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Preface of the Editor

I am honoured to present this book by Indranu Suhendro, in which he
adduces theoretical solutions to the problems of spin-curvature and the
unification of fields in a twisted space. A twist of space is given herein
through the appropriate formalism, and is related to the anti-symmetric
metric tensor. Kaluza’s theory is extended and given an appropriate
integrability condition. Both matter and the isotropic electromagnetic
field are geometrized through common field equations: trace-free field
equations, giving the energy-momentum tensor for the electromagnetic
field via only the generalized Ricci curvature tensor and scalar, are
obtained. In the absence of the electromagnetic field the theory goes to
Einstein’s 1928 theory of distant parallelism where only the matter field
is geometrized (through the twist of space-time). Therefore the above
results, in common with respective wave equations, are joined into a
“unified theory of semi-classical gravoelectrodynamics”.

There have been few attempts to introduce spin-particles into the
theory of relativity (which is the theory of fields, in the sense pro-
pounded by Landau and Lifshitz). Frankly speaking, only two of the
attempts were complete. The first attempt, by A. Papapetrou (1951),
was a “frontal approach” to this problem: he introduced a spin-particle
as a swiftly rotating gyro (Proc. Roy. Soc. A, 1951, v. 209, 248–258 and
259–268). This approach however doesn’t match experimental data due
to that fact that, considering an electron as a solid ball, the linear
velocity of its rotation at its surface should be 70 times greater than
the velocity of light. The second attempt, by me and L. Borissova
(2001), introduced a spin-particle through the variational principle and
Lagrange’s function for such a system (see Chapter 4 of the book Fields,
Vacuum, and the Mirror Universe, Editorial URSS, Moscow, 2001). De-
spite some success related to its immediate application to the theory of
elementary particles, this method however could not be considered as
purely “geometric”: spin, the fundamental property of a particle, wasn’t
expressed through the geometric properties of the basic space, but in-
stead still remained a non-geometrized fundamental characteristic of
matter.

Insofar as the geometrization of distributed matter is concerned,
just one solution was successful before this book. It was given for
an isotropic electromagnetic field. Such fields are geometrized via the
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well-known Rainich condition and the Nortvedt-Pagels condition: the
energy-momentum tensor of such a field expresses itself through the
components of the fundamental metric tensor, so Einstein’s equations
contain only the “geometric” left-hand-side by moving all the right-
hand-side terms to the left-hand-side so the right-hand-side becomes
zero. Various solutions given by the other authors are particular to the
Rainich/Nortvedt-Pagels condition, or express an electromagnetic field
under a very particular condition.

Both problems are successfully resolved in this book with the use
of only geometric concepts on a common basis (a twisted space), which
is the great advantage of this work. This fact places this book in the
same class of great ideas in the theory of fields, produced during the last
century, commencing with the time Albert Einstein first formulated his
field equations.

I am therefore very pleased to bring this book to the reader. I recom-
mend it to anyone who is seriously interested in the Theory of Relativity
and the geometric approach to physics in particular.

February, 2008 Dmitri Rabounski



Foreword

In the present research, I consider a unification of gravity and electro-
magnetism in which electromagnetic interaction is seen to produce a
gravitational field. The field equations of gravity and electromagnetism
are therefore completely determined by the fundamental electromag-
netic laws. Insight into this unification is that although gravity and
electromagnetism have different physical characteristics (e.g., they dif-
fer in strength), it can be shown through the algebraic properties of the
curvature and the electromagnetic field tensors that they are just dif
ferent aspects of the geometry of space-time. Another hint comes from
the known speed of interaction of gravity and electromagnetism: elec-
tromagnetic and gravitational waves both travel at the speed of light.
This means that they must somehow obey the same wave equation.
This indeed is unity. Consequently, many different gravitational and
electromagnetic phenomena may be described by a single wave equation
reminiscent of the scalar Klein-Gordon equation in quantum mechan-
ics. Light is understood to be a gravoelectromagnetic wave generated
by a current-producing oscillating charge. The charge itself is gener-
ated by the torsion of space-time. This electric (or more generally,
electric-magnetic) charge in turn is responsible for the creation of mat-
ter, hence also the transformation of matter into energy and vice versa.
Externally, the gravitational field manifests itself as the final outcome
of the entire process. Hence gravity and electromagnetism obey the
same set of field equations, i.e., they derive from a common origin. As
a result, the charge produces the so-called gravitational mass. Albeit
the geometric non-linearity of gravity, the linearity of electromagnetism
is undisturbed: an idea which is central also in quantum mechanics.
Therefore I preserve the most basic properties of matter such as energy,
momentum, mass, charge and spin through this linearity. It is a mod-
est attempt to once again achieve a comprehensive unification which
explains that gravity, electromagnetism, matter and light are only dif-
ferent aspects of a single theory.

Karlstad, Sweden, 2004 Indranu Suhendro
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Chapter 1

A FOUR-MANIFOLD POSSESSING
AN INTERNAL SPIN

§1.1 Introduction

Attempts at a consistent unified field theory of the classical fields of
gravitation and electromagnetism and perhaps also chromodynamics
have been made by many great past authors since the field concept
itself was introduced by the highly original physicist, M. Faraday in
the 19th century. These attempts temporarily ended in the 1950’s:
in fact Einstein’s definitive version of his unified field theory as well
as other parallel constructions never comprehensively and compellingly
shed new light on the relation between gravity and electromagnetism.
Indeed, they were biased by various possible ways of constructing a uni-
fied field theory via different geometric approaches and interpretations
of the basic geometric quantities to represent the field tensors, e.g., the
electromagnetic field tensor in addition to the gravitational field ten-
sor (for further modern reference of such attempts, especially the last
version of Einstein’s gravoelectrodynamics see, e.g., various works of
S. Antoci). This is put nicely in the words of Infeld: “. . . the problem of
generalizing the theory of relativity cannot be solved along a purely for-
mal way. At first, one does not see how a choice can be made among the
various non-Riemannian geometries providing us with the gravitational
and Maxwell’s equations. The proper world-geometry which should lead
to a unified theory of gravitation and electricity can only be found by
an investigation of its physical content”. In my view, one way to justify
whether a unified field theory of gravitation and electromagnetism is
really “true” (comprehensive) or really refers to physical reality is to
see if one can derive the equation of motion of a charged particle, i.e.,
the (generalized) Lorentz equation, if necessary, effortlessly or directly
from the basic assumptions of the theory. It is also important to be able
to show that while gravity is in general non-linear, electromagnetism is
linear. At last, it is always our modest aim to prove that gravity and
electromagnetism derive from a common source. In view of this one
must be able to show that the electromagnetic field is the sole ingre-
dient responsible for the creation of matter which in turn generates a
gravitational field. Hence the two fields are inseparable.
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Furthermore, I find that most of the past theories were based on the
Lagrangian formulation which despite its versatility and flexibility may
also cause some uneasiness due to the often excessive freedom of choos-
ing the field Lagrangian. This strictly formal action-method looks like
a short cut which does not lead along the direct route of true physical
progress. In the present work we shall follow a more fundamental (nat-
ural) method and at the same time bring up again many useful classical
ideas such as the notion of a mixed geometry and Kaluza’s cylinder con-
dition and five-dimensional formulation. Concerning higher-dimensional
formulations of unified field theories, we must remember that there is
always a stage in physics at which direct but narrow physical arguments
can hardly impinge upon many hidden properties of Nature. In fact the
use of projective geometries also has deep physical reason and displays a
certain degree of freedom of creativity: in this sense science is an art, a
creative art. But this should never exclude the elements of mathemati-
cal simplicity so as to provide us with the very conditions that Nature’s
manifest four-dimensional laws of physics seemingly take.

For instance, Kaluza’s cylinder condition certainly meets such a re-
quirement and as far as we speak of the physical evidence (i.e., there
should possibly be no intrusion of a particular dependence upon the
higher dimension(s)), such a notion must be regarded as important
if not necessary. An arbitrary affine (n+1)-space can be represented
by a projective n-space. Such a pure higher-dimensional mathematical
space should not strictly be regarded as representing a “real” higher-
dimensional world space. Physically saying, in our case, the five-
dimensional space only serves as a mathematical device to represent
the events of the ordinary four-dimensional space-time by a collection
of congruence curves. It in no way points to the factual, exact number
of dimensions of the Universe with respect to which the physical four-
dimensional world is only a sub-space. In this work we shall employ a
five-dimensional background space simply for the sake of convenience
and simplicity.

On the microscopic scales, as we know, matter and space-time itself
appear to be discontinuous. Furthermore, matter arguably consists of
molecules, atoms and smaller elements. A physical theory based on a
continuous field may well describe pieces of matter which are so large in
comparison with these elementary particles, but fail to describe their be-
havior. This means that the motion of individual atoms and molecules
remains unexplained by physical theories other than quantum theory in
which discrete representations and a full concept of the so-called mate-
rial wave are taken into account. I am convinced, indeed, that if we had
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a sufficient knowledge of the behavior of matter in the microcosmos, it
would, and it should, be possible to calculate the way in which matter
behaves in the macrocosmos by utilizing certain appropriate statistical
techniques as in quantum mechanics. Unfortunately, such calculations
prove to be extremely difficult in practice and only the simplest systems
can be studied this way. What’s more, we still have to make a number of
approximations to obtain some real results. Our classical field theories
alone can only deal with the behavior of elementary particles in some
average sense. Perhaps we must humbly admit that our understanding
and knowledge of the behavior of matter, as well as space-time which
occupies it, is still in a way almost entirely based on observations and
experimental tests of their behavior on the large scales. This is a matter
for experimental determination but a theoretical framework is always
worth constructing. As generally accepted, at this point one must aban-
don the concept of the continuous representation of physical fields which
ignores the discrete nature of both space-time and matter although it
doesn’t always treat matter as uniformly distributed throughout the re-
gions of space. Current research has centered on quantum gravity since
the departure of the 1950’s but we must also acknowledge the fact that
a logically consistent unification of classical fields is still important. In
fact we do not touch upon the “formal”, i.e., standard construction of a
quantum gravity theory here. We derive a wave equation carrying the
information of the quantum geometry of the curved four-dimensional
space-time in Chapter 4 by first assuming the discreteness of the space-
time manifold on the microscopic scales in order to represent the pos-
sible inter-atomic spacings down to the order of Planck’s characteristic
length.

Einstein-Riemann space(-time) R4 (a mixed, four-dimensional one)
endowed with an internal spin space Sp is first considered. We stick
to the concept of metricity and do not depart considerably from affine-
metric geometry. Later on, a five-dimensional general background space
IR5 is introduced along with the five-dimensional and (as a brief di-
gression) six-dimensional sub-spaces On and V6 as special coordinate
systems.

Conventions: Small Latin indices run from 1 to 4. Capital Latin in-
dices run from 1 to 5. Round and square brackets on particular tensor
indices indicate symmetric and skew-symmetric characters, respectively.
The covariant derivative is indicated either by a semi-colon or the sym-
bol ∇. The ordinary partial derivative is indicated either by a comma
or the symbol ∂. Einstein summation convention is, as usual, employed
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throughout this work. Finally, by the word space we may also mean
space-time.

§1.2 Geometric construction of a mixed, metric-compatible
four-manifold R4 possessing an internal spin space Sp

Our four-dimensional manifold R4 is endowed with a general asymmetric
connection Γi

jk and possesses a fundamental asymmetric tensor defined
herein by

γij = γ(ij) + γ[ij] ≡
1√
2

(
g(ij) + g[ij]

)
, (1.1)

where g(ij)≡
√

2γ(ij) will play the role of the usual geometric metric ten-
sor with which we raise and lower indices of tensors while g[ij]≡

√
2 γ[ij]

will play the role of a fundamental spin tensor (or of a “skew- or anti-
symmetric metric tensor”). We shall also refer both to as the funda-
mental tensors. They satisfy the relations

g(ij)g
(kj) = δk

i , (1.2a)

g[ij]g
[kj] = δk

i , (1.2b)

g(ij)g[jk] = g[ij]g(jk) . (1.2c)

We may construct the fundamental spin tensor as a generalization
of the skew-symmetric symplectic metric tensor in any M -dimensional
space(-time), where M =2, 4, 6, . . . , M =2 + p, embedded in (M + n)-
dimensional enveloping space(-time), where n= 0, 1, 2, . . . . In M
dimensions, we can construct p=M − 2 null (possibly complex) normal
vectors (null n-legs) z1, z2, . . . , zp with zµ

mznµ = 0 (m,n, . . . = 1, . . . , p
and µ, ν, . . . = 1, . . . ,M). If we define the quantity γαβ

µν =ϕµνϕ
αβ where

the skew-symmetric, self-dual null bivector ϕµν defines a null rotation,
then these null n-legs are normal to the (hyper)plane

∑
M+n−2 ⊂RM

(contained in RM ) defined in such a way that

ϕµν =∈µναβ...τ z
α
1 z

β
2 . . . z

τ
p = (M − p)!

(
z1[µ z2|ν] + · · ·+ z1[µ zp|ν]

)
,

ϕµνϕ
µν = 0 ,

∈µναβ...=
√±g εµναβ..., ∈µναβ...=

1√±g ε
µναβ..., g = detg .

Here εµναβ... is the Levi-Civita permutation symbol. Hence in four
dimensions we have

ϕµν =∈µναβ z
α
1 z

β
2 =

1
2
∈µναβ ϕ

αβ = z1µz2ν − z1νz2µ ,
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γαβ
µν =∈µνργ∈αβδθ zρ

1z
γ
2 zδ1zθ2 ,

tr γ → γαβ
µβ = γβα

βµ = ± δδβα
ργµz

ρ
1z

γ
2 zδ1zβ2 = 0 ,

where δαβγδ
µνρσ =± ∈µνρσ∈αβγδ is the generalized Kronecker delta and

δδβα
ργµ = δδβαν

ργµν . (The minus sign holds if the manifold is Lorentzian and
vice versa.) The particular equation tr γ=0 is of course valid in M
dimensions as well. In M dimensions, the fundamental spin tensor of
our theory is defined as a bivector satisfying

g[µν]g
[αβ] = γαβ

µν +
1

M − 1
(
δα
µδ

β
ν − δα

ν δ
β
µ

)
. (1.3a)

Hence the above relation leads to the identity

g[να]g
[µα] = δµ

ν . (1.3b)

In the particular case of M =2 and n=1, the γαβ
µν vanishes and the

fundamental spin tensor is none other than the two-dimensional Levi-
Civita permutation tensor:

g[AB] =∈AB=
√±g

(
0 1
−1 0

)
,

g[AB]g
[CD] = δC

Aδ
D
B − δC

Bδ
D
A ,

g[AC]g
[BC] = δB

A ,

where A,B=1, 2. Let’s now return to our four-dimensional manifold
R4. We now have

g[ij]g
[kl] = γkl

ij +
1
3

(
δk
i δ

l
j − δk

j δ
l
i

)
,

g[ij]g
[kj] = δk

i .

Hence the eigenvalue equation is arrived at:

λg[ij] = γkl
ij g[kl] . (1.3c)

We can now construct the symmetric traceless matrix Qk
i through

Qk
i ≡ γkl

ij ulu
j =∈ijpq∈klrs zp

1z
q
2zr1zs2ulu

j ,

γkl
ij ≡ Qk

i uju
l ,

Qik = Qki ,
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trQ = 0 ,

Qiku
k = 0 ,

where ui is the unit velocity vector, uiu
i = 1. Let’s introduce the unit

spin vector:
vi = g[ik]uk ,

viv
i = 1, uiv

i = 0 ,

g[ik]v
iuk = 1 .

Multiplying both sides of (1.3c) by the unit spin tensor, we get

λ g[ij]u
j = Qk

i g[kr]u
r.

In other words,
λvi = Qi

kv
k. (1.3d)

Now we can also verify that

γijγ
kj = δk

i . (1.4)

Note that since the fundamental tensor is asymmetric it follows that

γijγ
jk = g(ij)g

[jk] 6= γijγ
kj

( 6= δk
i

)
. (1.5)

The line-element of R4 can then be given through the asymmetric
fundamental tensor:

ds2 =
√

2 γikdx
idxk = g(ik)dx

idxk.

There exists in general no relation such as g[kj]g(ji) = δk
i . However,

we have the relations

g(rs)g[ir]g[js] = g(ij) (a)

g[rs]g(ir)g(js) = g[ij] (b)

}
. (1.6)

We now introduce the basis {gl} which spans the metric space of R4

and its associate {ωl} which spans the spin space Sp ⊂ R4 (we identify
the manifold R4 as having the Lorentzian signature −2, i.e., it is a
space-time). These bases satisfy the algebra

ωi = g[ik]g
k (a)

gi = g[ki]ω
k (b)

(gi · gj) = (ωi · ωj) = g(ij) (c)
(
gi · gj

)
=

(
ωi · ωj

)
= δi

j (d)

(ωi · gj) = g[ij] (e)





. (1.7)
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We can derive all of (1.2) and (1.6) by means of (1.7). In a pseudo-
five-dimensional space ϑn =R4⊗n (a natural extension of R4 which
includes a microscopic fifth coordinate axis normal to all the coordinate
patches of R4), the algebra is extended as follows:

[gi, gj ] = Ck
ijgk + g[ij]n (a)

[n, gi] = g[ij]g
j (b)

ωi = [n, gi]
(
= g[ij]g

j
)

(c)




, (1.8)

where the square brackets [ ] are the commutation operator, Ck
ij stands

for the commutation functions and n is the unit normal vector to the
manifold R4 satisfying (n · n)= ± 1. Here we shall always assume that
(n · n)= + 1 anyway. In summary, the symmetric and skew-symmetric
metric tensors can be written in ϑn =R4⊗n as

g(ik) = (gi · gk) (d)

g[ik] = ([gi, gk] · n) (e)

}
. (1.8)

The (intrinsic) curvature tensor of the space R4 is given through the
relations

Ri
·jkl (Γ) = Γi

jl,k − Γi
jk,l + Γm

jlΓ
i
mk − Γm

jkΓi
ml ,

ai;j;k − ai;k;j = Rl
·ijkal − 2Γl

[jk]ai;l ,

for an arbitrary vector ai. The torsion tensor Γi
[jk] is introduced through

the relation
φ;i;k − φ;k;i = −2Γr

[ik]φ,r ,

which holds for an arbitrary scalar field φ. The connection of course can
be written as Γi

jk =Γi
(jk) + Γi

[jk]. The torsion tensor Γi
[jk] together with

the spin tensor g[ij] shall play the role associated with the internal spin
of an object moving in space-time. On the manifold R4, let’s now turn
our attention to the spin space Sp and evaluate the tangent component
of the derivative of the spin basis {ωl} with the help of (1.7):

(∂jωi)T =
(
g[ik],jg

[lk] − g[ik]g
[lm]Γk

mj

)
ωl (1.9)

since (∂jgi)T =Γk
ijgk. Now with the help of (1.3), we have

(∂j ωi)T =
(
g[ik],jg

[lk] − 1
3

(
Γjδ

l
i − Γl

ij

))
ωl ,
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where we have put Γj = Γi
ij . On the other hand one can easily show that

by imposing metricity upon the two fundamental tensors (use (1.7) to
prove this), the following holds:

Γi
jk =

(
∂jgi · gk

)
=

(
∂j ωi · ωk

)
. (1.10)

Thus, solving for a “tetrad-independent” connection, we have

Γi
jk =

3
2
g[ir]g[jr],k −

1
2
δi
jΓk . (1.11)

The torsion tensor is therefore

Γi
[jk] =

1
4

(
Γjδ

i
k − Γkδ

i
j

)
+

3
4
g[il]

(
g[jl],k − g[kl],j

)
=

=
1
4

(
Γjδ

i
k − Γkδ

i
j

)
+

3
4
g[il]g[jk],l ,

(1.12)

where we have assumed that the fundamental spin tensor is a pure curl:

g[ij] = φi,j − φj,i , g[ij],k + g[jk],i + g[ki],j = 0 .

This expression and the symmetric part of the connection:

Γi
(jk) =

1
2
g(li)

(
g(lj),k − g(jk),l + g(kl),j

)−g(li)g(jm)Γm
[lk]−g(li)g(km)Γm

[lj] ,

therefore determine the connection uniquely in terms of the fundamental
tensors alone:

Γi
jk =

1
2
g(li)

(
g(lj),k−g(jk),l +g(kl),j

)
+

1
2

(
δi
kΓj − g(ir)g(jk) Γr

)
+

+
3
4
g[ir]

(
g[jr],k−g[kr],j

)− 3
4
g(li)g(jr)g

[rs]
(
g[ls],k−g[ks],l

)−

− 3
4
g(li)g(kr)g

[rs]
(
g[ls],j−g[js],l

)
.

(1.13)

There is, however, an alternative way of expressing the torsion ten-
sor. The metric and the fundamental spin tensors are treated as equally
fundamental and satisfy the ansatz

g(ij);k = g[ij];k = 0 and γij;k = 0 .

Therefore, from g[ij];k =0, we have the following:

g[ij],k = g[mj]Γm
ik + g[im]Γm

jk .
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Letting Wjik = g[jm]Γm
ik, we have

g[ij],k = Wijk −Wjik . (1.14)

Solving for Wi[jk] by making cyclic permutations of i, j and k, we get

Wi[jk] =
1
2

(
g[ij],k − g[jk],i + g[ki],j

)
+Wj(ik) −Wk(ij) .

Therefore

Wijk = Wi(jk) +Wi[jk] =

=
1
2

(
g[ij],k − g[jk],i + g[ki],j

)
+Wi(jk) +Wj(ik) −Wk(ij) .

Now recall that Wijk = g[im]Γm
jk. Multiplying through by g[il], we get

Γi
jk =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
+

+ g[li]g[jm]Γm
(lk) − g[li]g[km]Γm

(lj) + Γi
(jk) .

(1.15)

On the other hand,

Γi
jk =

1
2
g(li)

(
g(lj),k−g(jk),l+g(kl),j

) −
− g(li)g(jm)Γm

[lk] − g(li)g(km)Γm
[lj] + Γi

[jk] .
(1.16)

From (1.15) the torsion tensor is readily read off as

Γi
[jk] =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
+

+ g[li]g[jm]Γm
(lk) − g[li]g[km]Γm

(lj) .
(1.17)

We denote the familiar symmetric Levi-Civita connection by
{
i
jk

}
=

1
2
g(li)

(
g(lj),k − g(jk),l + g(kl),j

)
.

If we combine (1.13) and (1.17) with the help of (1.2), (1.3) and (1.4),
after a rather lengthy but straightforward calculation we may obtain a
solution:

Γi
[jk] =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
+

+ g[li]g[jm]

{
m
lk

}
− g[li]g[km]

{
m
lj

}
+

1
3

(
Γm

[mk]δ
i
j − Γm

[mj]δ
i
k

)
.

(1.18)
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Now the spin vector Γi
[ik] is to be determined from (1.12). If we

contract (1.12) on the indices i and j, we have

Γi
[ik] =

3
4
g[ij]

(
g[ij],k − g[kj],i

)− 3
4

Γk . (1.19)

But from (1.14):

Γk = Γi
ik =

1
2
g(ij)g(ij,k =

1
2
g[ij]g[ij],k . (1.20)

Hence (1.19) becomes

Γi
[ik] ≡ Sk =

3
8
g[ij]g[ij],k −

3
4
g[ij]g[kj],i . (1.21)

Then with the help of (1.21), (1.18) reads

Γi
[jk] =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
+

+ g[li]g[jm]

{
m
lk

}
− g[li]g[km]

{
m
lj

}
+

+
1
8
g[mn]

(
g[mn],kδ

i
j−g[mn],jδ

i
k

)
+

1
4
g[mn]

(
g[km],nδ

i
j−g[jm],nδ

i
k

)
.

(1.22)

So far, we have been able to express the torsion tensor, which shall
generate physical fields in our theory, in terms of the components of the
fundamental tensor alone.

In a holonomic frame, Γi
[jk] =0 and, of course, we have from (1.16)

the usual Levi-Civita (or Christoffel) connection:

Γi
jk =

{
i
jk

}
=

1
2
g(li)

(
g(lj),k − g(jk),l + g(kl),j

)
.

If therefore a theory of gravity adopts this connection, one may argue
that in a strict sense, it does not admit an integral concept of internal
spin in its description. Such is the classical theory of General Relativity.

In a rigid frame (constant metric) and in a pure electromagnetic
gauge condition, one may have Γi

(jk) =0 and in this special case we
have from (1.15)

Γi
jk =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
,

which is exactly the same in structure as
{

i
jk

}
with the fundamental

spin tensor replacing the metric tensor. We shall call this connection
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the pure spin connection, denoted by

Li
jk =

1
2
g[li]

(
g[lj],k − g[jk],l + g[kl],j

)
. (1.23)

Let’s give an additional note to (1.20). Let’s find the expression for
Γi

ki, provided we know that

Γk = Γi
ik =

1
2
g(ij)g(ij),k =

=
1
2
g[ij]g[ij],k =

=
(
ln
√−g)

,k
=

{
i
ik

}
.

Meanwhile, we express the following relations:

Sk = Γi
[ik] = −Γi

[ki] =

=
3
8
g[ij]g[ij],k −

3
4
g[ij]g[kj],i =

=
3
4

(
Γk − g[ij]g[kj],i

)
,

Γi
(ik) =

{
i
ik

}
− g(li)g(im)Γm

[lk] − g(li)g(km)Γm
[li] = Γk − Γi

[ik] =

=
1
4

Γk +
3
4
g[ij]g[kj],i .

Therefore

Γi
ki = Γi

(ki) + Γi
[ki] = Γi

(ki) − Γi
[ik] =

=
3
2
g[ij]g[kj],i −

1
2

Γk ,

which can also be derived directly from (1.11). From (1.11) we also see
that

g[ij],k =
2
3
g[rj]Γr

ik +
1
3
g[ij]Γk , (1.24a)

g[rj]Γr
ik = −g[ri]Γr

jk . (1.24b)

Also, for later purposes, we derive the condition for the conservation
of charges:

g
[ik]
,k = −1

3
g[ik]Γk . (1.24c)
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Having developed the basic structural equations here, we shall see in
the following chapters that the gravitational and electromagnetic ten-
sors are formed by means of the fundamental tensors g(ij)≡

√
2 γ(ij)

and g[ij]≡
√

2 γ[ij] alone (see Section 4.2). In other words, gravity and
electromagnetism together arise from this single tensor. We shall also in-
vestigate their fundamental relations and ultimately unveil their union.



Chapter 2

THE UNIFIED FIELD THEORY

§2.1 Generalization of Kaluza’s projective theory

We now assume that the space-time R4 is embedded in a general
five-dimensional Riemann space IR5. This is referred to as embedding
of class 1. We shall later define the space ϑn =R4⊗n to be a special
coordinate system in IR5. The five-dimensional metric tensor g(AB) of
IR5 of course satisfies the usual projective relations

g(AB) = ei
Ae

j
Bg(ij) + nAnB ,

eA
i nA = 0 ,

where eA
i = ∂ix

A is the tetrad. If now {gl} denotes the basis of R4 and
{eA} of IR5:

eA = ei
Agi + nAn ,

gi = eA
i eA , g(ij) = eA

i e
B
j g(AB) ,

eA
i e

i
B = δA

B − nAnB , eA
i e

j
A = δj

i .

The derivative of gi ∈R4⊂ IR5 is then

∂jgi = Γk
ijgk + φijn .

We also have the following relations:

gi;j = φijn , ∇in = −φj
·igj , eA;B = 0 , (∂BeA = ΓC

ABeC) ,

eA
i;j = φijn

A, nA
;i = −φj

·ie
A
j , ei

A;B = nAφ
i
·je

j
B , g(ij);k = g(AB);C = 0 .

In our work we shall, however, emphasize that the exterior curvature
tensor φij is in general asymmetric: φij 6=φji just as the connection Γi

jk

is. This is so since in general ∂je
A
i 6= ∂ie

A
j . Within a boundary ∆, the

metric tensor g(ij) may possess discontinuities in its second derivatives.
Now the connection and exterior curvature tensor satisfy

Γk
ij = ek

A∂je
A
i + ek

AΓA
BCe

B
i e

c
j (a)

φij = nA∂je
A
i + nAΓA

BCe
B
i e

c
j (b)

}
, (2.1)
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where
∂je

A
i = eA

k Γk
ij − ΓA

BC e
B
i e

C
j + φijn

A. (2.2)

We can also solve for ΓA
BC in (2.1) with the help of the projective

relation eA = ei
Agi+nAn. The result is, after a quite lengthy calculation,

ΓA
BC = eA

i ∂Ce
i
B + eA

k Γk
ije

i
Be

j
C + φije

i
Be

j
Cn

A+

+ (∂CnB)nA − φi
·je

A
i e

j
CnB .

(2.3)

If we now perform the calculation (∂k∂j − ∂j∂k) gi with the help of
some of the above relations, we have in general

(∂k ∂j − ∂j∂k) gi = −RA
·BCDe

B
i e

C
j e

D
k eA +

+
(
∂ke

C
j − ∂je

C
k

)
ΓA

BCe
B
i eA +

+ (∂k∂j − ∂j∂k) eA
i eA .

(2.4)

Here we have also used the fact that

(∂C ∂B − ∂B∂C) eA = −RD
·ABCeD .

On the other hand, ∂in = −φj
·igj ,and

∂k∂jgi =
(
Γl

ijgl + φijn
)
,k =

=
(
Γl

ij,k + Γm
ij Γl

mk − φijφ
l
·k

)
gl +

(
φij,k + Γl

ijφlk

)
n .

Therefore we obtain another expression for (∂k ∂j − ∂j∂k) gi:

(∂k∂j − ∂j∂k) gi =
(−Rl

·ijk + φikφ
l
·j − φijφ

l
·k

)
gl +

+
(
φij;k − φik;j + 2Γl

[jk]φil

)
n ,

(2.5a)

(∂k ∂j − ∂j∂k) eA
i +

(
∂ke

C
j − ∂je

C
k

)
ΓA

BCe
B
i ≡ SA

·ijk . (2.5b)

Combining (2.4) and (2.5), we get, after some algebraic mani-
pulations,

Rijkl = φikφjl − φilφjk +RABCD eA
i e

B
j e

C
k e

D
l − SAjkle

A
i (a)

φij;k − φik;j = −RABCDn
AeB

i e
C
j e

D
k − 2Γl

[jk]φil + SAijkn
A (b)



 . (2.6)

We have thus established the straightforward generalizations of the
equations of Gauss and Codazzi.
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Now the electromagnetic content of (2.6) can be seen as follows:
first we split the exterior curvature tensor φij into its symmetric and
skew-symmetric parts:

φij = φ(ij) + φ[ij]

φ(ij) ≡ kij , φ[ij] ≡ fij

}
. (2.7)

Here the symmetric exterior curvature tensor kij has the explicit
expression

kij =
1
2
nA

(
∂je

A
i + ∂ie

A
j

)
+ nAΓA

(BC)e
B
i e

C
j =

= −1
2
eA
i e

B
j (nA;B + nB;A) .

(2.8)

Furthermore, in our formalism, the skew-symmetric exterior curva-
ture tensor fij is naturally equivalent to the electromagnetic field tensor
Fij . It is convenient to set fij = 1

2Fij . Hence the electromagnetic field
tensor can be written as

Fij = nA

(
∂je

A
i − ∂ie

A
j

)
+ 2nAΓA

[BC]e
B
i e

C
j =

= −eA
i e

B
j (nA;B − nB;A)

(2.9)

The five-dimensional electromagnetic field tensor is therefore

FAB = ∇AnB −∇BnA .

§2.2 Fundamental field equations of our unified field theory.
Geometrization of matter

We are now in a position to simplify (2.6) by invoking two conditions.
The first of these, following Kaluza, is the cylinder condition: the laws
of physics in their four-dimensional form shall not depend on the fifth
coordinate x5 ∈ϑn. We also assume that x5≡ y is a microscopic co-
ordinate in ϑn. In short, the cylinder condition is written as (by first
putting nA = eA

5 )

g(ij),5 = g(ij),An
A = eB

i e
C
j (nB;C + nC;B) = 0 ,

where we have now assumed that in IR5 the differential expression ei
A,B−

ei
B,A vanishes. However, from (2.2), we have the relation

eA
i,j − eA

j,i = 2eA
k Γk

[ij] + Fijn
A .



Chapter 2 The Unified Field Theory 23

Furthermore, the cylinder condition implies that nA;B + nB;A =0
and therefore we can nullify (2.8). This is often called “the assumption
of weakness”. The second condition is the condition of integrability
imposed on arbitrary vector fields, e.g., on θi (say) in R4. The necessary
and sufficient condition for a vector field θ,i ≡ γi (a one-form) to be
integrable is γi,j = γj,i. If this is applied to (2.4), we will then have
RA
·BCDe

B
i e

C
j e

D
k = SA

·ijk. Therefore (2.6) will now go into

Rijkl =
1
4

(FikFjl − FilFjk) , (2.10a)

Fij;k − Fik;j = −2Γl
[jk]Fil . (2.10b)

These are the sought unified field equations of gravity and electro-
magnetism. They form the basic field equations of our unified field
theory.

Altogether they imply that

Rik = −1
4
FijF

j
·k = R(ik) , (2.11a)

R[ik] = 0 , (2.11b)

R =
1
4
FikF

ik , (2.11c)

F ;j
ij = 2Γl

[ik]F
k
·l ≡ Ji . (2.11d)

These relations are necessary and sufficient following the two condi-
tions we have dealt with. These field equations seem to satisfy a definite
need. They tell us a beautiful and simple relation between gravity and
electromagnetism: (2.10a) tells us that both inside and outside charges,
a gravitational field originates in a non-null electromagnetic field (as
in Rainich’s geometry), since according to (2.10b), the electromagnetic
current is produced by the torsion of space-time: the torsion produces
an electromagnetic source. The electromagnetic current is generated by
dynamic “electric-magnetic” charges. In a strict sense, the gravitational
field cannot exist without the electromagnetic field. Hence all matter
in the Universe may have an electromagnetic origin. Denoting by dΩ a
three-dimensional infinitesimal boundary enclosing several charges, we
have, from (2.11d)

δe = 2
∫

Ω

Γr
[ik]u

iF k
·rdΩ .
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We may represent a negative charge by a negative spin produced
by a left-handed twist (torsion) and a positive one by a positive spin
produced by a right-handed twist. (For the conservation of charges
(currents) see Sections 4.3 and 4.4.) Now (2.11c) tells us that when the
spatial curvature, represented by the Ricci scalar, vanishes, we have a
null electromagnetic field, also it is seen that the strength of the electro-
magnetic field is equivalent to the spatial curvature. Therefore gravity
and electromagnetism are inseparable. The electromagnetic source, the
charge, looks like a microscopic spinning hole in the structure of the
space-time R4, however, the Schwarzschild singularity is non-existent in
general. Consequently, outside charges our field equations read

Rijkl =
1
4

(FikFjl − FilFjk) , (2.12a)

F ij
;j = 0 , (2.12b)

which, again, give us a picture of how a gravitational field emerges
(outside charges).

In this way, the standard action integral of our theory may take the
form

I =
∫ (

∗R− (
RikR

ik
) 1

2
)√−g d4x = (2.13)

=
∫ (

∗R−
(

1
16

(
FikF

ik
)2−RijklR

ijkl− 1
4
RijklF

ilF jk

)1
2
)
√−g d4x .

Here ∗R denotes the Ricci scalar built from the symmetric Christoffel
connection alone.

From the variation of which, we would arrive at the standard
Einstein-Maxwell equations. However, we do not wish to stress heavy
emphasis upon such an action-method (which seems like a forced short
cut) in order to arrive at the field equations of our unified field the-
ory. We must emphasize that the equations (2.10)-(2.13) tell us how
the electromagnetic field is incorporated into the gravitational field in a
very natural manner, in other words there’s no need here to construct
any Lagrangian density of such. We have been led into thinking of how
to couple both fields using different procedures without realizing that
these fields already encapsulate each other in Nature. But here our
space-time is already a polarized continuum in the sense that there ex-
ists an electromagnetic field at every point of it which in turn generates
a gravitational field.
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Remark 1
Without the integrability condition we have, in fairly general conditions,
the relation

(∂k∂j − ∂j∂k) eA
i = −Rl

·ijke
A
l +RA

·BCD eB
i e

C
j e

D
k +

+
(
φij;k − φik;j + 2Γl

[jk]φil

)
nA +

(
φikφ

l
·j − φijφ

l
·k

)
eA
l −

− 2ΓA
BC

(
Γl

[jk]e
C
l + φ[jk]n

C
)
eB
i ,

(2.a)

SA
·ijk ≡ (∂k∂j − ∂j∂k) eA

i + 2ΓA
BC

(
Γl

[jk]e
C
l + φ[jk]n

C
)
eB
i =

= (∂k∂j − ∂j∂k) eA
i + ΓA

BC

(
∂ke

C
j − ∂je

C
k

)
eB
i .

Hence we have

Rijkl = φikφjl − φilφjk +RABCDe
A
i e

B
j e

C
k e

D
l − SAjkle

A
i , (2.b1)

φij;k − φik;j = −RABCDn
AeB

i e
C
j e

D
k + SAijkn

A − 2Γl
[jk]φil . (2.b2)

These are just the equations in (2.6). Upon employing a suitable
cylinder condition and putting φ[ij] = 1

2Fij (within suitable units), we
have the complete set of field equations of gravoelectrodynamics:

Rijkl =
1
4

(FikFjl − FilFjk) +RABCDe
A
i e

B
j e

C
k e

D
l − SAjkle

A
i , (2.c1)

1
2

(Fij;k − Fik;j) = −RABCDn
AeB

i e
C
j e

D
k + SAijkn

A − Γl
[jk]Fil . (2.c2)

End of Remark 1

Sub-remark
Let’s consider the space S5 =R4⊗Y which describes a five-dimensional
“thin shell” where Y is the microscopic coordinate representation
spanned by the unit normal vector to the four-manifold R4. The coor-
dinates of this space are characterized by yµ =

(
xi, y

)
where the Greek

indices run from the 1 to 5 and where the extra coordinate y is taken
to be the Planck length:

y =

√
G~
c3

,

which gives the “thickness” of “thin shell”. Here G is the gravitational
constant of Newton, ~ is the Planck constant divided by 2π and c is
the speed of light in vacuum. (From now on, since the Planck length is
extremely tiny, we may drop any higher-order terms in y.) Then the
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basis {γµ} of the space S5 can in general be split into

γi =
(
δk
i − yφk

·i
)
gk ,

γ5 = n .

It is seen that the metric tensor of the space S5, i.e., γµν , has the
following non-zero components:

γik = g(ik) − 2yφ(ik) ,

γ55 = 1 .

The simplest sub-space of the space S5 is given by the basis

gi = γi

(
xi, 0

)
,

g5 = n ,

where {g l} is of course the tangent basis of the manifold R4. We shall
denote this pseudo-five-dimensional space as the special coordinate sys-
tem ϑn =R4⊗n whose metric tensor gµν can be arrayed as

gµν =

( bg(ik)c4x4 0

0 1

)
.

Now the tetrad of the space S5 is then given by γA
µ =

(
eA · γµ

)
, which

can be split into
γA

i = eA
i − yφk

·ie
A
k ,

γA
5 = nA.

Then we may find the inverse to the tetrad γA
i as follows:

γi
A = ei

A + yφi
·ke

k
A ,

γ5
A = nA = y,A .

From the above relations, we have the following:

γi
Aγ

A
k = δi

k ,

γA
k e

i
A = δi

k − yφi
·k ,

γi
Ae

A
k = δi

k + yφi
·k .
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The five-dimensional index of the tetrad γA
i is raised and lowered

using the metric tensor g(AB). The inverse of the tetrad is achieved
with the help of the metric tensor

GAB = ei
Ae

k
Bg(ik) + nAnB − 2yφ(ik)e

i
Ae

k
B ,

which reduces to g(AB) due to the cylinder condition. The
four-dimensional metric tensor g(ik) is used to raise and lower the four-
dimensional index. Again, we bring in the electromagnetic field tensor
Fij via the cylinder condition, which yields φik = 1

2Fik. The connection
of the space S5 is then

θλ
µν

(
xi, y

)
= Γλ

µν −
1
2
Fλ
·µy,ν − 1

2
Fλ
·νy,µ − 1

2
yFλ

·µ,ν −
1
2
yF σ

·µΓλ
σν ,

where Γλ
µν is the connection of the space ϑn =R4⊗n with the electro-

magnetic field tensor derived from it: Fµν =2Γ5
µν , F

µ
·ν = −2Γµ

5ν , Fµ5 =0.
Therefore its only non-zero components are Fik. At the base of the space
S5, the connection is

ωλ
µν = θλ

µν

(
xi, 0

)
= Γλ

µν −
1
2
Fλ
·µy,ν − 1

2
Fλ
·νy,µ .

From the above expression, we see that

ωλ
µk = Γλ

µk −
1
2
Fλ
·ky,µ ,

ωλ
µ5 = −1

2
Fλ
·µ, ω

λ
5ν = −Fλ

·ν .

As can be worked out, the five-dimensional connection of the back-
ground space IR5 is related to that of S5 through

ΓA
BC

(
xi, y

)
= γA

µ γ
µ
B,C + γA

µ θ
µ
ρνγ

ρ
Bγ

ν
C −

1
2
Fµ
·νγ

A
µ γ

ν
BnC −

− 1
2
yγA

µ θ
µ
ν kγ

ν
BF

k
·ie

i
C .

Now the five-dimensional curvature tensor RABCD =RABCD

(
xi, 0

)
is to be related once again to the four-dimensional curvature tensor
of R4, which can be directly derived from the curvature tensor of the
space S5 as Rijkl = S5Rijkl

(
xi, 0

)
. With the help of the above geometric

objects, and after some laborious work-out, we arrive at the relation

RABCD = eµ
Ae

ν
Be

ρ
Ce

σ
DRµνρσ − 1

2
FABFCD + ϕABCD ,
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where we have a new geometric object constructed from the electromag-
netic field tensor:

ϕµ
·ABC =

1
2
F ρ
·σ (eσ

BnC − eσ
CnB) eν

Aω
µ
νρ +

1
2
Fµ
·ν,ρ (nBe

ρ
C − nCe

ρ
B) eν

A +

+
1
2
Fµ
·ν

(
γν

A,C (xα, 0)nB − γν
A,B (xα, 0)nC

)
+

+
1
2
F σ
·ν (nBe

α
C − nCe

α
B) eν

Aω
µ
σα ,

ϕA
·BCD ≡ ϕµ

·BCDe
A
µ .

Define another curvature tensor:

Φijkl ≡ (RABCD − ϕABCD) eA
i e

B
j e

C
k e

D
l .

Then we have the relation

Rijkl = Φijkl +
1
2
FijFkl .

By the way, the curvature tensor of the space ϑn =R4⊗n is here
given by

Rµ
·νρσ = θµ

νσ,ρ (xα, 0)− θµ
νρ,σ (xα, 0) + ωα

νσω
µ
αρ − ωα

νρω
µ
ασ .

Expanding the connections in the above relation, we obtain

Rµ
·νρσ = Γµ

νσ,ρ − Γµ
νρ,σ + Γλ

νσΓµ
λρ − Γλ

νρΓ
µ
λσ+

+
1
2

(
Fµ
·ρ,σ − Fµ

·σ,ρ

)
y,ν +

1
2
Fµ
·α

(
Γα

νρy,σ − Γα
νσy,ρ

)
+

+
1
2

(
Fµ
·σΓα

νρ − Fµ
·ρΓ

α
νσ

)
y,α +

1
2

(
Fα
·ρΓ

µ
ασ − Fα

·σΓµ
αρ

)
y,ν+

+
1
4
Fα
·ν

(
Fµ
·ρy, σ − Fµ

·σy,ρ

)
y,α +

1
4
Fµ
·α

(
Fα
·σy,ρ − Fα

·ρy,σ

)
y,ν+

+
1
4

(
Fµ
·ρF

α
·σ − Fµ

·σF
α
·ρ

)
y,νy,α .

We therefore see that the electromagnetic field tensor is also present
in the curvature tensor of the space ϑn =R4⊗n. In other words, elec-
tromagnetic and gravitational interactions are described together on an
equal footing by this single curvature tensor.

Direct calculation shows that some of its four-dimensional and mixed
components are

Ri
·jkl = Γi

jl,k − Γi
jk,l + Γr

jlΓ
i
rk − Γr

jkΓi
rl ,
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R5
·ijk = R5ijk = −1

2

(
Fij;k − Fik;j + 2Γr

[jk]Fir

)
,

Rij5k = 0 .

Furthermore, we obtain the following equivalent expressions:

RABCD = Rijkle
i
Ae

j
Be

k
Ce

l
D +

1
2

(
Fik;l − Fil;k + 2Γm

[kl]Fim

)
ei
AnBe

k
Ce

l
D +

+
1
2

(
Fjl;k−Fjk;l+2Γm

[lk]Fjm

)
nAe

j
Be

k
Ce

l
D−

1
2
FABFCD + ϕABCD ,

RABCD =
1
2

(FAC;D − FAD;C)nB +
1
2

(FBD;C − FBC;D)nA−

− 1
2
FABFCD − ψABCD +Rijkle

i
Ae

j
Be

k
Ce

l
D +

+ 2Γm
[kl]Fime

i
AnBe

k
Ce

l
D + 2Γm

[lk]FjmnAe
j
Be

k
Ce

l
D ,

where

ψABCD =
1
2

(
FMA

(
FM
·CnD − FM

·DnC

)
nB −

− FMB

(
FM
·CnD − FM

·DnC

)
nA

)
− ϕABCD .

When the torsion tensor of the space R4 vanishes, we have the rela-
tion

RABCD =
1
2

(FAC;D − FAD;C)nB +
1
2

(FBD;C − FBC;D)nA−

− 1
2
FABFCD − ψABCD +Rijkle

i
Ae

j
Be

k
Ce

l
D

which, again, relates the curvature tensors to the electromagnetic field
tensor.

Finally, if we define yet another five-dimensional curvature tensor:

RABCD ≡ R̃ABCD +
1
2
F̃ABF̃CD − ϕ̃ABCD ,

where R̃ABCD, F̃AB and ϕ̃ABCD are the extensions of RABCD, FAB

and ϕABCD which are dependent on y, we may obtain the relation

RABCDe
A
i e

B
j e

C
k e

D
l =

= Rijkl +
1
2
yF r

·iRrjkl +
1
2
yF r

·jRirkl +
1
2
yF r

·kRijrl +
1
2
yF r

·lRijkr .

End of Sub-remark
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Let’s now write the field equations of our unified field theory as

Rijkl =
1
4

(FikFjl − FilFjk) + φijkl , (2.d1)

Fij;k − Fik;j = −2Γl
[jk]Fil + λijk , (2.d2)

φijkl = RABCDe
A
i e

B
j e

C
k e

D
l − SAjkle

A
i , (2.e1)

λijk = −2
(
RABCDe

B
i e

C
j e

D
k − SAijk

)
nA, (2.e2)

Consider the invariance of the curvature tensor under the gauge
transformation

′Γi
jk =Γi

jk + δi
jψ,k (2.f)

for some function ψ=ψ(x). This is analogous to the gauge transforma-
tion of the electromagnetic potential, i.e., ′ϕi =ϕi +σψ,i, with a scaling
constant σ, which leaves the electromagnetic field tensor invariant.. We
define the electromagnetic potential vector ϕi and pseudo-vector ζi via
Γk

ki =αϕi + ζi where α is a constant.
Then we see that the electromagnetic field tensor can be expressed as

Fik = ϕi,k − ϕk,i =
1
α

(ζi,k − ζk,i) . (2.g)

More specifically, the two possible electromagnetic potentials ϕi and
ζi transform homogeneously and inhomogeneously, respectively, accord-
ing to

ϕi = eA
i ϕA ,

ζi = eA
i ζA + ek

Ae
A
k,i − nAΓA

BCn
BeC

i .

The two potentials become equivalent in a coordinate system where√−g equals a constant. Following (2.g), we can express the curvature
tensor as

Rijkl = λ1 (FikFjl − FilFjk) + λ2

(
g(ik)g(jl) − g(il)g(jk)

)
, (2.h)

where λ1 and λ2 are invariants. (The term λ0FijFkl would contribute
nothing.) Hence

Rik = λ1FilF
l
k· + 3λ2 g(ik) . (2.i)

Putting λ1 = 1
4 in accordance with (2.d1) and contracting (2.i) on

the indices i and k we see that λ2 = 1
12R− 1

48FikF
ik. Consequently, we



Chapter 2 The Unified Field Theory 31

have the important relations

Rijkl =
1
4

(FikFjl − FilFjk) +
1
12

(
g(ik)g(jl) − g(il)g(jk)

)
R−

− 1
48

(
g(ik)g(jl) − g(il)g(jk)

)
FrsF

rs,

(2.j)

Rik =
1
4
FilF

l
k· +

1
4
g(ik)R−

1
16
g(ik)FrsF

rs . (2.k)

Comparing (2.j) and (2.e1) we find

φijkl = RABCD eA
i e

B
j e

C
k e

D
l − SAjkle

A
i =

=
1
12

(
g(ik)g(jl) − g(il)g(jk)

)
R− 1

48
(
g(ik)g(jl) − g(il)g(jk)

)
FrsF

rs .
(2.l)

Hence also
φik =

1
4
g(ik)R−

1
16
g(ik)FrsF

rs , (2.m1)

φ = R− 1
4
FrsF

rs . (2.m2)

Note that our above consideration produces the following traceless
field equation:

Rik − 1
4
g(ik)R =

1
4

(
FilF

l
k· −

1
4
g(ik)FrsF

rs

)
. (2.n)

In a somewhat particular case, we may set − 1
4 g(ik)R = κ×

× (
ρc2uiuk + tik

)
where κ is a coupling constant and tik is the general-

ized stress-metric tensor, such that R=−κρe, where now ρe = ρc2 + t
is the effective material density. We also have

Rik−1
2
g(ik)R = κ

(
ρc2uiuk + tik

)
+

1
4

(
FilF

l
k· −

1
4
g(ik)FrsF

rs

)
. (2.o)

The above looks slightly different from the standard field equation
of General Relativity:

∗Rik− 1
2
g(ik)

∗R = k

(
ρc2uiuk +tik−

(
FilF

l
k·−

1
4
g(ik)FrsF

rs

))
, (2.p)

which is usually obtained by summing altogether the matter and elec-
tromagnetic terms. Here ∗Rik and ∗R are the Ricci tensor and scalar
built out of the Christoffel connection and k 6= κ is the usual coupling
constant of General Relativity. Let’s denote by m0, ρ and c, the point-
mass, material density and speed of light in vacuum. Then the vanishing
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of the divergence of (2.p) leads to the equation of motion for a charged
particle:

Dui

Ds
≡ ui

;ku
k =

e

m0c2
F i
·ku

k .

However, this does not provide a real hint to the supposedly miss-
ing link between matter and electromagnetism. We hope that there’s
no need to add an external matter term to the stress-energy tensor.
We may interpret (2.n), (2.o) and (2.p) as telling us that matter and
electromagnetism are already incorporated, in other words, the elec-
tromagnetic field produces material density out of the electromagnetic
current J . In fact these are all acceptable field equations. Now, for in-
stance, we have R=−κρe =−κ (

c2J iui + t
)
. From (2.m2), the classical

variation follows:

δI = δ

∫
φ
√−g d4x =

= δ

∫ (
R− 1

4
FikF

ik

)√−g d4x = 0 ,
(2.q)

which yields the gravitational and electromagnetic equations of Ein-
stein and Maxwell endowed with source since the curvature scalar here
contains torsion as well.

Finally, let’s investigate the explicit relation between the Weyl tensor
and the electromagnetic field tensor in this theory. In four dimensions
the Weyl tensor is

Cijkl = Rijkl − 1
2

(
g(ik)Rjl + g(jl)Rik − g(il)Rjk − g(jk)Ril

)
+

+
1
6

(
g(ik)g(jl) − g(il)g(jk)

)
R .

Comparing the above equation(s) with (2.j) and (2.k), we have

Cijkl =
1
4

(FikFjl − FilFjk) +
1
24

(
g(ik)g(jl) − g(il)g(jk)

)
FrsF

rs−

− 1
8

(
g(ik)FjrF

r
l· + g(jl)FirF

r
k· − g(il)FjrF

r
k· − g(jk)FirF

r
l·
)
.

(2.r)

We see that the Weyl tensor is composed solely of the electromag-
netic field tensor in addition to the metric tensor. Hence we come to
the conclusion that the space-time R4 is conformally flat if and only
if the electromagnetic field tensor vanishes. This agrees with the fact
that, when treating gravitation and electromagnetism separately, it is
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the Weyl tensor, rather than the Riemann tensor, which is compatible
with the electromagnetic field tensor. From the structure of the Weyl
tensor as revealed by (2.r), it is understood that the Weyl tensor ac-
tually plays the role of an electromagnetic polarization tensor in the
space-time R4. In an empty region of the space-time R4 with a vanish-
ing torsion tensor, when the Weyl tensor vanishes, that region possesses
a constant sectional curvature which conventionally corresponds to a
constant energy density.

Let’s for a moment turn back to (2.6). We shall show how to get the
source-torsion relation, i.e., (2.11d) in a different way. For this purpose
we also set a constraint SA

·ijk =0 and assume that the background five-
dimensional space is an Einstein space:

RAB = Λg(AB) ,

where Λ is a cosmological constant. Whenever Λ =0 we say that the
space is Ricci-flat or energy-free, devoid of matter. Taking into ac-
count the cosmological constant, this consideration therefore takes on a
slightly different path than our previous one. We only wish to see what
sort of field equations it will produce.

We first write

Rijkl =
1
4

(FikFjl − FilFjk) +RABCD e
A
i e

B
j e

C
k e

D
l ,

Fij;k − Fik;j = −2RABCDn
AeB

i e
C
j e

D
k − 2Γl

[jk]Fil .

Define a symmetric tensor:

Bik ≡ −RABCD e
A
i n

BeC
k n

D = Bki . (2.14)

It is immediately seen that

RAB e
A
i e

B
k = Λg(ik) , (2.15a)

RAB n
AnB = Λ , (2.15b)

RAB e
A
i n

B = 0 . (2.15c)
Therefore

Rik = −1
4
FilF

l
·k +RAB e

A
i e

B
k −RABCDe

A
i n

BeC
k n

D =

= −1
4
FilF

l
·k + Λg(ik) +Bik .

(2.16)
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From (2.14) we also have, with the help of (2.15b), the following:

B = g(ik)Bik = −RABCDn
BnD

(
g(AC) − nA nC

)
=

= −RAB n
AnB +RABCDn

AnBnCnD =

= −Λ .

Hence we have
R =

1
4
FikF

ik + 3Λ . (2.17)

The Einstein tensor (or rather, the generalized Einstein tensor en-
dowed with torsion)

Gik ≡ Rik − 1
2
g(ik)R

up to this point is therefore

Gik = Bik − 1
8
g(ik)FrsF

rs − 1
2

Λg(ik) −
1
4
FilF

l
·k . (2.18)

From the relation

Fij;k − Fik;j = −2RABCDn
AeB

i e
C
j e

D
k − 2Γl

[jk]Fil

we see that

F kj
;k = −2R BC

A··D nAek
Be

j
Ce

D
k − 2Γj

l[.k]F
kl =

= −2R C
A· e

j
Cn

A − 2R BC
A··D nAnBe

j
Cn

D − 2Γ j
l[·k]F

kl =

= −2Γ j
l[·k]F

kl = −Jj .

In other words,
Ji = 2Γl

[ik]F
k
·l ,

which is just (2.11d). We will leave this consideration here and commit
ourselves to the field equations given by (2.10) and (2.11) for the rest
of our work.

Let’s obtain the (generalized) Bianchi identity with the help of (2.10)
and (2.11). Recall once again that

Rijkl =
1
4

(FikFjl − FilFjk) ,

Fij;k − Fik;j = −2Γl
[jk]Fil .
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Performing the covariant derivative on Rijkl, the result of the cyclic
summation over the indices k, l and m is

Rijkl;m +Rijlm;k +Rijmk;l =

=
1
4

(Fik;m − Fim;k)Fjl +
1
4

(Fjl;m − Fjm;l)Fik +

+
1
4

(Fil;k − Fik;l)Fjm +
1
4

(Fjm;k − Fjk;m)Fil +

+
1
4

(Fim;l − Fil;m)Fjk +
1
4

(Fjk;l − Fjl;k)Fim .

(2.19)

Or equivalently,

Rijkl;m +Rijlm;k +Rijmk;l =

=
1
2

Γn
[mk]FinFjl +

1
2

Γn
[ml]FjnFik +

1
2

Γn
[kl]FinFjm +

+
1
2

Γn
[km]FjnFil +

1
2

Γn
[lm]FinFjk +

1
2
Γn

[lk]FjnFim .

(2.20)

From (2.10) if we raise the index i and then perform a contraction
with respect to the indices iand k, we have

Rjl;m −Ri
·jml;i −Rjm;l =

=
1
4
JmFjl − 1

4
JlFjm +

1
4
F i
·lFjm;i − 1

4
F i
·lFji;m +

+
1
4
FjiF

i
·m;l −

1
4
FjiF

i
·l;m +

1
4
F i
·mFji;l − 1

4
F i
·mFjl;i .

If we raise the index j and then contract on the indices j and l, we
have the expression

R;m − 2Ri
·m;i =

(
δi
mR− 2Ri

·m
)
;i

=

= −1
2
J iFim +

1
2
F i
·l

(
F l
·m;i − F l

·i;m
)
.

Therefore we have
(
Ri
·m − 1

2
δi
mR

)

;i

=
1
4
J iFim +

1
4
F i
·l

(
F l
·i;m − F l

·m;i

)
=

=
1
4
J iFim + λm ,

(2.21)

where
λm =

1
4
F i
·l

(
F l
·i;m − F l

·m;i

)
= −1

2
F i
·lΓ

k
[im]F

l
·k ,
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We can also write
(
Rik − 1

2
g(ik)R

)

;k

= −1
4
JkF

ik + λi. (2.22)

On the other hand, repeating the same contraction steps on
(2.20) gives

R;m−2Ri
·m;i =

(
δi
mR− 2Ri

·m
)
;i
≡ gm =

=
1
2

Γn
[kl]F

k
·nF

l
·m +

1
2
Γn

[km]F
l
·nF

k
·l +

1
2

Γn
[lm]F

k
·nF

l
·k+

+
1
2

Γn
[lk]F

l
·nF

k
·m =

= Γn
[kl]F

k
· nF

l
·m + Γn

[km]F
l
·nF

k
·l =

= Γn
[kl]F

k
·nF

l
·m − 2λm .

Therefore we have
(
Rik − 1

2
g(ik)R

)

;k

= −1
2
gi, (2.23a)

where gi, a non-linear quantity, can be seen as a complementary tor-
sional current:

gi = −1
2
JkF

ik + λi = Γn
[kl]F

k
·nF

li − 2λi. (2.23b)

In the most general case, by the way, the Ricci tensor is asymmetric.
If we proceed further, the generalized Bianchi identity and its contracted
form will be given by

Rijkl;m +Rijlm;k +Rijmk;l =

= 2
(
Γr

[kl]Rijrm + Γr
[lm]Rijrk + Γr

[mk] Rijrl

)
,

(2.24a)

(
Rik − 1

2
g(ik)R

)

;i

= 2g(ik)Γr
[ji]R

j
·r + Γr

[ij]R
ijk
...r . (2.24b)

Remark 2
Consider a uniform charge density. Again, our resulting field equation
(2.21) reads

(
Rik − 1

2
g(ik)R

)

;k

= −1
4
F i
·kJ

k +
1
4
g(ik)

(
F r
·s

(
F s
·r;k − F s

·k;r

))
,
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where we have set λi = 1
4 g

(ik)
(
F r
·s

(
F s
·r;k − F s

·k;r

))
. Recall the Lorentz

equation of motion: m0c
2 Dui

Ds = eF i
·ku

k. Setting γ=− 1
4

(
ρ
e

)
, we obtain

m0c
2 Du

i

Ds
=

1
γ

((
Rik − 1

2
g(ik)R

)

;k

− λi

)

or

m0c
2 Du

i

Ds
=

1
γ

((
Rik − 1

2
g(ik)R

)

;k

− 2g(ik)Γs
[rk]R

r
s·

)
.

In the absence of charge density (when the torsion tensor is zero),
i.e., in the limit γ → ∞, we get the usual geodesic equation of motion
of General Relativity:

d2xi

ds2
+

{
i
jk

}
dxj

ds

dxk

ds
= 0 .

The field equation can always be brought into the form

Rik = k

(
Tik − 1

2
g(ik)T

)
.

Here the energy-momentum tensor need not always vanish outside
the world-tube and in general we can write T ik

;k =− 1
2 g

i. Now the Ein-
stein tensor is

Gik = Rik − 1
2
g(ik)R = −1

4
FilF

l
·k −

1
8
g(ik)FrsF

rs = εTik .

The right-hand side stands more appropriately as the field strength
rather than the classical conservative source term as T =− 1

2ε FikF
ik

(again, ε is a coupling constant). The equation of gravoelectrodynamics
can immediately be written in the form

Rik − 1
4
g(ik)R =

1
4

(
FilF

l
k· −

1
4
g(ik)FrsF

rs

)
= κTik ,

Tik = FilF
l

k· −
1
4
g(ik)FrsF

rs

as expected. In this field equation, as can be seen, the material density
arises directly from electromagnetic interaction.
End of Remark 2
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The (sub-)spaces ϑn = R4⊗n and V6 = ϑn⊗m. The ϑn-covariant
derivative
We now consider the space ϑn = R4 ⊗ n ⊂ IR5, a sub-space of IR5 with
basis {γA} satisfying γA = (gi, n). Therefore this basis spans a special
coordinate system in IR5. We define the ϑn-covariant derivative to be
a projective derivative which acts upon an arbitrary vector field of the
form ψ =

(
ψi, σ

)
or, more generally, upon an arbitrary tensor field of

the form T =
(
T ij...

kl... , t
i...
kl...
(1)

, tj...
kl...
(2)

, . . . , tij...
k...

(N−1)

, tij...
l...
(N)

)
, where ti...kl...

(1)

= T i5...
kl... ,

tj...
kl...
(2)

= T 5j...
kl... etc., and which is projected onto the four-dimensional

physical space-time R4. For instance, for ψ=ψigi + σn then

∇jψ = ψi
;jgi + ψigi;j + σ;jn+ σn;j =

= ψi
;jgi +

1
2
ψiFijn+ σ;jn− 1

2
σF i

·jgi =

=
(
ψi

;j −
1
2
σF i

·j

)
gi +

(
σ;j +

1
2
Fijψ

i

)
n .

The projection of this onto R4 manifests in

ψi
|j = ψi

;j −
1
2
σF i

·j .

The stroke | represents the ϑn-covariant derivative which takes up
the notion of cylindricity. When this is applied, for instance, to a second
rank tensor field T , we have T ij

|k =T ij
;k − 1

2 t
i

(1)
F j
·k− 1

2 t
j

(2)
F i
·k. For a tensor

of arbitrary rank, we therefore have

T ij...
kl...|m = T ij...

kl...;m − 1
2
ti...kl...
(1)

F j
·m − 1

2
tj...
kl...
(2)

F i
·m−

− · · · − 1
2
tij...
k...

(N−1)

Flm − 1
2
tij...
l...
(N)

Fkm − . . . .

(2.25)

So the electromagnetic field extends the covariant derivative. To pass
on from General Relativity to our unified field theory we merely need to
replace ordinary (“horizontal”) covariant derivatives with ϑn-covariant
derivatives. Recall that the equation of geodesic motion in General
Relativity is ui

;ju
j =0 where ui = dxi/ds is of course the unit velocity

vector. Generalizing by letting u=(ui,∈) and setting ui
;ju

j →ui
|ju

j =0,
we have ui

|ju
j =

(
ui

;j − 1
2 ∈ F i

·j
)
uj = 0.
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Setting ∈ =2
(

e
m0c2

)
where, again, e is the electric charge, m0 is the

point-mass and c is the speed of light in vacuum, we have the Lorentz
equation of motion:

Dui

Ds
=

e

m0c2
F i
·ju

j ,
Dui

Ds
≡ ui

;ju
j .

The fifth component of the momentum is consequently given by

p5 = 2
( e

c2

)
. (2.26)

We will now show that the quantity ∈ is indeed constant along the
world-line. First we write u=uigi+ ∈ n , then, as before, we have

∇ju=
(
ui

;j −
1
2
∈ F i

·j

)
gi +

(
∈;j +

1
2
Fiju

i

)
n .

Applying the law of parallel transport in ϑn =R4 ⊗ n, i.e., ∇4uu=0
(in the direction of 4u) where 4u represents the ordinary tangent four-
velocity field, we get two equations of motion:

(
ui

;j −
1
2
∈ F i

·j

)
uj = 0 , (2.27a)

(
∈,j +

1
2
Fiju

i

)
uj = 0 . (2.27b)

The first of these is just the usual Lorentz equation in a general co-
ordinate system, the one we’ve just obtained before using the straight-
forward notion of “vertical-horizontal” ϑn-covariant derivative. Mean-
while, the second reads, due to the vanishing of its second term: d∈

ds =0,
which establishes the constancy of ∈ with respect to the world-line.
Therefore it is justified that ∈ forms a fundamental constant of Nature
in the sense of a correct parameterization. We also have d e

ds = dm0
ds =0.

Again, there’s a certain possibility for the electric charge and the mass,
to vary with time, perhaps slowly in reality. We shall now consider the
unit spin vector field in the spin space Sp:

4v ≡ uiωi = g[ik]u
igk , (2.28)

which has been defined in Section 1.2. This spin (rotation) vector is
analogous to the ordinary velocity vector in the spin space representa-
tion. For the moment, let v=

(
vi, α

)
; vi = g[ik]uk where v= viωi + αn.
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Therefore we see that

∇jv = ui
;jgi + uigi;j + α;jn+ αn;j =

= vi
;jωi + viωi;j + α;jn+ αn;j =

=
(
vi
;j −

1
2
αg[ik]Fkj

)
ωi +

(
α,j +

1
2
g[kl]F

l
·jv

k

)
n ,

(2.29)

with the help of (1.7). If the law of parallel transport ∇4uu=0 applies
for the velocity field u, it is intuitive that in the same manner it must
also apply to the spin field v:

∇4uv = 0 . (2.30)

This states that spin is geometrically conserved. We then get
(
vi
;j −

1
2
αg[ik]Fkj

)
uj = 0 , (2.31a)

(
α,j +

1
2
g[kl]F

l
·jv

k

)
uj = 0 , (2.31b)

which are completely equivalent to the equations of motion in (2.27a)
and (2.27b).

Let’s also observe that

Gik
|k = Gik

;k , (2.32a)

Fij|k + Fjk|i + Fki|j = Fij;k + Fjk;i + Fki;j , (2.32b)

i.e., the “vertical-horizontal” ϑn-covariant derivative operator when ap-
plied to the Einstein tensor and the electromagnetic field tensor equals
the ordinary covariant derivative operator. We shall be able to prove
this statement. First Gik

;j → Gik
| j =Gik

;j − 1
2 X

iF k
·j − 1

2 Y
kF i

·j where
Xi =Gi5 =Y i (due to the symmetry of the tensor Gik, G5i =Ri5), so
that Gik

|k =Gik
;k − 1

2 Y
kF i

·k. Now the five-dimensional curvature tensors
(the Riemann and Ricci tensors) in ϑn are

RA
·BCD = ΓA

BD,C − ΓA
BC,D + ΓE

BDΓA
EC − ΓE

BCΓA
ED ,

RAB = ΓC
AB,C − ΓC

AC,B + ΓE
ABΓC

EC − ΓE
ACΓC

EB .

In this special coordinate system we have

Γk
5i = gk · (∇in) = −1

2
gk · F j

·i gj = −1
2
F k
·i ,
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Γ5
5i = n · (∇in) = −1

2
n · F k

·i gk = 0 = Γ5
i5 = Γk

55 ,

Γk
5k = gk · (∇kn) = −1

2
gk · F j

·k gj = −1
2
F j
·j = 0 = Γk

k5 ,

R5i = Γk
5i,k − Γk

5k,i + Γk
5iΓ

l
kl − Γl

5kΓk
li =

= −1
2

(
F k
·i,k + Γk

lkF
l
·i − Γk

liF
l
·k

)
=

= −1
2

(
F k
·i;k + 2Γl

[ik]F
k
·l
)

=

= −1
2

(−Ji + Ji) = 0

with the help of (2.11d). Hence Gik
|k =Gik

;k . (2.32b) can also be easily
proven this way.

As a brief digression, consider a six-dimensional manifold V6=ϑn⊗m
where m is the second normal coordinate with respect to R4. Let
λi ≡ g[5i], a ≡ λ5, b ≡ λ6, ∆i

·k ≡
{

i
5k

}
, Θi

·k ≡
{

i
6k

}
, θ= g[56], and

ωi ≡ g[6i]. Casting (1.12) and (1.22) into six dimensions, the electro-
magnetic field tensor can be written in terms of the fundamental spin
tensor as the following equivalent expressions:

Fik =
5
4

(
λr

(
g[ir],k − g[kr],i

)− θ (ωi,k − ωk,i)
)

=

=
5
4

(
λrg[ik],r − θ (ωi,k − ωk,i)

)
,

(2.33a)

Fik =−λl
(
g[li],k−g[ik],l+g[kl],i

)−a (
λi,k − λk,i

)− b (ωi,k − ωk,i)−

− 2λl

(
g[im]

{
m
lk

}
− g[km]

{
m
li

})
−

− 2a
(
g[im]∆m

·k − g[km]∆m
·i

)− 2b
(
g[im]Θm

·k − g[km]Θm
·i

)
.

(2.33b)

Since the basis in this space is given by gµ =
(
gi, n,m

)
, the funda-

mental tensors are

g(µν) =




[
g(ik)

]
4x4

0 0

0 1 0

0 0 1


 , (2.34a)
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g[µν] =




[
g[ik]

]
4 x 4

−λi −θ
λi 0 −ωi

θ ωi 0


 . (2.34b)

Remark 3 (on the modified Maxwell’s equations)

Using (2.25) we can now generalize Maxwell’s field equations through
the new extended electromagnetic tensor F ik =ϕi|k − ϕk|i where

F ik
(old)

= ϕi;k − ϕk;i = ϕi,k − ϕk,i + 2Γl
[ik]ϕl = Fik + 2Γl

[ik]ϕl ,

where ϕi|k =ϕi;k − 1
2 φFik. Now ϕ5 =φ is taken to be an extra scalar

potential. Therefore Fik =ϕi,k − ϕk,i − Fikφ or

Fik =
1

1 + φ
(ϕi,k − ϕk,i) ≡ γ (ϕi,k − ϕk,i) . (2.a)

For instance, the first pair of Maxwell’s equations can therefore be
generalized into

~E =
1

1 + φ

(
−1
c

∂ ~A

∂t
− ~∇ϕ

)
, (2.b1)

~B =
1

1 + φ
~∇x ~A , (2.b2)

div ~B = − 1
(1 + φ)2

(
~∇φ · ~∇x ~A

)
+

1
1 + φ

~∇ · ~∇x ~A , (2.b3)

curl
(

1
1 + φ

~E

)
= −1

c

∂

∂t

1
1 + φ

~B − 1
c

∂ ~B

∂t

1
1 + φ

, (2.b4)

where ~A is the three-dimensional electromagnetic vector potential:
~A= (Aa), ϕ is the electromagnetic scalar potential, ~E is the electric
field, ~B is the magnetic field and ~∇ is the three-dimensional (curvilin-
ear) gradient operator and ∇2 ϕ=−4πρ. Here we define the electric
and magnetic fields in such a way that

F 4a = (1 + φ)−1
Ea, F 12 = (1 + φ)−1

B3 ,

F 31 = (1 + φ)−1
B2 , F 23 = (1 + φ)−1

B1 .

We also note that in (2.b3) the divergence ~∇ · ~∇x ~A is in general
non-vanishing when torsion is present in the three-dimensional curved
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sub-space. Direct calculation gives

div curl ~A = −1
2
∈abc

(
Rd
·cabAd − 2Γd

[ab]Ac;d

)
,

(curl gradϕ)c = ∈ab
·.c Γd

[ab]ϕ,d .

So the magnetic charge µ with density ρm in the infinitesimal volume
dΩ is given by

δµ = −1
2

∫

Ω

∈abc
(
Rd
·cabAd − 2Γd

[ab]Ac;d

)
dΩ .

End of Remark 3



Chapter 3

SPIN-CURVATURE

§3.1 Dynamics in the microscopic limit

We now investigate the microscopic dynamics of our theory. Let’s in-
troduce an infinitesimal coordinate transformation into ϑn through the
diffeomorphism

x′i = xi + ξi

with an external Killing-like vector ξ=
(
ξi, ψ

)
: ξi = ξi(x), ψ = ψ(x)

(not to be confused with the internal Killing vector which describes
the internal symmetry of a particular configuration of space-time or
which maps a particular space-time onto itself). The function ψ here
shall play the role of the amplitude of the quantum mechanical state
vector |ψ〉. Recall that R4 represents the four-dimensional physical
world and n is a microscopic dimension. In its most standard form
ψ (x) ≡ Ce−(2πi/h) (Et−p·r(x,y,z)) is the quantum mechanical scalar wave
function; h is the Planck constant, E is energy and p is the three-
momentum. Define the “extension” of the space-time ϑn =R4 ⊗ n by

τij =
1
2
Dξ g(ij) . (3.1)

We would like to express the most general symmetry, first, of the
structure of ϑn and then find out what sort of symmetry (expressed
in terms of the Killing-like vector) is required to describe the non-local
“statics” or “non-deformability” of the structure of the metric tensor
g (the lattice arrangement). Our exterior derivative is defined as the
variation of an arbitrary quantity with respect to the external field ξ.
Unlike the ordinary Killing vector which maps a space-time onto itself,
the external field and hence also the derivative Dξ g(ij) map R4 onto,
say, R′4 which possesses a deformed metrical structure of g ∈ R4, g′.

We calculate the change in the metric tensor with respect to the ex-
ternal field, according to the scheme g(ij) = (gi · gj) → g′(ij) =

(
g′i · g′j

)
,

as follows:

Dξ g(ij) = (gi ·Dξ gj) + (Dξ gi · gj) ; Dξ gi = g′i − gi = ∇i ξ .

The Lie derivativeDξ denotes the exterior change with respect to the
infinitesimal exterior field, i.e., it dynamically measures the deformation
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of the geometry of the space-time R4.
Thus

Dξ g(ij) = (gi · ∇jξ) + (∇i ξ · gj) ,

where

∇i ξ =
(
ξk
;i −

1
2
F k
·iψ

)
gk +

(
ψ,i +

1
2
Fki ξ

k

)
n .

By direct calculation, we thus obtain

Dξ g(ij) = ξi;j + ξj;i . (3.2)

§3.2 Spin-curvature tensor of Sp
As an interesting feature, we point out that the change Dξ g(ij) in the
structure of the four-dimensional metric tensor does not involve the
wave function ψ. The space-time R4 will be called “static” if g does
not change with respect to ξ . The four-dimensional (but not the five-
dimensional) metric is therefore “static” whenever ξi;j + ξj;i =0.

Now let R4 be an infinitesimal copy of R4. To arrive at the lattice
picture, let also R′′4 , R′′′4 , R′′′′4 , . . . be n such copies of R4. Imagine the
space Sn consisting of these copies. This space is therefore populated
by R4 and its copies. If we assume that each of the copies of R4 has the
same metric tensor as R4, then we may have

ξ = (0, ψ) .

We shall call this particular “fundamental symmetry” normal sym-
metry or “spherical” world-symmetry. Then the n copies of R4 exist
simultaneously and each history is independent of the four-dimensional
external field 4ξ and is dependent on the wave function ψ only. In other
words, the special lattice arrangement ξ= (0, ψ) gives us a condition
for R4 and its copies to co-exist simultaneously independently of how
the four-dimensional external field deforms their interior metrical struc-
ture. Thus the many sub-manifolds nR4 represent many simultaneous
realities which we call world-pictures. More specifically, at one point in
R4, there may at least exist two world-pictures. In other words, a point
seen by an observer confined to lie in R4 may actually be a line or curve
whose two end points represent the two solutions to the wave function
ψ. The splitting of R4 into its copies occurs and can only be perceived
on the microscopic scales with the wave function ψ describing the en-
tire process. Conversely, on the macroscopic scales the inhabitants of
ϑn =R4 ⊗ n may perceive the collection of the nR4 (sub-spaces of R4)
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representing a continuous four manifold R4 =R4 ⊕R′4 ⊕R
′′
4 ⊕ . . . There

may be an infinite number of nR4 composing the space-time R4, pos-
sessing the same fluctuating metric tensor g, i.e., that of R4 (the total
space). On the microscopic scales, fluctuations in the metric do occur.
In special cases, the cylinder condition may prevent the topology of the
spaces nR4 to change which cannot be perceived directly by an external
observer in R4 for it takes place along the microscopic coordinate y. The
fluctuations induce the many different world-pictures. Our task now is
to find the wave equation describing the entire process. Now, with the
help of (1.7) and (1.8) we can write

∇i ξ = (∇i ξ · gj) gj + (∇i ξ · n)n =

=
1
2

((∇i ξ · gj) + (∇j ξ · gi)) gj+

+
1
2

((∇i ξ · gj)− (∇j ξ · gi)) gj + (∇i ξ · n)n =

=
1
2
Dξ g(ij)g

j − [
(∇j ξ · n)ωj , gi

]
+

+ g[jk] (∇j ξ · n)Cl
ki gl +

3
2
g[kl] (∇k ξ · gl) g[ij]gj−

− 3
2
γkl

ij (∇k ξ · gl) gj =

=
1
2
Dξ g(ij)g

j −
[
3
2
g[kl] (∇k ξ · gl)n− (∇j ξ · n)ωj

]
, gi +

+ g[jk] (∇j ξ · n)Cl
ki gl − 3

2
γkl

ij (∇k ξ · gl) gj .

(3.3)

Setting

S =
3
2
g[kl] (∇k ξ · gl)n− (∇j ξ · n)ωj ,

Xi = g[jk] (∇j ξ · n)Cl
ki gl − 3

2
γkl

ij (∇k ξ · gl) gj ,

we have
∇i ξ =

1
2
Dξ g(ij)g

j + [S, gi] +Xi . (3.4)

To see that the vector S represents a spin (rotation) vector is not
difficult as we know that (gi · n) = 0 and hence D (gi · n) = 0 where the
change in n can be represented by an internal rotation: Dn= [S, n].
With the help of (1.8), we now have

(gi ·Dn) = (gi · [S, n]) = (S · [n, gi]) = (S · ωi) = Si .
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Therefore

Si = (S · ωi) = − (∇i ξ · n) = − (n · ∇i ξ) .
Now

S = Siω
i +

3
2
g[ij] (∇i ξ · gj)n =

= Siω
i + φn ,

(3.5)

Si = − (n · ∇i ξ) = −ψ,i − 1
2
F k
·i ξk , (3.6a)

φ =
3
2
g[ij] (∇i ξ · gj) =

=
3
2
g[ij]

(
ξj;i − 1

2
ψFji

)
.

(3.6b)

We can also calculate the exterior variation of the electromagnetic
field tensor Fik:

DξFik = 2Dξ (∇in · gk) =

= 2 (∇iDξn · gk) + 2 (∇in ·Dξgk) =

= 2 (∇i [S, n] · gk) + 2 (∇in ·Dξgk) =

= 2 (∇iS · ωk)− 2
([
S, 1

2 F
j
·igj

] · gk

)
−

(
F j
·igj · ∇k ξ

)
.

(3.7a)

Hence we can write

DξFik = 2 (∇iS · ωk)−
(
F j
·igj · (∇k ξ − [S, gk])

)
=

= 2 (∇iS · ωk)− F j
·i

(
gj · 1

2
Dξ g(kl)g

l

)
− F j

·i (gj ·Xk) =

= −
(

2Hik +
1
2
F j
·iDξ g(jk) + F j

·iXjk

)
,

(3.7b)

where we have just defined the spin-curvature tensor Hik:

Hik = − (∇iS · ωk) , (3.8)

which measures the internal change of the spin in the direction of the
spin basis. We further posit that the spin-curvature tensor satisfies
the supplementary identities (which are deduced from the conditions
∇4uu= 0 and ∇4uS=0)

Hiku
i = 0 , (3.9a)

trH = 0 . (3.9b)
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The transverse condition (3.9a) reproduces the Lorentz equation of
motion while (3.9b) describes the internal properties of the structure of
physical fields which corresponds to the quantum limit on our manifold
(for details see Section 4.2).

The explicit expression of Hik can be found to be

Hik = − (∇iS · ωk) =

=
1
2
g[kl]F

l
·iφ− Sk;i

(3.10)

from (3.6a) and (3.6b). Furthermore, still with the help of (3.6a) and
(3.6b), we obtain, after some simplifications,

Hik = ψ;k;i +
1
4
F l
·i (ξl;k − ξk;l)− 1

4
F l
·iFlkψ +

1
2

(
F l
·kξl

)
;i
. (3.11)

However, we recall that

Rijkl =
1
4

(FikFjl − FilFjk) , Rik = −1
4
FilF

l
·k

and therefore we obtain the spin-curvature relation in the form

Hik = ψ;k;i −Rikψ +
1
4
F l
·i (ξl;k − ξk;l) +

1
2

(
F l
·kξl

)
;i
. (3.12)

§3.3 Wave equation describing the geometry of R4

If we contract (3.12) with respect to the indices i and k, we have

H = (2 −R)ψ + F ikξi;k +
1
2
J iξi , (3.13)

where 2 is the covariant four-dimensional Laplacian, again, R is the
curvature scalar and J i is the current density vector. However, using
(3.9a) and (3.9b) and associating with the space ϑn =R4 ⊗ n the “fun-
damental world-symmetry” ξ= (0, ψ), then we obtain, from (3.12), the
equation of motion:

ψ;k;i = Hik +Rikψ . (3.14)

From (3.9a), (3.9b) and (3.14), we obtain the wave equation:

(2 −R)ψ = 0 . (3.15a)

This resembles the scalar Klein-Gordon wave equation except that
we have the curvature scalar R in place of M2 = (m0 c/~)2 (we normally
expect this in generalizing the scalar Klein-Gordon equation). Note also
that the ordinary Klein-Gordon and Dirac equations do not explicitly
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contain any electromagnetic terms. This means that the electromag-
netic field must somehow already be incorporated into gravity in terms
of M . Since ψ is just the amplitude of the state vector |ψ〉, we can also
write

(2 −R) |ψ〉 = 0 . (3.15b)

If the curvature scalar vanishes, there is no “source” (or actually, no
electromagnetic field strength) and we have 2 |ψ〉 = 0 which is the wave
equation of massless particles.

Remark 4
Recall (3.7):

DξFik = −
(

2Hik +
1
2
F j
·iDξg(jk) + F j

·iXjk

)
, (3.a)

where
Dξ g(ik) = ξi;k + ξk;i = 2τik ,

Hik = − (∇iS · ωk) .

Meanwhile, for an arbitrary tensor field T , we have in general

DξT
ij...
kl... = ξmT ij...

kl...;m + T ij...
ml... ξ

m
;k + T ij...

km... ξ
m
;l + · · · −

− Tmj...
kl... ξi

;m − T im...
kl... ξj

;m − . . .

Therefore
DξFik = ξlFik;l + Flk ξ

l
;i + Fil ξ

l
;k . (3.b)

Comparing this with (3.a), we have, for the spin-curvature ten-
sor Hik,

Hik = −1
2

(
ξlFik;l + Flkξ

l
;i + Fil ξ

l
;k

)−1
4
F l
·i (ξl;k + ξk;l)−1

2
F l
·iXlk (3.c)

in terms of the electromagnetic field tensor.
End of Remark 4

Finally, let’s define the following tensor:

Aij ≡ Si;j − 1
2
F k
·jξk|i , (3.16)

where, as before,
ξk |i = ξk;i − 1

2
ψFki

is the ϑn-covariant derivative of ξk, the notion of which we have devel-
oped in Section 2.1 of this work, and

Si = −ψ,i − 1
2
F k
·iξk
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is the spin vector (3.6a). The meaning of the tensor (3.16) will become
clear soon. It has no classical analogue. We are now in a position
to decompose (3.16) into its symmetric and alternating parts. The
symmetric part of (3.16):

A(ij) =
1
2

(
Si;j + Sj;i − 1

2
F k
·iξk|j −

1
2
F k
·jξk|i

)
(3.17a)

may be interpreted as the tension of the spin field.
Now its alternating part:

A[ij] =
1
2

(
Si;j − Sj;i +

1
2
F k
·iξk|j −

1
2
F k
·jξk|i

)
(3.17b)

represents a non-linear spin field. (However, this becomes linear when
we invoke the “fundamental world-symmetry” ξ= (0, ψ).) If we employ
this “fundamental world- symmetry”, (3.17a) and (3.17b) become

A(ij) =
1
2

(Si;j + Sj;i) +Rij , (3.18a)

A[ij] =
1
2

(Si;j − Sj;i) . (3.18b)

With the help of (3.6a) and the relation

ψ;i;k − ψ;k;i = −2Γr
[ik]ψ,r ,

(3.18b) can also be written

A[ij] = Γk
[ij]ψ,k . (3.19)

Now

Aij = −ψ;i;j − 1
2

(
F k
·i ξk

)
;j
− 1

2
F k
·j ξk;i +

1
4
F k
·jFkiψ =

= −
(
ψ;i;j −Rijψ +

1
2

(
F k
·iξk

)
;j

+
1
2
F k
·j ξk;i

)
.

Therefore the Ricci tensor can be expressed as

Rik =− 1
2
ψ−1F r

·k ξr|i−

− ψ−1

(
ψ;i;k + Si;k +

1
2

(F r
·i ξr);k −

1
2
F r
·k ξr;i

)
.

(3.20)



Chapter 3 Spin-Curvature 51

We can still obtain another form of the wave equation of our quan-
tum gravity theory. Taking the world-symmetry ξ= (0, ψ), we have,
from r= r′ − ψn,

gi = hi − ψ,i n+
1
2
ψF r

·i gr , (3.21)

where hi ≡ r′,i is the basis of the space-time R′4. Now the metric tensor
of the space-time R4 is

g(ik) = (gi.gk) =

= hik − ψ,kηi +
1
2
ψF r

·k ηir − ψ,iηk + ψ,iψ,k +

+
1
2
ψF r

·i ηkr +
1
4
ψ2g(rs)F

r
·iF

s
·k ,

where hik ≡ (hi · hk) is the metric tensor of R′4, ηi ≡ (hi · n) and
ηik ≡ (hi · gk). Direct calculation shows that

ηi = ψ,i ,

ηik = g(ik) +
1
2
ψFik .

Then we arrive at the relation

g(ik) = hik − ψ,iψ,k − 1
4
ψ2g(rs)F

r
·iF

s
·k . (3.22)

Now from (3.2) we find that this is subject to the condition

Dξ g(ij) = 0 . (3.23)

Hence we obtain the wave equation

ψ,iψ,k = −1
4
ψ2g(rs)F

r
·iF

s
·k . (3.24a)

Expressed in terms of the Ricci tensor, the equivalent form of
(3.24a) is

ψ,iψ,k = −ψ2Rik . (3.24b)

Expressed in terms of the Einstein tensor Gik =Rik − 1
2 g(ik)R,

(3.24b) becomes
(
δr
i δ

s
k −

1
2
g(ik)g

(rs)

)
ψ,rψ,s = −ψ2Gik . (3.25)
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If in particular the space-time R4 has a constant sectional curvature,
then Rijkl = 1

12

(
g(ik)g(jl)− g(il)g(jk)

)
and Rik =λg(ik), where λ ≡ 1

4 R
is constant, so (3.24b) reduces to

ψ,iψ,k = −λψ2g(ik) . (3.26)

Any axisymmetric solution of (3.26) would then yield equations that
could readily be integrated, giving the wave function in a relatively
simple form. Multiplying now (3.24b) by the contravariant metric tensor
g(ik), we have the wave equation in terms of the curvature scalar as
follows:

g(ik)ψ,iψ,k = −ψ2R . (3.27)

Finally, let’s consider a special case. In the absence of the scalar
source, i.e., in “void”, the wave equation becomes

g(ik)ψ,iψ,k = 0 . (3.28)

This wave equation therefore describes a massless, null electromag-
netic field where

FikF
ik = 0 .

In this case the electromagnetic field tensor is a null bivector. There-
fore, according to our theory, there are indeed “seemingly void” regions
in the Universe that are governed by null electromagnetic fields only.
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ADDITIONAL CONSIDERATIONS

§4.1 Embedding of generalized Riemannian manifolds (with
twist) in N =n +p dimensions

In connection to Chapter 2 of this work where we considered an embed-
ding of “class 1”, we outline the most general formulation of embedding
theory of “class p” in N =n+ p dimensions where n now is the number
of dimensions of the embedded Riemannian manifold. First, let the em-
bedding space RN be an N -dimensional Riemannian manifold spanned
by the basis {eA}. For the sake of generality we take RN to be an
N -dimensional space-time. Let also Rn be an n-dimensional Rieman-
nian sub-manifold (possessing torsion) in RN spanned by the basis {g l}
where now the capital Latin indices A, B, . . . run from 1 to N and
the ordinary ones i, j, . . . from 1 to n. If now gAB = (eA · eB) and
gij = (gi · gj) denote the metric tensors of RN and Rn, respectively, and
if we introduce the p-unit normal vectors (also called n-legs) n(α) (where
the Greek indices run from 1 to p and summation over any repeated
Greek indices is explicitly indicated otherwise there is no summation),
then

gij = eA
i e

B
j gAB ,

gAB = ei
Ae

j
Bgij +

∑
µ

n
(µ)
A n

(µ)
B ,

eA
i n

(µ)
A = 0 ,

(n(µ) · n(ν)) = γ(µ)δµν , γ(µ) = ±1 ,

gi,j = Γk
ijgk +

∑
µ

γ(µ)φ
(µ)
ij n(µ),

gi;j =
∑

µ

γ(µ) φ
(µ)
ij n(µ) ,

eA,B = ΓC
ABeC ,

Γk
ij = ek

Ae
A
i,j + ek

AΓA
BCe

B
i e

C
j ,
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ΓA
BC = eA

i e
i
B,C + eA

k Γk
ije

i
Be

j
C +

∑
µ

γ(µ)φ
(µ)
ij ei

Be
j
Cn

(µ)A +

+
∑

µ

n(µ)An
(µ)
B,C −

∑
µ

γ(µ)φ
(µ)
kj g

kieA
i e

j
Cn

(µ)
B ,

φ
(µ)
ij = n

(µ)
A eA

i,j + n
(µ)
A ΓA

BCe
B
i e

C
j ,

eA
i;j =

∑
µ

γ(µ)φ
(µ)
ij n(µ)A ,

eA
i,j = eA

k Γk
ij − ΓA

BCe
B
i e

C
j +

∑
µ

γ(µ)φ
(µ)
ij n(µ)A .

Now since eA = ei
Agi +

∑
µ
γ(µ)n

(µ)
A n(µ) and φ

(µ)
ij = − eA

i n
(µ)
A;j for the

asymmetric p-extrinsic curvatures, we see that

ei
Bφ

(µ)
ij = −

(
δA
B −

∑
ν

γ(ν)n(ν)An
(ν)
B

)
n

(µ)
A;j =

= −n(µ)
B;j +

∑
ν

γ(ν)n
(µ)
A;jn

(ν)An
(ν)
B .

Let’s define the p-torsion vectors by

θµν
i = n

(µ)
A;in

(ν)A ,

θµν
i = − θνµ

i .

Hence
n

(µ)
A;i = −φ(µ)

ki e
k
A +

∑
ν

γ(ν)θµν
i n

(ν)
A

or
n

(µ)
;i = −φ(µ)

ki g
k +

∑
ν

γ(ν)θµν
i n(ν) .

Now

n
(µ)
A;i;k = −φ(µ)

ik ei
A −

∑
ν

grsφ
(µ)
ri φ

(ν)
sk n

(ν)
A +

∑
ν

γ(ν)θµν
i;kn

(ν)
A −

−
∑

ν

γνθµν
i φ

(ν)
rk e

r
A +

∑
ν,τ

γ(τ)θµν
i θντ

k n
(τ)
A .

Hence we obtain the expression

n
(µ)
A;i;kn

(ν)A = −grsφ
(µ)
ri φ

(ν)
sk + θµν

i;k +
∑

τ

γ(τ)θµτ
i θντ

k .
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Meanwhile,
n

(µ)
A;i = n

(µ)
A;Be

B
i ,

n
(µ)
A;i;k =

(
n

(µ)
A;Be

B
i

)
;C
eC
k =

= n
(µ)
;B;Ce

B
i e

C
k + n

(µ)
A;Be

A
i;k =

= n
(µ)
A;B;Ce

B
i e

C
k +

∑
ν

n
(µ)
A;B γ

(ν)φ
(ν)
ik n

(ν)B ,

but
n

(µ)
A;B = n

(µ)
A;ie

i
B = −φ(µ)

ki e
k
Ae

i
B .

Hence
n

(µ)
A;Bn

(ν)B = 0 ,

n
(µ)
A;Bn

(ν)A = 0 .

We also see that

n
(µ)
A;i;kn

(ν)A = n
(µ)
A;B;Cn

(ν)AeB
i e

C
k .

Consequently, we have
(
n

(µ)
A;i;k − n

(µ)
A;k;i

)
n(ν)A =

(
n

(µ)
A;B;C − n

(µ)
A;C;B

)
n(ν)AeB

i e
C
k =

= RABCD n(µ)An(ν)BeC
i e

D
k .

On the other hand, we see that
(
n

(µ)
A;i;k−n(µ)

A;k;i

)
n(ν)A = θµν

i;k − θµν
k;i + grs

(
φ

(µ)
rk φ

(ν)
si − φ

(µ)
ri φ

(ν)
sk

)
+

+
∑

τ

γ(τ) (θµτ
i θντ

k − θµτ
k θντ

i )+

+RABCD n(µ)An(ν)BeC
i e

D
k .

Combining the last two equations we get the Ricci equations:

θµν
i;k − θµν

k;i = grs
(
φ

(µ)
ri φ

(ν)
sk − φ

(µ)
rk φ

(ν)
si

)
−

∑
τ

γ(τ) (θµτ
i θντ

k − θµτ
k θντ

i ) .

Now from the relation

gi,j = Γk
ijgk +

∑
µ

γ(µ)φ
(µ)
ij n(µ) ,
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we obtain the expression

gi,jk =
(

Γr
ij,k + Γs

ijΓ
r
sk −

∑
µ

grs γ(µ)φ
(µ)
ij φ

(µ)
sk

)
gr +

+
∑

µ

(
γ(µ)φ

(µ)
rk Γr

ij + γ(µ)φ
(µ)
ij,k +

∑
ν

γ(ν)φ
(ν)
ij θ

νµ
k

)
n(µ) .

Hence consequently,

gi,jk − gi,kj =
(
−Rr

·ijk +
∑

µ

grsγ(µ)
(
φ

(µ)
sj φ

(µ)
ik − φ

(µ)
sk φ

(µ)
ij

))
gr +

+
∑

µ

γ(µ)
(
φ

(µ)
ij;k − φ

(µ)
ik;j + 2Γr

[jk]φ
(µ)
ir

)
n(µ) +

+
∑
µ,ν

γ(ν)
(
φ

(ν)
ij θ

νµ
k − φ

(ν)
ik θ

νµ
j

)
n(µ) .

On the other hand, we have

gi,jk =
(
ΓA

BC,D + ΓE
BCΓA

ED

)
eB
i e

C
j e

D
k eA+

+
(
eA
i,jk + ΓA

BC e
B
i,je

C
k + ΓA

BC e
B
i,ke

C
j + ΓA

BC e
B
i e

C
j,k

)
eA ,

gi,jk − gi,kj =
(−RA

·BCDe
B
i e

C
j e

D
k + SA

·ijk

)
eA ,

where, just as in Chapter 2,

SA
·ijk = eA

i,jk − eA
i,kj +

(
eC
j,k − eC

k,j

)
ΓA

BCe
B
i .

Combining the above, we generalize the Gauss-Codazzi equa-
tions into

Rijkl =
∑

µ

γ(µ)
(
φ

(µ)
ik φ

(µ)
jl − φ

(µ)
il φ

(µ)
jk

)
+RABCDe

A
i e

B
j e

C
k e

D
l − SAjkle

A
i ,

φ
(µ)
ij;k − φ

(µ)
ik;j = −RABCDn

(µ)eB
i e

C
j e

D
k + SAijkn

(µ)A − 2Γr
[jk]φ

(µ)
ir +

+
∑

ν

γ(ν)
(
φ

(ν)
ij θ

µν
k − φ

(ν)
ik θ

µν
j

)
.

Finally, when Rn is embedded isometrically in RN , i.e., when
the embedding manifold RN is an Euclidean or pseudo-Euclidean
N -dimensional space(-time) or if we impose a particular integrability
condition on the n-vectors in Rn the way we derived (2.10) in Chap-
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ter 2, we have the system of equations

Rijkl =
∑

µ

γ(µ)
(
φ

(µ)
ik φ

(µ)
jl − φ

(µ)
il φ

(µ)
jk

)
,

φ
(µ)
ij;k − φ

(µ)
ik;j = −2Γr

[jk]φ
(µ)
ir +

∑
ν

γ(ν)
(
φ

(ν)
ij θ

µν
k − φ

(ν)
ik θ

µν
j

)
,

θµν
i;k − θµν

k;i = grs
(
φ

(µ)
ri φ

(ν)
sk − φ

(µ)
rk φ

(ν)
si

)
−

∑
τ

γ(τ) (θµτ
i θντ

k − θµτ
k θντ

i ) .

Turning to physics, a unified field field theory of gravity and electro-
magnetism may be framed by the geometric quantities above either in
5 = 4+1 background dimensions or, if we wish to extend it, in N = 4+p
background dimensions. As an alternative, in N = 4 + p dimensions we
may also observe that the following assumptions can be made possible:

1. The first alternating p-exterior curvature φ(1)
[ik] is equivalent to the

ordinary electromagnetic field tensor Fik;

2. The remaining p-exterior curvatures φ(2)
[ik], . . . , φ

(p)
[ik], φ

(1)
(ik), . . . , φ

(p)
(ik)

represent fields beyond the known electromagnetic and gravita-
tional fields;

3. As in Chapter 2, if desired, the four-dimensional metric tensor gij

may not depend on the extra p-coordinates
{
xN−4, xN−3, . . . , xN

}
.

Thus the cylinder condition represented by the equations

n
(µ)
A;B + n

(µ)
B;A = 0 or φ(µ)

(ij) = 0

is, again, arrived at.

§4.2 Formulation of our gravoelectrodynamics by means of
the theory of distributions. Massive quantum electro-
magnetic field tensor

In Chapter 2 we have assumed a type of parallel transport applied
to the pseudo-five-dimensional velocity field u≡ (

uA
)

=uigi+ ∈ n in
ϑn=R4⊗n, i.e., ∇4uu=0 where 4u=uigi; ui = dxi

ds and ∈= 2e
m0c2 =uAnA;

d∈
ds =0. To describe non-diverging point-like objects which may experi-
ence no change in energy even when accelerated, like electrons, we now
introduce a special kind of autoparallelism through the relation ∇iu=0.
This says that the pseudo-five-dimensional velocity field u=(ui,∈) is an
autoparallel vector field in the sense of the theory of distributions, whose
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magnitude is independent of the four coordinates of R4. In other words,

ui
;k =

1
2
∈ F i

·k ,

∈,i= −1
2
F k
·iuk .

From these we have
Dui

Ds
=

e

m0c2
F i
·ku

k,

ui
;i = 0 ,

d ∈
ds

= 0 .

We’re now in a position to derive the field equations of gravoelec-
trodynamics with the help of these relations. Afterwards, we shall show
that these relations, indeed, lead to acceptable equations of motion in
both four and five dimensions. We may also emphasize that the five-
dimensional space IR5 is a Riemann space. First we note that

ui;k;l =
1
2
∈ Fik;l +

1
2
∈,l Fik =

=
1
2
∈ Fik;l − 1

4
F r
·lFikur .

Now

ui;k;l − ui;l;k = Rr
·iklur − 2ui;rΓr

[kl] =

=
1
2

(Fik;l − Fil;k) ∈ +
1
4

(F r
·kFil − F r

·lFik)ur .

Therefore we have

Ri
·jklui =

1
4

(
F i
·k Fjl − F i

·lFjk

)
ui +

1
2

(
Fjk;l − Fjl;k + 2Γr

[kl]Fjr

)
∈ .

But ui = γA
i uA and ∈ =uAnA, so by means of symmetry, we can

lop off the uA:

Ri
·jklγ

A
i =

1
4

(
F i
·kFjl − F i

·lFjk

)
γA

i +
1
2

(
Fjk;l − Fjl;k + 2Γr

[kl]Fjr

)
nA .

From this relation, we derive the unified field equations

Rijkl =
1
4

(FikFjl − FilFjk) ,

Fij;k − Fik;j = −2Γr
[jk ,]Fir
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as expected. We have thus no need to assume that the curvature of
the background five-dimensional space IR5 vanishes. To strengthen our
proof, recall that gi;j =φijn. Hence

gi;j;k = φij;kn+ φijn;k =
= φij;kn− φijφ

r
·k gr ,

gi;j;k − gi;k;j = (φij;k − φik;j)n+
(
φikφ

r
·j − φijφ

r
·k

)
gr .

However,
gi;j;k − gi;k;j = Rr

·ijkgr − 2Γr
[jk]φ

n
ir .

Combining the above, we have

Rijkl = φikφjl − φilφjk .

φij;k − φik;j = −2Γr
[jk]φir .

Invoking the cylinder condition, again we get

Rijkl =
1
4

(FikFjl − FilFjk) ,

Fij;k − Fik;j = −2Γr
[jk]Fir .

We now assume that the five-dimensional equation of motion in IR5

is in general not a geodesic equation of motion. Instead, we expect an
equation of motion of the form

d2xA

ds2
+ ΓA

BC

dxB

ds

dxC

ds
= βF̃A

·B u
B ,

where uA = eA
i u

i, and

ds2 = 5ds2 = g(AB)dx
AdxB =

(
ei
Ae

k
Bg(ik) + nAnB

)
dxAdxB =

= g(ik)dx
idxk = 4ds2,

ΓA
BC =

1
2
g(DA)

(
g(DB),C − g(BC),D + g(CD),B

)
,

F̃AB ≡ FAB + ΩAB ,

FAB = − (nA;B − nB;A) ,

Fik = eA
i e

B
k FAB ,

FABn
B = 0 ,

ΩABe
A
i e

B
k = 0 .
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Note also that the connection transforms as

ΓA
BC = eA

i e
i
B,C + eA

i Γi
jke

j
Be

k
C +

+
1
2
Fike

i
Be

k
Cn

A + nAnB,C − 1
2
F i
·ke

A
i e

k
CnB .

Now with the help of the relation

eA
i,k = eA

r Γr
ik − ΓA

BCe
B
i e

C
k +

1
2
Fikn

A,

we have

d2xA

ds2
=

d

ds

(
eA
i

dxi

ds

)
= eA

i,k

dx

ds

i dx

ds

k

+ eA
i

d2xi

ds2
=

= eA
i

d2xi

ds2
+ eA

i Γi
jk

dxj

ds

dxk

ds
− ΓA

BC

dxB

ds

dxC

ds
.

Hence

d2xA

ds2
+ ΓA

BC

dxB

ds

dxC

ds
= eA

i

(
d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds

)
= βF̃A

·Bu
B .

Setting ΩAB = 0 and β= e
m0c2 , since FA

·Be
i
Au

B =FA
·Be

i
Ae

B
k u

k =F i
·ku

k,
we then obtain the equation of motion:

Dui

Ds
=

e

m0c2
F i
·ku

k.

A straightforward way to obtain the five-dimensional equation of
motion is as follows: from our assumptions we have

(
eA
i uA

)
;k

=
1
2
∈ Fik ,

FikuAn
A + uA;Be

A
i e

B
k =

1
2
∈ Fik .

Therefore recalling that uAnA =0 and multiplying through by uk,
we get

uA
;Be

i
Au

B =
1
2
∈ F i

·ku
k.

Again, noting that uA
;Bu

B =uA
;ku

k = DuA

Ds and multiplying through
by eC

i , we get
DuC

Ds
− nA

DuA

Ds
nC =

e

m0c2
FC
·Au

A.
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But

uADnA

Ds
= −nA

DuA

Ds
= −nA;Bu

AuB = −nA;ku
Auk =

=
1
2
uAFike

i
Au

k =

=
1
2
Fiku

iuk = 0 .

Therefore
DuA

Ds
=

e

m0c2
FA
·Bu

B .

Let’s now recall the spin-curvature tensor (3.8) as well as (3.5)
and (3.6):

Hik = − (∇iS · ωk) =

=
1
2
g[kl]F

l
·i φ− Sk;i ,

S = Si ω
i +

3
2
g[ij] (∇i ξ · gj)n =

= Si ω
i + φn ,

Si = − (n · ∇i ξ) = −ψ,i − 1
2
F k
·i ξk ,

φ =
3
2
g[ij] (∇i ξ · gj) =

=
3
2
g[ij]

(
ξj;i − 1

2
ψFji

)
.

Recall (3.9a):
Hiku

i = 0 .

Multiplying (3.10) by ui, we get the equation of motion:

DSk

Ds
=

1
2
φ g[kr]F

r
·iu

i,

Equivalently,
DSi

Ds
=

1
2
φ g[ik]Fkru

r.

We can now compare this with (2.31a). Now this leads us to consider
a case in our theory in which the spin vector Si is normalized (in the
quantum limit). Then it is given by

Si = vi = g[ik]uk .
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Multiplying once again by g[ij], we get

g[ij]
DSi

Ds
=

1
2
φFjru

r

Dui

Ds
=

1
2
φF i

·ku
k ,

which is the Lorentz equation of motion. In this case then it automati-
cally follows that

φ = 2
(

e

m0c2

)
=∈ ,

dφ

ds
= 0 .

Corresponding to our ongoing analysis, let’s also recall (3.9b):

trH = 0 .

This gives the divergence equation

Si
;i = −1

2
φ g[ik]F

ik

or

g[ik]

(
1
2
φF ik − ui;k

)
= 0 .

On the other hand, from (3.6a), and by employing our fundamental
symmetry, we have

Si
;i = −2ψ .

Therefore, with the help of (3.15a), we see that

2ψ =
1
2
φ g[ik]F

ik = Rψ .

1
2
φ g[ik]F

ik =
1
4
FikF

ikψ .

The simplest solution for massive, electrically charged particles of
this would then be

Fikψ = 2φ g[ik] .

which expresses the proportionality of the “already quantized” electro-
magnetic field tensor to the fundamental spin tensor of our unified field
theory. In other words,

Fik = 4
(

e

m0c2

)
ψ−1g[ik] .
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Finally, with the help of (3.27), we get the fundamental quantum
relations (here we mean R 6= 0, ψ 6= 0):

Fik = −4
(

e

m0c2

)
Rψg[ik] ,

R = − 1
ψ2

.

Now, following (1.1), we can write our asymmetric fundamental ten-
sor γik as

γik =
1√
2

(
g(ik) +

1
4

(
m0c

2

e

)
ψFik

)
,

which satisfies (1.4): γijγ
kj = δk

i . On the other hand, now we see that

γirγ
kr =

1
2

(
δk
i +

1
4

(
m0c

2

e

)2

ψ2Rk
i·

)
,

γirγ
rk =

1
2

(
δk
i +

1
2

(
m0c

2

e

)
ψF k

i· −
1
4

(
m0c

2

e

)2

ψ2Rk
i·

)
.

Hence we get the following expression for the Ricci tensor:

Rik = 4
(

e

m0c2

)2

ψ−2g(ik) .

We now define an inverse wave function:

Ψ = 2
(

e

m0c2

)
ψ−1.

We can then express the Ricci and the electromagnetic field ten-
sors as

Rik = Ψ2g(ik) ,

Fik = 2Ψg[ik] .

Then it follows from (1.2b) and (1.2c) that

Fik = − 2Ψ−1g[kr]R
r
i· ,

R =
1
2

Ψ g[ik]Fik = 4Ψ2 .

We have now therefore fulfilled our promise in the beginning (for
instance, at the end of Section 1.2) to express gravity and electro-
magnetism in terms of the components of the fundamental tensor, i.e.,
g(ik) ≡

√
2γ(ik) and g[ik] ≡

√
2γ[ik], alone.
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§4.3 On the conservation of currents

We need to recall the basic field equations:

Rijkl =
1
4

(FikFjl − FilFjk) ,

Fij;k − Fik;j = −2Γr
[jk]Fir ,

Rik = −1
4
F i
·rF

rk,

Rik
;k = −1

4
F i
·r;kF

rk − 1
4
F i
·rF

rk
;k =

= −1
4
F i
·kJ

k +
1
4
F i
·kΓk

[rs]F
rs,

J i = 2 g(ik)Γr
[ks]F

s
·r .

To guarantee conservation of currents, we now introduce the one-
form ζi ∈ ϑn:

ζi = Rikgk + χin ,

where χi represents another current. Requiring, in the sense of the
theory of distributions, that the covariant derivative of ζi vanishes at
all points of R4 also means that its covariant divergence also vanishes:

ζi
;i = 0 .

Hence
Rik

;i gk +Rikgi;k + χi
;in+ χin;i = 0 ,

Rik
;i gk − 1

2
RikFikn+ χi

;in−
1
2
χiF k

·i gk = 0 .

Then we have
Rik

;k =
1
2
F i
·k χ

k,

χi
;i = 0 .

Comparing the last two equations above with the fourth equation,
one must find

χi = −1
2

(
J i − Γi

[kl]F
kl

)
.

Meanwhile, in the presence of torsion the Bianchi identity for the
electromagnetic field tensor and the covariant divergence of the four-
current J are

Fij;k + Fjk;i + Fki;j = −2
(
Γr

[ij]Fkr + Γr
[jk]Fir + Γr

[ki]Fjr

)
,
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J i
;i =

(
Γi

[kl]F
kl

)
;i
.

Now since χi
;i =0, we see that

(
Γi

[kl]F
kl

)
;i

= 0

and (in a general setting)

J i = αΓi
[kl]F

kl 6= −2χi

for some constant α, are necessary and sufficient conditions for the cur-
rent density vector J to be conserved. Otherwise both χi and J i are
directly equivalent to each other. Of course one may also define another
conserved current through

ji = F ik
||k → ji

||i = 0 ,

where the double stroke represents a covariant derivative with respect
to the symmetric Levi-Civita connection.

In general the current J will automatically be conserved if the or-
thogonality condition imposed on the twist vector, derived from the
torsion tensor, and the velocity vector:

τiu
i = 0 ,

where
τi = Γk

[ki]

holds. For more details of the conservation law for charges, see Sec-
tion 4.4 below.

§4.4 On the wave equations of our unified field theory

We start again with the basic field equations of our unified field theory:

Rijkl =
1
4

(FikFjl − FilFjk) ,

Fij;k − Fik;j = − 2Γr
[jk]Fir ,

J i = 2 g(ik)Γs
[kr]F

r
·s .

We remind ourselves that these field equations give us a set of com-
plete relations between the curvature tensor, the torsion tensor, the elec-
tromagnetic field tensor and the current density vector. From these field
equations, we are then able to derive the following insightful algebraic
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relations:
F ijRijkl = Rr

·kFrl −Rr
·lFrk ,

Fik = R−1 (F rsRrisk + FirR
r
k·) ,

R2 = RikR
ik +

1
4
RijklF

ikF jl =

= RikR
ik +RijklR

ijkl +
1
4
RijklF

ilF jk,

J i = 2R−1g(ik)Γq
[kp]

(
F rsRp

r.sq + F p
·rR

r
q ·

)
,

R = 2ρ−2J iΓq
[ik]

(
F rsRk

r.sq + F k
·rR

r
q ·

)
,

where the density ρ corresponds to possible electric-magnetic charge
distribution. As has been shown previously, we also have the traceless
field equation:

Rik − 1
4
g(ik)R =

1
4

(
FilF

l
k· −

1
4
g(ik)FrsF

rs

)
.

Now recall that the tetrad and the unit normal vector satisfy

eA
i;k =

1
2
Fikn

A,

nA
;i = −1

2
F k
·ie

A
k .

Then we see that

eA
i;j;k =

1
2
Fij;kn

A − 1
4
FijF

r
·ke

A
r ,

g(jk)eA
i;j;k =

1
2
Jin

A − 1
4
FikF

rkeA
r .

With the help of the basic field equations, we obtain the tetrad wave
equation of our unified field theory:

2eA
i =

1
2
Jin

A −R k
i· e

A
k .

This expression gives a wave-type equation of the tetrad endowed
with two sources: the electromagnetic source, i.e., the electromagnetic
current density vector and the Ricci curvature tensor which represents
the gravitational source in standard General Relativity.
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In addition, we can also obtain the following wave equation:

2nA = −1
2
J ieA

i −RnA .

In other words,

(2 +R)nA = −1
2
J ieA

i .

Furthermore, it follows that

ek
A 2eA

i = −R k
i· ,

nA 2eA
i =

1
2
Ji ,

nA2nA = −R ,

ei
A2nA = −1

2
J i.

We may now express the current density vector as

J i = 2nA
2ei

A .

Again, we obtain the conservation law of electromagnetic currents
as follows:

J i
;i = 2nA

;i 2e
i
A + 2nA

2ei
A;i =

= −F k
·ie

A
k 2ei

A =

= F k
·iR

i
·k =

= 0 .

(Here we have also used the relation 2ei
A;i = 1

2 2
(
F i
·i nA

)
=0.)

Meanwhile, since the equation 2g(ik) =0 must be satisfied uncon-
ditionally by the metric tensor g(ik) = eAie

A
k and also since g(AB);i =

g(AB);Ce
C
i =0, we then get

eAk2eA
i = −eA

i 2eAk − 2Rik .

Now the curvature tensor can be expressed in terms of the tetrad as

Rijkl = g(AB)

(∇ke
A
i ∇le

B
j −∇le

A
i ∇ke

B
j

)
.

Then the Ricci tensor is

Rik = g(AB)∇re
A
i ∇reB

k .
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We can also express this as

Rik = −g(AB)e
A
i 2eB

k ,

which can be written equivalently as

Rik = −1
2
g(AB)

(
eA
i ∇r∇reB

k + eA
k∇r∇reB

i

)
.

Consider now a source-free region in the space-time R4. As we’ve
seen, the absence of source is characterized by the vanishing of the
torsion tensor. In such a case, if the space-time has a constant sectional
curvatureK, we obtain the tetrad wave equation for the “empty” region:

(2 +
1
4
R) eA

i = 0 .

In other words,
(2 +K) eA

i = 0 .

Combining our tetrad wave equation 2eA
i = 1

2Jin
A−R k

i· e
A
k with the

equation for the Ricci tensor we have derived in the quantum limit (in
Section 4.2), which is

Rik = 4
(

e

m0c2

)2

ψ−2g(ik) ,

we obtain the following wave equation in the presence of the electro-
magnetic current density:

(2 +
1
4
R) eA

i =
1
2
Jin

A,

R = C + 4
∫ (

Γr
[ik]R

ik
··rs − 2Γi

[rs]R
r
·i
)
dxs,

where C =4K is constant.
Finally, let’s have a look back at the wave equation given by (3.15b):

(2 −R) |ψ〉 = 0 .

If we fully assume that the space-time R4 is embedded isometrically
in IR5 spanned by the time coordinate τ = ct and the four space co-
ordinates u, v, w, y which together form the line-element ds2 = dτ2−
− du2 − dv2 − dw2 − dy2 ≡ dτ2 − dσ2 − dy2, and if the wave function
represented by the state vector |ψ〉 does not depend on the microscopic
fifth coordinate y, we can write the wave equation in the simple form:

(
∂2

∂τ2
− ∂2

∂σ2

)
|ψ〉 = R |ψ〉 .
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§4.5 A more compact form of the generalized Gauss-Codazzi
equations in IR5

We write the generalized Gauss-Codazzi equations (see (2.6) for in-
stance) in IR5 once again:

Rijkl = φikφjl − φilφjk +RABCD eA
i e

B
j e

C
k e

D
l − SAjkle

A
i ,

φij;k − φik;j = −RABCD nAeB
i e

C
j e

D
k − 2Γr

[jk]φir + SAijkn
A

in terms of the general asymmetric extrinsic curvature tensor. Here, as
usual,

SA
·ijk = eA

i,jk − eA
i,kj +

(
eC
j,k − eC

k,j

)
ΓA

BC e
B
i .

From the fundamental relations

eA
i;j = φij n

A,

nA
;i = −φk

·i e
A
k ,

we have
eA
i;j;k = φij;kn

A − φijφ
r
·ke

A
r .

Hence

eA
i;j;k − eA

i;k;j = (φij;k − φik;j)nA +
(
φr
·jφik − φr

·kφij

)
eA
r .

With the help of the generalized Gauss-Codazzi equations above and
the identity

ei
Ae

B
i = δB

A − nAn
B ,

we see that that the generalized Gauss-Codazzi equations in IR5 can be
written somewhat more compactly as a “single equation”:

eA
i;j;k − eA

i;k;j = Rr
·ijk e

A
r −RA

·BCDe
B
i e

C
j e

D
k − 2Γr

[jk]φirn
A + SA

·ijk .



Appendix: The Fundamental Geometric Properties
of a Curved Manifold

Let us present the fundamental geometric objects of an n-dimensional
curved manifold. Let ωa = ∂Xi

∂xa Ei = ∂aX
iEi (the Einstein summation

convention is assumed throughout this work) be the covariant (frame)
basis spanning the n−dimensional base manifold C∞ with local coordi-
nates xa =xa

(
Xk

)
. The contravariant (coframe) basis θb is then given

via the orthogonal projection
〈
θb, ωa

〉
= δb

a, where δb
a are the compo-

nents of the Kronecker delta (whose value is unity if the indices coin-
cide or null otherwise). The set of linearly independent local directional
derivatives Ei = ∂

∂Xi = ∂i gives the coordinate basis of the locally flat
tangent space Tx (M) at a point x ∈ C∞. Here M denotes the topo-
logical space of the so-called n-tuples h (x) =h

(
x1, . . . , xn

)
such that

relative to a given chart (U, h (x)) on a neighborhood U of a local co-
ordinate point x, our C∞-differentiable manifold itself is a topological
space. The dual basis to Ei spanning the locally flat cotangent space
T∗x (M) will then be given by the differential elements dXk via the rela-
tion

〈
dXk, ∂i

〉
= δk

i . In fact and in general, the one-forms dXk indeed
act as a linear map Tx(M) → IR when applied to an arbitrary vector
field F ∈ Tx(M) of the explicit form F =F i ∂

∂Xi = fa ∂
∂xa . Then it is

easy to see that F i =FXi and fa =Fxa, from which we obtain the
usual transformation laws for the contravariant components of a vector
field, i.e., F i = ∂aX

ifa and f i = ∂ix
aF i, relating the localized compo-

nents of F to the general ones and vice versa. In addition, we also see
that

〈
dXk, F

〉
=F Xk =F k.

The components of the symmetric metric tensor g= gabθ
a⊗θb of the

base manifold C∞ are readily given by

gab = 〈ωa, ωb〉
satisfying

gacg
bc = δb

a ,

where gab =
〈
θa, θb

〉
. It is to be understood that the covariant and

contravariant components of the metric tensor will be used to raise and
the (component) indices of vectors and tensors.

The components of the metric tensor g (xN ) = ηikdX
i ⊗ dXk de-

scribing the locally flat tangent space Tx(M) of rigid frames at a point
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xN =xN (xa) are given by

ηik = 〈Ei, Ek〉 = diag (±1,±1, . . . ,±1) .

In four dimensions, the above may be taken to be the components of
the Minkowski metric tensor, i.e., ηik = 〈Ei, Ek〉 = diag (1, −1, −1, −1).

Then we have the expression

gab = ηik∂aX
i∂bX

k.

The line-element of C∞ is then given by

ds2 = g = gab

(
∂ix

a∂kx
b
)
dXi ⊗ dXk,

where θa = ∂ix
adXi.

Given the existence of a local coordinate transformation via
xi =xi (xα) in C∞, the components of an arbitrary tensor field T ∈ C∞
of rank (p, q) transform according to

T ab...g
cd...h = Tαβ...λ

µν...η ∂αx
a∂βx

b . . . ∂λx
g∂cx

µ∂dx
ν . . . ∂hx

η .

Let δi1i2...ip

j1j2...jp
be the components of the generalized Kronecker delta.

They are given by

δ
i1i2...ip

j1j2...jp
=∈j1j2...jp∈i1...ip= det




δi1
j1

δi2
j1

. . . δ
ip

j1

δi1
j2

δi2
j2

. . . δ
ip

j2

. . . . . . . . . . . .

δi1
jp

δi2
jp

. . . δ
ip

jp




where ∈j1j2...jp =
√

det (g) εj1j2...jp and ∈i1i2...ip = 1√
det(g)

εi1i2...ip are

the covariant and contravariant components of the completely anti-
symmetric Levi-Civita permutation tensor, respectively, with the ordi-
nary permutation symbols being given as usual by εj1j2...jq and εi1i2...ip .
Again, if ω is an arbitrary tensor, then the object represented by

∗ωj1j2...jp =
1
p!
δ

i1i2...ip

j1j2...jp
ωi1i2...ip

is completely anti-symmetric.
Introducing a generally asymmetric connection Γ via the covariant

derivative
∂bωa = Γc

ab ωc ,

i.e.,
Γc

ab = 〈θc, ∂bωa〉 = Γc
(ab) + Γc

[ab] ,
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where the round index brackets indicate symmetrization and the square
ones indicate anti-symmetrization, we have, by means of the local coor-
dinate transformation given by xa =xa (xα) in C∞

∂be
α
a = Γc

abe
α
c − Γ

α

βλe
β
ae

λ
b ,

where the tetrads of the moving frames are given by eα
a = ∂ax

α and
ea
α = ∂αx

a. They satisfy ea
αe

α
b = δa

b and eα
ae

a
β = δα

β . In addition, it can
also be verified that

∂βe
a
α = Γ

λ

αβe
a
λ − Γa

bce
b
αe

c
β ,

∂be
a
α = ea

λ Γ
λ

αβe
β
b − Γa

cbe
c
α .

We know that Γ is a non-tensorial object, since its components trans-
form as

Γc
ab = ec

α∂be
α
a + ec

α Γ
α

βλe
β
ae

λ
b .

However, it can be described as a kind of displacement field since
it is what makes possible a comparison of vectors from point to point
in C∞. In fact the relation ∂bωa =Γc

abωc defines the so-called metricity
condition, i.e., the change (during a displacement) in the basis can be
measured by the basis itself. This immediately translates into

∇c gab = 0 ,

where we have just applied the notion of a covariant derivative to an
arbitrary tensor field T :

∇mT
ab...g
cd...h = ∂mT

ab...g
cd...h + Γa

pmT
pb...g
cd...h + Γb

pmT
ap...g
cd...h + · · ·+ Γg

pmT
ab...p
cd...h−

− Γp
cmT

ab...g
pd...h − Γp

dmT
ab...g
cp...h − · · · − Γp

hmT
ab...g
cd...p

such that (∂mT )ab...g
cd...h =∇mT

ab...g
cd...h .

The condition ∇c gab =0 can be solved to give

Γc
ab =

1
2
gcd (∂bgda − ∂dgab + ∂agbd) + Γc

[ab] − gcd
(
gaeΓe

[db] + gbeΓe
[da]

)

from which it is customary to define

∆c
ab =

1
2
gcd (∂bgda − ∂dgab + ∂agbd)

as the Christoffel symbols (symmetric in their two lower indices) and

Kc
ab = Γc

[ab] − gcd
(
gaeΓe

[db] + gbeΓe
[da]

)
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as the components of the so-called contorsion tensor (anti-symmetric in
the first two mixed indices).

Note that the components of the torsion tensor are given by

Γa
[bc] =

1
2
ea
α

(
∂ce

α
b − ∂be

α
c + eβ

b Γ
α

βc − eβ
c Γ

α

βb

)
,

where we have set Γ
α

βc = Γ
α

βλe
λ
c , such that for an arbitrary scalar field

Φ we have
(∇a∇b −∇b∇a)Φ = 2Γc

[ab]∇cΦ .

The components of the curvature tensor R of C∞ are then given via
the relation

(∇q∇p −∇p∇q)T ab...s
cd...r = T ab...s

wd...rR
w
·cpq+T ab...s

cw...rR
w
·dpq + · · ·+ T ab...s

cd...wR
w
·rpq−

−Twb...s
cd...r R

a
·wpq−T aw...s

cd...r R
b
·wpq−. . .−T ab...w

cd...r R
s
·wpq−

− 2Γw
[pq]∇wT

ab...s
cd...r ,

where

Rd
·abc = ∂bΓd

ac − ∂cΓd
ab + Γe

acΓ
d
eb − Γe

abΓ
d
ec =

= Bd
·abc (∆) + ∇̂bK

d
ac − ∇̂cK

d
ab +Ke

acK
d
eb −Ke

abK
d
ec ,

where ∇̂ denotes covariant differentiation with respect to the Christoffel
symbols alone, and where

Bd
·abc (∆) = ∂b∆d

ac − ∂c∆d
ab + ∆e

ac∆
d
eb −∆e

ab∆
d
ec

are the components of the Riemann-Christoffel curvature tensor of C∞.
From the components of the curvature tensor, namely, Rd

·abc, we
have (using the metric tensor to raise and lower indices)

Rab ≡ Rc
·acb = Bab (∆) + ∇̂cK

c
ab −Kc

adK
d
cb − 2∇̂bΓc

[ac] + 2Kc
abΓ

d
[cd] ,

R ≡ Ra
·a = B (∆)− 4gab∇̂aΓc

[bc] − 2gacΓb
[ab]Γ

d
[cd] −KabcK

acb ,

where Bab (∆) ≡Bc
·acb (∆) are the components of the symmetric Ricci

tensor and B (∆) ≡Ba
·a (∆) is the Ricci scalar. Note that Kabc≡ gadK

d
bc

and Kacb≡ gcdgbeKa
de.

Now since

Γb
ba = ∆b

ba = ∆b
ab = ∂a

(
ln

√
det (g)

)
,

Γb
ab = ∂a

(
ln

√
det (g)

)
+ 2Γb

[ab] ,



74 I. Suhendro Spin-Curvature and the Unification of Fields

we see that for a continuous metric determinant, the so-called homoth-
etic curvature vanishes:

Hab ≡ Rc
·cab = ∂aΓc

cb − ∂bΓc
ca = 0 .

Introducing the traceless Weyl tensor W , we have the following de-
composition theorem:

Rd
·abc = W d

·abc +
1

n− 2
(
δd
bRac + gacR

d
·b − δd

cRab − gabR
d
·c

)
+

+
1

(n− 1) (n− 2)
(
δd
c gab − δd

b gac

)
R ,

which is valid for n > 2. For n=2, we have

Rd
·abc = KG

(
δd
b gac − δd

c gab

)
,

where
KG =

1
2
R

is the Gaussian curvature of the surface. Note that (in this case) the
Weyl tensor vanishes.

Any n-dimensional manifold (for which n > 1) with constant sec-
tional curvature R and vanishing torsion is called an Einstein space. It
is described by the following simple relations:

Rd
·abc =

1
n(n− 1)

(
δd
b gac − δd

c gab

)
R ,

Rab =
1
n
gabR .

In the above, we note especially that

Rd
·abc = Bd

·abc (∆) ,

Rab = Bab (∆) ,

R = B (∆) .

Furthermore, after some lengthy algebra, we obtain, in general, the
following generalized Bianchi identities:

Ra
·bcd +Ra

·cdb +Ra
·dbc =

= −2
(
∂dΓa

[bc] + ∂bΓa
[cd] + ∂cΓa

[db] + Γa
ebΓ

e
[cd] + Γa

ecΓ
e
[db] + Γa

edΓ
e
[bc]

)
,
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∇eR
a
·bcd +∇cR

a
·bde +∇dR

a
·bec = 2

(
Γf

[cd]R
a
·bfe + Γf

[de]R
a
·bfc + Γf

[ec]R
a
·bfd

)
,

∇a

(
Rab − 1

2
gabR

)
= 2 gabΓc

[da]R
d
·c + Γa

[cd]R
cdb
...a ,

for any metric-compatible manifold endowed with both curvature and
torsion.

In the last of the above set of equations, we have introduced the
generalized Einstein tensor, i.e.,

Gab ≡ Rab − 1
2
gabR .

In particular, we also have the following specialized identities, i.e.,
the regular Bianchi identities:

Ba
·bcd +Ba

·cdb +Ba
·dbc = 0 , ∇̂eB

a
·bcd + ∇̂cB

a
·bde + ∇̂dB

a
·bec = 0 ,

∇̂a

(
Bab − 1

2
gabB

)
= 0 .

In general, these hold in the case of a symmetric, metric-compatible
connection. Non-metric differential geometry is beyond the scope of our
present consideration.

We now define the so-called Lie derivative which can be used to
define a diffeomorphism invariant in C∞. For a vector field U and a
tensor field T , both arbitrary, the invariant derivative represented (in
component notation) by

LUT
ab...g
cd...h = ∂mT

ab...g
cd...hU

m + T ab...g
md...h∂cU

m + T ab...g
cm...h∂dU

m + · · ·+
+ · · ·+ T ab...g

cd...m∂hU
m−Tmb...g

cd...h ∂mU
a−T am...g

cd....h ∂mU
b − · · · − T ab...m

cd...h ∂mU
g

defines the Lie derivative of T with respect to U . With the help of the
torsion tensor and the relation

∂bU
a = ∇bU

a − Γa
cbU

c = ∇bU
a −

(
Γa

bc − 2Γa
[bc]

)
U c ,

we can write

LUT
ab...g
cd...h = ∇mT

ab...g
cd...hU

m + T ab...g
md...h∇cU

m + T ab...g
cm...h∇dU

m + · · ·+
+ T ab...g

cd...m∇hU
m − Tmb...g

cd...h ∇mU
a − T am...g

cd...h ∇mU
b − · · ·−

− T ab...m
cd...h ∇mU

g + 2Γa
[mp]T

mb...g
cd...h Up + 2Γb

[mp]T
am...g
cd...h Up + · · ·+

+ 2Γg
[mp]T

ab...m
cd...h Up − 2Γm

[cp]T
ab...g
md...hU

p + 2Γm
[dp]T

ab...g
cm...hU

p − · · ·−
− 2Γm

[hp]T
ab...g
cd...mU

p .
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Hence, noting that the components of the torsion tensor, namely,
Γi

[kl], indeed transform as components of a tensor field, it is seen that the

LUT
ij...s
kl...r do transform as components of a tensor field. Apparently, the

beautiful property of the Lie derivative (applied to an arbitrary tensor
field) is that it is connection-independent even in a curved manifold.



Conclusion

We have shown that gravity and electromagnetism are intertwined in a
very natural manner, both ensuing from the melting of the same under-
lying space-time geometry. They obey the same set of field equations.
However, there are actually no objectively existing elementary particles
in this theory. Based on the wave equation (73), we may suggest that
what we perceive as particles are only singularities which may be in-
terpreted as wave centers. In the microcosmos everything is essentially
a wave function that also contains particle properties. Individual wave
function is a fragment of the universal wave function represented by the
wave function of the Universe in (73). Therefore all objects are essen-
tially interconnected. We have seen that the electric(-magnetic) charge
is none other than the torsion of space-time. This charge can also be
described by the wave function alone. This doesn’t seem to be contra-
dictory evidence if we realize that nothing exists in the quantum realm
save the quantum mechanical wave function (unfortunately, we have not
made it possible here to carry a detailed elaboration on this statement).
Although we have not approached and constructed a quantum theory of
gravity in the strictly formal way (through the canonical quantization
procedure), internal consistency of our theory awaits further justifica-
tion. For a few more details of the underlying unifying features of our
theory, see Chapter “Additional Considerations”.
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teori utökas och ges ett lämpligt villkor för integrabilitet. Både materiefält
och isotropiska elektromagnetiska fält geometriseras genom gemensamma
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