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Abstract: This is a translation of the paper Über das Gravitations-

feld einer Kugel aus incompressiebler Flüssigkeit nach der Einsteins-

chen Theorie published by Karl Schwarzschild, in Sitzungsberichte der

Königlich Preussischen Akademie der Wissenschaften, 1916, S. 424–
435. Here Schwarzschild expounds his previously obtained metric for
the spherically symmetric gravitational field produced by a point-
mass, to the case where the source of the field is represented by
a sphere of incompressible fluid. Schwarzschild formulates the phys-
ical condition of degeneration of such a field. Translated from the
German in 2008 by Larissa Borissova and Dmitri Rabounski.

§1. As the next step of my study concerning Einstein’s theory of grav-
itation, I calculated the gravitational field of a homogeneous sphere of
a finite radius, consisting of incompressible fluid. This clarification,
“consisting of incompressible fluid”, is necessary to be added, due to
the fact that gravitation, in the framework of the relativistic theory,
depends on not only the quantity of the matter, but also on its energy.
For instance, a solid body having a specific state of internal stress would
produce a gravitation other than that of a liquid.

This calculation is a direct continuation of my presentation concern-
ing the gravitational field of a point-mass (see Sitzungsberichte, 1916,
S. 189∗), to which I will refer here in short†.

§2. Einstein’s equations of gravitation (see Sitzungsberichte, 1915,
S. 845‡) in the general form manifest that

∑

α

∂Γα
µν

∂xα
+
∑

αβ

Γα
µβ Γ

β
να = Gµν . (1)

∗Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Ein-
steinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
†Schwarzschild means that, somewhere in this paper, he will refer to his formulae

deduced in his first publication of 1916. — Editor’s comment. D.R.
‡Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der König-

lich Preussischen Akademie der Wissenschaften, 1915, S. 844–847. — Editor’s com-
ment. D.R.
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The quantities Gµν vanish where is no matter. Inside an incompres-
sible liquid they are determined in the following way: the “mixed tensor
of the energy” of an incompressible liquid, according to Einstein (see
Sitzungsberichte, 1914, S. 1062∗) is equal to

T 1

1 = T 2

2 = T 3

3 = − p , T 4

4 = ρ0 , (2)

while the rest of the T ν
µ are zero. Here p is the pressure, ρ is the constant

density of the liquid.
The “covariant tensor of the energy” will be

Tµν =
∑

τ

T τ
µ gντ . (3)

Besides

T =
∑

τ

T τ
τ = ρ0 − 3p (4)

and also
κ = 8πk2,

where κ is Gauss’ gravitational constant. Then, according to Einstein
(see Sitzungsberichte, 1915, S. 845, Gleichung 2a†), the right sides of the
equations have the form

Gµν = −κ

(

Tµν −
1

2
gµν T

)

. (5)

To be in the state of equilibrium, such a liquid should satisfy the
conditions (see equation 7a ibidem†)

∑

α

∂T α
τ

∂xα
+
∑

µν

Γµ
τν T

ν
µ = 0 . (6)

§3. In the case of such a sphere, as well as in the case of a point-
mass, these general equations should be normalized for the symmetrical
rotation around the origin of the coordinates. As in the case of a point-
mass, it is recommended to move to the spherical coordinates chosen

∗Einstein A. Die formale Grundlage der allgemeinen Relativitätstheorie. Sit-

zungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1914,
S. 1030–1085. This is a bulky paper concerning the formal basics of the General
Theory of Relativity, wherein Einstein considered his equations of gravitation. —
Editor’s comment. D.R.

†Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der König-

lich Preussischen Akademie der Wissenschaften, 1915, S. 844–847. — Editor’s com-
ment. D.R.
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so that the determinant equals 1∗

x1 =
r3

2
, x2 = − cosϑ , x3 = ϕ , x4 = t . (7)

The line-element should have the same form

ds2 = f4 (dx
4)2 − f1 (dx

1)2 − f2
(dx2)2

1− (x2)2
− f3 (dx

3)2
[

1− (x2)2
]

, (8)

so that we have

g11 = − f1 , g22 = −
f2

1− (x2)2
, g33 = − f2

[

1− (x2)2
]

, g44 = f4 ,

while the other gµν are zero. These f are functions dependent only
on x1.

In the space outside this sphere, the solutions (10), (11), (12) were
found†

f4 = 1− α
(

3x1 + ρ
)− 1

3 , f2 =
(

3x1 + ρ
)

2

3 , f1(f2)
2f4 = 1 , (9)

where α and ρ are two arbitrary constants, which should be determined
on the basis of the mass and the radius of the sphere.

We are going to construct the field equations for the internal space
of this sphere with use of the formula (8) for the line-element, then solve
these equations. Concerning the right sides, we obtain

T11 = T 1

1
g11 = − pf1 , T22 = T 2

2
g22 = −

pf2

1− (x2)2
,

T33 = T 3

3
g33 = − pf2

[

1− (x2)2
]

, T44 = T 4

4
g44 = ρ0 f4 ,

G11 =
κf1

2
(p− ρ0) , G22 =

κf2

2

1

1− (x2)2
(p− ρ0) ,

G33 =
κf2

2

[

1− (x2)2
]

(p− ρ0), G44 = −
κf4

2
(ρ0 + 3p) .

∗In the original — “polar coordinates”. The same formulation was used in his
first paper of 1916. Obviously Schwarzschild means the three-dimensional spherical
coordinates, whose origin meets the centre of the sphere of incompressible liquid. —
Editor’s comment. D.R.

†Here Schwarzschild refers to the formulae (10), (11), and (12) obtained in
his first paper: Über das Gravitationsfeld eines Massenpunktes nach der Einstein-
schen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
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We can assume that the components Γα
µν of the gravitational field

expressed through these functions f , and also the left sides of the field
equations are independent of the point-mass (see §4). Limiting our
task again by considering the equator (x2 =0), we obtain the following
system of equations.

First, these are three field equations

a) −
1

2

∂

∂x1

(

1

f1

∂f1

∂x1

)

+
1

4

1

(f1)2

(

∂f1

∂x1

)2

+
1

2

1

(f2)2

(

∂f2

∂x1

)2

+

+
1

4

1

(f4)2

(

∂f4

∂x1

)2

= −
κ

2
f1 (ρ0 − p) ,

b) +
1

2

∂

∂x1

(

1

f1

∂f2

∂x1

)

−
1

2

1

f1f2

(

∂f2

∂x1

)2

= −
κ

2
f2 (ρ0 − p) ,

c) −
1

2

∂

∂x1

(

1

f1

∂f4

∂x1

)

+
1

2

1

f1f4

(

∂f4

∂x1

)2

= −
κ

2
f4 (ρ0 + 3p) .

We should add to these the determinant equation

d) f1(f2)
2f4 = 1 .

The equilibrium conditions provide just one equation

e) −
∂p

∂x1
= −

p

2

[

1

f1

∂f1

∂x1
+

2

f2

∂f2

∂x1

]

+
ρ0

2

1

f4

∂f4

∂x1
.

Proceeding from the common consideration of Einstein’s equations,
it follows that the aforementioned 5 equations with respect to 4 variables
f1, f2, f4, p are consistent with each other.

We should find solutions of these 5 equations, which would be free of
singularity inside the sphere. There on the surface of the sphere p = 0
should be true, the functions f in the neighbourhood of their derivatives
should be continuous, and be transferred into the quantities (9) which
are true outside the sphere.

We will omit the index 1 in x1, for simplicity.

§4. The equation e), due to the determinant equation, transforms into

−
∂p

∂x
=

ρ0 + p

2

1

f4

∂f4

∂x
.

It can be easy integrated, and gives

(ρ0 + p)
√

f4 = const = γ . (10)
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The field equations a), b), c), after multiplication by the factors −2,
+2 f1

f2
, −2 f1

f4
, transform into

a ′)
∂

∂x

(

1

f1

∂f1

∂x

)

=
1

2(f1)2

(

∂f1

∂x

)2

+
1

(f2)2

(

∂f2

∂x

)2

+

+
1

2(f4)2

(

∂f4

∂x

)2

+ κf1 (ρ0 − p) ,

b ′)
∂

∂x

(

1

f2

∂f2

∂x

)

= 2
f1

f2
+

1

f1f2

∂f1

∂x

∂f2

∂x
− κf1 (ρ0 − p) ,

c ′)
∂

∂x

(

1

f4

∂f4

∂x

)

=
1

f1f4

∂f1

∂x

∂f4

∂x
+ κf1 (ρ0 + 3p) .

Forming the combinations a′ +2b′+ c′ and a′ + c′, and using the
determinant equation, we obtain, finally,

0 = 4
f1

f2
−

1

(f2)2

(

∂f2

∂x

)2

−
2

f2f4

∂f2

∂x

∂f4

∂x
+ 4κf1p , (11)

0 = 2
∂

∂x

(

1

f2

∂f2

∂x

)

+
3

(f2)2

(

∂f2

∂x

)2

+ 2κf1 (ρ0 + p) . (12)

Now we introduce new variables, which are desirable due to the fact
that, according to the results obtained for the point-mass, such variables
behave simply outside the sphere as they are independent of the terms
of these equations which contain ρ and p. So the equations, being
expressed with the new variables, should have a simple form as well.

The new variables are

f2 = η
2

3 , f4 = ζ η−
1

3 , f1 =
1

ζ η
. (13)

Then, according to (9) outside the sphere,

η = 3x+ ρ , ζ = η
1

3 − α , (14)

∂η

∂x
= 3 ,

∂ζ

∂x
= η−

2

3 . (15)

We introduce these new variables and, at the same time, remove
ρ0 + p with γf4

− 1

2 according to (10). As a result the equations (11) and
(12) transform into

∂η

∂x

∂ζ

∂x
= 3η−

2

3 + 3κγ ζ−
1

2 η
1

6 − 3κρ0 , (16)
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2ζ
∂2η

∂x2
= − 3κγ ζ−

1

2 η
1

6 . (17)

Summation of these two equations gives

2ζ
∂2η

∂x2
+

∂η

∂x

∂ζ

∂x
= 3η−

2

3 − 3κρ0 .

The integrating multiplier of this equation is ∂η

∂x
. We obtain, after

integration,

ζ

(

∂η

∂x

)2

= 9η
1

3 − 3κρ0η + 9λ , (18)

where λ is the constant of integration.
Raising it to a power of 3

2
gives

ζ
3

2

(

∂η

∂x

)3

=
(

9η
1

3 − 3κρ0η + 9λ
)

3

2

.

Dividing (17) by this equation, we obtain that ζ vanishes so that the
following differential equations with respect to η is obtained

2 ∂2η

∂x2

(

∂η

∂x

)3
= −

3κγ η
1

6

(

9η
1

3 − 3κρ0η + λ
)

3

2

.

Again, ∂η

∂x
is the integrating multiplier here. We obtain, after inte-

gration,

2
(

∂η

∂x

)

= 3κγ

∫

η
1

6 dη
(

9η
1

3 − 3κρ0η + λ
)

3

2

(19)

and, because
2
δη

δx

=
2δx

δη
,

iterated integration gives

x =
κγ

18

∫

dη

∫

η
1

6 dη
(

η
1

3 −
κρ0

3
η + λ

)
3

2

. (20)

It follows from here that x is a function of η and, vice versa, that
η is a function of x. Besides, ζ, due to (18), (19), and also (13), is a
function of f . Thus our problem has came back to quadratures.
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§5. Now we should find the constants of integration so that the internal
region of the sphere would be free of singularity, and also the continuous
transfer from the values of the functions f and their derivatives inside
the sphere to the respective values outside it would be allowed in the
surface.

There in the surface of the sphere r= ra, x= xa, η= ηa, etc. The
continuity of η and ζ can be satisfied in any case through the respective
choice of the constants α and ρ. If also, according to it, the derivatives
remain continuous, and, due to (15),

(

dη

dx

)

a
=3 and

(

dζ

dx

)

a
= ηa

− 2

3 , the
equations (16) and (18) should be

γ = ρ0 ζ
1

2

a η
− 1

6

a , ζa = η
1

3

a −
κρ0

3
ηa + λ . (21)

It follows from here that

ζa η
− 1

3

a = (f4)a = 1−
κρ0

3
η

2

3

a + λη
− 1

3

a .

Thus we have
γ = ρ0

√

(f4)a . (22)

Comparing it to (10), we see that it satisfies the condition p=0 in the
surface. The requirement

(

dη

dx

)

a
=3 leads to the following determination

of the limits of integration in (19)

3dx

dη
= 1−

κγ

6

ηa
∫

η

η
1

6 dη
(

η
1

3 − κ ρ0

3
η + λ

)
3

2

(23)

so that, with taking (20) into account, we arrive at the determination
of the limits of integration

3 (x− xa) = η − ηa +
κγ

6

ηa
∫

η

dη

ηa
∫

η

η
1

6 dη
(

η
1

3 − κρ0

3
η + λ

)
3

2

. (24)

The surface conditions are satisfied completely. The constants ηa

and λ are still undetermined; we will determine the constants through
the continuity conditions at the origin of the coordinates.

First, we should require that η=0 at x=0. If this condition were
wrong, f2 would take a finite numerical value at the origin of the coor-
dinates, so the change of the angle dϕ= dx3 at the origin of the coordi-
nates (that does not mean a real motion) would give a meaning to the
line-element. Thus, as follows from (24), the following condition con-
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nects xa and ηa

3xa = ηa −
κγ

6

ηa
∫

0

dη

ηa
∫

η

η
1

6 dη
(

η
1

3 − κ ρ0

3
η + λ

)
3

2

. (25)

Finally, λ is determined by the condition, according to which the
pressure inside the sphere should be finite and positive, as follows from
(10), and also f4 should be finite and nonzero. Proceeding from (13),
(18) and (23), we have

f4 = ζ η−
1

3 =
(

1−
κρ0

3
η

2

3 + λη−
1

3

)

×

×



1−
κγ

6

η0
∫

η

η
1

6 dη
(

η
1

3 − κ ρ0

3
η + λ

)
3

2





2

. (26)

First, it is supposed here that λ ≷ 0. Then, for very small numerical
values of η we obtain

f4 =
λ

η
1

3

[

K +
κγ

7

η
7

6

λ
3

2

]2

,

where

K = 1−
κγ

6

η0
∫

0

η
1

6 dη
(

η
1

3 − κ ρ0

3
η + λ

)
3

2

. (27)

At the middle point (η=0) f4 is also infinite, with an exception
under the condition K =0 where f4 vanishes at η=0. There is no such
case where there could be a finite and nonzero value of f4 at η=0. We
see from here that the assumption λ ≷ 0 does not lead to physically
useful solutions. Hence, we should assume λ=0.

§6. Now the condition λ=0 constitutes all the constants of integration.
If we introduce a new variable χ instead η as follows

sinχ =

√

κρ0

3
η

1

3 , where sinχa =

√

κρ0

3
η

1

3

a , (28)

the equations (13), (26), (10), (24), (25) after elementary algebra take
the following form

f2 =
3

κρ0

sin2χ , f4 =

(

3 cosχa − cosχ

2

)2

, f1(f2)
2f4 = 1 , (29)
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ρ0 + p = ρ0

2 cosχa

3 cosχa − cosχ
, (30)

3x = r3 =
(

κρ0

3

)− 3

2

[

9

4
cosχa

(

χ−
1

2
sin 2χ

)

−
1

2
sin3χ

]

. (31)

The constant χa is determined, through the density ρ0 and the radius
ra of the sphere, by the ratio

(

κρ0

3

)
3

2

r3a =
9

4
cosχa

(

χa −
1

2
sin 2χa

)

−
1

2
sin3χa . (32)

The constants α and ρ, in the case of the solution attributed to the
external region, follow from (14) as

ρ = ηa − 3xa , α = η
1

3 − ζa

and take the form

ρ =
(

κρ0

3

)− 3

2

[

3

2
sin3χa −

9

4
cosχa

(

χa −
1

2
sin 2χa

)

]

, (33)

α =
(

κρ0

3

)− 1

2

sin3χa . (34)

If using the variables χ, ϑ, ϕ instead of x1, x2, x3, the line-element
in the region inside the sphere takes the simple form

ds2 =

(

3 cosχa − cosχ

2

)2

dt2 −

−
3

κρ0

[

dχ2 + sin2χdϑ2 + sin2χ sin2ϑ dϕ2
]

. (35)

Outside the sphere the line-element is still has the same form as that
for a point-mass

ds2 =
(

1−
α

R

)

dt2 −
dR2

1− α

R

−R2
(

dϑ2 + sin2ϑ dϕ2
)

where
R3 = r3 + ρ



















. (36)

Here ρ is determined according to (33), while it was ρ=α3 in the
case of a point-mass.
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§7. A few following notes should be given on the complete solution of
our problem, presented in the previous Paragraph.

1. The spatial element (dt=0) inside the sphere is

− ds2 =
3

κρ0

[

dχ2 + sin2χdϑ2 + sin2χ sin2ϑ dϕ2
]

.

This is the line-element of the so-called non-Euclidean geometry of
a spherical space. The spherical space geometry holds also in the inter-
nal region of our sphere. The curvature radius of such a spherical space

is
√

3

κρ0

. Our sphere has formed not all of the spherical space, but only

a region in it; this is because χ cannot grow up to π

2
, but grows up only

to the boundary limit χa. Concerning the Sun the curvature radius
of the spherical space, which determine the geometry of the interior of
the Sun, would be equal to about 500 radii of the Sun (see equations
39 and 42).

This is a very interesting sequel to Einstein’s theory, which manifests
the fact that this theory is demanded for the geometry of a spherical
space as the reality inside a gravitating sphere (this geometry had the
power of a purely theoretical consideration before that).

Inside the sphere the “naturally measurable” quantities of length are
√

3
κρ0

dχ ,

√

3
κρ0

sinχdϑ ,

√

3
κρ0

sinχ sinϑ dϕ . (37)

The radius of the sphere, “measured from within” to the surface, is

Pi =

√

3
κρ0

χa . (38)

The circumference of the sphere, measured along the meridian (or
any other great circle) then divided by 2π, should be referred as the
“measured-from-outside” radius Pa. It is

∗

Pa =

√

3
κρ0

sinχa . (39)

According to the formula (36) describing the line-element outside

the sphere, this formula for Pa is obviously identical to Ra =
(

r3a + ρ
)

1

3

the variable R takes in the surface of the sphere.

∗Schwarzschild denoted by i (“innen gemessene”) the radius “measured from
within”, while a (that means “außen gemessene”) was used for the radius “measured
from outside” due to the original pronunciation of these terms in German. — Editor’s
comment. D.R.



30 The Abraham Zelmanov Journal — Vol. 1, 2008

The following simple relations were obtained for α from (34) through
the radius Pa

α

Pα

= sin2χa , α =
κρ0

3
P 3

a . (40)

Then the volume of our sphere is

V =

(
√

3

κρ0

)3
χa
∫

0

dχ sin2χ

π
∫

0

dϑ sinϑ

2π
∫

0

dϕ =

= 2π

(
√

3

κρ0

)3
(

χa −
1

2
sin 2χa

)

.

Proceeding from here, the mass M of our sphere is

M = ρ0V =
3

4k2

√

3

κρ0

(

χa −
1

2
sin 2χa

)

, (41)

where κ=8πk2.
2. The following notes are related to the equations of motion of

a point of infinitely small mass, located outside our sphere. These equa-
tions have the same form as those for a point-mass (see equations 15–17
for that∗).

At large distances the point moves according to Newton’s law, where
α

2k2
plays a rôle of the attracting mass. Therefore we can refer to α

2k2

as the “gravitational mass” of our sphere.
If such a point moves from the rest state at infinity up to the surface

of the sphere, the “naturally measurable” velocity of fall of this point
we obtain is

va =
1

√

1− α

R

dR

ds
=

√

α

Ra

.

Then, according to (40),

va = sinχa . (42)

Concerning the Sun, the velocity of the fall is about 1

500
of the veloc-

ity of light. As easy to see in the case of the small numerical values of χa

and χ (which is χ < χa) following from this velocity, all our equations

∗Here Schwarzschild refers to the equations obtained by him in his first pa-
per: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen The-
orie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften,
1916, S. 189–196. — Editor’s comment. D.R.
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(up to the Einsteinian effects of the second order) transform into to the
effects of Newton’s theory.

3. For the ratio of the gravitational mass α

2k2
to the mass of matter

M we obtain
α

2k2M
=

2

3

sin3χa

χa −
1

2
sin 2χa

. (43)

With the growing velocity of the fall va =(sinχa) the growing con-
centration of the mass lowers the ratio of the gravitational mass to the
mass of matter. This fact explains that, for instance, at a constant
mass and growing density the body approaches the lesser radius than
earlier due to the drainage of energy (the lowering of temperature due
to radiation).

4. The velocity of light inside our sphere becomes

v =
2

3 cosχa − cosχ
, (44)

and it grows up from the value 1

cosχa

in the surface to the value 2

3 cosχa−1

at the central point. The value of the density ρ0 + p grows, according
to (10) and (30), proportional to the velocity of light.

At the centre of the sphere (χ=0) the velocity of light and the
density become infinity. Once cosχa =

1

3
the velocity of fall reaches

√

8

9
of the (naturally measurable) velocity of light. This value sets

the upper limit of the concentration; a sphere of incompressible liquid
cannot be denser than this. If we like to apply our equations to the
values cosχ< 1

3
, we obtain the break just out of the centre of the sphere.

At the same time it is possible to find solutions of this problem on the
greater values of χa continuous at least out of the centre of the sphere,
if we move to the case where λ ≷ 0 and the condition K = 0 (see
equation 27) is true. On the path to these solutions, which are however
nonsense in physics due to that fact that they give infinite density at
the centre of the sphere, we can move to the boundary case where a
mass is concentrated in a point, then find, again, the relation ρ=α3

which, according to the earlier study∗, is true for a point-mass. We also
note that it is possible to talk about only one point-mass in so far as
we use the variable r, which in the opposite case (amazingly) does not
play a rôle for the geometry and motion in the gravitational field. For

∗Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Ein-
steinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
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an external observer, as follows from (40), a sphere of the gravitational
mass α

2k2
cannot have a radius measured from outside whose numerical

value is less than
Pa = α .

Concerning a sphere of incompressible liquid such a border should
be 9

8
α. (In the case of the Sun it should be 3 km, while for a mass of

1 gramme it should be 1.5×10−28 cm.)
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