2 cot2θ+ 1
4 ω

2 = κU (3.88)
obtained from the chr.inv.-Einstein equations, inside an ordinary rotat-
ing star we should have the following conditions

ρ =
3Ω∗jΩ∗j

κc2 , U =
Ω∗jΩ

∗j

κ
. (3.115)

Therefore, we substitute the required condition

Uem =
Ω∗jΩ

∗j

κ
(3.116)

into (3.114) that we have obtained for a stationary vortex-free electro-
magnetic field. We obtain

φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
=
Ω∗jΩ

∗j

κ
, (3.117)

or, expanding Einstein’s gravitational constant κ= 8πG
c2 , we obtain an

equivalent form of the above, which is

c2Ω∗jΩ
∗j =

Gφ2

c4

1 − 4Gφ2

c4

Fj F j. (3.118)

We are considering a stationary electromagnetic field. In this case,
the scalar and vector electromagnetic potentials remain unchanged, i.e.,
φ= const and qi = const. Therefore,

Gφ2

c4 = n , n <
1
4

(3.119)

in the formula (3.118) is a dimensionless constant coefficient depending
only on the scalar electromagnetic field potential φ.

Using the constant n (3.119), we re-write (3.118) as

c2Ω∗jΩ
∗j =

n
1 − 4n

Fi F i, n <
1
4
. (3.120)
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SubstitutingΩ∗jΩ∗j (3.110) and Fi F i (3.41) into the above condition
(3.120), we obtain it in the alternative (expanded) form

ω2
(
1 + 4 cot2θ

)
=

n
1 − 4n

c2r2
gr

2

4a6 . (3.121)

When n= nmax =
1
4 and, therefore, φ=φmax, the angular velocity of

the star’s rotation is ω=∞ that is nonsense. Hence, n< 1
4 for all real

stars, including the Sun. With n< 1
4 we obtain the upper limit for the

value of the scalar electromagnetic potential of a real star

φ =
c2

2
√

G
< 1.74 × 1024 gram1/2 cm1/2 sec−1. (3.122)

As a result, we obtain that under the condition (3.120) a stationary
vortex-free electromagnetic field satisfies the Einstein equations and the
internal space metric of an ordinary rotating star. In other words, under
the condition (3.120) a stationary rotating ordinary star is a permanent
magnet.

Since n= const in a stationary electromagnetic field, the above con-
dition (3.120) allows us to express the electromagnetic field character-
istics through the geometric and physical characteristics of the space.
This means that in this particular case we can geometrize the electro-
magnetic field.

To do this, we substitute the obtained formulae for the gravitational
inertial force and the angular velocity with which the space rotates into
the physically observable components (3.111–3.113) of the electromag-
netic field tensor Fαβ. Taking into account the relations (3.117) and
(3.119), we obtain the observable components of the Fαβ in the form

ρem =
n

2πG

 c2r2
gr

2

16a6 + ω
2
(
1
4
+ cot2θ

) , (3.123)

J3
em = −

nc2

4πG
ωrg
a3

cot θ
sin θ

, (3.124)

U11
em = −

nc2

2πG

 c2r2
gr

2

16a6 + ω
2
(
1
4
− cot2θ

) , (3.125)

U12
em = −

nc2

2πG
ω2 cot θ

r
, (3.126)
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U22
em =

nc2

2πGr2

 c2r2
gr

2

16a6 + ω
2
(
1
4
− cot2θ

) , (3.127)

U33
em =

nc2

2πGr2 sin2θ

 c2r2
gr

2

16a6 + ω
2
(
1
4
+ cot2θ

) . (3.128)

From the above formulae we obtain, as previously,

Uem = hikU ik
em = ρemc2. (3.129)

The chr.inv.-Einstein equations (3.123–3.128) can be simplified. In
the surface layer of a star (r≈ a), the first term in the brackets is

c2r2
gr

2

16a6 ≃
c2r2
g

16a4 . (3.130)

Consider the Sun as an example. Its surface layer makes one full
revolution with a period of ≃ 27 days, which is equivalent to the angular
rotation velocity ω⊙ ≃ 2.7 × 10−6 sec−1. Therefore, the second term in
the brackets of the above formulae is

1
4
ω2
⊙ ≃ 1.8 × 10−12 sec−2. (3.131)

The first term in the brackets, taking the Hilbert radius for the Sun
rg⊙ = 2.9×105 cm and the Sun’s physical radius a⊙ = 7.0×1010 cm into
account, is ten times smaller

c2r2
g⊙

16a4
⊙

≃ 2.0 × 10−13 sec−2. (3.132)

Therefore, we neglect the first term in the brackets for even slowly
rotating stars such as the Sun. As a result, the chr.inv.-Einstein equations
(3.123–3.128) take the simplified form

ρem =
nω2

2πG

(
1
4
+ cot2θ

)
, (3.133)

J3
em = −

nc2

4πG
ωrg
a3

cot θ
sin θ

, (3.134)

U11
em = −

nc2ω2

2πG

(
1
4
− cot2θ

)
, (3.135)
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U12
em = −

nc2

2πG
ω2 cot θ

r
, (3.136)

U22
em =

nc2ω2

2πGr2

(
1
4
− cot2θ

)
, (3.137)

U33
em =

nc2ω2

2πGr2 sin2θ

(
1
4
+ cot2θ

)
. (3.138)

3.6 Solving Maxwell’s equations in the vortex-free electromag-
netic field of an ordinary rotating star

As is known, the electromagnetic field is described by Maxwell’s field
equations. They consist of two groups. The general covariant formula-
tion of Maxwell’s equations has the form [20]

∇σF µσ =
4π
c

jµ, ∇σF∗µσ = 0 , (3.139)

where the first equation expresses the Group I, and the second equation
expresses the Group II. Here F∗µσ= εµσαβFαβ is the pseudotensor dual
to the electromagnetic field tensor Fαβ, and jµ is the four-dimensional
current vector of the electromagnetic field.

In terms of the chronometrically invariant formalism, the general
covariant Maxwell equations (3.139) have the following form

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik −

1
c

(
∗∂Ei

∂t
+ DEi

)
=

4π
c

j i

 I, (3.140)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II, (3.141)

see Chapter 3 of the book [18]. Here E∗ik =−εiknEk is the pseudoten-
sor dual to the electric strength vector Ei, H∗i = 1

2 ε
imnHmn is the pseu-

dovector dual to the magnetic strength tensor Hmn. See their definitions
in (3.105). The trace D= hikDik of the space deformation tensor Dik is
the space deformation rate.
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In the chr.inv.-Maxwell equations, the physically observable charge
density ρ and the physically observable current vector j i are the chr.inv.-
projections of the four-dimensional current vector jµ, i.e.

ρ =
1
c

j0
√
g00
, j i = hi

µ jµ. (3.142)

Since the space under consideration is stationary (the metric of a
liquid sphere does not depend on time), and the electromagnetic field is
also stationary, then the terms containing the space deformation tensor
Dik and the time derivatives of the electric Ei and magnetic H∗i field
strengths vanish. In this particular case, the chr.inv.-Maxwell equations
(3.140–3.141) take the simplified form

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik =

4π
c

j i

 I, (3.143)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (3.144)

Substitute the formulae for the gravitational inertial force Fi (3.41)
and the angular velocity of the space Aik (3.48–3.51), obtained for the
space metric of an ordinary rotating star (3.28), and also the electric
strength Ei and the magnetic strength H∗i (3.107) of a stationary vortex-
free electromagnetic field.

Let us simplify the algebra. Since for the Sun we have ω⊙ ≃ 2.7 ×
10−6 sec−1, rg⊙ = 2.9 × 105 cm, a⊙ = 7.0 × 1010 cm, then

rg
a
= 4.1 × 10−6

rg
a3 = 8.5 × 10−28 cm−2

ω2

c2 = 8.1 × 10−33 cm−2


. (3.145)

For other ordinary stars, these terms take numerical values within
several orders of magnitude of those given above. Therefore, the above
terms can be omitted in the equations for ordinary stars.
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After some algebra, the Group II of the chr.inv.-Maxwell equations
(3.143–3.144) vanishes, and the Group I equations take the form

3φrg
2a3 = 4πρ,

ωφ cot θ
r2 sin θ

= −2π j3. (3.146)

The considered Maxwell equations characterize an electromagnetic
field arising due to electric charges and currents — the electromagnetic
field sources, which determine the right hand side terms of the Group I
equations. These terms are the charge density ρ and the current vector
j i, which are the chr.inv.-projections of the four-dimensional current
vector jµ (3.142) of the field. If the right hand side of the equations
were zero, then it would be an electromagnetic field without sources
(existing independently of sources).

The electromagnetic field sources, which are the charge density ρ
and the current vector j i, must satisfy the general covariant law of con-
servation of electric charge

∇σ jσ = 0 , (3.147)

which is also known as the continuity equation. This law means that the
four-dimensional current vector jσ and, hence, its chr.inv.-projections
ρ and j i (the electromagnetic field sources) are conserved in the four-
dimensional field volume.

The four-dimensional electromagnetic field potential Aσ must sat-
isfy the general covariant Lorenz condition

∇σAσ = 0 , (3.148)

which means that the four-dimensional field potential Aσ and, hence, its
chr.inv.-projections φ and qi, which are the chr.inv.-scalar and chr.inv.-
vector potentials of the field, are conserved in the four-dimensional field
volume.

In an arbitrary electromagnetic field, the general covariant conser-
vation law (3.147) and the general covariant Lorenz condition (3.148)
have the following chr.inv.-formulation

∗∂ρ

∂t
+ ρD + ∗∇̃i j i −

1
c2 Fi j i = 0 , (3.149)

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇̃i qi −

1
c2 Fi qi = 0 , (3.150)
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where we denote ∗∇̃i =
∗∇i −

1
c2 Fi. See Chapter 3 of the book [18].

Recall that, according to our initial assumption, the electromagnetic
field under consideration is stationary and vortex-free. This means that
the conditions (3.106) must be true both for the field potentials φ and
qi and for the field sources ρ and j i. It is easy to see, in this case and
since we assumed that the space does not deform (Dik= 0), the chr.inv.-
conservation equation (3.149) and the chr.inv.-Lorenz condition (3.150)
are satisfied as identities.

3.7 Solving Maxwell’s equations in the vortical electromagnetic
field of an ordinary rotating star

Let us now consider an ordinary rotating star, the electromagnetic field
of which is vortical. In this case, the curl qik of the three-dimensional
chr.inv.-vector potential qi of the field is non-zero

qik =
∗∂qi

∂xk −
∗∂qk

∂xi , 0 . (3.151)

As shown in Chapter 3 of the book [18], where we considered rela-
tivistic electrodynamics, the four-dimensional electromagnetic field po-
tential Aα has the form

Aα = φ
dxα

ds
, gαβ

dxα

ds
dxβ

ds
= 1, (3.152)

and the chr.inv.-projections of the Aα are

A0
√
g00
= φ̃ , Ai = qi =

φ̃

c
vi, (3.153)

where φ̃ is the chr.inv.-scalar relativistic potential of the field, which is
dependent on the velocity of the field electric charges

φ̃ =
φ√

1 − v2

c2

, vi =
dxi

dτ
, v2 = hik vivk. (3.154)

Assume that electric charges travel inside the star along only the
equatorial coordinate ϕ, which is the geographical longitude of the star
(in the spherical coordinates r, θ, ϕ). Assume also that the charges travel
with small velocities (v2≪ c2). In this case, φ̃=φ. In addition, follow-
ing our previous consideration of ordinary rotating stars, we assume that



100 Chapter 3 Description of Ordinary Stars

φ= const and q1 = q2 = 0. Then the chr.inv.-components of the Aα take
the form

φ = const, q3 =
φ

c
v3, (3.155)

where v3 =
dϕ
dτ is the physically observable velocity of the charges along

the equatorial coordinate ϕ.
Assuming that the electromagnetic field curl is due only to the star’s

rotation, we have
dϕ
dτ
= ω. (3.156)

Therefore, the non-zero components of the electromagnetic field
vector potential qi and its curl qik have the form

q3 =
φω

c
, q3 =

φω

c
r2 sin2θ , (3.157)

q31 =
∂q3

∂r
=

2φω
c

r sin2θ , (3.158)

q23 = −
∂q3

∂θ
= −

2φω
c

r2 sin θ cos θ . (3.159)

Substitute the formulae for Aik (3.48–3.51) obtained for the space
metric of an ordinary rotating star (3.28) into the definition of the mag-
netic strength tensor Hik (3.105). We obtain the non-zero components
of the magnetic strength

H23 = −
2φωr2 sin θ

c

 cos θ +
1
2

1 + 3rg
4a
−

rgr2

a3

 , (3.160)

H31 =
2φωr

c

 sin2θ − cos θ
1 + 3rg

4a
−

rgr2

a3

 . (3.161)

So forth, according to the definition of the magnetic strength pseu-
dovector H∗i (3.105), we have its contravariant components

H∗1 = −
2φω

c

1 − rgr2

2a3

 cos θ +
1
2

1 + 3rg
4a
−

3rgr2

2a3

 , (3.162)

H∗2 =
2φω

cr

1 − rgr2

2a3

 sin θ − cot θ
1 + 3rg

4a
−

3rgr2

2a3

 , (3.163)
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and its covariant (lower-index) versions can be obtained as H∗1 = h11H∗1

and H∗2 = h22H∗2. With higher-order terms withheld, we have

H∗1 = −
2φω

c

(
cos θ +

1
2

)
, (3.164)

H∗2 =
2φω

cr
(sin θ − cot θ) . (3.165)

As for the chr.inv.-Maxwell equations, in a stationary electromag-
netic field they have the form (3.143–3.144)

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik =

4π
c

j i

 I, (3.166)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (3.167)

Substitute, into the above equations, the obtained formulae for the
magnetic field strength and the electric field strength (3.105), adapted
to a stationary electromagnetic field

E∗ik = −εiknEn , Ei = −
φ

c2 Fi =
φrgr
2a3 . (3.168)

The Group II equations (3.167) are satisfied identically. The Group I
equations (3.167) take the form

3φrg
2a3 = 4πρ̆,

ωφ cot θ
r2 sin θ

= −2π ȷ̆3, (3.169)

where ρ̆ and ȷ̆3 are the charge density and the current of the vortical
electromagnetic field.

The above solutions are identical to the solutions (3.146) obtained in
the vortex-free electromagnetic field of an ordinary rotating star. In ad-
dition, it is easy to see that the conservation equation ∇σ jσ= 0 (3.147)
and the Lorenz condition ∇σAσ= 0 (3.148), the chr.inv.-formulae of
which are (3.149) and (3.150), are satisfied in the vortical electromag-
netic field as identities.
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This means that all the results obtained earlier in the vortex-free
electromagnetic field of an ordinary rotating star are as well true in the
present case, where the electromagnetic field of the star is vortical.

This is because all the terms that appear in the equations due to
the electromagnetic field curl vanish within the second-order approxi-
mation. In terms of physics, this means that the presence of a curl in
the electromagnetic field of an ordinary rotating star does not change
the field sources. The vortical electromagnetic field can be meaningful
only in the case of exotic stars, the characteristics of which differ from
those of ordinary stars. We will see the difference in Chapter 5 when
considering rapidly rotating neutron stars (pulsars).

3.8 Geometrization of the electromagnetic field of an ordinary ro-
tating star

Using the geometric formula for the scalar electromagnetic potential

φ = c2
√

n
G

(3.170)

that follows from (3.119), we write down the non-vanishing chr.inv.-
Maxwell equations (3.146), or (3.169) which is the same as

ρ̆ = ρ =
3c2rg
8πa3

√
n
G
=

3c2

8πa2

√
n
G

rg
a
, (3.171)

ȷ̆3 = j3 = −
ωc2

2πr2

√
n
G

cot θ
sin θ

, (3.172)

ȷ̆ = j =
√

hik j i jk =

√
h33 j3 j3 =

ωc2 cot θ
2πr

√
n
G
, (3.173)

where ρ̆ is the charge density of the vortical electromagnetic field, ȷ̆3 is
the field current, while ρ and j3 denote those in a vortex-free field. The
dimensionless coefficient n= Gφ2

c4 (3.119) is in the range 0< n< 1
4 . To

see why 1
4 , see formula (3.118).

The electromagnetic field sources are expressed here through only
the geometric characteristics of the star’s space and the fundamental
constants. This means that we have completely geometrized the sources
of the stationary electromagnetic field of an ordinary rotating star.
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Express the electric and magnetic strengths using the geometric for-
mula for the scalar electromagnetic potential φ (3.170). Using the for-
mulae for the non-zero components E1, H∗1 and H∗2 obtained for the
stationary electromagnetic field of an ordinary rotating star, we obtain

E1 = E1 =

√
n
G

c2rgr
2a3 , (3.174)

H∗1 = −2ωc
√

n
G

(
cos θ +

1
2

)
=

= −2c
√

n
G

(
ω cos θ + Ω∗1

)
, (3.175)

H∗2 =
2ωc

r

√
n
G

(sin θ − cot θ) =

= 2c
√

n
G

(
ω sin θ

r
−Ω∗2

)
, (3.176)

H∗1 = h11H∗1 = H∗1, H∗2 = h22H∗2 = r2H∗2. (3.177)

Here, according to our calculation (3.109–3.110) made in the space
metric of an ordinary rotating star (3.28), we have

Ω∗1 = Ω∗1 =
ω

2
, Ω∗2 =

ω cot θ
r
, Ω∗2 = ωr cot θ , (3.178)

Ω∗jΩ
∗j = ω2

(
1
4
+ cot2θ

)
. (3.179)

So forth, we express the field density ρ̆em and the momentum flow
J̆ 3

em of the vortical electromagnetic field, which are the physically ob-
servable projections of the energy-momentum tensor of the field (see
Einstein’s equations). Using their general formulation (3.102–3.103)
that is true for any arbitrary electromagnetic field, we obtain

ρ̆em =
n

2πG

(
1

4c2 Fj F j + Ω∗jΩ
∗j
)
+
ω2

2π
n
G
=

= ρem +
ω2

2π
n
G
, (3.180)

J̆ 3
em =

c2rgr
4πa3 sin θ

n
G

(
ω sin θ

r
−Ω∗2

)
= J 3

em +
c2rgω
4πa3

n
G
. (3.181)
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As you can see, the observable characteristics of the electromagnetic
field are expressed here through only the geometric characteristics of
the star’s space and the fundamental constants. This is true for both the
vortical electromagnetic field and the vortex-free field of the star. From
a mathematical point of view, this means that the electromagnetic field
of an ordinary rotating star is completely geometrized.

So, in the case of an ordinary rotating star, bothMaxwell’s equations
and Einstein’s field equations are satisfied. This means that they con-
sist a self-consistent system of the Einstein-Maxwell equations, which
completely describes both gravitational and electromagnetic phenom-
ena inside ordinary rotating stars.

Finally, we can deduce something very interesting for astrophysics
by writing the formula for the charge density (3.171) in the form

ρ =
3c2

8πGa2

√
nG

rg
a
. (3.182)

Here the first multiplier coincides with the formula for a “critical
density” of substance in the Universe

ρcr =
3c2

8πGa2 =
3H2

8πG
, (3.183)

which is known from observational cosmology. Here H = c
a is the Hub-

ble constant, and a is the radius of the observable Universe. By analogy
with the Universe, a critical density can formally be introduced for any
liquid star. Thus, we express the charge density ρ of a liquid star as

ρ = ρcr
√

nG
rg
a
, (3.184)

where n< 1
4 and

√
G = 2.6 × 10−4 cm3/2 gram−1/2 sec−1.

If the charge density is ρ= ρcr
√

nG, then the physical radius of the
star coincides with its Hilbert radius a= rg. Since rg≪ a for ordinary
stars, we conclude that the charge density inside any ordinary rotating
star is much smaller than ρcr

√
nG, i.e.

ρ ≪ ρcr
√

nG . (3.185)

A few words should be said at the end. The General Theory of Rel-
ativity is a geometric theory of space-time-matter. Its primary task is to
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express all physical phenomena as manifestations of the space (space-
time) geometry. The gravitational fieldwas initially geometrized by Ein-
stein thanks to his field equations. However, the electromagnetic field
was not geometrized at that time: as was already shown by Einstein,
mathematically this problem in a general case is very non-trivial. Nev-
ertheless, it is possible to solve this problem in a particular case, where
specific conditions simplify the mathematics. For example, as showed
above, we have completely geometrized the electromagnetic field in the
internal field of an ordinary rotating star.

3.9 Conclusion

This Chapter is complementary to the previous Chapter 2, wherein we
considered ordinary stars including the Sun. Three primary tasks were
achieved in this Chapter.

First. In Chapter 2, when we considered the internal space metric of
a liquid star, we followed the historical path as Schwarzschild did when
introduced the metric. Namely, — when we introduced the internal
space metric of a liquid sphere in a complete form (taking singularities
of the space into account), we used the Schwarzschild notations. These
notations come from the general form of a spherically symmetric met-
ric and thus contain the coefficients eν and eλ, which are functions of r
and t. This is the commonly accepted method of writing any spherically
symmetric metric. Even when we calculated the physically observable
characteristics of such a metric space, we obtained them in terms of the
unknowns eν and eλ. As a result, we have obtained the physically observ-
able characteristics of the space in an incomplete form, which requires
further calculation of the coefficients eν and eλ. This creates enormous
difficulties in solving particular problems in the space of such a metric.
Therefore, in Chapter 3, we initially introduced the internal space met-
ric of a liquid sphere in its final form, where the coefficients eν and eλ

are expressed through the main characteristics of the sphere, such as its
physical radius and Hilbert radius, and also through the radial coordi-
nate r and time t. As a result, we have obtained all components of the
fundamental metric tensor in an explicit form, without unknown coeffi-
cients. It was the subject of §3.1 and §3.2. Therefore, if we (or someone
else) further solve problems using the internal space metric of an ordi-
nary liquid star, then we will initially have formulae for all physically
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observable characteristics of its internal space.
Second. We considered the space metric of a non-rotating liquid

sphere. Nevertheless, we know that most stars rotate. Most likely, all
stars rotate, but many of them rotate so slowly that the Doppler split-
ting of spectral lines due to their rotation cannot be detected by modern
spectroscopy methods. In any case, if we consider a liquid star with an
electromagnetic field, then we should consider the internal space metric
of a rotating liquid sphere. This metric was introduced in §3.3, then we
introduced Einstein’s field equations and Maxwell’s equations in a form
that satisfies the metric. We have shown that the electric component of
the electromagnetic field of a star is due to the gravitational field of the
star, while the magnetic component is due to the star’s rotation. We have
also found that the vortical nature of the electromagnetic field does not
play a significant rôle in ordinary rotating stars.

Third. Concerning the most important achievement of this Chapter.
In §3.8 we showed that, in the internal space metric of a rotating liq-
uid star, the physically observable characteristics of the electromagnetic
field of the star are expressed through only the geometric characteris-
tics of the star’s space and the fundamental constants. This means that
in the internal field of a rotating liquid star, the electromagnetic field is
completely geometrized.



Chapter 4 Stellar Wind

4.1 Finding the escape velocity condition for a star

A stream of particles of stellar substance is permanently erupted from
the surface of any star. A fraction of the stream consists of so rapid
particles that they leave the gravitational field of the star forever, for
the outer cosmos, thereby producing a stellar wind.* In terms of our
mathematical theory of liquid stars, this means that such particles of
the star’s surface layer are faster than the escape velocity of the star.

Why do some particles of stellar substance leave the surface of a
star? Can this process be likened to boiling water in a kettle, or is it
completely different? Finding an answer to this question is our research
task in this Chapter.

To answer this question we should study how particles of stellar sub-
stance travel inside a star. To do this, we first find a formula for the es-
cape velocity, expressed through the components of the space metric of
a liquid star. Then we deduce the equations of motion of the particles
inside the star. Thus, we obtain the physical conditions under which
the particles travelling in the surface layer of the star are faster than the
escape velocity. After that, we will be able to solve the equations of
motion for any particles of stellar substance.

The mentioned escape velocity, known also as the second cosmic
velocity vII, is the velocity at which a particle can “leave”, forever, the
gravitational field of the massive body.†

Let us assume that particles of stellar substance travel, radially, from
the centre of the star to its surface. Let the particles reach the star’s

*Wolf-Rayet stars differ from ordinary stars in an extremely huge stellar wind: this
stream is so strong that any Wolf-Rayet star loses a significant part of its mass with the
stellar wind.

†The first cosmic velocity vI, known also as the orbital velocity, allows the particle
to be orbiting the massive body without falling down onto its surface.
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surface then leave the star, forever, for the outer cosmos, thus forming a
stellar wind. Therefore, we call the formula for the velocity of a particle
of stellar matter, which is expressed through the star’s escape velocity,
the escape velocity condition.

For a spherically symmetric body, the mass of which is M, the es-
cape velocity at a distance r from the body’s centre is

vII =

√
2GM

r
. (4.1)

This formula comes from the mass-point metric (1.1),

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
, (4.2)

where rg = 2GM
c2 , while M is the body’s mass.

As was shown in Chapter 2, the field of any liquid star has two pri-
mary regions. They are described by two different metrics. The metric
of a liquid sphere is valid from the centre of the star (r= 0) up to its
surface (r= a). The mass-point metric is valid from the surface of the
star up to the outer cosmos. In other words, particles of stellar substance
travel inside a star along the trajectories determined by the metric of a
liquid sphere. As soon as the particles leave the star (in the case, where
their velocities exceed the escape velocity of the star), they travel in the
cosmos along the trajectories determined by the mass-point metric.

Therefore, the velocity of a particle of stellar substance, travelling
from the surface of a star for the outer cosmos, is a solution to the equa-
tions of motion according to the mass-point metric. Expressed through
the escape velocity of the star, this solution is the escape velocity con-
dition for the star.

We deduce this formula as a solution to the chr.inv.-equations of
non-isotropic geodesics [18, 19]

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d (mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk = 0

 , (4.3)

which are the equations of motion of a mass-bearing particle travelling
with the observable velocity vi. These equations are obtained as the
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chr.inv.-projections of the general covariant equations of non-isotropic
geodesics. See [18, 19] for detail.

Let us solve the equations (4.3) for a particle of stellar substance
travelling along the radial direction r. Therefore, we assume

v1 =
dr
dτ
, 0 , v2 = v3 = 0 . (4.4)

To solve the equations (4.3), we need to find specific formulae for the
physically observable properties characteristic of a space of the mass-
point metric (4.2). As is seen from the mass-point metric (4.2), such a
space does not rotate or deform (Aik= 0, Dik= 0). Only the gravitational
inertial force Fi and the Christoffel symbols ∆i

nk remain non-zero. Cal-
culating these quantities and also the components of the chr.inv.-metric
tensor hik according to their definitions given in §1.3, we obtain that for
the metric (4.2) they have the form

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 , (4.5)

h11 =
1

h11 = 1 −
rg
r
, h22 =

1
h22 = r2, h33 =

1
h33 = r2 sin2θ , (4.6)

∆1
11 = −

rg
2r2

1

1 −
rg
r

, ∆1
22 =

∆1
33

sin2θ
= −r

(
1 −

rg
r

)
, (4.7)

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ , ∆3
23 = cot θ . (4.8)

With these, we obtain that the chr.inv.-equations of motion (4.3) in
a space of the mass-point metric have the form

1
m

dm
dτ
= −

rg
2r2

1

1 −
rg
r

dr
dτ

1
m

d
dτ

(
m

dr
dτ

)
−

rg
2r2

1

1 −
rg
r

(
dr
dτ

)2

+
c2rg
2r2 = 0


, (4.9)

where
m =

m0√
1 −

ṙ2

c2
(
1−

rg
r

)
, ṙ =

dr
dτ
. (4.10)
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Denote the relativistic mass of the particle on the surface of the star
(r= a) as m(0). This is the “start-mass” of the particle when leaving
the star. Then, denoting the observable velocity of the particle in the
moment of time, when it leaves the star’s surface, as ṙ0, we have

m = m(0)

√
1 −

rg
a√

1 −
rg
r

, m(0) =
m0√√

1 −
ṙ2

0

c2

1− r3
g

a3


. (4.11)

Let us begin solving the chr.inv.-equations of motion (4.9). Substi-
tuting the scalar equation into the vector equation, we obtain the vector
equation of motion along the radial coordinate r

r̈ −
rg
r2

ṙ2

1 −
rg
r

+
c2rg
2r2 = 0 . (4.12)

Denote ṙ = y. Then we have

r̈ = yy′, y′ =
dy
dr
, (4.13)

thus the equation (4.12) takes the form

yy′ −
rg
r2

y2

1 −
rg
r

+
c2rg
2r2 = 0 . (4.14)

Assuming u(r)= y2, we transform the previous equation into the or-
dinary linear differential equation

u′ −
2rg
r2

u

1 −
rg
r

+
c2rg
r2 = 0 . (4.15)

This equation has the following exact solution

u = e−F
(
u0 +

∫ a

r
g(r) eFdr

)
, u0 = y

2
0 = ṙ2

0 , (4.16)

where the functions contained in it have the form

F(r) =
∫ a

r
f (r)dr , f (r) = −

2rg
r2

1

1 −
rg
r

, g(r) =
c2rg
r2 . (4.17)
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Integrating the function f (r), we obtain

F(r) = ln

1 −
rg
a

1 −
rg
r


2

, eF =

1 −
rg
a

1 −
rg
r


2

, (4.18)

∫ a

r

c2rg
(
1 −

rg
a

)2
dr

r2
(
1 −

rg
r

)2 = c2
(
1 −

rg
a

) 1 − 1 −
rg
a

1 −
rg
r

 . (4.19)

Substituting (4.17–4.19) into (4.16) then neglecting the higher-order
terms of rg

a (since this ratio is tiny for ordinary stars), we obtain

ṙ2 = ṙ2
0

(
1 +

2rg
a
−

2rg
r

)
+ c2

(rg
a
−

rg
r

)
. (4.20)

From here, we obtain a formula for the radial velocity of a particle
of stellar substance leaving the star with a stellar wind. Since vII (4.1)
on the star’s surface (r= a) is

vII =

√
2GM

r
= c

√
rg
r
= c

√
rg
a
, (4.21)

the mentioned formula has the form

ṙ =
dr
dτ
= c

√
ṙ2

0 + v2
II

c2 −
rg
r
+

2ṙ2
0

c2

v2
II

c2 −
c2rg

r

 . (4.22)

This is the escape velocity condition we were looking for. If ṙ0= 0,
then the equation (4.22) transforms into the obvious condition

dr
dτ
=

√
v2
II −

c2rg
r
< vII . (4.23)

According to this condition, a particle of stellar substance cannot
leave the gravitational field of a star, if its start-velocity on the surface
of the star is zero. Therefore, in further consideration of the stellar wind,
we always assume ṙ0, 0 in all equations of our theory.

Let us obtain the final simplification to the escape velocity condition
(4.22). Denote the last term in the radicand as

q =
2ṙ2

0

c2

v2
II

c2 −
c2rg

r

 . (4.24)
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For the Sun, i.e., a typical ordinary star, we have: vII = 617 km/sec,
rg = 2.9 km, ṙ0 = 750 km/sec* and a= 7.0×105 km. Since q= 0 at r= a,
we assume r> a as for a stellar wind. After some algebra, we obtain

ṙ2
0 + v2

II

c2 ≃ 10−5,
rg
r
< 4.1 × 10−6, q < 5.3 × 10−11. (4.25)

For a typical star of the Wolf-Rayet family (see Table 1.1), we have:
vII = 982 km/sec, rg = 150 km, ṙ0 = 2200 km/sec and a= 1.4 × 107 km.
Therefore, for a typical Wolf-Rayet star, we obtain

ṙ2
0 + v2

II

c2 ≃ 6.4 × 10−5,
rg
r
< 1.1 × 10−5, q < 1.2 × 10−9. (4.26)

The term q has such a small numerical value (four orders of magni-
tude smaller, than the other terms in the formula) that it can be neglected
for the stellar wind that comes from both an ordinary star and a Wolf-
Rayet star. Therefore, the escape velocity condition has the form

dr
dτ
= c

√
ṙ2

0

c2 +
v2
II

c2 −
rg
r
. (4.27)

As follows from the above formula, the velocity of a particle of stel-
lar substance on the surface of an ordinary star (r= a) is ṙ0.

4.2 Light-like particles inside an ordinary star

Let us now consider how particles of stellar substance and particles of
light travel inside a star. (Stars are filled not only with substance, but
also with light.) First, consider light-like (massless) particles inside an
ordinary star. Such particles travel along isotropic geodesic lines. The
chr.inv.-equations of isotropic geodesics have the form [18,19]

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik·
)

ck − ωF i + ω∆i
nk cnck = 0

 . (4.28)

*ṙ0 ≃ 750 km/sec is typical for the particles of the fast component of the solar wind,
the composition of which is that of the photosphere. In contrast, the slow component
of the solar wind has a composition close to that of the corona. Its particles travel from
the Sun with a velocity of about 400 km/sec.
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These are the equations of motion of a light-like particle (such as
a photon, the frequency of which is ω) travelling with the observable
velocity of light ci. These chr.inv.-equations are obtained as the chr.inv.-
projections of the general covariant equations of isotropic geodesics.
See [18, 19] for detail.

As previously, we assume that ordinary stars do not rotate or deform
(Aik= 0, Dik= 0). Also, we consider a photon travelling strictly along
the radial coordinate (x1 = r direction) from the centre of the star to its
surface. In this case, the isotropic geodesic equations (4.28) inside an
ordinary star take the simplified form

dω
dτ
−
ω

c2 F1 c1 = 0

d (ωc1)
dτ

− ωF1 + ω∆1
11 c1c1 = 0

 , (4.29)

where the observable (light) velocity of the photon is c1= dr
dτ .

Consider the chr.inv.-scalar geodesic equation of (4.29). Substitut-
ing F1 (3.6), obtained for the metric of a liquid sphere, we have

1
ω

dω
dτ
= −

rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

dr
dτ
. (4.30)

Re-write this equation in a form, which can easily be integrated

d lnω = −
d

∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
=

= d ln
1∣∣∣∣∣∣3 √

1 −
rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
. (4.31)

We are considering photons travelling inside the star. Therefore, the
solution must in the range rg ⩽ r⩽ a. After integration, we obtain

ω =
B

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, B = const. (4.32)
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We assume that a photon starts from the Hilbert surface of the star
(r0 = rg). In this case, we obtain

B = ω0

3
√

1 −
rg
a
−

√
1 −

r3
g

a3

 , (4.33)

where ω0 is the initial value of the photon’s frequency on the Hilbert
surface, from which it started deep inside the star. Since rg≪ a for or-
dinary stars, we neglect the higher-order terms of rg

a . In this case, the
solution to the chr.inv.-scalar geodesic equation, which is the photon’s
frequency (4.32), takes the form

ω =

ω0

(
3
√

1 −
rg
a − 1

)
3
√

1 −
rg
a −

√
1 −

rg r2

a3

. (4.34)

Next, consider the vector geodesic equation of (4.29). With our as-
sumption of the radial motion of the photon, it has the form

d2r
dτ2
+

1
ω

dω
dτ

dr
dτ
+ ∆1

11

(
dr
dτ

)2

− F1 = 0 . (4.35)

Denote r̈ = d2r
dτ2 and ṙ = dr

dτ , then substitute
1
ω

dω
dτ (4.30), ∆

1
11 (3.8) and

F1 (3.7). As a result, we transform the vector geodesic equation (4.35)
into a second order non-linear differential equation with respect to r

r̈ −
rgr
a3

ṙ2(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

+

+
rgr
a3

ṙ2

1 −
rg r2

a3

+
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

= 0 . (4.36)

In this form, the equation cannot be solved. Therefore, we simplify it
by the formula for ṙ2 taken from the obvious relation hik cick= c2, which
in the present case has the form

ṙ2

1 −
rg r2

a3

= c2. (4.37)
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As a result, the initial equation (4.36) takes the form

r̈ +
c2rgr

a3 = 0 , (4.38)

which is the equation of harmonic oscillation at the frequency

Ω =
c
a

√
rg
a
=

vII

a
=

√
2GM

a3 , (4.39)

which is dependent on the escape velocity vII (4.21) of the star.
In general, the oscillation frequency Ω (4.39) depends only on the

mass M and the radius a, which are the integral characteristics of the
star. Therefore, we call the Ω the proper frequency of the star. Table
4.1 gives the numerical values of the proper frequency Ω for typical
members of the known families of stars.

The proper frequency Ω of a star reaches its maximum magnitude
Ωmax=

c
a by rg = a. This is the case of gravitational collapsars (black

holes), which is also applicable to the entire Universe. According to ob-
servational estimates, the radius of the Universe is a= 1.3×1028 cm that
coincides with its Hilbert radius rg. Hence, the Universe is a huge gravi-
tational collapsar. Calculating the proper frequency Ω for the Universe,

Object Mass Radius Proper frequency
M, gram a, cm Ω, sec−1

Wolf-Rayet stars 1.0 × 1035 1.4 × 1012 7.0 × 10−5

Red super-giant∗ 4.0 × 1034 7.0 × 1013 1.6 × 10−7

White super-giant† 3.4 × 1034 4.8 × 1012 6.4 × 10−6

Sun 2.0 × 1033 7.0 × 1010 8.8 × 10−4

Jupiter (proto-star) 1.9 × 1030 7.1 × 109 8.4 × 10−4

Red dwarfs 6.7 × 1032 2.3 × 1010 2.7 × 10−3

Brown dwarf ‡ 4.1 × 1031 7.0 × 109 7.4 × 10−2

White dwarf § 2.0 × 1033 6.4 × 108 1.0
Universe 8.8 × 1055 1.3 × 1028 2.3 × 10−18

∗Betelgeuse. †Rigel. ‡Corot-Exo-3. §Sirius B.

Table 4.1: The proper frequency Ω for typical members of the known
families of stars and for the Universe.
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we obtain
Ωmax =

c
a
= 2.3 × 10−18 sec−1, (4.40)

which completely coincides with the numerical value of the Hubble con-
stant H = c

a = (2.3± 0.3)×10−18 sec−1. In this case, according to (4.39),
the integral mass of the Universe should be

M =
Ω2a3

2G
= 8.8 × 1055 gram, (4.41)

which is consistent with the observed average substance density in the
Universe, estimated to be in the range of 10−28 to 10−31 gram/cm3.

The chr.inv.-vector equation of isotropic geodesics in its final form
(4.38) is solved as

r = B1 cos
√rg

a
cτ
a

 + B2 sin
√rg

a
cτ
a

 , (4.42)

where B1 and B2 are integration constants. Assuming r and ṙ at the
initial moment of time τ0 = 0 to be r0 = rg and ṙ0 = c, we obtain

B1 = rg, B2 = a
√

a
rg
. (4.43)

As a result, we obtain the final solution for r

r = rg cosΩτ + a
√

a
rg

sinΩτ, Ω =
c
a

√
rg
a
, (4.44)

which is the harmonic oscillation equation r= A1 cosΩτ+ A2 sinΩτ.
Differentiating (4.44), we obtain the oscillation velocity of the photon

ṙ = c cosΩτ −
crg
a

sinΩτ, Ω =
c
a

√
rg
a
. (4.45)

As is seen from the solution (4.44), the entire light-like matter of
each star oscillates at the frequency Ω (4.39), which is the proper fre-
quency of that particular star and is determined by its mass and radius.
This oscillation occurs with two amplitudes:

a) The amplitude A1 = rg coincides with the radius of the inner space
breaking in the star’s field on the surface of the Hilbert core of the
star, where stellar energy is released;
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b) The amplitude A2 =

√
a3/rg coincides with the outer space break-

ing in the star’s field (see Chapter 2 for detail). The outer space
breaking is located outside the star, in the outer cosmos. For the
Sun (a= 7.0 × 1010 cm, rg= 2.9 × 105 cm), we obtain A2 = 3.4 ×
1013 cm= 2.3 AU, which is the distance from the Sun to the max-
imum concentration of asteroids in the asteroid belt. This means
that the light-like stellar matter of each star oscillates at the same
frequency both on the spherical surface of the outer space break-
ing in the field of that particular star, in the outer cosmos, and on
the surface of the Hilbert core deep inside the star.

The mentioned oscillation of the light-like matter of each star is due
to the gravitational field of that particular star, created by its mass M.

How does this oscillation affect the frequency of stellar photons? To
answer this question, consider the obtained solution for the photon’s fre-
quency ω (4.34) in two limiting cases corresponding to two oscillation
amplitudes: r= A1 = rg and r= A2 =

√
a3/rg. Thus, the frequency takes

the following numerical values

r = A1 = rg , ω = ω0

3
√

1 −
rg
a − 1

3
√

1 −
rg
a − 1

= ω0 , (4.46)

r = A2 =
a2

rg
, ω = ω0

3
√

1 −
rg
a − 1

3
√

1 −
rg
a

. (4.47)

As you see, this oscillation does not change the frequency of stellar
radiation near the Hilbert core (in the centre of the star), but affects its
frequency at large distances from the Hilbert core.

4.3 Particles of stellar substance inside an ordinary star

Such particles travel along non-isotropic geodesics. The chr.inv.-equa-
tions of non-isotropic geodesics [18, 19] have the form (4.3)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d (mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk = 0

 . (4.48)
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We assume that an ordinary star is a liquid sphere that does not rotate
or deform (Aik= 0, Dik= 0). For a particle of stellar substance, which
travels inside the star radially from the centre to the surface, the ob-
servable velocity is v1= dr

dτ , while v2= v3 = 0. In this case, the chr.inv.-
equations of non-isotropic geodesics (4.48) take the form

dm
dτ
−

m
c2 F1 v1 = 0

d (mv1)
dτ

− mF1 + m∆1
11 v1v1 = 0

 . (4.49)

They have the same structure as the chr.inv.-equations of isotropic
geodesics (4.29). Therefore, they are solved in the same way. But the
light speed condition hik cick= c2 (4.37) used in the isotropic geodesic
equations does not hold for mass-bearing particles. Hence, the chr.inv.-
equations of non-isotropic geodesics (4.49) will have a different solution
than that of the chr.inv.-equations of isotropic geodesics (4.29).

Substitute, into the scalar equation of (4.49), the formula for F1
(3.6), which we have obtained for the metric of a liquid sphere. Thus,
we obtain the scalar geodesic equation in the form

1
m

dm
dτ
= −

rg
a3

r(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

dr
dτ
. (4.50)

This equation can be re-written in the form

d ln m = −
d

∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣∣∣∣∣∣∣3 √
1 −

rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
=

= d ln
1∣∣∣∣∣∣3 √

1 −
rg
a −

√
1 −

rg r2

a3

∣∣∣∣∣∣
, (4.51)

which is easy to integrate. Using rg ⩽ r⩽ a (we are considering only
particles inside the star), after integration we obtain

m =
B

3
√

1 −
rg
a −

√
1 −

rg r2

a3

, B = const. (4.52)
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Let us assume that a mass-bearing particle starts from the Hilbert
surface (r0 = rg), i.e., near the centre of the star. Then

B = m(0)

3
√

1 −
rg
a
−

√
1 −

r3
g

a3

 , (4.53)

where
m(0) =

m0√√
1 −

ṙ2
0

c2

1− r3
g

a3


(4.54)

is the initial value of the relativistic mass of the particle on the Hilbert
surface of the star. Since rg≪ a for ordinary stars, we neglect the higher-
order terms of rg

a . Taking into account all this, the solution (4.52) of the
scalar geodesic equation takes the form

m =
m(0)

(
3
√

1 −
rg
a − 1

)
3
√

1 −
rg
a −

√
1 −

rg r2

a3

=

=

m0

(
3
√

1 −
rg
a − 1

)
(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

ṙ2
0

c2

, (4.55)

where
m(0) =

m0√
1 −

ṙ2
0

c2

(4.56)

in the framework of our approximation mentioned above.
Now, we consider the vector geodesic equation of (4.49). With our

assumption that particles of stellar substance travel radially, from the
centre of the star to its surface, the equation has the form

d2r
dτ2
+

1
m

dm
dτ

dr
dτ
+ ∆1

11

(
dr
dτ

)2

− F1 = 0 . (4.57)

Denote r̈= d2r
dτ2 and ṙ= dr

dτ . Substituting 1
ω

dω
dτ (4.30), ∆1

11 (3.8) and
F1 (3.7), we transform the above equation into a non-linear differential



120 Chapter 4 Stellar Wind

equation of the second order with respect to r, which has the form

r̈ −
rgr
a3

ṙ2(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

rg r2

a3

+

+
rgr
a3

ṙ2

1 −
rg r2

a3

+
c2rgr

a3

√
1 −

rg r2

a3

3
√

1 −
rg
a −

√
1 −

rg r2

a3

= 0 . (4.58)

This equation is identical to the equation (4.36), which we have ob-
tained for photons. It cannot be solved as well. To simplify the equation,
we express ṙ2 from the obvious relation h11ṙṙ= ṙ2. We obtain

c2
1 − rgr2

a3

 1 − m2
0

m2

 = ṙ2, (4.59)

where
m =

m0√√
1 −

ṙ2

c2
(
1−

rgr2

a3

)
. (4.60)

It follows from (4.55) that

m0

m
=

(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

) √
1 −

ṙ2
0

c2

3
√

1 −
rg
a − 1

. (4.61)

Therefore, from (4.59) we obtain

ṙ2 = c2
1 − rgr2

a3


 1 −

(
3
√

1 −
rg
a −

√
1 −

rg r2

a3

)2(
1 −

ṙ2
0

c2

)
(
3
√

1 −
rg
a − 1

)2

 . (4.62)

Substituting this formula for ṙ2 into the initial differential equation
(4.58) and neglecting the higher-order terms of rg

a , we obtain the vector
geodesic equation (4.58) in the solvable form

r̈ +

(
c2 + ṙ2

0

)
rgr

2a3 = 0 . (4.63)
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This is the equation of harmonic oscillation at the frequency

Ω =

√(
c2 + ṙ2

0

)
rg

2a3 . (4.64)

This solution concerns particles of stellar substance. It is easy to
see that this formula transforms into the formula for the oscillation fre-
quency of stellar photons, Ω (4.39), by the limit condition ṙ = c.

The vector geodesic equation (4.63) is solved as

r = Q1 cosΩτ + Q2 sinΩτ, (4.65)

where the integration constant Q1 and Q2 results from the conditions
r0 = rg and ṙ0= 0 at the initial moment of time τ0 = 0. We obtain

Q1 = rg , Q2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg
. (4.66)

Therefore, the final solution for r has the form

r = rg cosΩτ +
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg

sinΩτ , (4.67)

which is the harmonic oscillation equation r= A1 cosΩτ+ A2 sinΩτ.
Differentiating (4.67), we obtain the velocity of the particle

ṙ = −

√(
c2 + ṙ2

0

)
r3
g

2a3 sinΩτ + ṙ0 cosΩτ. (4.68)

The obtained solution (4.67) shows that particles of the liquid sub-
stance of each star oscillate at the frequencyΩ (4.64), which depends on
the mass and radius of that particular star, and also on the initial velocity
of the particles. This oscillation occurs with two amplitudes:

a) The amplitude A1 = rg is the same as that of the light-like matter of
stars (see §4.2). That is, particles of the liquid substance of each
star oscillate with the same amplitude as the light-like matter of
that particular star. The amplitude coincides with the radius of the
inner space breaking in the star’s field on the surface of the Hilbert
core of the star, where stellar energy is released;
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b) The amplitude

A2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg

(4.69)

depends on the initial velocity ṙ0 of the particles. If ṙ0 = c, then
A2 =

√
a3/rg coincides with the second oscillation amplitude of

the light-like matter of the star (see §4.2). According to (4.69), the
initial velocity of those of the particles, the oscillation amplitude
of which reaches the star’s surface (A2 = a), is

ṙ0 =
c√rg√
2a − rg

=
vII√
2 −

rg
a

≃
vII
√

2
, vII =

√
2GM

a
, (4.70)

where vII (4.21) is the escape velocity of the star (with which par-
ticles near the star can leave, forever, the star’s gravitational field).
Applying the condition A2 ⩾ a to (4.69), we obtain the velocity ṙ0
required for a particle of stellar substance to leave the star’s sur-
face, forever, for the outer cosmos

ṙ0 ⩾

√
GM

a
, (4.71)

which is different from the escape velocity vII for a particle not
bound to the star’s substance.

Transform the proper frequency Ω (4.64) of a star to express it in
terms of the orbital velocity vI of a particle, calculated for the star

Ω =
c
a

√
rg
2a

√
1 +

ṙ2
0

c2 =
vII

a
√

2

√
1 +

ṙ2
0

c2 =
vI

a

√
1 +

ṙ2
0

c2 . (4.72)

Using this formula, we express r (4.67) in the form

r = rg cosΩτ +
ṙ0 a

vI

√
1 +

ṙ2
0

c2

sinΩτ , (4.73)

which is r= A1 cosΩτ+ A2 sinΩτ. Therefore, we have

A1 = rg , A2 =
ṙ0 a

vI

√
1 +

ṙ2
0

c2

. (4.74)
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Thus, we transform ṙ (4.68) to

ṙ = −
rgvI

a

√
1 +

ṙ2
0

c2 sinΩτ + ṙ0 cosΩτ. (4.75)

Consider now the amplitude A2 (4.74) for some special cases, where
it takes different numerical values:

1. If ṙ0= 0, then we have A2 = 0 according to the definition of A2
(4.74). In this case, the particles of stellar substance oscillate at
the amplitude rg. In other words, if ṙ0= 0, then the particles cannot
reach the surface of the star and, hence, leave the star;

2. If ṙ0 = vI, then the particles of stellar substance also cannot leave
the star. This is because they oscillate with an amplitude, which
is as well smaller than the physical radius of the star

A2 =
a√

1 +
v2
I

c2

< a ; (4.76)

3. If ṙ0 = vII, then the particles of stellar substance leave the star. This
is because if ṙ0 = vII, then we have

A2 =
a
√

2√
1 +

v2
II

c2

≃

(
1 −

v2
II

2c2

)
a
√

2 ≃ a
√

2 > a ; (4.77)

4. If A2= a, then the amplitude is equal to the physical radius of the
star. In this case, from the definition of A2 (4.74), we obtain

ṙ0 =
vI√

1 +
v2
I

c2

≃

(
1 −

v2
I

2c2

)
vI < vI , (4.78)

i.e., the particles of stellar substance are a little slower than the
orbital velocity for the star. That is, if the amplitude reaches the
physical radius of the star (A2= a), then the particles can jump out
from the surface of the star, but still cannot leave the star into its
orbit (they always fall back down on the star).

Thus, our mathematical theory of liquid stars provides a solid theo-
retical foundation for the stellar wind emitted by a star as a wind consist-
ing of two components. One of the components is slightly slower than
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the orbital velocity for the star, and the other is faster than the escape
velocity of the star. This is consistent with observational data. For ex-
ample, the solar wind has two components. The slow solar wind travels
at about 400 km/sec (slower than the orbital velocity vI= 440 km/sec for
the Sun). The fast solar wind travels at about 750 km/sec (faster than
the escape velocity of the Sun, vII= 617 km/sec).

4.4 Conclusion

Let us summarize the main results on the origin of the stellar wind,
which we have obtained. The results are as follows:

1. The light-like matter of each star oscillates at a certain frequency

Ω =
c
a

√
rg
a
=

vII

a
=

√
2GM

a3 , (4.79)

characteristic of that particular star. This means that each star
has its own characteristic frequency Ω determined according to
its mass M and radius a. Therefore, we call the Ω the proper fre-
quency of the star;

2. The mentioned oscillation occurs with two amplitudes. The am-
plitude A1= rg coincides with the radius of the Hilbert core of
the star, on the surface of which stellar energy is released. The
other amplitude A2 =

√
a3/rg coincides with the radius of the outer

space breaking in the star’s field, which is in the outer cosmos. For
the Sun, A2 = 3.4 × 1013 cm= 2.3 AU coincides with the maxi-
mum concentration of asteroids in the asteroid belt;

3. This is a common oscillation of the entire light-like matter of the
star. Its origin is the gravitational field of the star, the source of
which is the star’s mass M. In other words, this oscillation is the
own “breathing” of the star;

4. Particles of the liquid substance of each star oscillate with two
amplitudes at a certain frequency

Ω =

√(
c2 + ṙ2

0

)
rg

2a3 =
vII

a
√

2

√
1 +

ṙ2
0

c2 =
vI

a

√
1 +

ṙ2
0

c2 , (4.80)

which is determined by the mass and radius of that particular star,
and also is dependent on the initial velocity ṙ0 of the particles.
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This frequency can be expressed through the escape velocity vII

and the orbital velocity vI, calculated for the star;
5. Their oscillation amplitude A1 = rg is the same as that of the light-

like matter (photons) of the star. The other amplitude A2 depends
on the initial velocity of the particles

A2 =
ṙ0 a
√

2a√(
c2 + ṙ2

0

)
rg
=

ṙ0 a

vI

√
1 +

ṙ2
0

c2

; (4.81)

6. Stars radiate light (photons) and erupt particles of stellar substance
(stellar wind) not due to special physical conditions, but automat-
ically. The three-dimensional equation of motion of the particles
(both photons and particles of stellar substance), which travel ra-
dially from the centre of a liquid star to its surface, is the harmonic
free-oscillation equation

r̈ + Ω2r = 0 , Ω2 = −
2F1

r
=

c2rg
a3 , (4.82)

where F1=−
c2rg r
2a3 is the linearized form (in the sense of rg≪ a) of

the force of gravity acting inside any liquid star. This is a non-
Newtonian gravitational force proportional to distance, which is
the cause of the mentioned common oscillation of both light-like
stellar matter and stellar substance. Once the oscillation ampli-
tude exceeds the physical radius of the star, the particles come out
the star for the cosmos. Therefore, we arrive at a conclusion that
the cause of both stellar radiation and stellar wind is the internal
structure of the bodies of stars, which are liquid spheres in the
weightless state in the cosmos;

7. According to the theory, the stellar wind emitted by a star consists
of two components: a slow stellar wind and a fast stellar wind.
The particles, the oscillation amplitude of which reaches the star’s
surface (A2= a), have the initial velocity

ṙ0 =
vI√

1 +
v2
I

c2

≃

(
1 −

v2
I

2c2

)
vI < vI , (4.83)

which does not exceed the orbital velocity vI for the star. The par-
ticles that are as fast as the escape velocity of the star (ṙ0 = vII)
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have the oscillation amplitude

A2 =
a
√

2√
1 +

v2
II

c2

≃

(
1 −

v2
II

2c2

)
a
√

2 ≃ a
√

2 > a . (4.84)

This means that the slow stellar wind consists of the particles,
the oscillation amplitude of which is in the range of a⩽ A2< a

√
2.

These particles leave the surface of the star, but not forever. They
always fall back down on the star. The fast stellar wind consists
of the particles, the oscillation amplitude of which is A2 ⩾ a

√
2.

They leave the gravitational field of the star, forever, for the outer
cosmos. This theoretical result is consistent with observational
data: the solar wind is divided into the slow solar wind travelling
at ∼ 400 km/sec (slower than vI⊙= 440 km/sec) and the fast solar
travelling at ∼ 750 km/sec (faster than vII⊙= 617 km/sec).
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5.1 Introducing the space metric of a rotating neutron star

This Chapter is the shortest and most mathematically complicate of the
other Chapters in this book. Here we will apply our liquid star model to
neutron stars and pulsars. The high level of complexity is due to the fact
that as soon as we introduce a rotation even around one coordinate axis
into themetric of a space, further calculations become very problematic.
Anyhow, let us begin.

Neutron stars and pulsars are Type II of our classification of stars
based on General Relativity (see Table 1.1 in §1.2). This means that the
physical radius a of such a star is slightly larger than its Hilbert radius
rg: the star is almost a collapsar, but still has the ability to glow like
an ordinary star. In §1.2, we showed that the space metric of a liquid
sphere transforms into the de Sitter metric of a vacuum sphere under
the condition of gravitational collapse a= rg (when the liquid sphere is
a collapsar). This metric has the form (1.16)

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
. (5.1)

The physical parameters of neutron stars and pulsars are close to
those of collapsars, but do not coincide (see Table 1.1). Therefore, the
metric (5.1), which includes the collapse condition, is close to themetric
of a neutron star or pulsar, but is not.

How to modify the space metric of a collapsar (5.1) to obtain the
metric of a neutron star or pulsar? To get out of the state of collapse,
but at the same time be close to it. Easy.

Recall that the particular condition of gravitational collapse (g00= 0)
follows from the general condition of gravitational collapse, according
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to which the physically observable time τ (1.30) stops on the surface of
the object

dτ =
√
g00 dt +

g0i

c
√
g00

dxi = 0 . (5.2)

If the space of the object does not rotate (all g0i= 0), then the men-
tioned particular condition of collapse (g00= 0) occurs.

But if the object rotates (i.e., if at least one of the three quantities g0i

is non-zero), then the condition g00= 0 can remain true on the surface
of the object but does not mean gravitational collapse. This is due to the
second term of the complete condition of collapse (5.2), which is non-
zero in this case. Therefore, if a rotation is introduced into the metric
(5.1), then the metric describes a liquid sphere that is outside the state
of gravitational collapse. The faster the sphere rotates, the more its state
is different from the state of a collapsed sphere.

If we add a rotation to the space metric of a collapsed liquid sphere,
and also find Einstein’s field equations in a form that contains a strong
magnetic field and at the same time satisfies this metric, then we get a
complete description of a rotating neutron star or pulsar. This is our
research plan for this Chapter.

First, we add a rotation to the space metric of a collapsed liquid
sphere (5.1) according to the chronometric invariant formalism: see the
formulae (1.45) of §1.3. Assume that the object — a liquid sphere of a
radius a — rotates with an angular velocity ω along its equatorial axis
(the axis ϕ in the spherical coordinates r, θ, ϕ). In this case, the initially
metric of a collapsed liquid sphere (5.1) takes the following form

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 +

2ωr2 cos θ
c

cdt dϕ −

−
dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
, (5.3)

which means that the sphere is not a collapsar due to its rotation.
The linear velocity of its rotation is determined by g0i of the space

metric according to the general formula (1.45). In the present case, i.e.,
in the metric (5.3), it has the form

v1 = v2 = 0 , v3 = −
2ωar2 cos θ
√

a2 − r2
. (5.4)
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The maximum rotation velocity of neutron stars, registered in astro-
nomical observations, is about 1,000 km/sec. Therefore, we neglect the
term v2

c2 , where v2= hikvi vk≪ c2.
The three-dimensional observable chr.inv.-metric tensor hik (1.34)

of the space metric (5.3) has the components

h11 =
1

h11 =
a2

a2 − r2 , h22 =
1

h22 = r2, h33 =
1

h33 = r2 sin2θ , (5.5)

and the determinant h= det ∥hik∥ of the chr.inv.-metric tensor hik and
the non-zero spatial derivatives of ln

√
h have the form

h = det ∥hik∥ =
a2r4 sin2θ

a2 − r2 , (5.6)

∗∂ ln
√

h
∂r

=
2a2 − r2

r
(
a2 − r2) , (5.7)

∗∂ ln
√

h
∂θ

= cot θ . (5.8)

In addition, due to the assumed condition v2≪ c2 (non-relativistic
rotation of the object), the chr.inv.-derivation operator along the spatial
coordinates (1.41) is the same as the ordinary derivation operator.

Using the formulae for g00 and g0i of the metric (5.3), we now obtain
the chr.inv.-vector Fi of the gravitational inertial force and the chr.inv.-
tensor Aik of the angular velocity with which the space rotates. Accord-
ing to the definitions of these quantities (see §1.3), we obtain

F1 =
c2r

a2 − r2 , F1 =
c2r
a2 , (5.9)

A13 = −
2ωa3r cos θ(
a2 − r2)3/2 , A13 = −

2ωa cos θ

r
√

a2 − r2 sin2θ

A23 =
ωar2 sin θ
√

a2 − r2
, A23 =

ωa

r2
√

a2 − r2 sin θ


. (5.10)

After some algebra according to the space metric (5.3), we obtain
formulae for the chr.inv.-Christoffel symbols ∆i

kn, the physically observ-
able chr.inv.-curvature tensor Ciklj and the contraction Cik = hmnCimkn
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(which is the chr.inv.-analogy of Ricci’s tensor). Their non-zero com-
ponents have the following form

∆1
11 =

r
a2 − r2 , ∆1

22 = −
r
(
a2 − r2

)
a2 , (5.11)

∆1
33 = −

r
(
a2 − r2

)
a2 sin2θ , ∆2

12 = ∆
3
13 =

1
r
, (5.12)

∆2
33 = − sin θ cos θ , ∆3

23 = cot θ , (5.13)

C1212 = −
r2

a2 − r2 , (5.14)

C1313 = −
r2

a2 − r2 sin2θ , (5.15)

C2323 = −
r4

a2 sin2θ , (5.16)

C11 = −
2

a2 − r2 , C22 = −
2r2

a2 , C33 = −
2r2

a2 sin2θ . (5.17)

Using these characteristics of the space metric (5.3), we will deduce
Einstein’s field equations in a form satisfying the metric. This is the next
step in our research into neutron stars and pulsars.

5.2 Einstein’s equations and the conservation law equations satis-
fying the metric

Let us consider the chr.inv.-Einstein field equations in the general form
(1.92–1.94). In a stationary space (which means that the space does not
deform), such as a space of themetric (5.3), which we suggest to neutron
stars and pulsars, the chr.inv.-Einstein equations are simplified

Ajl Alj +

(
∗∇j −

1
c2 Fj

)
F j = −

κ

2

(
ρc2 + U

)
+ λc2, (5.18)

2
c2 Fj Aij − ∗∇j Aij = κ J i, (5.19)

2Aij A· jk· +
1
2

(∗∇i Fk +
∗∇k Fi

)
−

1
c2 Fi Fk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik . (5.20)
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The right hand side of the equations contains the chr.inv.-projections
(1.91) of the energy-momentum tensor of a matter that fills the space:
the observable mass density ρ, the observable momentum density J i

and the observable stress tensor U ik, while U = hikUik is the trace of the
observable stress tensor. Note that the energy-momentum tensor has an
arbitrary form here. This means that the kind of distributed matter is
not specified for yet.

Substitute, into the above equations, the chr.inv.-characteristics of
the metric (5.3). While doing so we should take into account the fact
that the initially (non-rotating) metric (5.1) was deduced under the obvi-
ous conditions a2 = 3

λ > 0 and λ> 0 (see §1.2 for detail). As a result, we
transform the chr.inv.-Einstein equations (5.18–5.20) to the form satis-
fying the conditions

8ω2a4 cot2θ(
a2 − r2)2 +

2ω2a2

a2 − r2 =
κ

2

(
ρc2 + U

)
, (5.21)

2ωa cot θ

r2
√

a2 − r2 sin θ
= −κ J3, (5.22)

8ω2a4 cot2θ(
a2 − r2)2 −

κ

2

(
ρc2 − U

)
=
κU11

(
a2 − r2

)
a2 , (5.23)

4ω2a4r cot θ(
a2 − r2)2 = −κU12 , (5.24)

2ω2a2

a2 − r2 −
κ

2

(
ρc2 − U

)
=
κU22

r2 , (5.25)

2ω2a2

a2 − r2 +
8ω2a4 cot2θ(

a2 − r2)2 −
κ

2

(
ρc2 − U

)
=
κU33

r2 sin2θ
. (5.26)

Taking into account that U = hikUik = h11U11+ h22U22 + h33U33, we
use the three respective tensor equations of these to obtain the relation
connecting the quantities ρ and U

16ω2a4 cot2θ(
a2 − r2)2 +

4ω2a2

a2 − r2 =
κ

2

(
3ρc2 − U

)
. (5.27)

Summing up (5.21) and (5.27), we obtain a formula for the density
of the distributed matter that fills the space inside a rotating neutron star
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or pulsar. The formula is

12ω2a4 cot2θ(
a2 − r2)2 +

3ω2a2

a2 − r2 = κρc
2. (5.28)

Multiplying (5.21) by 3, then subtracting (5.27) from the obtained
product, we obtain the formula for U

4ω2a4 cot2θ(
a2 − r2)2 +

ω2a2

a2 − r2 = κU. (5.29)

Comparing the obtained formulae (5.28) and (5.29), we see that the
ρ and U specific for the matter filling a rotating neutron star or pulsar
are connected by the following relation

U =
1
3
ρc2. (5.30)

Finally, we transform the tensor equations of the chr.inv.-Einstein
equations (5.21–5.26) so that they express the non-zero contravariant
components of the stress tensor: U11= h1mh1nUmn, U12= h1mh2nUmn,
U22= h2mh2nUmn, U33= h3mh3nUmn. Taking into account the obtained
formulae for U = 1

3 ρc
2 (5.30) and ρ (5.28), we have

κU11 =
8ω2a2 cot2θ

a2 − r2 −
κρc2

(
a2 − r2

)
3a2 , (5.31)

κU12 = −
4ω2a2 cot θ
r
(
a2 − r2) , (5.32)

κU22 =
1
r2

(
2ω2a2

a2 − r2 −
κρc2

3

)
, (5.33)

κU33 =
1

r2 sin2θ

 2ω2a2

a2 − r2 +
8ω2a4(

a2 − r2)2 −
κρc2

3

 . (5.34)

Now, we have to check whether the obtained chr.inv.-Einstein equa-
tions (i.e. the given particular type of distributed matter) satisfying the
metric (5.3) or not.

How to do it? The terms consisting Einstein’s field equations are
of two sorts. These are the characteristics of a particular space and the
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characteristics of a matter that fills the space (the latter are the chr.inv.-
components of the energy-momentum tensor of the matter). Suppose
that we have obtained, in another way, the components of the energy-
momentum tensor for the matter, which are expressed through the char-
acteristics of the space. Then, substituting the energy-momentum tensor
components into the Einstein equations, we will see: if the equations be-
come identities, then they satisfy the particular space; and if not, then
they do not satisfy.

To find how the ρ, J i and U ik of the obtained chr.inv.-Einstein equa-
tions are expressed through the characteristics of the space, we con-
sider the conservation law equations (1.96–1.97). They are the chr.inv.-
notation of the conservation law ∇σT ασ= 0 for the energy-momentum
tensor of a distributed matter.

In a non-deforming space, such as a space of the metric (5.3) that
we have proposed to neutron stars and pulsars, the chr.inv.-conservation
law equations (1.96–1.97) take the simplified form

∗∂ρ

∂t
+ ∗∇̃i J i −

1
c2 Fi J i = 0 , (5.35)

∗∂Jk

∂t
+ 2A·ki· J i + ∗∇̃i U ik − ρF k = 0 , (5.36)

where we denote ∗∇̃i =
∗∇i −

1
c2 Fi. From the obtained chr.inv.-Einstein

equations, we see that only J3, 0 of the observable momentum den-
sity J i in the rotating liquid sphere. In addition, as was shown in §4.2,
only F1 , 0 in the sphere. Therefore, for the chr.inv.-scalar conservation
equation (5.35), we have

∗∇̃i J i −
1
c2 Fi J i = ∗∇̃3 J3 −

1
c2 F3 J3 =

=

(
∗∂J3

∂ϕ
+ J3∆

j
j3 −

1
c2 F3 J3

)
−

1
c2 F3 J3 = 0 . (5.37)

As a result, the chr.inv.-scalar conservation equation (5.35) trans-
forms into the condition

∗∂ρ

∂t
= 0 , (5.38)

which means that the observable density of the matter (liquid substance
and fields) that fills the sphere is stationary.
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Of the three vector equations of the conservation law (5.36), the
equation with the index k= 3 vanishes. The remaining two vector equa-
tions (with the indices k= 1, 2) take the form, respectively

2A31
(
a2 − r2

)
a2 J3 +

∂U11

∂r
+
∂U12

∂θ
+

∂ ln
√

h
∂θ

 U12 +

+ ∆1
22 U22 + ∆1

33 U33 +

∆1
11 +
∂ ln
√

h
∂r

−
1
c2 F1

 U11 = ρF1, (5.39)

2A32

r2 J3 +
∂U12

∂r
+
∂U22

∂θ
+

∂ ln
√

h
∂θ

 U22 +

+ ∆2
33 U33 +

2∆2
12 +
∂ ln
√

h
∂r

−
1
c2 F1

 U12 = 0 . (5.40)

Apply the characteristics of the space of a rotating liquid sphere
and the characteristics of the matter that fills it. The formulae for U ik

(5.31–5.34) and J3 (5.22) come from the chr.inv.-Einstein equations.
The formulae for the logarithmic derivatives have the form (5.7, 5.8).
The formula for ρ has the form (5.28). The acting gravitational inertial
force F1 has the form (5.9), and the non-zero components A13 and A23 of
the angular velocity with which the space rotates have the form (5.10).
When all these formulae are substituted into the remaining conserva-
tion law equations (5.39, 5.40), after some algebra we see that these
equations also vanish.

So, the common solution to Einstein’s field equations and the con-
servation law equations in the space of a rotating liquid sphere showed
that the proposed equations are valid in the space. In other words, the
space metric (5.3) that we have proposed to neutron stars or pulsars sat-
isfies Einstein’s field equations (and vice versa).

5.3 Introducing the electromagnetic field

As is known, every rotating neutron star or pulsar has a strong mag-
netic field. Therefore, we move on to the next stage of this research.
We need to introduce such an energy-momentum tensor that describes
the electromagnetic field and satisfies the relation U = 1

3 ρc
2 (5.30) that

follows from the obtained chr.inv.-Einstein equations. As soon as the
energy-momentum tensor is obtained, it will be possible to deduce the
equations of the electromagnetic field. Then we will conclude how the
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electromagnetic field is distributed inside a rotating neutron star or pul-
sar according to our theory. This is our plan for now.

The energy-momentum tensor of an arbitrary electromagnetic field
has the following general form

T αβem =
1

4πc2

(
−Fα··σFβσ +

1
4
gαβFµσF µσ

)
. (5.41)

Here Fαβ is the electromagnetic field tensor — the curl of the four-
dimensional electromagnetic field potential Aα

Fαβ = ∇αAβ − ∇βAα =
∂Aβ
∂xα
−
∂Aα
∂xβ
, (5.42)

the physically observable chr.inv.-projections of which are the scalar
potential φ and the vector potential qi of the electromagnetic field

φ =
A0
√
g00
, qi = Ai. (5.43)

The electromagnetic field theory, expressed in terms of chronomet-
ric invariants, is well developed in our book [18]. Here we follow the
theory and refer everyone who is interested in the details to [18].

The physically observable chr.inv.-projections of the electromag-
netic field tensor Fαβ (5.42) have the form

ρem =
T00

g00
=

Ei Ei + H∗i H∗i

8πc2 , (5.44)

J i
em =

cT i
0

√
g00
=

1
4πc
εikmEk H∗m , (5.45)

U ik
em = c2T ik = ρemc2hik −

1
4π

(
EiEk + H∗iH∗k

)
, (5.46)

where Ei is the three-dimensional chr.inv.-electric strength vector, H∗i

is the three-dimensional chr.inv.-magnetic strength pseudovector, and
εimn is the unit completely antisymmetric three-dimensional chr.inv.-
pseudotensor. They are expressed as [18]

E∗ik = −εiknEn, En =
∗∂φ

∂xn +
1
c

∗∂qn

∂t
−
φ

c2 Fn

H∗i =
1
2
εimnHmn, Hmn =

∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

 . (5.47)
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We see that the observable electric and magnetic strengths depend
on not only the electromagnetic field itself (the scalar and vector elec-
tromagnetic field potentials), but also on the acting gravitational inertial
force Fi and the angular velocity Aik with which the space rotates.

Pulsars are massive objects with a strong electromagnetic field and
rapid rotation. Therefore, the factors of Fi and Aik are significant in
our consideration. At the same time, we neglect time variations and
spatial inhomogeneity of the electromagnetic field potentials assuming
the conditions (3.106)

∗∂φ

∂t
= 0 ,

∗∂φ

∂xi = 0

∗∂qi

∂t
= 0 , qik =

∗∂qi

∂xk −
∗∂qk

∂xi = 0

 , (5.48)

i.e., we assume that the electromagnetic field is stationary and vortex-
free. Under the above assumptions, the electric and magnetic strengths
of the field take the simplified form

Ei = −
φ

c2 Fi, H∗i = −
2φ
c
Ω∗i, (5.49)

where
Ω∗i =

1
2
εimnAmn, Ω∗i =

1
2
εimn Amn (5.50)

is the three-dimensional chr.inv.-pseudovector of the angular velocity
with which the star rotates.

The chr.inv.-tensor Aik of the angular velocity with which a space
rotates is determined by the metric of that particular rotating space. Its
components, calculated for the metric of a rotating neutron star or pul-
sar, are presented in the formula (5.10).

Note that the formulae for the electric andmagnetic strengths (5.49),
which we finally propose to neutron stars and pulsars, show that the
electromagnetic field of such a star depends on its gravitational field
and rotation. Namely, — even if the electromagnetic field potential φ
is presented in the star, the electric field strength Ei is manifested only
due to the gravitational field of the star, and the magnetic field strength
H∗i is manifested only if the star rotates.

Using the formulae for Ei and H∗i (5.49) and all the mentioned as-
sumptions that we have proposed to neutron stars and pulsars, we trans-
form the physically observable components of the electromagnetic field
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tensor Fαβ (5.44–5.45) to the form

ρem =
φ2

2πc4

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
, (5.51)

J i
em =

φ2

2πc4 ε
ikmFkΩ∗m, (5.52)

U ik
em =

φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)

hik −
φ2

πc2

(
F iF k

4c2 + Ω
∗iΩ∗k

)
, (5.53)

which corresponds to a vortex-free electromagnetic field. From here,
we obtain the formula for Uem= hikU ik

em

Uem =
φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
= ρemc2. (5.54)

As is seen from this formula, we have U = ρc2 in the framework of
the assumed conditions related to the particular electromagnetic field.
However, as we have obtained earlier for the space metric of a rotating
neutron star or pulsar, there should be U = 1

3 ρc
2 (5.30). In other words,

according to the metric, we should have

Uem =
1
3
ρemc2, (5.55)

where

Uem =
Ω∗jΩ

∗j

κ
, ρem =

3Ω∗jΩ∗j

κc2 . (5.56)

Therefore, our task now is to find such a physical condition un-
der which the electromagnetic field satisfies the conditions (5.56) and,
therefore, (5.55).

Let us find this condition. Using the obtained relation Uem = ρemc2

(5.54), we re-write the formula Uem =
1
κΩ∗jΩ

∗j (5.56) in the form

φ2

2πc2

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
=
Ω∗jΩ

∗j

κ
, (5.57)

or, since κ= 8πG
c2 , in the equivalent form

c2Ω∗jΩ
∗j =

Gφ2

c4

1 − 4Gφ2

c4

Fj F j. (5.58)
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Note that the quantity Gφ2

c4 is dimensionless. The scalar electromag-
netic potential is constant φ= const according to our initial assumptions.
Therefore and since the magnetic strength is H∗i=− 2φ

c Ω
∗i (5.49), we

obtain that any stationary rotating star is a permanent magnet.
Denote

Gφ2

c4 = n , (5.59)

where n< 1
4 , while c and G are the fundamental constants. Therefore,

we obtain the numerical value

φ =
c2

2
√

G
< 1.74 × 1024 gram1/2 cm1/2sec−1.. (5.60)

With the scalar electromagnetic field potential φ within this scale
of magnitudes, the electromagnetic field satisfies the space metric of a
rotating neutron star or pulsar.

As a result, we re-write the obtained formula (5.58) in the form

c2Ω∗jΩ
∗j =

n
1 − 4n

Fi F i, n <
1
4
. (5.61)

Under this particular condition, which links the acting force of grav-
ity to the angular velocity with which the space rotates, the electromag-
netic field satisfies the space metric and the Einstein field equations,
which we proposed for rotating neutron stars and pulsars.

5.4 Distribution of the magnetic field of a pulsar

To find out how themagnetic field strength is distributed over the surface
of a rotating neutron star or pulsar, consider Maxwell’s equations. The
general covariant formulation of the two groups of Maxwell’s equations
is as follows

∇σF µσ =
4π
c

jµ, ∇σF∗µσ = 0 , (5.62)

where F∗µσ= εµσαβFαβ is the pseudotensor dual to the electromagnetic
field tensor Fαβ, while jµ is the four-dimensional current vector.

This formulation of Maxwell’s equations implies an arbitrary elec-
tromagnetic field. Let us transform the equations, taking into account
our assumptions specific to rotating neutron stars and pulsars. As be-
fore, we neglect time variations and spatial inhomogeneity of the elec-
tromagnetic field potentials, assuming the conditions (5.48).
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Since we are considering the electromagnetic field of a star on its
surface, the four-dimensional current vector is zero: jµ= 0. This means
that the electromagnetic field of the star does not contain sources such
as electric charges and currents on the star’s surface (all the electromag-
netic field sources are inside the star).

In this case, Maxwell’s equations (5.62) take the simplified form

∇σF µσ = 0 , ∇σF∗µσ = 0 . (5.63)

Write down Maxwell’s equations (5.63) in terms of the chronomet-
rically invariant formalism. In an electromagnetic field without sources,
the chr.inv.-Maxwell equations take the form

∗∇j E j −
1
c

HikAik = 0

∗∇k Hik −
1
c2 Fk Hik −

1
c

(
∗∂Ei

∂t
+ DEi

)
= 0

 I, (5.64)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II, (5.65)

see Chapter 3 of the book [18]. Here E∗ik =−εiknEk is the pseudoten-
sor dual to the electric strength vector Ei, H∗i = 1

2 ε
imnHmn is the pseu-

dovector dual to the magnetic strength tensor Hmn, and D= hikDik is the
deformation rate of the space.

Since the space of a rotating liquid sphere under consideration does
not deform and also, according to our initial assumptions, the electric
and magnetic strengths are stationary, the above chr.inv.-Maxwell equa-
tions without the field sources take the simplified form

∗∇j E j −
1
c

HikAik = 0

∗∇k Hik −
1
c2 Fk Hik = 0

 I, (5.66)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (5.67)
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Substitute, into the chr.inv.-Maxwell equation (5.66, 5.67) which
have already been adapted to the space metric of a rotating neutron star
or pulsar, the respective formulae for Ei and Hik (5.49) (and those for
their dual pseudotensors) and also the respective characteristics of the
space which we have obtained in §5.1.

The first (scalar) equation of the Group I (5.66) takes the form

c2

a2

3a2 − 2r2

a2 − r2 = 4Ω∗jΩ∗j. (5.68)

Two of the vector equations of the Group I vanish, while the third
vector equation takes the form

2ωa3

r3 (
a2 − r2)√a2 − r2

cot θ
sin θ

= 0 , (5.69)

where ω, according to the space metric of the star (5.3), is the angular
velocity with which the star rotates along its equatorial axis ϕ. Both the
scalar and vector equations of the Group II (5.67) vanish. Therefore, the
dry rest, which we have from the chr.inv.-Maxwell equations adapted to
neutron stars and pulsars, are only the equations (5.68) and (5.69).

Due to the obvious assumption that stars are not point-like objects
(since a> 0), and that the radial coordinate is positive (r> 0), we arrive
at the solely valid solution to the equation (5.69)

θ = ±
π

2
. (5.70)

The obtained solutionmeans: the only non-vanished vector equation
of the Group I has a solution only at the poles of a rotating neutron star
or pulsar.

Generally speaking, the vector equation of the Group I determines
the chr.inv.-function ∗∇k Hik, the physical sense of which is the phys-
ically observable three-dimensional distribution of the magnetic field
strength Hik over the surface of the star. Therefore, the solution (5.70)
that we have obtained according to our theory of liquid stars means that
the magnetic field of a rotating neutron star or pulsar manifests itself
only at the South Pole and North Pole of the star.

Calculate the magnetic strength H∗i=− 2φ
c Ω

∗i (5.49) for this case.
The unit antisymmetric chr.inv.-pseudotensor εikm has components ex-
plained in detail in Chapter 2 of the book [18]. Thus, after some algebra,
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we obtain the components of the chr.inv.-pseudovector Ω∗i (5.50) of the
angular velocity with which the star rotates

Ω∗1 =
A23
√

h
= ω, Ω∗1 = A23

√
h =

ωa2

a2 − r2 , (5.71)

Ω∗2 =
A31
√

h
=

2ωa2 cot θ
r
(
a2 − r2) , Ω∗2 = A31

√
h =

2ωa2r cot θ
a2 − r2 . (5.72)

Using the obtained solution θ=± π2 (5.70) of the chr.inv.-Maxwell
equations, we obtain cot θ= 0 and, hence, Ω∗2=Ω∗2 = 0. This means
that the magnetic field of a rotating neutron star or pulsar has the solely
non-zero component

H∗1 = −
2φ
c
Ω∗1, (5.73)

which is the radial r-component directed from the centre of the star to its
South Pole and North Pole, then— along the respective polar directions
from the star into the outer cosmos.

The above result and the solution θ=± π2 were obtained on the basis
of our mathematical theory of liquid neutron stars and pulsars. These
purely theoretical results completely coincide with the well-known ob-
servational data about pulsars.

5.5 The frequency and the magnetic field strength of a pulsar

Individual pulses of the electromagnetic radiation emitted by a pulsar
(rapidly rotating neutron star) are repeated at a frequency equal to the
rotation frequency of the pulsar itself. Let us calculate the pulse fre-
quency of a typical pulsar, based on our theory of liquid neutron stars
and pulsars.

Calculating Ω∗jΩ∗j at the South Pole and North Pole of a rotating
neutron star (pulsar), where θ=± π2 , we obtain

Ω∗jΩ
∗j = Ω∗1Ω

∗1 =
ω2a2

a2 − r2 . (5.74)

Then the relation (5.58) between the angular velocity with which
the star rotates and the acting gravitational force takes the form

ω2a2

a2 − r2 =
n

1 − 4n
c2r2

a2 (
a2 − r2) . (5.75)
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The magnetic field strength of a rotating neutron star or pulsar is
H∗1=− 2φ

c Ω
∗1 (5.73). It is due to the star’s rotation. Hence, by study-

ing the obtained relation (5.75), we can draw a conclusion about the
electromagnetic radiation of the star.

The relation (5.75) has a breaking at the surface of the star (r= a).
Therefore, we assume r, a. Thus, the relation (5.75) takes the form

r2 =
1 − 4n

n
ω2a4

c2 , (5.76)

where r, taking the solution θ=± π2 (5.70) into account, is the radial
distance from the centre of the star along the polar axis of its rotation.

In the surface layer of the star, fromwhere electromagnetic radiation
is emitted to the outer cosmos, we have r≃ a. Thus, after trivial trans-
formations, we obtain the following formula for the pulse frequency of
the star’s magnetic field

ω = ω0

√
n

1 − 4n
, ω0 =

c
a
, (5.77)

where ω0 is the maximum rotation frequency of the star, at which the
star rotates with the velocity of light.

Assume that a= 106 cm, which is the typical radius of a neutron
star. With this radius, we obtain

ω0 = 3 × 104 sec−1. (5.78)

It follows from (5.77) that the n is expressed through the pulse fre-
quency of the star’s magnetic field as

n =
ω2

ω2
0 + 4ω2

. (5.79)

The observed frequencies of radio-pulsars are in the range between
ωmin= 0.53 and ωmax= 448.57 sec−1. This means that ω2≪ω2

0. There-
fore, we neglect ω in the denominator of (5.79). We obtain

n =
ω2

ω2
0

=
ω2a2

c2 . (5.80)

Therefore, for real pulsars, the number n lies in the range

3.1 × 10−10 < n < 2.2 × 10−4. (5.81)



5.6 Maxwell’s equations in the vortex-free field of a pulsar 143

Also, according to the formula (5.59) obtained in the framework of
our theory, the scalar electromagnetic field potential of a pulsar is

φ = c2
√

n
G
. (5.82)

Consequently, for real pulsars we have

6.1 × 1019 < φ < 5.2 × 1022 gram1/2 cm1/2 sec−1, (5.83)

which is within the upper theoretical limit on the potential φ, which,
according to our theory, is φ< 1.74 × 1024 (5.60).

Finally, we now calculate, based on our theory, the expected range
of the magnetic field strength for pulsars. According to our theory of
liquid neutron stars and pulsars, H∗1=− 2φ

c Ω
∗1 (5.73). According to

the calculated range of the scalar electromagnetic potential φ and with
the estimated range of the rotation frequencies ω of pulsars, we obtain
the expected range of the magnetic field strengths for pulsars

2.1 × 109 < H∗1< 1.5 × 1015 gram1/2 cm−1/2 sec−1, (5.84)

which is very consistent with the magnetic field magnitudes of radio-
pulsars, known from radio-astronomical observations.

5.6 SolvingMaxwell’s equations in the stationary vortex-free elec-
tromagnetic field of a pulsar

Previously, in §5.4–§5.5, we solved Maxwell’s equations in the electro-
magnetic field of a rotating neutron star or pulsar, assuming the four-
dimensional current vector jα in the field equal to zero ( jα= 0), which
is true on the surface of the star and above, in the cosmos. See (5.63)
and so forth. In other words, we assumed that the electromagnetic field
does not contain sources (charges and currents).

This assumption creates the following problem. Look at the formula
for the observable electromagnetic field momentum J i

em (5.52)

J i
em =

1
4πc
εikmEk H∗m =

φ2

2πc4 ε
ikmFk Ω∗m , (5.85)

which is the Poynting vector of the field. Assuming jα= 0 in §5.4, we
have obtained that only the component H∗1=− 2φ

c Ω
∗1 of the magnetic

field strength H∗i, i.e., only at the South Pole and North Pole of the star,
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is non-zero. On the other hand, in this case, the circular momentum J 3
em

of the field, which should generate themagnetic component H∗1, is zero:
J 3

em =
1

4πc ε
312E1H∗2 = 0. This creates a problem, because a model that

satisfies the astronomical evidence for pulsars should obviously show
both H∗1=− 2φ

c Ω
∗1 , 0 and J 3

em =
1

4πc ε
312E1H∗2 , 0.

Recall that we came to the problem that H∗1, 0 but J 3
em = 0 as a

result of our assumption that the electromagnetic field does not contain
currents ( jα= 0). Therefore, we will now solve Maxwell’s equations
under the condition jα , 0.

Let us first solve Maxwell’s equations in the vortex-free electro-
magnetic field of a rotating neutron star of pulsar. In the next §5.7,
Maxwell’s equations will be solved in the vortical electromagnetic field
of such a star.

The space (space-time) metric of a rotating liquid neutron star or
pulsar has the form (5.3). This metric means that the liquid sphere is
not a collapsar due to its rotation. See the necessary explanation above
in §5.1. The physical and geometric characteristics of such a space were
calculated and presented in §5.1. In addition to them, it should only be
added that the pseudovector of the angular velocityΩ∗i = 1

2 ε
imnAmn with

which the space rotates has the following components

Ω∗1 = ω , Ω∗1 =
ωa2

a2 − r2

Ω∗2 =
2ωa2 cot θ
r
(
a2 − r2) , Ω∗2 = 2ωa2r cot θ

a2 − r2

 , (5.86)

hence, the square of the angular velocity pseudovector is

Ω∗jΩ
∗j =

ω2a2

a2 − r2

(
1 +

4a2 cot2θ
a2 − r2

)
. (5.87)

As before, we will assume that the scalar and vector electromagnetic
potentials are constant and homogeneously distributed (5.48)

∗∂φ

∂t
= 0 ,

∗∂φ

∂xi = 0

∗∂qi

∂t
= 0 , qik =

∗∂qi

∂xk −
∗∂qk

∂xi = 0

 , (5.88)

i.e., the electromagnetic field is stationary and vortex-free.
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In this case, the components of the electric and magnetic strengths
(5.47) take the form

Ei = −
φ

c2 F i, Ei = −
φ

c2 Fi

H∗i =
1
2
εimnHmn , Hmn = −

2φ
c

Amn

 . (5.89)

From here, since Ω∗i = 1
2 ε

imnAmn, we re-write the H∗i as

H∗i = −
2φ
c
Ω∗i, H∗i = −

2φ
c
Ω∗i . (5.90)

Using the formula for F1 (5.9), then calculating Ω∗1 and Ω∗2 from
(5.86), we obtain the non-zero components of the Ei and H∗i

E1 = −
φr

a2 − r2 , E1 = −
φr
a2 , (5.91)

H∗1 = −
2φωa2

c
(
a2 − r2) , H∗1 = −

2φω
c
, (5.92)

H∗2 = −
4φωa2r cot θ

c
(
a2 − r2) , H∗2 = −

4φωa2 cot θ
cr

(
a2 − r2) . (5.93)

Let us find how the magnetic field strength is distributed over the
surface of a rotating liquid sphere in this case. Consider Maxwell’s
equations in their complete form (5.62)

∇σF µσ =
4π
c

jµ, ∇σF∗µσ = 0 , (5.94)

which means the presence of the field current ( jα, 0). Their physically
observable chr.inv.-projections have the form

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik −

1
c

(
∗∂Ei

∂t
+ DEi

)
=

4π
c

j i

 I, (5.95)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II, (5.96)
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see Chapter 3 of the book [18]. Here E∗ik =−εiknEk is the pseudoten-
sor dual to the electric strength vector Ei, H∗i = 1

2 ε
imnHmn is the pseu-

dovector dual to the magnetic strength tensor Hmn, and D= hikDik is the
deformation rate of the space.

Since the space of a rotating liquid sphere does not deform, and the
electric and magnetic strengths are stationary (according to our initial
assumptions), the chr.inv.-Maxwell equations are simplified

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik =

4π
c

j i

 I, (5.97)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (5.98)

The first equation of the Group I (5.97) takes the form

4φω2a2

c2 (
a2 − r2) (

1 +
4a2 cot2θ
a2 − r2

)
−
φ
(
3a2 − 2r2

)
a2 (

a2 − r2) = 4πρ. (5.99)

In the second equation of the Group I, j1 = j2 = 0 in the framework
of our model, while the equation for j3 takes the form

φωa3

r2 (
a2 − r2)√a2 − r2

cot θ
sin θ

= −π j3, (5.100)

and the absolute value of the chr.inv.-current vector j i is

j =
√

jk jk =
φωa3 cot θ

πr
(
a2 − r2)√a2 − r2

. (5.101)

The Group II equations (5.98) are satisfied as identities. Thus, the
formulae for ρ, j3 and j (5.99–5.101) are exact solutions to the chr.inv.-
Maxwell equations which we have just considered.

So, we have obtained exact solutions to Maxwell’s equations in the
internal electromagnetic field of a rotating neutron star or pulsar, where
the field arises due to its sources, which are the distributed charges ρ
and the currents j i.



5.6 Maxwell’s equations in the vortex-free field of a pulsar 147

The law of conservation of electric charge determines a connexion
between the sources of a electromagnetic field. This law, also known as
the continuity equation, has the following general covariant form

∇σ jσ = 0 . (5.102)

The above law means that the distributed electric charges ρ and the
currents j i (the physically observable chr.inv.-projections of the four-
dimensional current vector jα) are conserved in the four-dimensional
volume of the field.

The four-dimensional electromagnetic field potential Aσ must sat-
isfy the general covariant Lorenz condition

∇σAσ = 0 , (5.103)

according to which the four-dimensional field potential Aσ and, there-
fore, its chr.inv.-projections φ and qi, which are the chr.inv.-scalar and
chr.inv.-vector field potentials, are conserved in the four-dimensional
field volume.

In a general case, the conservation law (5.102) and the Lorenz con-
dition (5.103) written in terms of the chronometrically invariant formal-
ism, have the form, respectively

∗∂ρ

∂t
+ ρD + ∗∇̃i j i −

1
c2 Fi j i = 0 , (5.104)

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇̃i qi −

1
c2 Fi qi = 0 , (5.105)

where we denote ∗∇̃i =
∗∇i −

1
c2 Fi. See Chapter 3 of the book [18].

It is easy to show that, under the particular conditions of the problem
that we are considering, the chr.inv.-continuity equation (5.104) and the
chr.inv.-Lorenz condition (5.105) are satisfied as identities.

Now, based on the obtained solutions (5.99–5.101) of Maxwell’s
equations, we look for the chr.inv.-Poynting vector J i

em that is the ob-
servable momentum of the electromagnetic field. We need to know how
the Poynting vector is distributed over the surface of the sphere, which
is the surface of a rotating neutron star or pulsar.

The Poynting vector J i
em is the second of the three physically observ-

able projections of the electromagnetic field tensor Fαβ (5.42), which are
ρem (5.44), J i

em (5.45) and U ik
em (5.46). We are looking for the Poynting
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vector J i
em (5.45) in the framework of our assumptions (5.88), accord-

ing to which the scalar φ and vector qi electromagnetic potentials are
constant and homogeneously distributed, i.e., the electromagnetic field
is stationary and vortex-free.

Substituting the non-zero components (5.91) of the electric strength
Ei and the non-zero components (5.93) of the magnetic strength H∗i into
(5.44–5.46), we obtain

ρem =
φ2

2πc4

(
Fj F j

4c2 + Ω∗jΩ
∗j
)
=

=
φ2

2πc4

 ω2a2

a2 − r2 +
4ω2a4 cot2θ(

a2 − r2)2 +
c2r2

4a2 (
a2 − r2)

 , (5.106)

J 3
em =

φ2

2πc4 ε
ikmFkΩ∗m =

φ2F1Ω∗2

2πc4
√

h
=

=
φ2ωa

πc2 (
a2 − r2)3/2

cot θ
sin θ

, (5.107)

Jem =

∣∣∣∣∣√h33J3
emJ3

em

∣∣∣∣∣ = φπc2

ωar cot θ(
a2 − r2)3/2 . (5.108)

Based on the equations, we can draw a conclusion about the rotating
neutron stars and pulsars that have a vortex-free electromagnetic field.

We see that the electromagnetic field density ρem of such a star is
due to the star’s gravitational force, which is the non-Newtonian gravi-
tational force Fi acting inside the star, and also due to the star’s rotation.
The electromagnetic field density ρem of the star is non-zero by the con-
dition Fi , 0 or Aik, 0, and also by these conditions together. The field
momentum density J i

em is non-zero only by the joint condition Fi , 0
and Aik, 0.

As follows from (5.106), the density ρem of the vortex-free electro-
magnetic field of a rotating neutron star (pulsar) is zero at the equator
of the star (θ= 0). Then the electromagnetic field density ρem increases
with the geographic latitude θ to the South Pole and North Pole, where
θ= π2 and, thus, it takes the maximum magnitude ρem= (ρem)max.

On the contrary, the electromagnetic field momentum density J i
em

(5.108) has a maximum at the equator, where θ= 0. Then the magnitude
of the field momentum J i

em decreases with the geographic latitude θ to
the South Pole and North Pole, where it is J i

em= 0.
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In addition to the above, we can also draw a conclusion about the
charge density ρ and the currents j i of the vortex-free electromagnetic
field of a rotating neutron star or pulsar.

Re-write the formulae for the charge density ρ (5.99) and the current
j3 (5.100), obtained from the Group I of the chr.inv.-Maxwell equations,
as follows

ρ =
φ

πc4

(
Ω∗jΩ

∗j −
1
4
∇j F j

)
, (5.109)

j3 = −
φ

π

ωa3

r2 (
a2 − r2)3/2

cot θ
sin θ

, (5.110)

where

∇j F j =
c2

(
3a2 − 2r2

)
a2 (

a2 − r2) > 0 , (5.111)

j =
∣∣∣∣∣√h33 j3

em j3
em

∣∣∣∣∣ = φωa3 cot θ

πr
(
a2 − r2)3/2 . (5.112)

As a result, we see that the charge density in a rotating neutron star
or pulsar is positive ρ> 0 (that should be according to the physical sense
of a physical field) if

Ω∗jΩ
∗j >

1
4
∇j F j. (5.113)

Re-write this inequality with the formula for ρ (5.99). We obtain the
condition

4ω2a2

c2

(
1 +

4 cot2θ
a2 − r2

)
>

3a2 − 2r2

a2 , (5.114)

which is necessary according to the physical sense.
Compare the obtained formulae for the electromagnetic field current

j3 (5.110) and its power j (5.112) with the formulae for the electromag-
netic field momentum density J3

em (5.107) and the momentum power
Jem (5.108). As a result, we have

c2J3
em = −

φr2

a2 j3, c2Jem =
φr2

a2 j . (5.115)

Taking (5.58) into account, express the scalar electromagnetic field
potential φ, which is φ= const according to our initial assumptions,
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through the dimensionless constant n= Gφ2

c4 (5.59), which is n< 1
4 (see

in the end of §5.3). Thus, we have

φ = c2
√

n
G
, φ2 =

nc4

G
, n <

1
4
. (5.116)

With these, we obtain

ρem =
n

2πG

(
Ω∗jΩ

∗j +
1

4c2 Fj F j
)
, (5.117)

J3
em =

E1H∗2
√

h
=

4nc3

G
ωa(

a2 − r2)3/2

cot θ
sin θ

, (5.118)

ρ =
1
π

√
n
G

(
Ω∗jΩ

∗j −
1
4
∇j F j

)
, (5.119)

j3 = −c2
√

n
G

ωa3

r2 (
a2 − r2)3/2

cot θ
sin θ

, (5.120)

J3
em = −

4πr2c
a2

√
n
G

j3. (5.121)

We see that the greater the scalar electromagnetic potentialφ (5.116)
of a rotating neutron star or pulsar, the stronger the three-dimensional
circular current j3 and the three-dimensional circular momentum J3

em
of its electromagnetic field. Moreover, the electromagnetic field current
and momentum flow exist in the star only if it rotates on the equatorial
plane (x1, x3), i.e., only if Ω∗2 , 0. If the neutron star does not rotate
(Ω∗jΩ∗j = 0), the electric charge density of its internal electromagnetic
field would be negative (ρ< 0).

So, we have arrived at a non-satisfactory result. Both the circular
electromagnetic field current j3 (that goes along the longitudinal coor-
dinate ϕ) and the electromagnetic field momentum J3

em are zero at the
South Pole and North Pole of the star, where the geographical latitude
is θ= π2 . They reach their maximum power at the equator, where the
latitude is θ= 0.

Here we have assumed that the electromagnetic field of a rotating
neutron star is vortex-free. The final step of matching observational data
will be done with the vortical electromagnetic field of a rotating neutron
star (pulsar). We will do it next, in §5.7.
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5.7 Solving Maxwell’s equations in the stationary vortical electro-
magnetic field of a pulsar

By analogy with §3.7, consider a rotating neutron star (pulsar), the elec-
tromagnetic field of which is vortical. In this case, the curl qik of the
three-dimensional chr.inv.-vector potential qi of the field is non-zero

qik =
∗∂qi

∂xk −
∗∂qk

∂xi , 0 . (5.122)

The four-dimensional electromagnetic field potential

Aα = φ
dxα

ds
, gαβ

dxα

ds
dxβ

ds
= 1 (5.123)

has two chr.inv.-projections

A0
√
g00
= φ̃ , Ai = qi =

φ̃

c
vi, (5.124)

where φ̃ is the relativistic chr.inv.-scalar potential of the field

φ̃ =
φ√

1 − v2

c2

≃ φ , vi =
dxi

dτ
, v2 = hik vivk ≪ c2. (5.125)

Assume φ= const and q1 = q2 = 0 for the electromagnetic field un-
der consideration. Therefore, we have v3=

dϕ
dτ =ω, and the non-zero

components of the electromagnetic vector potential and its curl are

q3 =
φω

c
, q3 =

φω

c
r2 sin2θ , (5.126)

q31 =
∂q3

∂r
=

2φω
c

r sin θ , (5.127)

q23 = −
∂q3

∂θ
= −

2φω
c

r2 sin θ cos θ . (5.128)

Calculate the non-zero components of the magnetic strength of the
vortical field. Using its definition (5.47), we obtain

H23 = −
2φωr2 sin θ

c

(
a

√
a2 − r2

+ cos θ
)
, (5.129)

H31 =
2φω

c

 sin2θ −
2a3 cos θ(

a2 − r2)√a2 − r2

 . (5.130)
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Using the definition

H∗i =
1
2
εimnAmn =

1
2
εimnqmn −

2φ
c
Ω∗i, (5.131)

we re-write the magnetic field strength components H23 (5.129) and H31
(5.130) in the following form

H∗1 = −
2φω

c

1 + √a2 − r2

a
cos θ

 , (5.132)

H∗2 =
2φω

cr

 √a2 − r2 sin θ
a

−
2a2 cot θ
a2 − r2

 , (5.133)

while their covariant (lower-index) versions can easily be obtained as
H∗1 = h11H∗1 and H∗2 = h22H∗2.

Let us find a solution to the chr.inv.-Maxwell equations. In the case,
where the electromagnetic field is stationary, and the space does not
deform, the chr.inv.-Maxwell equations have the form (5.97–5.98), i.e.

∗∇j E j −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik =

4π
c

j i

 I, (5.134)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik = 0

 II. (5.135)

Substituting the electric and magnetic strengths of the vortical elec-
tromagnetic field, we see that theGroup II equations (5.135) are satisfied
as identities. The Group I equations take the form

4φω2

c2

[
a2

a2 − r2

(
1 +

4a2 cot2θ
a2 − r2

)
−

a cos θ
√

a2 − r2

]
−

−
φ
(
3a2 − 2r2

)
a2 (

a2 − r2) = 4πρ̆ , (5.136)

3
2
φω

a2 +
φωa3

r2 (
a2 − r2)√a2 − r2

cot θ
sin θ

= −π ȷ̆3, (5.137)
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where ρ̆ and ȷ̆3 are the charge density and current of the vortical electro-
magnetic field, and ω=Ω∗1. The physical sense of the equations looks
more understandable if they are re-written in the form

ρ̆ =
φ

πc2

(
Ω∗jΩ

∗j −
1
4
∇j F j

)
−
φω2

πc2

a cos θ
√

a2 − r2
, (5.138)

ȷ̆3 = −
φωa3

πr2 (
a2 − r2)3/2

cot θ
sin θ

−
3φω
2πa2 . (5.139)

Expressing the charge density ρ̆ and the current ȷ̆3 of the vortical
electromagnetic field through the same characteristics ρ (5.109) and j3

(5.110), which we have calculated in the vortex-free field, we obtain

ρ̆ = ρ −
φω2a cos θ

πc2
√

a2 − r2
, (5.140)

ȷ̆3 = j3 −
3φω
2πa2 . (5.141)

As is seen from the equations (5.140) and (5.141), in the vortical
electromagnetic field of a rotating neutron star (pulsar), the charge den-
sity and field currents differ from those of a vortex-free electromagnetic
field by the terms depending on the rotation of the star.

Accordingly, the field density ρem (5.44) and the circular momentum
flow J 3

em (5.45) of the vortical electromagnetic field have the form

ρ̆em =
φ2

2πc4

(
1

4c2 Fj F j + Ω∗jΩ
∗j
)
+

+
φ2

2πc4

[
ω2

(
1 −

r2 sin2θ

a2

)
−

aω2 cos θ
√

a2 − r2

]
, (5.142)

J̆ 3
em =

φ2

2πc2a2

 2ωa3(
a2 − r2)3/2

cot θ
sin θ

− ω

 , (5.143)

or, in the other form,

ρ̆em = ρem +
φ2

2πc4

[
ω2

(
1 −

r2 sin2θ

a2

)
−
ω2a cos θ
√

a2 − r2

]
, (5.144)

J̆ 3
em = J 3

em −
φ2 ω

2πc2a2 . (5.145)
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To understand the sense of the resulting formulae, recall that, as
follows from the formulae for A31 (5.10),

A31 =
2ωa3r cos θ(
a2 − r2)3/2 , A31 =

2ωa cot θ

r
√

a2 − r2 sin θ
, (5.146)

this component and, hence,Ω∗2 = 1
2 ε

231A31 depend on the geographical
latitude θ of the star, and the component Ω∗1= 1

2 ε
123A23 =ω does not.

The obtained formulae for the current vector ȷ̆3 (5.141) and the
Poynting vector J̆ 3

em (5.145) of the vortical electromagnetic field of a
rotating neutron star (pulsar) contain a term which does not depend on
the geographical latitude. This means that, in contrast to a rotating neu-
tron star (pulsar) with a vortex-free electromagnetic field, the current
vector ȷ̆3 and the momentum flow J̆ 3

em of the vortical electromagnetic
field are non-zero at the South Pole and North Pole of the star.

The obtained J̆ 3
em, 0 at the South Pole and North Pole means that

a rotating neutron star (pulsar), the electromagnetic field of which is
vortical, emits electromagnetic radiation along its polar axis, while a
rotating neutron star with a vortex-free electromagnetic field does not.

We also have to make one more important conclusion in the frame-
work of our mathematical theory of pulsars. Look at the formula for the
magnetic field strength H∗i= 1

2 ε
imnHmn (5.47)

H∗i =
1
2
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

)
=

=
1
2
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c
Ω∗i =

=
1
2
εimnqmn −

2φ
c
Ω∗i. (5.147)

We see that the magnetic field strength pseudovector H∗i is the sum
of the electromagnetic field curl pseudovector q∗i = 1

2 ε
imnqmn and the

pseudovector Ω∗i of the angular velocity with which the star rotates.
The magnetic field strength pseudovector H∗i coincides with the pseu-
dovector Ω∗i of the star’s rotation only if the electromagnetic field curl
qmn is zero. If qmn, 0, i.e., if the star’s electromagnetic field is vortical,
then the H∗i deviates from the Ω∗i. The stronger the electromagnetic
field curl qmn, the more the magnetic axis deviates from the axis of the
star’s rotation.
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Astronomers tell us that the electromagnetic fields of observed pul-
sars are very strong. They also tell that electromagnetic radiation leaves
such a star only at the polar regions, where the latitudinal and longitu-
dinal electromagnetic field components are not so strong as at the equa-
torial latitudes. Also, analysing the oscillation of the signals registered
from pulsars, astronomers conclude that the axis of emission of radia-
tion from a pulsar does not coincide with and the axis of its rotation. All
these facts of observational astronomy are in complete agreement with
our theoretical results on pulsars.

As a result, our mathematical theory of pulsars leads us to the con-
clusions that are consistent with observational data:

A rotating neutron star can be a pulsar only if its electromagnetic
field is vortical. Moreover, the electromagnetic field curl means
that the magnetic axis does not coincide with the axis of the star’s
rotation. Otherwise, in a rotating neutron star with a vortex-free
electromagnetic field, electromagnetic radiation would not come
from the South and North Poles.

All these theoretical results were obtained in the framework of the
assumption that the scalar and vector electromagnetic field potentials
of the star do not depend on time. Of course, some time variations of
the potentials should pose an effect on the Poynting vector (momentum
flow of the field) and thus on the electromagnetic radiation emitted by
the pulsar. But we neglect these effects here.

5.8 Geometrization of the electromagnetic field of a pulsar

Geometrization of the electromagnetic field is one of the primary tasks
in the General Theory of Relativity. As was shown already by Einstein,
mathematically this problem in a general case is very non-trivial. For
this reason, the problem is still not resolved in general. Nevertheless,
the electromagnetic field can be geometrized in particular cases, under
certain conditions that simplify the mathematics.

Let us now show that in the case of a pulsar the electromagnetic
field is geometrized. In the language of mathematics, this means that
once we have Einstein’s field equations and Maxwell’s equations, the
electromagnetic field characteristics can be expressed in only terms of
the geometric characteristics of the space.

Consider the Einstein field equations (5.18–5.20) and the Maxwell
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equations (5.134–5.135) in the internal field of a rotating neutron star
(pulsar). Note that in the de Sitter-like metric that we applied to neutron
stars, the λ-term describes the physical vacuum in the inflation state
λ= κρ (see Chapter 1). Moreover, as we showed in §5.2, this form of
the Einstein equations satisfies the conservation equations in the space
of the above metric.

We will consider a vortical electromagnetic field. This is because
we have shown that only the vortical field gives a result consistent with
astronomical observations of pulsars, i.e., the fact that a pulsar emits
electromagnetic radiation only from its polar regions.

As before, we assume that the scalar electromagnetic field poten-
tial φ is constant and is expressed through the fundamental constants as
φ= c2

√
n
G (5.59), where n< 1

4 (see the end of §5.3). With it, we obtain
the electric and magnetic strengths of the vortical electromagnetic field
(see §5.7) in the form

E1 = −

√
n
G

c2r
a2 , (5.148)

E1 = h11E1 = −

√
n
G

c2r
a2 − r2 , (5.149)

H∗1 = −2ωc
√

n
G

1 + √a2 − r2

a
cos θ

 =
= −2c

√
n
G

Ω∗1 + ω√a2 − r2

a
cos θ

 , (5.150)

H∗2 =
2ωc

r

√
n
G

 √a2 − r2

a
sin θ −

2a2 cot θ
a2 − r2

 =
= −2c

√
n
G

Ω∗2 − ω√a2 − r2

ar
sin θ

 , (5.151)

H∗1 = h11H∗1 =
a2

a2 − r2 H∗1, (5.152)

H∗2 = h22H∗2 = r2H∗2. (5.153)

As is seen from the above formulae, both the electric and magnetic
strengths are expressed here through only the geometric characteristics
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of the internal space of the star.
According to the internal space metric of a rotating neutron star or

pulsar, we have Ω∗1 (5.71), Ω∗2 (5.72), Ω∗jΩ∗j (5.87), which are

Ω∗1 =
A23
√

h
= ω, Ω∗1 = A23

√
h =

ωa2

a2 − r2 , (5.154)

Ω∗2 =
A31
√

h
=

2ωa2 cot θ
r
(
a2 − r2) , Ω∗2 = A31

√
h =

2ωa2r cot θ
a2 − r2 , (5.155)

Ω∗jΩ
∗j =

ω2a2

a2 − r2

(
1 +

4a2 cot2θ
a2 − r2

)
. (5.156)

Thus, the charge density ρ̆ (5.138) and the current vector ȷ̆3 (5.139)
of the vortical electromagnetic field of a rotating neutron star of pulsar,
obtained from Maxwell’s equations, are expressed as

ρ̆ =
1
π

√
n
G

(
Ω∗jΩ

∗j −
1
4
∇j F j

)
−

1
π

√
n
G
ω2a cos θ
√

a2 − r2
=

= ρ −
1
π

√
n
G
ω2a cos θ
√

a2 − r2
, (5.157)

ȷ̆3 = −
c2

πr2

√
n
G

ωa3(
a2 − r2)3/2

cot θ
sin θ

+
3c2ω

2a2

√
n
G
=

= j3 +
3c2ω

2a2

√
n
G
. (5.158)

Accordingly, the density ρ̆em (5.142) and the momentum flow J̆ 3
em

(5.143) of the vortical electromagnetic field, obtained from the energy-
momentum tensor of the field, are expressed as

ρ̆em =
n

2πG

(
1

4c2 Fj F j + Ω∗jΩ
∗j
)
+

+
n

2πG

[
ω2

(
1 −

r2 sin2θ

a2

)
−

aω2 cos θ
√

a2 − r2

]
=

= ρem +
n

2πG

[
ω2

(
1 −

r2 sin2θ

a2

)
−

aω2 cos θ
√

a2 − r2

]
, (5.159)

J̆ 3
em =

nc2

2πGa2

 2ωa3(
a2 − r2)3/2

cot θ
sin θ

− ω

 = J 3
em −

nc2ω

2πGa2 . (5.160)
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We see that all the characteristics of the vortical magnetic field are
uniquely expressed through only the geometric characteristics of the
space inside the pulsar. Therefore, the vortical electromagnetic field
of a rotating neutron star (pulsar) is hereby geometrized.

This fact also means that the system of Einstein’s equations and
Maxwell’s equations in the internal space of a pulsar is a self-consistent
system of equations. This self-consistent system of Einstein-Maxwell
equations completely describes both gravitational and electromagnetic
phenomena inside the pulsar.

However, if the electromagnetic field of a rotating neutron star is
vortex-free, then Einstein’s equations and Maxwell’s equations do not
comprise a self-consistent system: the electromagnetic field is not geo-
metrized inside such a star. As was shown in §5.7, such a neutron star
cannot emit electromagnetic radiation from its polar regions. Therefore,
it cannot be a pulsar.

5.9 Boundaries of the physical space of a pulsar

Let us consider an observer, whose reference frame is connected to the
internal space of a star. Where, from his point of view, does the observ-
able physical space of the star end? At which distance from the star?

These questions are answered by the theory of physically observ-
ables (chronometric invariants). In terms of physical observables, the
real physical space of an observer “ends” at that distance from him,
where the physically observable time stops. The physically observable
time τ is calculated according to the metric of the observer’s space.
Therefore, the real physical boundaries of his space are determined by
the stopped time condition dτ= 0 according to his space metric.

Let us calculate the boundary of the observable space of a pulsar.
This is the distance from the centre of the pulsar at which, according to
the space metric of the pulsar, the observable time stops for an observer,
whose reference frame is associated with the pulsar.

The physically observable time interval is formulated as (1.30)

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =
√
g00 dt −

1
c2 vi dxi. (5.161)

It consists of two terms. The first term is due to the gravitational
field potential w= c2(1−

√
g00) (1.44). The second term is due to the
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fact that the space rotates and is dependent on the linear velocity of its
rotation vi =−c g0i√

g00
(1.45).

Therefore, the condition dτ= 0 by which the observable time stops
in the space of a gravitating and rotating body is expressed as

√
g00 dt =

1
c2 vi dxi. (5.162)

The space metric of a rotating neutron star or pulsar has the form
(5.3). See §5.1 for detail. In this metric, we have

g00 =
1
4

(
1 −

r2

a2

)
, (5.163)

v1 = v2 = 0 , v3 = −
2ωar2 cos θ
√

a2 − r2
. (5.164)

In this case, the stopped time condition (5.162) takes the form

g00 =
1
c4

(
v3

dx3

dt

)2

, (5.165)

where dx3

dt =
dϕ
dt =ω. Substituting the g00 (5.163) and v3 (5.164) of the

space metric (5.3) into the stopped time condition (5.165), we obtain
the distance r at which the observable time stops in such a space

r =
a√

1 + 4a2ω2 cos θ
c2

. (5.166)

This formula determines the physical boundary at which the physi-
cally observable space of a rotating neutron star or pulsar ends. As you
can see, the boundary r is the same as the star’s physical radius a at the
South Pole and North Pole, where the geographical latitude is θ= π2 , i.e.,
cos θ= 0 and, therefore, r= a according to (5.166). Then the boundary
r of the physically observable space decreases to the equator, where it
takes the minimum numerical value

rmin =
a√

1 + 4a2ω2

c2

, (5.167)

which depends only on the radius a of the star and the angular velocity
of its rotation ω.
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The faster a neutron star rotates, the more oblate its physical space at
its equator. According to our formula (5.167), this oblateness manifests
itself only at relativistic speeds of rotation, i.e., in pulsars.

Consider PSR J1748-2446ad that is the fastest-known pulsar dis-
covered in 2004 [32]. It rotates with a period of 0.00139595482(6) sec
that means the angular rotation velocity ω= 2π

T = 4501 sec−1. Its radius
a is estimated to be smaller than 16 km. Proceeding from these obser-
vational data, we calculate the oblateness of the physical space of the
pulsar J1748-2446ad at its equator

rmin

a
=

1√
1 + 4a2ω2

c2

≃ 0.90 . (5.168)

5.10 Conclusion

So, the complete mathematical theory of rotating liquid neutron stars
and pulsars is presented in this Chapter. Let us repeat themost important
conclusions we have arrived at on the basis of our theory:

1. As follows from our mathematical theory, the electromagnetic
field of a rotating neutron star or pulsar is due to its rotation and
gravitation. The faster the star rotates, the stronger the magnetic
field strength H∗i of the star;

2. The magnetic field strength H∗i of a pulsar is directed strictly
along the polar axis of its rotation. Electromagnetic radiation is
emitted only from the poles of the star, then comes into the outer
cosmos strictly along its rotation axis;

3. The electric field strength Ei depends on the spatial distribution of
the scalar electromagnetic field potential and on the time variation
of the vector electromagnetic field potential. The magnetic field
strength H∗i depends on the curl of the vector electromagnetic field
potential and on the angular velocity of the star. Therefore, the
time and spatial variations of the electromagnetic field potentials
should affect the outcoming electromagnetic pulses emitted by a
pulsar;

4. The Poynting vector (electromagnetic field momentum) is non-
zero at the South Pole and North Pole of a rotating neutron star
only if its electromagnetic field is vortical. Therefore, a rotating
neutron star is a pulsar, thus emitting electromagnetic radiation
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from the polar regions, only if its electromagnetic field is vorti-
cal; a rotating neutron star, the electromagnetic field of which is
vortex-free, cannot emit electromagnetic radiation from its polar
regions, so it cannot be a pulsar. In addition, our theory shows
that, due to the electromagnetic field curls, the magnetic axis of
a rotating neutron star does not coincide with its axis of rotation.
This theoretical conclusion is completely consistent with the as-
tronomical evidence for the fast periodic pulses of electromagnetic
radiation registered from observed pulsars.

All the conclusions are valid only for a rotating star, the physical
radius of which is close to its Hilbert radius. These are rotating neutron
stars and also pulsars, not the ordinary stars such as the Sun etc.
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6.1 Non-rotating liquid collapsars

We are now going to study the collapse condition of a non-rotating
sphere filled with an ideal liquid, i.e., a collapsed liquid star without
rotation (in terms of our model of liquid stars). At first glance, this
formulation of the problem sounds meaningless: an ideal liquid is in-
compressible, therefore, such a liquid body cannot be compressed. Yes,
it would be meaningless, if the collapse were considered a process of
compression of a liquid cosmic body. We do not do that: we do not
discuss cosmogony. We merely treat a liquid collapsar as an already ex-
isting object. Thus, the above problem is reduced to the consideration
of physical conditions, and not the evolutionary compression of a liquid
cosmic body.

A cosmic body is a gravitational collapsar, if the parameters of its
field on its physical surface correspond to the condition of gravitational
collapse. Namely, — the gravitational field of the body is so strong on
its surface that light signals cannot leave it into the cosmos. In terms of
General Relativity, this means that the physically observable time stops
on the surface of the body.

According to the theory of physically observable quantities (chrono-
metric invariants), the physically observable time interval dτ (1.30) is
formulated through the gravitational potential w and the linear velocity
vi with which the space rotates as follows

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

(
1 −

w
c2

)
dt −

1
c2 vi dxi. (6.1)

Therefore, the general condition of gravitational collapse has the
below form consisting of two terms

dτ =
√
g00 dt +

g0i

c
√
g00

dxi = 0 . (6.2)
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In a space without rotation (wherein vi= 0), the general condition of
gravitational collapse is simpler

dτ =
√
g00 dt = 0 , (6.3)

or merely

g00 =

(
1 −

w
c2

)2
= 0 . (6.4)

Therefore, a non-rotating cosmic object is a collapsar, if the three-
dimensional gravitational potential w on its surface takes the value

w = c2. (6.5)

Let us consider the collapse condition for a non-rotating star con-
sisting of an ideal liquid. According to the above, the collapse condition
in this case has the form g00= 0. As is seen from the space metric of a
non-rotating liquid star (2.76)

ds2 =
1
4

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

2

c2dt2 −

−
dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (6.6)

which in terms of the Hilbert radius rg has the form (2.78)

ds2 =
1
4

3
√

1 −
rg
a
−

√
1 −

r2rg
a3


2

c2dt2 −

−
dr2

1 −
r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
, (6.7)

the collapse condition (g00= 0) in such a space has the form

3

√
1 −
κρ0a2

3
−

√
1 −
κρ0r2

3
= 0 , (6.8)

or, which is the same,

3

√
1 −

rg
a
−

√
1 −

r2rg
a3 = 0 . (6.9)
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Thus, we obtain the radial coordinate r, at which a non-rotating liq-
uid star of a radius a meets the state of gravitational collapse

rc =

√
9a2 −

8a3

rg
. (6.10)

Since we keep in mind real cosmic objects, the numerical value of
the rc must be real (as well as a and rg). This requirement is satisfied by
the following obvious condition

a ⩽ 1.125 rg . (6.11)

If this condition is not satisfied (i.e., the physical radius a of a liquid
body is a⩾ 1.125 rg), then the non-rotating liquid body (star) cannot be
in the state of gravitational collapse.

As you can see, the general collapse condition (6.11) includes the
particular condition a= rg. In this particular case of a collapsed non-
rotating liquid star, we see that the physical radius a of the star’s sur-
face, the Hilbert radius rg and the radius of the outer space breaking
rbr =

√
a3/rg in the star’s field coincide

rc = rbr = rg = a . (6.12)

The obtained collapse condition a= rg (6.12) is only a particular
case of the general collapse condition (6.11). The general collapse con-
dition (6.11) includes three particular cases, concerning the location of
the physical surface of the collapsed liquid star:

1. The collapsed liquid star is larger than the Hilbert radius calcu-
lated for the star (a> rg), but smaller than 1.125 rg;

2. The surface of the collapsed liquid star coincides with its Hilbert
radius (a= rg);

3. The collapsed liquid star is completely located inside its Hilbert
radius (a< rg).

It is obvious that rc (6.10) is imaginary for rg≪ a, hence the state of
gravitational collapse is impossible for such a star. For example, consid-
ering the Sun (a= 7× 107 cm, M = 2× 1033 gram, rg = 3× 105 cm), we
see that the rc takes an imaginary numerical value. The same is as well
true for other ordinary stars, ranging from super-giants to white dwarfs.
Hence, ordinary stars cannot collapse.



6.2 The Universe as a huge liquid collapsar 165

In fact, the particular collapse condition rc = rbr = rg = a (6.12) for-
mulates the collapse radius rc as follows*

rc = a =

√
3
κρ0
=

4.0 × 1013

√
ρ0

cm. (6.13)

For example, if a collapsed liquid sphere consists of an ordinary wa-
ter (ρ0 = 1.0 gram/cm3), then its radius is rc = 4.0×1013 cm= 3.1AU, i.e.
is located in the asteroid belt (the asteroids are located, approximately,
from 2.1 AU to 4.3 AU from the Sun).

Another example: a neutron star or pulsar. Such a star has a radius
of a= (8–16)×105 cm= 8–16 km. Hence, to be a collapsar, such a liquid
star must have ρ0 = 2.5 × 1015 – 6.3 × 1014 gram/cm3 according to the
obtained formula for rc (6.13).

Calculate the mass of a non-rotating liquid collapsar using the usual
formula M = 4

3 πa3ρ0 and the obtained formula a= rc =
√

3/κρ0 (6.13).
We obtain the following dependencies

M =
4πa
κ
= 6.8 × 1027 a gram, (6.14)

M =
4
√

3 π
κ3/2 √ρ0

=
2.7 × 1041

√
ρ0

gram, (6.15)

which we call the mass-radius relation and mass-density relation for
non-rotating liquid collapsars.

For example, if a collapsed liquid sphere has a size typical of a neu-
tron star or pulsar, which is a= (8–16) × 105 cm= 8–16 km, then its
mass should theoretically be M = (5.4–11) × 1033 gram that is 2.7–5.5
masses of the Sun.

6.2 The Universe as a huge liquid collapsar

Here is another example: the Universe itself. Astronomers estimate the
average density of substance in theUniverse to be in the range of 10−28 to
10−31 gram/cm3. In addition, according to the observational estimates,
the Hubble constant is H = c

a = (2.3± 0.3) × 10−18 sec−1, and the Uni-
verse’s radius is a= 1.3 × 1028 cm. At the upper limit of the estimated
density ρ0 = 10−28 gram/cm3, the collapse radius rc (6.10) falls into real

*κ= 8πG
c2 = 18.6 × 10−28 cm/gram is Einstein’s gravitational constant.
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numerical values. Thus, according to the observational estimates, we
obtain the following characteristics of the Universe

a = 1.3 × 1028 cm

ρ0 = 10−28 gram/cm3

M = 9.2 × 1056 gram

rg = 1.4 × 1028 cm

rbr = 1.3 × 1028 cm

rc = 1.5 × 1028 cm


. (6.16)

This is a reason to think that the Universe can be considered as a
sphere of an ideal liquid, which is in the state of gravitational collapse.
We call this the liquidmodel of theUniverse. In this case, we should have
rc= rbr= rg= a (6.12). Based on this condition and the numerical value
of the Universe’s radius a= 1.3 × 1028 cm, obtained from the Hubble
constant, we calculate the mass and density that should be associates
with the Universe in the framework of the liquid model (according to
a= rg= 2GM

c2 and M = 4
3 πa3ρ0). We obtain

a = 1.3 × 1028 cm

ρ0 = 9.6 × 10−31 gram/cm3

M = 8.8 × 1055 gram

rg = 1.3 × 1028 cm

rbr = 1.3 × 1028 cm

rc = 1.3 × 1028 cm


. (6.17)

The calculated theoretical values (6.17) are compared with the es-
timates of observational astronomy (6.16) in Table 6.1. Since these ob-
servational estimates are known very approximately, we conclude that
the observable Universe is a huge collapsar. Therefore, all the world that
we observe, including ourselves, is located inside a huge black hole.

In particular, this conclusion meets another one made in 1965 by
Kyril P. Stanyukovich [33]. He neither studied the geometric properties
of a liquid sphere nor introduced a particular space metric. His analysis
was based on the properties of elementary particles. Following this way,
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M, gram ρ0 , g/cm
3 a, cm rg , cm rbr , cm rc , cm

Astron.
esteems 9.2×1056 ∼10−28 1.3×1028 1.4×1028 1.3×1028 1.5×1028

Liquid
model 8.8×1055 9.6×10−31 1.3×1028 1.3×1028 1.3×1028 1.3×1028

Table 6.1: The model of the observable Universe as a non-rotating liquid
sphere in the state of gravitational collapse. The calculated parameters of
the liquid model are compared with the observational esteems.

Stanyukovich obtained that theHilbert radius of theUniverse is the same
as the observed event horizon: the observable Universe is a collapsar.
So, despite the fact that Stanyukovich used a different theoretical base
from ours, he had arrived at the same conclusion.

6.3 Pressure and density inside a liquid collapsar

Let us calculate pressure and density inside non-rotating liquid collap-
sars. The formula (2.130) that we have obtained for the pressure p inside
a sphere filled with an ideal liquid

p = ρ0c2

√
1 − κρ0r2

3 −

√
1 − κρ0 a2

3

3
√

1 − κρ0 a2

3 −

√
1 − κρ0r2

3

(6.18)

under the collapse condition a=
√

3/κρ0 takes the simplest form

p = −ρ0c2 = const, (6.19)

where ρ0= const by definition inside any liquid sphere. This formula is
the equation of state of a liquid. Such a state is known as inflation: at a
positive density of a substance the pressure from within it is negative,
so the internal pressure of the substance tends to expand the body from
within (despite the fact that any liquid body is incompressible).

As is seen from this formula, the pressure inside a non-rotating liq-
uid collapsar is constant as well as the density. This means that the liquid
substance that fills a non-rotating collapsar is in the state of inflation and
has the same pressure and density throughout the entire volume of the
collapsar, from its centre to the surface.
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6.4 The internal forces of gravitation. The internal redshift

The force of gravitation acting inside a non-rotating liquid collapsar can
be found based on the force acting inside a non-rotating liquid sphere,
if the sphere is in the state of gravitational collapse (in this case, its
physical radius is a= rg =

√
3/κρ0).

Based on the formulae for the components F1 (2.123, 2.125) and F1

(2.124, 2.126) acting inside a non-rotating liquid sphere, we obtain

F1 =
κρ0c2r

3
1

1 − κρ0 r2

3

=
c2r
a2

1

1 − r2

a2

, (6.20)

F1 =
κρ0c2r

3
=

c2r
a2 . (6.21)

Since r< a inside the sphere, we have F1> 0. Therefore, this is a
force of repulsion. This force increases with the distance r, from zero at
the centre of the liquid collapsar to its maximum value on the surface.

If the observable Universe is really a huge liquid collapsar (at least
astronomical data evidence it, as was shown above), then the repulsive
radial force acting inside the collapsar may cause a frequency shift in
photons. To investigate this problem, we consider the chr.inv.-equations
of isotropic geodesics

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik·
)

ck − ωF i + ω∆i
nk cnck = 0

 , (6.22)

which are the equations of motion of a light-like massless particle (such
as a photon, the frequency of which is ω), which travels with the ob-
servable velocity of light ci. These chr.inv.-equations are obtained as
the chr.inv.-projections of the general covariant equations of isotropic
geodesics. See [18, 19] for detail.

If the space of a non-rotating liquid collapsar does not rotate or de-
form (Aik= 0, Dik= 0), then the equations (6.22) take the form

dω
dτ
−
ω

c2 Fi ci = 0

d (ωci)
dτ

− ωF i + ω∆i
nk cnck = 0

 . (6.23)
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Let a photon travels only along the radial direction x1= r. Consider
the chr.inv.-scalar geodesic equation of the photon. Substitute the ob-
tained formula for F1 (6.20). Because the photon’s observable velocity
is the observable velocity of light along the radial direction, c1= dr

dτ , the
chr.inv.-scalar geodesic equation of the photon takes the form

1
ω

dω
dτ
=

r
a2 − r2

dr
dτ
. (6.24)

This equation is solved as d lnω=− 1
2 d ln |a2 − r2 |, or

d lnω = d ln
1

√
a2 − r2

, (6.25)

whence we obtain the function

ω (r) =
Q

√
a2 − r2

, Q = const. (6.26)

The integration constant Q is found from the obvious limit condition
ω(r= 0)=ω0. It is Q= a2ω0. Finally, we obtain the solution

ω =
ω0√
1 − r2

a2

. (6.27)

At the distances travelled by the photon, which are small to the phys-
ical radius of the collapsar (r≪ a), this formula transforms into

ω ≃ ω0

(
1 +

r2

2a2

)
. (6.28)

This causes a square redshift of the photon’s frequency

z =
ω − ω0

ω0
=

1√
1 − r2

a2

− 1 > 0 , (6.29)

which we call a parabolic redshift due to the parabolic square function.
That is, the force of repulsion F1 acting along the radial coordinate from
the observer decelerates photons travelling inside the star to him. At
small distances of the photon’s travel (r≪ a), the redshift is

z ≃
r2

2a2 , (6.30)
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or, formulating this result through the Hubble constant H = c
a ,

z ≃
H2r2

2c2 . (6.31)

So, the observed parameters of the Universe indicate that it is a huge
collapsar. This conclusion coincides with the calculations according to
the theory of non-rotating liquid collapsars presented here. Therefore,
astronomers should expect a non-linear parabolic redshift on the pho-
tons coming to us from the farthest regions of the Universe. The greater
the distance travelled by the photon, the greater the non-linearity of the
redshift function, which is expected to be registered in astronomical ob-
servations.

6.5 The state of a collapsed liquid substance

Let us now discuss the state of the substance that fills non-rotating liquid
collapsars. It is easy to see that once a non-rotating liquid star is in the
state of gravitational collapse (rg = a), the space metric (6.7) of such a
star takes the form

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
. (6.32)

This metric under the particular condition a2 = 3
λ > 0 (thus λ> 0) has

the same form as the de Sitter metric (1.5)

ds2 =

(
1 −
λr2

3

)
c2dt2 −

dr2

1 − λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (6.33)

which describes a spherical distribution of the physical vacuum (deter-
mined by the λ-field in Einstein’s field equations).

This means that liquid collapsars consist of an ideal liquid, the state
of which is similar to the state of the physical vacuum. The only differ-
ence is that the liquid filling collapsars has a positive density, while the
density of the physical vacuum at λ> 0 is negative; see §5.2 and §5.3
of our book [18] for detail. In addition, ordinary liquid collapsars have
a small size and high density (in contrast to the Universe as a whole).
Therefore, the liquid that fills ordinary (compact) collapsars is in a state
similar to the state of the high-density physical vacuum.
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What is the physical vacuum, known also as the λ-field? The phys-
ical vacuum is known due to the general formulation of Einstein’s field
equations containing the λ-term on the right hand side

Rαβ −
1
2
gαβR = −κTαβ + λgαβ , (6.34)

where the right hand side determines a distributed matter that fills the
space, and the left hand side determines the space geometry that is Rie-
mannian according to the formulation.

Let us re-write the field equations in the form

Rαβ −
1
2
gαβR = −κ T̃αβ , (6.35)

where the joint energy-momentum tensor T̃αβ=Tαβ + T̆αβ characterizes
both the distributed substance and the physical vacuum (λ-field).

The energy-momentum tensor of the physical vacuum

T̆αβ = −
λ

κ
gαβ (6.36)

was first deduced in 1995 by us and published in §5.2 and §5.3 of the
book [18]. It has the physically observable chr.inv.-projections

ρ̆ =
T̆00

g00
= −
λ

κ
= const < 0 , (6.37)

J̆ i =
c T̆ i

0
√
g00
= 0 , (6.38)

Ŭ ik = c2T̆ ik =
λ

κ
c2hik = − ρ̆c2hik, (6.39)

calculated in the same way as the observable chr.inv.-projections (1.91)
of any energy-momentum tensor.

The scalar chr.inv.-projection ρ̆=− λκ = const means that the physi-
cal vacuum is homogeneously distributed over the space, i.e., is a ho-
mogeneous medium. The vector chr.inv.-projection J̆ i= 0means that the
physical vacuum does not contain energy flows, i.e., is a non-radiating
medium.

Let us find the equation of state of the physical vacuum. According
to the chronometrically invariant formalism, the chr.inv.-stress tensor
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U ik of a distributed medium is expressed through the pressure inside
the medium as follows [18, 23]

Uik = p0hik − αik = phik − βik , (6.40)

where p0 is the equilibrium pressure known due to the equation of state,
p is the true pressure inside the medium, αik is the chr.inv.-viscous
stress tensor, βik=αik−

1
3 αhik is its anisotropic part that manifests itself

in anisotropic deformations, and α= hikαik is the trace of the viscous
stress tensor αik. Since a spherically symmetric space is isotropic by
definition, we have βik= 0 in the present case. In addition, according
to the initial assumption, the vacuum medium is non-viscous (αik= 0).
Therefore, for the physical vacuum, we have

Ŭik = p̆hik = − ρ̆c2hik . (6.41)

Thus, using the formula for the trace of the observable stress tensor
U = hikUik, we obtain the equation of state of the physical vacuum

p̆ = − ρ̆c2 (6.42)

that at a negative density ρ̆=− λκ < 0 is a manifestation of the state of
deflation, which means that the pressure from within the medium tends
to compress the sphere.

Deduce the components of the gravitational force acting inside a
vacuum collapsar (we call it a de Sitter collapsar). Following the same
way of derivation as that for the force acting inside a liquid collapsar
(6.20, 6.21), we obtain the force

F1 =
λc2r

3
1

1 − λr2

3

, F1 =
λc2r

3
, (6.43)

and for the frequency and frequency shift of a photon we obtain

ω =
ω0√

1 − λr2

3

≃ ω0

(
1 +
λr2

6

)
, (6.44)

z =
ω − ω0

ω0
=

1√
1 − λr2

3

− 1 ≃
λr2

6
> 0 . (6.45)
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To understand the results that we have obtained, let us recall that
we were able to transform the space metric of a collapsed liquid sphere
(6.32) into the de Sitter space metric (6.33) by only the particular con-
dition a2 = 3

λ > 0. Hence, we have assumed λ> 0. With λ> 0, we have
obtained a negative density of the physical vacuum ρ̆=− λκ < 0 (6.37),
the state of inflation p̆=− ρ̆c2 (6.42), the repulsing force F1> 0 (6.43)
and the square (parabolic) redshift (6.45).

These are the same results as those we have obtained for a liquid
collapsar, except for the negative density ρ̆=− λκ < 0 (and, hence, the
positive pressure p̆=− ρ̆c2 > 0, which gives the state of deflation) that
creates a problem.

To remove this problem, we could assume a negative value of the
λ, i.e., λ< 0 to get a positive density of the physical vacuum. But if so,
then the collapsar’s radius a would be imaginary, which is nonsense in
the observed Universe.

On the other hand, there is another way to remove this problem.
Now we will show you how to do it.

Consider Einstein’s field equations (6.34) in the form, where the
energy-momentum tensor of a distributed substance and the λ-term are
taken with the same sign

Rαβ −
1
2
gαβR = −κTαβ − λgαβ . (6.46)

In this case, the energy-momentum tensor of the physical vacuum
has the form

T̆αβ =
λ

κ
gαβ , (6.47)

and its physically observable chr.inv.-projections are

ρ̆ =
T̆00

g00
=
λ

κ
= const > 0 , (6.48)

J̆ i =
cT̆ i

0
√
g00
= 0 , (6.49)

Ŭ ik = c2T̆ ik = −
λ

κ
c2hik = − ρ̆c2hik. (6.50)

In this case, the physical vacuum (λ-field) is in the state of inflation
( p̆=− ρ̆c2), but its density is positive: ρ̆= λκ > 0. Therefore, themodified
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form (6.46) of Einstein’s field equations removes the aforementioned
contradiction between the theory of liquid collapsars and the observed
positive density of substance in the Universe.

Hence, we have obtained that the physical vacuum (λ-field) is a ho-
mogeneous, non-viscous, non-radiating medium, which in the state of
inflation.

Concerning the deduced redshift formula (6.45), it depends only on
the formula for the force of repulsion deduced from the specific g00 of
the de Sitter metric (6.33). Since we did not change the space metric,
the redshift formula (6.45) remains unchanged.

6.6 Time flows in the opposite direction inside collapsars

In a space without rotation, the observable time interval dτ (1.30) has
a simplified formula: dτ=

√
g00 dt. Therefore, according to the specific

g00 of the metric of a non-rotating liquid sphere (6.6), dτ in the field of
a non-rotating liquid star has the form

dτ = ±
1
2

3
√

1 −
κρ0a2

3
−

√
1 −
κρ0r2

3

 dt . (6.51)

This formula under the condition a= rg =
√

3/κρ0 characterizing a
star in the state of gravitational collapse transforms into

dτ = ∓
1
2

√
1 −
κρ0r2

3
dt . (6.52)

We see that the sign of the observable time interval dτ inside a reg-
ular liquid star is opposite to the dτ inside a liquid star in the state of
gravitational collapse. In other words, the observable time inside ordi-
nary stars flows in the opposite direction than the observable time inside
collapsars.

Just one illustration: we usually assume that the observable time
flows from the past to the future. If so, then the observable time inside
collapsars flows from the future to the past.

6.7 The boundary conditions in a liquid collapsar

Under the condition a= rg =
√

3/κρ0 characterizing liquid collapsars,
the non-zero components of the Riemann-Christoffel curvature tensor
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Rαβγδ (2.113–2.116) obtained in §2.3 take the form

R0101 =
κρ0

12
=

1
4a2 = const , (6.53)

R1212 = −C1212 =
κρ0

3
r2

1 − κρ0r2

3

=
r2

a2

1

1 − r2

a2

, (6.54)

R1313 = −C1313 =
κρ0

3
r2 sin2θ

1 − κρ0r2

3

=
r2

a2

sin2θ

1 − r2

a2

, (6.55)

R2323 = −C2323 =
κρ0

3
r4 sin2θ =

r4

a2 sin2θ . (6.56)

Since R0101=
κρ0
12 = const and R0101 > 0 in the case of a positive den-

sity ρ0 > 0 of the liquid, the internal space of a liquid collapsar is a four-
dimensional positive constant curvature space. This is in contrast to our
result of §2.3, where we showed that the space inside a regular liquid
sphere has a variable four-dimensional negative curvature. Hence:

The state of gravitational collapse is a “bridge” connecting the
world of a varying four-dimensional negative curvature inside or-
dinary stars and the world of a four-dimensional positive constant
curvature inside those stars that are in the state of gravitational
collapse.

Calculate the observable three-dimensional curvature of the space
inside non-rotating liquid collapsars. We calculate C11 (2.104), C22
(2.105) and the observable curvature scalar C = hikCik under the con-
dition a= rg =

√
3/κρ0 characterizing liquid collapsars. We obtain

C11 = −
2κρ0

3
1

1 − κρ0r2

3

= −
2
a2

1

1 − r2

a2

, (6.57)

C22 =
C33

sin2θ
= −

2κρ0r2

3
= −

2r2

a2 , (6.58)

C = − 2κρ0 = −
6
a2 = const < 0 . (6.59)

This is a three-dimensional negative constant curvature space as
well as the space inside ordinary liquid stars.
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So forth, we express the force of gravitation acting in the internal
space of a non-rotating liquid collapsar through the observable three-
dimensional curvature of the internal space. From the formulae for F1
(6.20) and F1 (6.21), we obtain

F1 = −
c2r
2

C11 , F1 = −
c2

2r
C22 . (6.60)

We see that both the observable three-dimensional curvature and
the force of gravitation have a space breaking

C11 → −∞, F1 → ∞ (6.61)

by the limit condition r= a on the surface of the collapsar. This result
is, however, trivial.

6.8 Rotating liquid collapsars

Here we complicate our task by considering rotating liquid collapsars.
Let the space of the metric (6.32) characteristic of a liquid collapsar
rotates with an angular velocityω around the polar axis of the collapsar.
In this case, among the g0i-th components of the fundamental metric
tensor gαβ, only the non-zero component

g03 = −
2ωr2 cos θ

c
(6.62)

characterizes the rotation, while g01 = g02= 0. Therefore, the linear ve-
locity vi (1.45) with which the space rotates has the form

v3 =
2ωr2 cos θ√

1 − r2

a2

, v1 = v2 = 0 . (6.63)

As a result, we get the space metric of a rotating liquid collapsar

ds2 =
1
4

(
1 −

r2

a2

)
c2dt2 −

dr2

1 − r2

a2

−

−
2ωr2 cos θ

c
cdt dϕ − r2

(
dθ2 + sin2θ dϕ2

)
. (6.64)

It is possible to prove that this space metric satisfies Einstein’s field
equations containing the energy-momentum tensor of an ideal liquid
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(2.4). If we substitute the specific gαβ components of the metric (6.64),
then the left hand side and right hand side of the equations become the
same: the field equations are satisfied as identities.

The general condition of gravitational collapse means that the phys-
ically observable time stops (dτ= 0) on the collapse surface. The defi-
nition of dτ (1.30) takes both the factors g00 and g0i into account

dτ =
√
g00 dt +

g0i

c
√
g00

dxi =

(
1 −

w
c2

)
dt −

1
c2 vi dxi. (6.65)

Therefore, the collapse condition with vi, 0 is not dτ=
√
g00 dt= 0

as that for non-rotating collapsars, but takes the complete form

√
g00 −

1
c2 v3 u3 = 0 , (6.66)

where u3=
dϕ
dt =ω. Using the g00 and v3 (6.63) of the metric (6.64), we

obtain the collapse surface radius of a rotating liquid collapsar

rc =
a√

1 + 4ω2a2 cos θ
c2

⩽ a , (6.67)

and, hence,

rc ≃ a
(
1 −

2ω2a2 cos θ
c2

)
= a − ∆a . (6.68)

Assuming ω= 103 sec−1 and a= 106 cm for example, we obtain
∆a≃ 22 cos θ, i.e. ∆a ≃ 22 metres at the equator of the star and ∆a = 0
at the South Pole and North Pole.

We see that the collapse surface meets the radius a of the star only at
the poles of the star’s rotation, where the latitude is θ=± π2 and, there-
fore, cos θ= 0. In other words, rotating liquid collapsars are not spheres,
but have an elliptic form flattened on the equatorial plane (which is or-
thogonal to the axis of rotation).

If a collapsar does not rotate (ω= 0), then its form is spherically
symmetric (rc= a). At a maximum relativistic rotation speed, the col-
lapsar’s elliptic form is highly flattened on the equatorial plane. In the
limiting case, when the collapsar rotates with a velocity close to the
velocity of light (ω2a2→ c2), its form is determined by the equation

rc =
a

√
1 + 4 cos θ

. (6.69)
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The other parameters of rotating liquid collapsars, which we have
obtained in the framework of our theory do not change the fundamental
results obtained in §5.1 for non-rotating liquid collapsars. The only dif-
ference is that the formulae contain a correction for the angular velocity
of the collapsar ω. Therefore, we omit these results from consideration.

6.9 Conclusion

Let us recall everything we have obtained here on liquid collapsars:
1. The radial coordinate at which a non-rotating liquid sphere of a

radius a meets the state of gravitational collapse, is rc (6.10)

rc =

√
9a2 −

8a3

rg
. (6.70)

For ordinary stars, rc takes imaginary numerical values. There-
fore, ordinary stars ranging from super-giants to dwarfs and white
dwarfs cannot collapse;

2. Since the collapse radius rc must be real for real objects, the phys-
ical radius a of a non-rotating liquid collapsar must be

a ⩽ 1.125 rg . (6.71)

If a non-rotating liquid star has a radius of a⩾ 1.125 rg, then this
star cannot be in the state of gravitational collapse;

3. Density is the primary characteristic of non-rotating liquid collap-
sars. The physical radius a of such a collapsar is inversely propor-
tional to the square root of its density ρ0 (6.13)

a =

√
3
κρ0
=

4.0 × 1013

√
ρ0

cm; (6.72)

4. Themass M of a non-rotating liquid collapsar is proportional to its
physical radius a (6.14) and is inversely proportional to the square
root of its density ρ0 (6.15)

M =
4πa
κ
= 6.8 × 1027 a gram, (6.73)

M =
4
√

3 π
κ3/2 √ρ0

=
2.7 × 1041

√
ρ0

gram; (6.74)
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5. The observable Universe is completely located inside its collapse
radius. Therefore, we conclude that the Universe is a gravitational
collapsar: all stars and galaxies, including ourselves, exist inside a
huge black hole. Its parameters theoretically calculated according
to the model of liquid collapsars are

a = 1.3 × 1028 cm

ρ0= 9.6 × 10−31 gram/cm3

M= 8.8 × 1055 gram

 ; (6.75)

6. A liquid substance that fills liquid collapsars is in the state of in-
flation. Its equation of state is

p = −ρ0c2 = const, (6.76)

which means that at a positive density of substance the pressure
is negative, so the pressure from within tends to expand the body
(but the collapsar does not expand, because a liquid body is in-
compressible). The pressure and density remain unchanged from
the centre of the collapsar up to its surface;

7. The gravitational inertial force acting inside a non-rotating liquid
collapsar is a force of repulsion. It increases with distance, from
zero at the centre of the collapsar to its maximum value on the
surface;

8. The internal force of repulsion produces a square (parabolic) red-
shift on photons travelling inside the collapsar;

9. The state of a liquid substance that fills ordinary (compact) col-
lapsars is similar to the state of the high-density physical vacuum
(high-density λ-field), which is a homogeneous, non-viscous, non-
radiating medium in the state of inflation;

10. The observable time flows in the opposite directions inside and
outside collapsars: if we assume that the observable time of our
world flows from the past to the future, then the observable time
flows from the future to the past inside collapsars;

11. The state of gravitational collapse is a “bridge” connecting the
world of a varying four-dimensional negative curvature inside or-
dinary stars and the world of a four-dimensional positive constant
curvature inside gravitational collapsars (black holes);
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12. Rotating liquid collapsars are not spheres, but have an elliptic form
flattened on the equatorial plane. The radius rc of a rotating liquid
collapsar is formulated through the sphere’s radius a, the latitude
θ and the angular velocity of its rotation ω as

rc =
a√

1 + 4ω2a2 cos θ
c2

. (6.77)
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