
On the Relativistic Theory of

an Anisotropic Inhomogeneous Universe

Abraham Zelmanov

Abstract: Here the General Theory of Relativity is expounded from
the point of view of space-time as a continuous medium, and the
mathematical apparatus for calculation of physically observable quan-
tities (the theory of chronometric invariants) is constructed. Then this
mathematical apparatus is applied to set up the basics of the theory
of an inhomogeneous anisotropic universe, which profitably contrasts
the self-limited theories of a homogeneous universe (most commonly
used in modern relativistic cosmology). Owing to such an extension
of the relativistic cosmology, we determine the whole range of cosmo-
logical models (scenarios of evolution) which could be theoretically
conceivable in the space-time of the General Theory of Relativity.
Translated from the original Russian manuscript of 1957, in 2008 by
Dmitri Rabounski.

§1. The question “is the Universe homogeneous and isotropic, or not”
is connected with the question about the scale of the Universe. Let l
be a length which is in the order of the upper limit of the space regions
meant, by us, to be infinite small. Then L≫ l is a length, which is
in the order of the size of the whole region of space we observe. As
obvious, in connexion to the question about the scale, two different
understandings about homogeneity and isotropy are possible. In other
words, two questions can be asked: 1) are the conditions of homogeneity
and isotropy satisfied at the numerical values of l and L, assumed by
us; 2) is there a large enough l that, under any L≫ l, the conditions of
homogeneity and isotropy are satisfied.

In comparing the theory to observations, the first of the above un-
derstandings of homogeneity and isotropy plays a rôle. In such a case
the numerical values of l and L should be determined at least in the
order of these values. In consideration of questions such as those re-
lated to the infinity of space, the second understanding of homogeneity
and isotropy is important. Observational data give no direct answer
to the question about homogeneity and isotropy of the Universe with
respect to the second meaning. I don’t provide the references to the
observational data here. On the other hand, much information about
the distribution of masses, provided for instance by Ambarzumian in his
presentation [1], allows us to be sure in the fact that, at any l≪L, the
Universe is inhomogeneous, in the first meaning of this term. Ambarzu-
mian was absolutely right in his note that the Metagalactic redshift
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should be interpret as the Doppler effect, and, when considering the
scale of the Metagalaxy, we should take into account the effects of the
General Theory of Relativity. Thus a relativistic theory of an inhomo-
geneous anisotropic universe — a theory, the results of which would be
able to be compared to the observational data, and which, generally
speaking, gives a model of the whole Universe — should be our task.

As will be shown in §10, inhomogeneity leads to anisotropy.∗ On
the other hand, at least some factors of anisotropy bear a tendency
to decrease with the expansion of the Metagalaxy (see §13). So the
anisotropy, being weak in the current epoch, was probable a valuable
factor which played an important rôle billions of years ago.

So a relativistic theory of an inhomogeneous anisotropic universe is
our actual task. The necessity of such a theory was pointed out, aside
for the special studies on this theme, in [6, 7] and also in [8]. Below,
only a few problems related to the formal mathematical basics of this
theory will be considered. It should be noted that the basic equations
and the deduced equations of our theory do not depend on homogeneity
and isotropy of the Universe in the second meaning: the equations are
independent of the numerical values of l and L.

Assume that matter on the scale we are considering is a continuous
medium, which moves laminarely in common with a continuous field of
sub-luminal velocities. So there are coordinate frames which everywhere
accompany the medium. On the other hand, all that will be said in §3–§8
does not depend on these assumptions. Of course, in the modern epoch
of observation, the most interesting case is such a scale of consideration
where the “molecules” of this medium are galactic clusters. Suppose
also that, in the scale we are considering, the thermodynamical terms
are meaningful, and the laws of relativistic thermodynamics hold. We
also assume that Einstein’s equations

Gµν = −κ

(

Tµν −
1

2
gµν T

)

+ Λ gµν (1)

are true everywhere in the four-dimensional region we are considering.
Here in the equations Gµν is the contracted world-tensor of the curva-
ture, gµν is the metric world-tensor, Tµν is the energy-momentum ten-
sor, T =Tα

α , κ is Einstein’s constant of gravitation (κ=8πγ/c2, where
γ is Newton’s constant of gravitation and c is the fundamental velocity),
while Λ is the cosmological constant. We keep the cosmological constant

∗In addition to it, there are observational data about anisotropy of the redshift
in a small region of the Metagalaxy near us [2–4]. Of course, this information should
be checked on the basis of the newest observational data [5].



Abraham Zelmanov 35

in the equations, because we like to have a possibility to compare our
results to those known in the literature.

§2. We always mean spatial (three-dimensional) homogeneity and iso-
tropy, not four-dimensional world-quantities. The presence or the ab-
sence of spatial homogeneity and spatial isotropy depends on the frame
of reference. For instance, as obvious, the isotropy can be attributed to
only those reference frames, which accompany continuous matter and
masses, because both the flow of matter and moving masses break the
isotropy. On the one hand, the question about the presence of homo-
geneity and isotropy can be set up as the question about the possibility
of such reference frames, where the said homogeneity and isotropy take
a place. We all know the homogeneous isotropic relativistic models. In
such a model, a frame consisting of the four coordinates can be chosen,
wherein

ds2 = c2dt2 −R2
dξ2 + dη2 + dζ2

[

1 + k
4
(ξ2 + η2 + ζ2)

]2

R = R(t), k = 0,±1















. (2)

Such a reference frame can be the necessary and sufficient indication
of homogeneity and isotropy in cosmology. On the other hand, the
question about the presence of homogeneity and isotropy can be set up
in a frame of the accompanying coordinates. Such a statement of this
problem will be realized in the next Paragraphs.

The theory of an inhomogeneous anisotropic universe has two main
directions, which are characterized as follows: a) the search for exact
particular solutions of the equations of gravitation, and the considera-
tion of such models which bear the properties of symmetry; b) as com-
mon as possible, the qualitative study of the behaviour (evolution) of
matter and the metric under different physical assumptions.

The models, which are spherically symmetric under the vanishing of
the pressure, viscosity, and the flow of energy, the models with a spher-
ically symmetric distribution of matter concentrated in a centre (core),
and the models filled with a limited spherical distribution of matter were
studied by McVittie [9], Tolman [10, 12], Datt [11], Oppenheimer and
Volkoff [13], Oppenheimer and Snyder [14], Järnefelt [15, 16], Einstein
and Strauss [17], Bondi [18], Omer [19], Just [20]. The models, which
are axially symmetric and rotating, were considered in the studies of
Kobushkin [21] and Gödel [22]. There are main studies produced in the
research direction a), or connected to it.
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Among the studies produced in the research direction b), McCrea’s
study [23] remains aloof, where the problem of the observable prop-
erties of an inhomogeneous anisotropic universe was considered. The
behaviour (evolution) of matter and the metric in such a universe was
qualitatively considered in studies of mine [24, 26], Raychaudhury [25]
and Komar [27]. In the study [24] I introduced chronometrically invari-
ant quantities (using another terminology), and considered applications
of them in the General Theory of Relativity to the problem we are
now interested in, in the framework of the particular conditions, where
the flow of energy, viscosity, pressure, and, hence, the power field were
neglected. A few years later, Raychaudhury [25] considered particular
aspects of the same problem in the case where Λ=0, with the neglection
of the same factors. The quantities and equations derived by him, and
also his conclusions [25] are the same as that which was found by me
earlier [24]. Raychaudhury however did not introduce chronometrically
invariant quantities, and used the incorrect definition (12) of the observ-
able spatial metric instead of the correct formula (7) given below. As a
result, his equations, generally speaking, don’t possess a direct physical
interpretation in the framework of the considered problem. Meanwhile,
using [24, 26] one can show that his results concerning the effects pro-
duced by, in our terminology, the absolute rotation and the anisotropy
of the deformations in a) the behaviour of the changes of a space volume
and b) the scale of time are correct in the considered case. His results in
the research direction a) repeated some results obtained earlier by me
in [24]. The research direction b) was not considered in my study [24].
My newest paper [26] constituted supplement and generalization of the
results, which were obtained earlier in [24] under lower assumptions.
Komar [27] showed that special states are inevitable in the case of Λ=0
under the absence of, in our terminology, the power field, absolute rota-
tion, pressure, viscosity and the flow of energy. This conclusion repeats
one of the results obtained earlier in [24] and [25].

In the next Paragraphs I give the further generalization and devel-
opment of some results initially obtained by me in [24, 26].

This is Gödel’s solution [22], which will be required in our research:

ds2 = a2

[

(dx0)2+2ex
1

dx0dx2−(dx1)2+
e2x

1

2
(dx2)2−(dx3)2

]

0 < a = const















. (3)

In cosmology, accompanying coordinates are commonly used. The
necessary and sufficient condition for such coordinates requires that the
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numerical value of the three-dimensional velocity should be lower than
the velocity of light, while the components of the velocity should be
finite, simple and continuous functions of the four coordinates.

§3. We denote space-time indices 0, 1, 2, 3 in Greek (where 0 corre-
sponds to the time dimension), while spatial indices 1, 2, 3 are denoted
in Roman. We assume that summation takes a place on two same in-
dices met in the same term. We assume that

x0 = ct, ds2 = gµν dx
µdxν ,

and, in a locally Galilean reference frame, we have

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

We assume also that the components of the metric world-tensor gµν
are continuous along the coordinates xα in common with their first
derivatives and second derivatives. In common, we assume that all
quantities used here satisfy, in this part and in the rest parts, the require-
ments of the General Theory of Relativity.∗ Besides, while talking about
three-dimensional (spatial) tensors and the other three-dimensional ge-
ometrical quantities (e.g. Christoffel’s symbols), we will omit the notion
about the number of the dimensions.

Four-dimensional coordinate systems resting with respect to the
same reference body (which is deforming, in a general case) are con-
nected to each other by the transformations

x̃0 = x̃0(x0, x1, x2, x3) , (4a)

x̃i = x̃i(x1, x2, x3) ,
∂ x̃i

∂x0
= 0 . (4b)

The choice of a body of reference is equivalent to the choice of the
congruence of the time lines xi = const. Suppose that a reference body
has been chosen. Then, of all the quantities non-covariant to the general
transformations

x̃α = x̃α(x0, x1, x2, x3) , (5)

those quantities are physically preferred which are covariant with re-
spect to the transformations (4a) and (4b). Hence, such physically pre-
ferred quantities are invariant with respect to the transformations (4a),
and are covariant to the transformations (4b). We therefore call such
physically preferred quantities chronometric invariants. Such chrono-

∗The formulae (1), (2) and (3) satisfy all these requirements as well.
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metrically invariant quantities can be considered as three-dimensional
tensors in any of the given spatial sections x0 = const. They can be
also considered as tensors in a space, all elements of which (i.e. three-
dimensional local spaces) are definitely orthogonal to the time lines
under any given coordinate of time. We mean, by a three-dimensional
space of a given body of reference (a reference space), a space deter-
mined in this way. Such a space is, generally speaking, non-holonomic.
This means that, with a body of reference given in a general case, it is
impossible to find such a spatial section which could be everywhere or-
thogonal to the time lines: in such a general case it is impossible to find,
by the transformation (4a), such a coordinate of time x0 that g0i=0
would be everywhere true in the spatial section.

With chronometrically invariant quantities and chronometrically in-
variant operators, we remove a difficulty proceeding from the fact that
many non-chronometrically invariant quantities and relations (the con-
ditions of homogeneity and isotropy, for instance) depend on the arbi-
trarity of our choice of the time coordinate. In a general case (in Gödel
model, for instance), this difficulty can neither be avoided by the choice
of a preferred coordinate of time satisfying the conditions g00=1 and
g0i=0 (as for the homogeneous isotropic models) nor the substantial
easing of this situation due to the choice of a preferred coordinate of
time such that the weak condition g0i=0 satisfies everywhere.

Let Qik...p
00...0 be the components of a world-tensor of the rank n, all

upper indices of which are nonzero, while all m lower indices are zero.
For such a tensor, the quantities

T ik...p = (g00)
−

m

2 Qik...p
00...0

are the components of a chronometrically invariant contravariant (three-
dimensional) tensor of the rank n−m. Using this rule, we can easily
find the chronometrically invariant form for quantities and operators, if
we know the formulae of them under a specially chosen coordinate of
time according to the transformations (4a), for instance, if g00 =1 and
g0i=0 at the given world-point.

§4. Targeting the chronometrically invariant formulae for the elemen-
tary length dσ, the metric tensors hik and hik, and the fundamental
determinant h= |hik|, we obtain

dσ2 = hik dx
idxk, (6)

hik = − gik +
g0i g0k
g00

, hik = − gik, h = − g

g00
, (7)
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where g= |gµν |. The spatial metric determined in such a way coincides
with that assumed by Landau and Lifshitz, see (82.5) and (82.6) in [28],
and that assumed by Fock, see (55.20) in [29]. For the elementary
chronometrically invariant interval of time dτ and the elementary world-
interval ds, we obtain

cdτ =
g0αdx

α

√
g00

, ds2 = c2dτ2 − dσ2. (8)

For the chronometrically invariant velocity vi of the motion of a test-
particle, we have

vi =
dxi

dτ
, hik v

ivk =

(

dσ

dτ

)2

.

If ds=0, hik v
ivk = c2: the chronometrically invariant velocity of

light in vacuum is always equal the fundamental velocity.
We mark the chronometrically invariant differential operators by the

asterisk. For such operators (they coincide with d/dt, ∂/∂t and ∂/∂xi

under the conditions g00=1 and g0i =0) we obtain

∗d

dt
=

d

dτ
,

∗∂

∂t
=

c√
g00

∂

∂x0
,

∗∂

∂xi
=

∂

∂xi
− g0i

g00

∂

∂x0
. (9)

For the chronometrically invariant generalizations of Christoffel’s
symbols and the operator of general covariant differentiation, we have∗

∆ij,k =
1

2

(

∗∂hjk

∂xi
+

∗∂hik

∂xj
−

∗∂hij

∂xk

)

, ∆k
ij = hkl∆ij,l , (10)

∗∇iQ
...k
j... =

∗∂Q...k
j...

∂xi
−∆l

ijQ
...k
l... − · · ·+∆k

ilQ
...l
j... . (11)

As can be easily seen,

∗∇i hjk = 0 , ∗∇i h
k
j = 0 , ∗∇i h

jk = 0 .

The metric of a spatial section x0=const is determined by the tensor

yik = − gik , yik = − gik +
g0ig0k

g00
, y = − gg00, (12)

where y= |yik| is the determinant of the tensor.
The metric (7) is chronometrically invariant, space-like everywhere,

and the length of an “unchangeable” elementary rest-scale in this metric
equals the “proper” length. On the other hand, the metric (12) does not

∗See also formula (17).
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bear these properties: see, for instance, Gödel’s model (3). In particular,
in contrast to h, y may become negative (in general, y6 h) that leads to
the negative numerical value of the volume of the region of the spatial
section where this happens. Therefore, even with a given coordinate
of time, and fixation of the numerical value of the coordinate, a true
physical meaning is attributed to not the metric (12) of a spatial section
x0 = const, but to the metric (7) of the space (space-time) where the
value x0 = const is fixed.

§5. We assume that all differentiable quantities bear the properties
which allow them to change the order in the usual (not chronometrically
invariant or generally covariant) differentiation. In such a case,

∗∂2

∂xi ∂t
−

∗∂2

∂t ∂xi
=

Fi

c2

∗∂

∂t
,

∗∂2

∂xi ∂xk
−

∗∂2

∂xk ∂xi
=

2Aik

c2

∗∂

∂t
. (13)

These chronometrically invariant vector Fi and chronometrically in-
variant antisymmetric tensor Aik, determined by the equalities (9) and
(13), satisfy the identities

∗∂Ajk

∂xi
+

∗∂Aki

∂xj
+

∗∂Aij

∂xk
+

1

c2
(FiAjk + FjAki + FkAij) = 0 , (14)

∗∂Aik

∂t
+

1

2

(

∗∂Fk

∂xi
−

∗∂Fi

∂xk

)

= 0 , (15)

and also to the identities (17).
The identity satisfying the three equalities Aik =0 in a given four-

dimensional region is the necessary and sufficient condition for the re-
ducing of all g0i to zero everywhere in this region by the transformation
(4a): in such a case dτ has an integration multiplier, i.e. time is allowed
to be integrated along a path in this region (time is integrable). In other
words, the identity satisfying the equalities Aik =0 is the necessary and
sufficient condition of holonomity of the given space of reference. Thus
Aik is the chronometrically invariant tensor of the space non-holonomity.
The identity satisfying all six equalities Fi =0 and Aik =0 in a given
four-dimensional region is the necessary and sufficient condition for the
reducing of all g00 to 1 and of all g0i to zero by the transformation
(4a). In other words, this is necessary and sufficient for dτ to be a total
differential.

At any world-point O, one can set up a four-dimensional locally
geodesic frame of reference Σ̃0, which satisfies the following condition:
at this point, the chronometrically invariant velocity of a given refer-
ence frame Σ with respect to the locally geodesic reference frame Σ̃0
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is zero (ṽj)0 =0. Considering the reference frame Σ̃0, we introduce in
it the chronometrically invariant quantities which characterize the mo-
tion of our reference frame Σ with respect to Σ̃0 in a four-dimensional
neighbourhood of the point O: we take the generally covariant charac-
teristics of the motion such as the acceleration vector (w̃j)0, the tensor
of angular velocity of the rotation (ãjl)0 and the tensor of the rate of

the deformation (d̃jl)0, then express them through the chronometrically
invariant velocity by the removing of regular derivatives with chrono-
metrically invariant derivatives. Using the general transformations (5),
we obtain that the equalities

Fi = −∂x̃j

∂xi
(w̃j)0 , Aik =

∂x̃j

∂xi

∂x̃l

∂xk
(ãjl)0

are true at any world-point O.
We introduce also a chronometrically invariant tensor Dik, which

satisfies the equality

Dik =
∂x̃j

∂xi

∂x̃l

∂xk
(d̃jl)0

at any world-point O.
In this context, Fi is the vector of acceleration of our reference space

Σ with respect to the locally geodesic reference space Σ̃0, taken with
the opposite sign, Aik is the tensor of angular velocity of the rotation
of our reference space Σ with respect to Σ̃0, while Dik is the tensor of
the rate of deformation of our reference space Σ with respect to Σ̃0. It
is possible to prove that

Dik =
1

2

∗∂hik

∂t
, Dik = −1

2

∗∂hik

∂t
, D =

∗∂ ln
√
h

∂t
, (16)

where D=D j
j has the meaning of the speed of the relative expansion

of the volume element of the space.∗

Denote by Γσ
µν the four-dimensional Christoffel symbols of the 2nd

kind. Then we have the identities

Γi
00

g00
= −F i

c2
,

giαΓk
α0√

g00
= −1

c

(

Aik +Dik
)

giαgjβΓk
αβ = hilhjm∆k

lm















, (17)

∗The volume of an element of the space we are considering can be represented
as an integral from

√
hdx1dx2dx3, where dxi and also the region of the change of

x1 along which the integration is processed are independent of x0.
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which allow us to find Fi, Aik, Dik and ∆k
lm through Γσ

µν .
The study of the equations of motion of a particle, presented in

[26], manifested that F k can be interpreted as the sum of the force of
gravity and the force of inertia (the latter is derived from the carrying
acceleration), both calculated for the unit of mass, while Aik is the
angular velocity of the absolute rotation of our reference frame derived
from Coriolis’ effect.

§6. For a covariant vector Ql, with the note on the properties of the
differentiable quantities we made in the beginning of §5, we obtain

(

∗∇ik − ∗∇ki

)

Ql =
2Aik

c2

∗∂Ql

∂t
+H ...j

lki·Qj , (18)

H ...j
lki· =

∗∂∆j
il

∂xk
−

∗∂∆j
kl

∂xi
+∆m

il ∆
j
km −∆m

kl∆
j
im . (19)

The chronometrically invariant tensor (19), which is analogous to
Schouten’s tensor, is different in its properties in a general case from
the Riemann-Christoffel tensor. We introduce the chronometrically in-
variant tensor

Clkij =
1

4

(

Hlkij −Hjkil +Hklji −Hiljk

)

, (20)

which possesses all the algebraical properties of the Riemann-Christoffel
tensor. There are identity correlations between the quantities Hlkij ,
from one side, and also the quantities Clkij , Dmn and Amn from the
other side. As easy to see,

Hlkij = Clkij+
1

c2
(

2AkiDjl+AijDkl+AjkDil+AklDij+AliDjk

)

. (21)

As obvious, if Amn =0 or Dmn=0, we have Hlkij =Clkij . We intro-
duce also Hlk =H ...i

lki·, H =Hk
k and Clk =C...i

lki·, C =Ck
k . Then

Hlk = Clk +
1

c2
(

AkjD
j
l +AljD

j
k +AklD

)

, H = C . (22)

The metric of any spatial section is determined by (12). The cur-
vature of a spatial section is characterized by the regular Riemann-
Christoffel tensor Klkij corresponding to the metric (12). Pave such
spatial sections x0 = const through a world-point O, but at different
coordinates of time, that they satisfy (at this point O) the conditions

g0i = 0 ,
∂g0i
∂xk

+
∂g0k
∂xi

= 0 . (23)
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We call such spatial sections maximally orthogonal to the time line
in a neighbourhood of the given world-point. Each of the spatial sec-
tions possesses its own Riemann-Christoffel tensor Klkij . These tensors
coincide with each other at this point O, and satisfy the equality

Clkij = Klkij +
2

c2
(

AijAkl +AjkAil + 2AikAjl

)

. (24)

In each of these maximally orthogonal spatial sections, which cross
the space at the point O, we introduce the regular Riemann-Christoffel
tensor corresponding to the metric (7), not to (12).∗ This tensor can
be considered as the Riemann-Christoffel tensor of a space, wherein the
coordinate of time is fixed at a numerical value x0 = const, satisfying the
conditions (23). At the world-point O, the tensors coincide with each
other in all the spatial sections, and are equal to Clkij . Let xmn be a
chronometrically invariant unit bivector, which fixes a two-dimensional
direction in a given spatial section. In such a case, for the Riemannian
curvature in this two-dimensional direction, we have Klkij x

ikxlj in the
metric (12) and Clkij x

ikxlj in the metric (7). Due to (21) and (24),

Hlkij x
ikxlj = Clkij x

ikxlj = Klkij x
ikxlj − 12

c2
(

Aijx
ij
)2
. (25)

We introduce also Klk =K ...i
lki· and K =Kk

k . In such a case,

Clk = Klk +
6

c2
AliA

·i
k· , C = K +

6

c2
AkiA

ki. (26)

For the Gaussian curvatures, we have, respectively: − 1

6
C and − 1

6
K.

As obvious,

Clkij x
ikxlj

6 Klkij x
ikxlj , −1

6
C 6 −1

6
K .

Thus, with a fixed Amn, the space curvature is characterized by
the quantities Clkij , Clk and C, which are connected to the metric (7),
and also by the quantities Klkij , Klk and K, connected to the metric
(12). Because the metric (7) is physically preferred, we will use those
quantities, which are connected to it.

§7. Here we introduce auxiliary quantities and relations.
Let εijk and εijk be such antisymmetric unit chronometrically in-

variant tensors that ε123 =
√
h and ε123 =1/

√
h. As easy to see,

∗∇l εijk = 0 , ∗∇l ε
ijk = 0 ,

∗∂εijk
∂t

= εijkD,
∗∂εijk

∂t
= − εijkD.

∗Generally speaking, the metrics (7) and (12) coincide only at the point O.
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We introduce the chronometrically invariant vector of angular veloc-
ity of the space rotation

Ωi =
1

2
εijkAjk , Ωi =

1

2
εijkA

jk. (27)

The identities (14) and (15) can be represented, respectively, as

∗∇j Ω
j +

1

c2
FjΩ

j = 0 , (28)

2√
h

∗∂

∂t

(
√
hΩi

)

+ εijk ∗∇j Fk = 0 . (29)

As obvious, any axial vector field is anisotropic. The field of a tensor
Zik is isotropic, if Zik =

1

3
Zhik, where Z =Zj

j . We characterize the
anisotropy of the space deformation and the anisotropy of the space
curvature by the quantities, respectively,

Πik = Dik − 1

3
Dhik , Πk

iΠ
i
k = Dk

i D
i
k −

1

3
D2

> 0 , (30)

Σik = Cik − 1

3
Chik . (31)

The condition of homogeneity of the field of any tensor Z ...k
i... can be

written in the form: ∗∇jZ
...k
i... =0.

We assume the notations

Ż =
∂Z

∂t
, ∗Ż =

∗∂Z

∂t
. (32)

As obvious, having any chosen coordinate of time, the conditions
∗Ż =0 and ∗Z̈ > 0 are equivalent to the conditions Ż =0 and Z̈ > 0, the
conditions ∗Ż =0 and ∗Z̈ =0 are equivalent to the conditions Ż =0 and
Z̈ =0, while the conditions ∗Ż =0 and ∗Z̈ < 0 are equivalent to the con-
ditions Ż =0 and Z̈ < 0. Thus, marking the time derivatives by the
asterisk, we can write the conditions of the extrema in the chronomet-
rically invariant form.

§8. We denote by ρ the density of mass, by J i the vector of the density
of the flow of mass (this quantity is the same that the vector of the
density of momentum), by U ik the tensor of the density of the flow
of momentum, and U =U j

j . As obvious, ρc2 is the density of energy,

while J ic2 is the vector of the density of the flow of energy. Let these
notations be attributed to chronometrically invariant quantities.
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In such a case,

T00

g00
= ρ ,

c T i
0√

g00
= J i, c2T ik = U ik, T = ρ− U

c2
.

The equations of the conservation of energy and momentum can be
written as follows

∗∂ρ

∂t
+Dρ +

1

c2
DijU

ij +

[

(

∗∇j −
1

c2
Fj

)

Jj

]

− 1

c2
FjJ

j = 0 , (33)

∗∂Jk

∂t
+DJk +2

(

Dk
i +A·k

i·

)

J i +

[

(

∗∇i−
1

c2
Fi

)

U ik

]

− ρF k = 0 . (34)

All the terms contained on the left side of the equations (33) and
(34) have obvious physical meanings. The third term and the fifth (last)
term in (33) are the relativistic terms, proceeding from the connexion
between mass and energy. These terms take into account the change
of the density of mass, which is due to the surface forces working while
the volume element of space deforms (the third term on the left side),
and the change of the flowing energy due to the acting gravitational and
inertial forces (the fifth term). The fourth terms of (33) and (34) (they
are taken into square brackets) constitute the “physical divergence” of
J i and U ik respectively. The fact that physical divergence differs from
mathematical divergence originates in the circumstance that, with the
same dt, the intervals dτ are different at different coordinate points on
the boundary of the elementary volume. As is obvious, (33) and (34)
are the actual equations for mass and momentum. Multiplying (33) and
(34) term-by-term by c2, we are able to obtain the actual equations for
energy and the flow of energy.

With all the above, Einstein’s equations (1) take the form

∗∂D

∂t
+DjlD

lj +AjlA
lj + ∗∇jF

j − 1

c2
FjF

j =

= −κ

2

(

ρc2 + U
)

+ Λc2, (35)

∗∇j

(

hijD −Dij −Aij
)

+
2

c2
FjA

ij = κJ i, (36)

∗∂Dik

∂t
−
(

Dij +Aij

)(

Dj
k +A·j

k·

)

+DDik −DijD
j
k +

+ 3AijA
·j
k· +

1

2

(

∗∇iFk + ∗∇kFi

)

− 1

c2
FiFk − c2Cik =

=
κ

2

(

ρc2hik + 2Uik − Uhik

)

+ Λc2hik . (37)
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As obvious, all these ten equations (35), (36) and (37) are connected
by four relations (33) and (34).

In a coordinate frame accompanying a medium, this medium plays a
rôle of the body of reference, while the world-lines of the elements of this
medium are the lines of time. In such a reference frame, the tensors Dik

and Aik characterize the rate of deformation and the velocity of rotation
of the medium. The equations (35), (36) and (37) in such accompanying
coordinates can be considered as the equations of motion of a continuous
medium. These equations, in common with the equations (33) and (34)
and also the identities (14) and (15), allow a far-reaching analogy with
the non-relativistic equations of motion of a continuous medium which
satisfy the unitary interpretation [30]. This analogy permits the non-
relativistic equations to be used for the quasi-Newtonian approximation
to the relativistic theory (see §18).

§9. So forth, we use a coordinate frame, which accompanies a medium.
We assume also that there are no other forces produced by masses, aside
for the gravitational and inertial forces. We characterize the following
chronometrically invariant quantities: the equilibrium pressure p0 (it is
determined by the equation of state), the true pressure p, the tensor of
the viscous tension αik, the anisotropic part βik =αik − 1

3
αhik of the

viscosity tensor αik, and also α=αj
j . With these notations,

p = p0 −
1

3
α , Uik = p0hik − αik = phik − βik .

Using (33) and thermodynamical considerations, we obtain

βjlD
jl = βjlΠ

jl
> 0 , αD > 0 . (38)

In the coordinates, accompanying the medium, c2J i = qi, where qi is
the vector of density of the flow of any form of energy (radiation or heat)
with respect to this medium. The viscosity, characterized by the tensor
βik, and the viscosity, characterized by the scalar α, can be considered
as the viscosity of the 1st kind and that of the 2nd kind, respectively.
Thus the conservation equations (33) and (34) take the form

∗∂ρ

∂t
+D

(

ρ +
p

c2

)

=
1

c2

[

βjlΠ
jl −

(

∗∇j q
j − 2

c2
Fj q

j
)

]

, (39)

1

c2

(

∗∂qi
∂t

+Dqi − 2A·j
i· qj

)

−
(

∗∇j −
1

c2
Fj

)

βj
i +

+

(

∗∂p

∂xi
− 1

c2
Fi p

)

− ρFi = 0 , (40)



Abraham Zelmanov 47

while the system of Einstein’s equations (35), (36) and (37) is equivalent
to the system

∗∂D

∂t
+

1

3
D2 +ΠjlΠ

jl −AjlA
jl +

+ ∗∇jF
j − 1

c2
FjF

j = −κ

2

(

ρc2 + 3p
)

+ Λc2, (41)

4

3

∗∂D

∂xi
− ∗∇j

(

Πj
i +A·j

i·

)

+
2

c2
FjA

·j
i· =

κ

c2
qi , (42)

1

3
D3 − 1

2
ΠjlΠ

jl +
3

2
AjlA

jl − 1

2
c2C =

(

κρ+ Λ
)

c2, (43)

∗∂Πk
i

∂t
+DΠk

i +ΠijA
kj +ΠkjAij + 2

(

AijA
kj − 1

3
AjlA

jlhk
i

)

+

+

[

1

2

(

∗∇iF
k + ∗∇kFi

)

− 1

3

(

∗∇j F
j
)

hk
i

]

−

− 1

c2

(

FiF
k − 1

3
FjF

jhk
i

)

− c2Σk
i + κβk

i = 0 . (44)

The equations (41) and (42) are the actual equations (35) and (36)
transformed with (30). The equations (43) and (44) were obtained from
(35) and (37) with the use of (30) and (31). The left side of (44) is a
tensor, whose trace is identically equal to zero. Thus all six equations,
which constitute (44), are connected by the same algebraic relation.

§10. The equations (41) and (44) set up a connexion between the fields
Fi, Aik, Dik and Cik, from the one side, and the fields ρ, p, βik and qi,
from the other side. It is natural to determine the homogeneity of the
Universe, in a given local region of it, by the conditions

∗∇jFi = 0 , ∗∇jAik = 0 , ∗∇jDik = 0 , ∗∇jCik = 0

∗∂ρ

∂xi
= 0 ,

∗∂p

∂xi
= 0 , ∗∇j βik = 0 , ∗∇j qi = 0











, (45)

while the isotropy of the Universe, in a given local region, can be deter-
mined by the conditions

Fi = 0 , Aik = 0 , Πik = 0 , Σik = 0 , βik = 0 , qi = 0 . (46)

As obvious, if we remove Cik with Kik in (45), the new conditions
of the homogeneity will be equivalent to the initial conditions. Thus, if
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we remove the fourth condition of (46) with the requirement

Kik −
1

3
Khik = 0 ,

the new conditions of the isotropy will be equivalent to the initial con-
ditions. As easy to see, there are six factors of the anisotropy: the
power field, the absolute rotation, the anisotropy of the deformation,
the anisotropy of the curvature, the viscosity and the 1st kind, and the
flow of the energy. The first five factors are connected among themselves
by the relations (44).

Let the conditions (46) be true everywhere in a finite or infinite four-
dimensional region. In such a case, in the same region, the equations
(44) are satisfied identically, while the equations (39–43) take the form

∗∂ρ

∂t
+D

(

ρ +
p

c2

)

, (47)

∗∂p

∂xi
= 0 , (48)

∗∂D

∂t
+

1

3
D2 = −κ

2

(

ρc2 + 3p
)

+ Λc2, (49)

∗∂D

∂xi
= 0 , (50)

1

3
D2 − 1

2
c2C =

(

κρ + Λ
)

c2. (51)

It follows, from (48), (49) and (50), that

∗∂ρ

∂xi
= 0 ,

∗∂C

∂xi
= 0 , (52)

where the last equality can be obtained also in a direct way, on the
basis of Schur’s theorem, due to the holonomity of this space, and the
isotropy of its curvature.

The equations (48), (50), (52) and (46) lead immediately to the
conditions of the homogeneity (45). On the basis of (47) and also (49),
(50) and (51), while taking the third equality of (16) into account, we
obtain

∗∂
(

C 3
√
h
)

∂t
= 0 . (53)

If the condition (53), the first four conditions of the isotropy (46),
and the second condition of (52) satisfy, there among the accompanying
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coordinate frames is such a frame, wherein the homogeneous isotropic
metric (2) is true and also

D = 3
Ṙ

R
, C = − 6k

R2
. (54)

For Gödel’s model (3), we obtain

h11 = a2, h22 =
a2

2
e2x

1

, h33 = a2, hik = 0 (i 6= k)

Fi = 0 , A12 = −ac

2
ex

1

, A23 = 0 , A31 = 0 , Dik = 0

C11 = 1 , C22 =
1

2
e2x

1

, C33 = 0 , Cik = 0 (i 6= k)

κρ =
1

a2
= −2Λ , p = 0 , βik = 0 , qi = 0















































. (55)

As can be seen, here the second and fourth conditions of the con-
ditions of the anisotropy (46) do not satisfy, while all the conditions of
the homogeneity (45) are satisfied.

So, in a general case, we formulate the following conclusions about a
four-dimension region of space: 1) the isotropy leads to the homogeneity,
hence 2) the inhomogeneity leads to the anisotropy; 3) the anisotropy
does not require inhomogeneity; 4) as aforementioned in this Paragraph,
in the understanding of the homogeneity and isotropy, only the models
(2) are homogeneous and isotropic, while the model (3) is homogeneous,
but anisotropic.

§11. The vectorial equation of conservation (40) expresses the law of
the change of the flow of energy with time. In the absence of such a flow,
this equation expresses the equilibrium condition between the surface
forces and the gravitational inertial force (it is originated in masses).
The chronometrically invariant rotor of the vector of the gravitational
inertial force, i.e. the tensor

∗∇iFk − ∗∇kFi =
∗∂Fk

∂xi
−

∗∂Fi

∂xk

or the vector εijk ∗∇j Fk is nonzero in a general case.
A local centre of gravitational attraction can be determined by the

conditions ∗∇j F
j < 0 and Fi =0. As obvious, at such a point and also

in a neighbourhood surrounding it, the following condition is true

∗∇jF
j − 1

c2
FjF

j < 0 . (56)
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A local centre of radiation can be determined by the conditions
∗∇j q

j < 0 and qi =0. Hence, at such a point and also in a neighbour-
hood surrounding it, the following condition is true

∗∇j q
j − 2

c2
Fj q

j > 0 . (57)

The scalar equation of conservation (39) expresses the law of the
change of the mass or, equivalently, the energy of the volume element
of the medium with time. We introduce the volume V and the energy
E=Vρc2 of such an element. Taking into account that D= ∗∂ lnV/∂t,
we reduce (39) to the form

dE + pdV =

[

βjlΠ
jl −

(

∗∇j q
j − 2

c2
Fj q

j
)

]

V dτ , (58)

where pdV = p0dV −αDVdτ . As the inequalities (38) and (57) satisfy,
and the sign of dτ is definitely given, the right side of (58) may reach,
generally speaking, any sign. At the moment of an extremum of the
volume of the element, obviouslyD=0. At the moment of an extremum
of the density of the volume, ∗∂ρ/∂t=0. As easy to see, from the scalar
equation of conservation (39), these moments of time do not coincide in
a general case.

In the absence of the viscosity of the 1st kind and also the flow of
the energy, the equations (40) and (58) take the form, respectively,

∗∂p

∂xi
=

(

ρ +
p

c2

)

Fi , dE + pdV = 0 . (59)

As well-known, the second of these equations was obtained earlier
in the case of the metric (2), i.e. in the framework of the theory of
a homogeneous isotropic universe.

§12. Consider the identities (14) and (15), and also the identities (28)
and (29) which are equivalent to the previous. We see in (28) that,
in a general case, neither the mathematical chronometrically invariant
divergence nor the physical chronometrically invariant divergence of the
vector of angular velocity of the absolute rotation of the space are non-
equal to zero. In a particular case, in the absence of the power field,
both divergences coincide, and are equal to zero. The identities (15)
and (29), in the framework of the accompanying coordinates, represent
the equations of the change of a vortex. In the case of a non-viscous
barotropic medium free of the flow of energy, these identities give

∗∂

∂t

[

Ajk (E + pV )
]

= 0 ,
∗∂

∂t

[

Ωi
√
h (E + pV )

]

= 0 . (60)
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These equalities are equivalent to each other. The second of them
manifests the conservation of the vortical lines. The stress of the vortical
tube is expressed by a surface integral from the quantity

εijk Ω
idxjδxk =

1

2
Ajk

(

dxjδxk − dxkδxj
)

,

where the components of the vectors dxk and δxj are independent of
time. Having the vortical lines conserved, the region of the change of
the space coordinates, with respect to which we perform integration,
does not depend on time. Therefore each of two tensor equalities (60) is
the necessary and sufficient condition for the synchronous conservation
of a) the vortical lines and b) the product of the multiplication of the
stress of the vortical tubes by the relativistic heat function E+ pV . In
the absence of the power field, the identities (15) and (29) give

∗∂Aik

∂t
= 0 ,

∗∂

∂t

(

Ωi
√
h
)

= 0 . (61)

In both cases (60) and (61), the conditions of the holonomity or the
non-holonomity of the accompanying space remain unchanged: these
conditions are free to be realized in both cases. If we suppose that
the space is holonomic and the holonomity remains unchanged, this
supposition leads to the other limitations, most artificial of which are
the requirements for the non-viscous and barotropic properties of the
medium in the absence of the flow of energy. These requirements satisfy,
with high precision, the observed values of the density, the pressure
and the parameters of expansion of that part of the Metagalaxy, which
is accessible to our observation in the present epoch. On the other
hand, these requirements satisfy the worse; the more earlier stage of
the expansion is under our consideration. This is because, with the
expansion of the Metagalaxy, the pressure decreases faster than the
density. Hence, considering the ancient age of the Metagalaxy, we should
mean the accompanying space of the Metagalaxy to be non-holonomic,
that is equivalent to the supposition that the Metagalaxy rotates.

§13. Instead of the change of the volume V of an element of the
medium, we will consider the change of the quantity R= f 3

√
V , where

f > 0 and ∂f/∂t=0. In such a case, D=3∗Ṙ/R. It is obvious that this
quantity R, in contrast to the same named quantity of the formulae (2)
and (54), considered under the condition k 6=0, is determined at every
point of the space to within a constant positive multiplier.

Our task is a general bound of the evolution of some characteristics
of the space in the process of the expansion of the medium. We therefore
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consider this problem under some simplifications. We consider evolution
of the factors of the anisotropy in the case where the rest factors of the
anisotropy are neglected. Preliminary, we consider the change of the
curvature scalar and the density under simplest assumptions.

In the case where the space is completely isotropic, as can be seen
from (53) and (54), we have

C ∼ R−2. (62)

If p=0, βik =0 and qi =0, as seen from (39), we have

ρ ∼ R−3. (63)

If Fi=0 and Πik =0, with use of (61) we obtain

ΩjΩ
j ∼ R−4. (64)

If Fi=0, Aik =0, Σik =0 and βik =0, it follows from (44) that

Πk
i Π

i
k ∼ R−6. (65)

As easy to see from (44), in the case where Fi =0, Aik =0, Σik =0
and βik 6=0, the quantity Πk

i Π
i
k changes faster with the increasing R

and slower with the decreasing R than according to the law (65). At
βik =2ηΠik, where η is the viscosity coefficient of the 1st kind, the
quantity βk

i β
i
k changes faster than Πk

i Π
i
k. If Fi=0, p=0 and βik =0,

we obtain from (40) that

qj q
j ∼ R−8. (66)

Thus, according to our bound, the expansion of the Metagalaxy
should be accompanied by a so fast decrease of the factors of the aniso-
tropy such that the fact of the invisibility of the factors in the modern
epoch does not allow us to ignore the presence of the factors in the past.

§14. We introduce the quantities

Q =
2

3
R

(

Πk
i Π

i
k − 2ΩjΩ

j + ∗∇jF
j − 1

c2
FjF

j

)

, (67)

S =
1

3
R2

(

3ΩjΩ
j − 1

2
Πk

i Π
i
k −

c2

2
C

)

. (68)

With these, the equations (39), (41) and (43) can be represented in
the form, respectively,

∗ρ̇+ 3
∗Ṙ

R

(

ρ +
p

c2

)

=
1

c2

[

βjlΠ
jl −

(

∗∇j q
j − 2

c2
Fj q

j
)

]

, (69)
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3
∗R̈

c2R
+

3

2

Q

c2R
= −κ

2

(

ρ + 3
p

c2

)

+ Λ , (70)

3
∗Ṙ2

c2R2
+ 3

S

c2R2
= κρ + Λ . (71)

The equation (69), which connects the equations (70) and (71), can
be transformed into the form

∗Ṡ = ∗ṘQ+
κ

3
R2

[

βjlΠ
jl −

(

∗∇j q
j − 2

c2
Fj q

j
)

]

. (72)

As obvious, having any initially chosen moment of time, we can set
up such an initial value of R such that the initial value of S is equal to
kc2=0,±c2. In the case where the space is completely isotropic, the
right side of (69) and the second term on the left side of (70) are zero,
while S still retains its initial numerical value. In such a case, we, omit-
ting the asterisk, obtain the well-known equations for the homogeneous
isotropic models (2). With the metric (2) the equations (40), (42) and
(44) become identities. In such a case, two equations (70) and (71) of
the whole scope of ten equations are sufficient, under some additional
physical assumptions, for the investigation about the possible evolution
of R with time. In a general case, we can also find the kinds of evolution
of R permitted by the equations (70) and (71). We however should take
into account the fact that, in the consideration of the whole system of
ten equations of gravitation, we can find some of the kinds of the evolu-
tion to be impossible. Following in this way, we, obviously, narrow the
circle of the conceivable possibilities step-by-step.

From cosmological and cosmogonical points of view, most interesting
are the principal possibility and the physical conditions in a) the models
of the kind O2 that points to an oscillation between two regular extrema
of R at finite numerical values of the density (the so-called “oscillation
of the 2nd kind”), or at least the principal possibility and the physical
conditions of b) a regular minimum of R at a finite numerical value of
the density. There is also an important question about the principal
possibility and the physical conditions of c) the accelerating increase of
R, because such a growth at the current velocity of the expansion of
the Metagalaxy leads to the prolongation of the past part of the epoch
of the expansion, i.e. to the prolongation of the whole scale of time.
As known, for the homogeneous isotropic models (2) considered in the
framework of the suppositions

0 < ρc2 > 3p > 0 ,
∂p

∂R
6 0 , (73)
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the case a) is impossible, while the cases b) and c) are permitted with
only a positive numerical value of the cosmological constant.

Let the cosmological constant be zero. In such a case, on the basis
of (67–71), we obtain that in the absence of the absolute rotation and
the inequality (56)∗ the cases b) and c) are impossible and, hence, the
case a) is impossible as well. The numerical value of R increases either
monotonically and, at τ →∞, becomes unbounded, or it increases till a
regular maximum, and then decreases. If in addition to it, the medium
is free of viscosity and the flow of energy, the beginning of the increase
and the end of the decrease of R is so-called a “special state”, where
the density and the speed of the change of R are infinite. In such a
case, we obtain the same two kinds of evolution as those known in the
models (2): M1 that means the “monotonic change of the 1st kind”,
and also O1, i.e. the “oscillation of the 1st kind”. In this process, the
anisotropy of the deformation leads to more braking of the expansion
and, hence, to the shortening the whole scale of time. Thus, in concern
of the accelerating expansion, the regular minima and the oscillation of
the 2nd kind, the most important is the taking of the power field and
the absolute rotation into account. Concerning the irregular minima
free of the special states, most important is the taking of the viscosity
and the flow of energy into account.

§15. In this Paragraph we consider the kinds of evolution of R in com-
plete as permitted by the equations (70) and (71) in the framework of
the suppositions (73). We consider the case of a barotropic non-viscous
medium, which is free of the flows of energy. In such a case, the den-
sity and the pressure at each point can be considered as functions of R.
From (69), we obtain

∂ρ

∂R
+

3

R

(

ρ +
p

c2

)

= 0 ,
∂

∂R

(

ρR3
)

= − 3R2
p

c2
. (74)

In the absence of the pressure, the density changes according to (69),
i.e. this process goes faster under the positive pressure. It is obvious
that, if R→∞, ρRn→ 0 and pRn→ 0 (here 06n6 3). We define R∞

as R→R∞ under ρ →∞. With this definition we see that R∞ > 0. As
obvious, at the value R→R∞ we have ρRn→∞ (06n6 3).

Given the plane RS, we consider the area of the real changes of the
volume of the space element, i.e. such an area wherein R>R∞ and
∗Ṙ2 > 0. This area is bounded by the ultimate lines: the straight line

∗This can be if, for instance, in addition to the absence of the absolute rotation,
there is no the power field.
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R=R∞ and the ultimate curve ∗Ṙ2=0. Denoting by S0 the ordinate of
a point on this ultimate curve ∗Ṙ2=0, we express the equation of this
curve through (71) as follows

S0 =
c2

3

(

κρ + Λ
)

R2, R > 0 . (75)

While taking (74) into account, we obtain

∂S0

∂R
=

c2

3

[

−κ

(

ρ + 3
p

c2

)

+ 2Λ
]

R , (76)

∂2S0

∂R2
=

c2

3

[

κ

(

2ρ − 3

c2
∂p

∂R
R

)

+ 2Λ

]

= 2
S0

R2
− κR

∂p

∂R
, (77)

where, due to the second of the suppositions (73),

2ρ − 3

c2
∂p

∂R
R > 0 . (78)

At any value of Λ we obtain S0 →+∞, while ∂S0/∂R→−∞ at
R→R∞: the ultimate straight line is the asymptote of the ultimate
curve. If Λ> 0, with the increasing of R to the value R∞ the value of
S0 decreases up to its minimal value κ

2

(

ρc2 + p
)

R2 then monotonically

increases: S0 →+∞ and ∂S0/∂R→+∞ at the value R→∞. In such
a case the ultimate curve lies above the axis of abscisses, and is convex
everywhere to the axis. If Λ=0, with the increasing of R to the value
R∞ the value of S0 monotonically decreases: S0 → 0 and ∂S0/∂R→ 0 at
the value R→∞. In such a case, the axis of abscisses is the asymptote:
the ultimate curve lies above this axis, and is convex everywhere to
it. If Λ< 0, with the increasing of R to the value R∞ the value of
S0 monotonically decreases: S0 →−∞ and ∂S0/∂R→−∞ at the value
R→∞. In such a case, in the area higher than the axis of abscisses
the ultimate curve is everywhere convex to it, while in the area lower
than the axis of abscisses the ultimate curve has a point of inflection
(in a general case, there is an odd number of such points).

For the curves, which sketch the permitted changes of R in the plane
RS, we write down, according to (72),

∂S

∂R
= Q . (79)

For those points of these curves, which coincide with the points of
the ultimate curve, we obtain, from (71) and (75), (70), (76) and (79),

∗Ṙ2 = S0 − S , ∗R̈ =
1

2

(

∂S0

∂R
− ∂S

∂R

)

. (80)
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§16. Split the considered interval of time into the minimal number of
the intervals of monotonic change of R. There on the opposite bound-
aries of each interval (such an interval can be finite or infinite) the
quantity R has the minimal and the maximal numerical values along all
the values attributed to R in it. We recognize four kinds of states con-
ceivable for such a volume element at the minimal value of R: the kind
m means the states of finite density at a regular minimum of R; the kind
a means the states of finite density at an asymptotic value of R; the kind
c means the states of infinitely high density at zero or finite speed of
the change of R (in particular, this happens at the minimal or asymp-
totic value of R coinciding with R∞); the kind s means the states of
infinitely high density at the infinitely high speed of the change of R
(these are so-called “special states”). We recognize also three kinds of
states conceivable for such a volume element at the maximal value of R:
the kind M means the states of finite density at a regular maximum of
R; the kind A means the states of finite density at an asymptotic value
of R; the kind D means the asymptotic states of zero density at R→∞.

The statesm, a, M , A are attributed to all the points of the ultimate
curve. The states D are attributed to all the points of an infinitely
distant straight line R=+∞, which lie not higher than the ultimate
curve. As obvious, this is the whole straight line R=+∞ in the case
where Λ> 0, this is the half-line R=+∞, S6 0 in the case where Λ=0,
and this is just a single point R=+∞, S=−∞ in the case where Λ< 0.
The states c constitute just a point R=R∞, S=+∞. The states c are
attributed to all the points of the ultimate curve.

We denote each kind of evolution of R by a row of characters, which
mean the states transited by a volume element with time along the time
interval of the monotonic change of R. According to the notions, the
kinds of evolution of a volume element, which are met in the theory
of a homogeneous isotropic universe, should be recognized as follows:
the kind A1 as sA (expansion) or As (contraction); the kind A2 as aD
(expansion) or Da (contraction); the kind M1 as sD (expansion) or Ds
(contraction); the kind M2 as DmD; the kind O1 as sMs.

The conceivable kinds of evolution of a volume element in the in-
tervals of the monotonic increase of R, permitted under different con-
ditions, are given in the Table below.

Aside for the trivial case of the homogeneous isotropic models (2),
the condition Q=0 satisfies, for instance, at the centre of spherical sym-
metry in the absence of the power field. The condition Q> 0 satisfies,
for instance, outside this centre and, in a general case, at all points
where there is no power field, as well as no the absolute rotation, while
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Q=0 Q> 0 Q T 0

sD, aD, mD sD, aD, mD sD, cD, aD, mD
Λ> 0 sA sA, aA, mA sA, cA, aA, mA

sM sM , aM , mM sM , cM , aM , mM

sD sD sD, cD, aD, mD
Λ=0 sA, cA, aA, mA

sM sM sM , cM , aM , mM

sD, cD, aD, mD
Λ< 0 sA, cA, aA, mA

sM sM sM , cM , aM , mM

the space deformation is anisotropic. The condition Q< 0 satisfies, for
instance, at the centre of spherical symmetry, which is the local centre
of gravitational attraction in the sense of §11; and Q< 0 satisfies also
in the neighbourhood of such a centre of attraction.

§17. Here we provide some additional notes and comments to the pre-
vious results.

The solutions can have a physical meaning only outside the states of
infinitely high density. It is meaningful to continue the solutions up to
the states of infinitely high density. The formal conclusion about such
states, obtained through the known equations of gravitation, should be
considered, following Einstein, as a note on the inapplicability of these
equations to the states of extremely high density such as the density
inside atomic nuclei.

In the case of the homogeneous isotropic models, all the kinds shown
in the Table are permitted. In the other cases, because we took into
account not all of the equations of gravitation, we conclude that those
kinds which are absent in this Table are impossible.

In the case of the homogeneous isotropic models, all that has been
concluded about the evolution of any single volume element is also true
for all elements of the considered three-dimensional region (which can
be both finite and infinite). In a general case, these conclusions give
a possibility to judge about the evolution of the rest volume elements,
because of the continuity of space.

Along each interval of the monotonic change of R, all the rest quan-
tities can be considered as functions of R in any case, not only in the
case considered in §15. All the equations of §15 are true in the case of
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a barocline medium, which bear the viscosity of the 2nd kind, but is
free of the 1st kind viscosity and the flows of energy. This allows us
to distribute all the results of our Table onto this case, which is the
most common for which this Table works.∗ In this Table we give only
the permitted kinds of expansion. There are also the respective kinds
of contraction corresponding to each of the kinds of expansion provided
by this Table: the kind Ds corresponds to the kind sD, the kind Da
corresponds to the kind aD, the kind Dm corresponds to the kind mD,
and so forth. We consider the kinds of evolution of R in two adjacent
intervals of the monotonic change, which are connected through a regu-
lar extremum of finite density. As is obvious, both kinds (expansion and
contraction) should be in the row of the permitted kinds in all cases.
However, in the case of a barotropic non-viscous medium, which is free
of the flow of energy, and only in this case, we can assert that these two
kinds are inverse to each other.

The behaviour of a homogeneous, isotropic model with time is valu-
able dependent on the Gaussian curvature of the space. In such a space,
the numerical value of the Gaussian curvature is the same numerical
value at all points, while the sign of the curvature remains unchanged
with time, and is directly connected with the conditions of infiniteness
of the space. In a general case, the correlation between the behaviour
of a volume element and the Gaussian curvature is set up by the rela-
tions (68), (71) and (72). However there in the case of a homogeneous
isotropic universe: 1) the Gaussian curvature changes from point to
point, 2) it is impossible to assert that the sign of the Gaussian curva-
ture remains unchanged at any point, 3) even if the space is holonomic,
there is no direct connexion between the sign of the Gaussian curvature
and the infiniteness of the space. In a general case, we should take into
account the totality of the Riemannian curvatures at all points of the
space, and along all two-dimensional directions in it (there in the ho-
mogeneous isotropic models they are everywhere equal to the Gaussian
curvature). Using these curvatures, we are able to obtain the sufficient
conditions of the infiniteness of a space, for instance

∣

∣

∣

∣

∣

∣

B11 B12 B13

B21 B22 B23

B31 B32 B33

∣

∣

∣

∣

∣

∣

6 0 ,

∣

∣

∣

∣

B11 B12

B21 B22

∣

∣

∣

∣

> 0 , B11 6 0 , (81)

where

Bik = Cik − 1

2
Chik . (82)

∗This is because that fact that the viscosity of the 1st kind and the flow of energy
multiply the number of the allowed kinds of evolution.
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It is possible to say that the simple statement of the problem about
the infiniteness or the finiteness of space, which is specific to the theory
of a homogeneous isotropic universe, is insufficient in the theory of such
an inhomogeneous anisotropic universe whose space is holonomic, and
is impossible in that case where the space is non-holonomic.

§18. In this Paragraph we consider a quasi-Newtonian approximation
in cosmology, in the accompanying coordinates. In the framework of
such an approximation, we use the equations of Newtonian mechan-
ics (in Euclidean space) and Poisson’s equation (or the generalization
∇j
j Φ=−4πγρ+Λc2 of it, where Φ is the gravitational potential), with-

out any universal ultimate conditions for the infiniteness of space. The
reference frame accompanying the medium refines this approximation,
because the velocity of macroscopic motions and some relativistic ef-
fects connected to it are zero in such coordinates. Therefore, the non-
relativistic equations, constructed in the framework of the unitary in-
terpretation of motion of a continuous medium [30], together with Pois-
son’s equation (or its generalization given above) in the accompanying
coordinates are both reasonable to be used as the quasi-Newtonian ap-
proximation to the chronometrically invariant relativistic equations.

Use the accompanying coordinates xi and Newtonian mechanics in
the pseudo-Euclidean space. Let t be Newtonian time. Let hik, h, Dik,
D, Aik be the chronometrically invariant quantities which characterize
the space of the accompanying frame of reference: the metric tensor,
the fundamental determinant, the tensor of the rate of the space de-
formation, the speed of the relative volume expansion of the space, the
tensor of angular velocity of the absolute rotation of the space. In such
a quasi-Newtonian case,

Dik =
1

2

∂hik

∂t
, Dik = −1

2

∂hik

∂t
, D =

∂ ln
√
h

∂t
, (83)

∇i

(

Djk +Ajk

)

−∇j

(

Dik +Aik

)

= 0 , (84)

∂Ajk

∂xi
+

∂Aki

∂xj
+

∂Aij

∂xk
= 0 . (85)

Let F k be the gravitational inertial force, acting per unit mass, which
puts the surface forces into equilibrium. Let U ik be the tensor of the
density of the flow of momentum, while ρ is the density of mass. In
such a case,

∇iU
ik − ρF k = 0 , (86)
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∂ρ

∂t
+Dρ = 0 ,

∂

∂t

(

ρ
√
h
)

= 0 , (87)

∂Aik

∂t
+

1

2

(

∂Fk

∂xi
− ∂Fi

∂xk

)

= 0 , (88)

∂Dik

∂t
−
(

Dij +Aij

)(

Dj
k +A·j

k·

)

+
1

2

(

∇iFk +∇kFi

)

= ∇ikΦ . (89)

Contracting (84) term-by-term, we obtain

∇j

(

hijD −Dij −Aij
)

= 0 . (90)

Contracting (89) term-by-term, while taking the equation of the po-
tential into account, we obtain

∂D

∂t
+DjlD

lj +AjlA
lj +∇jF

j = − 4πγρ + Λc2. (91)

It is obvious that the relativistic relations (14), (15), (16), the rel-
ativistic law of energy and momentum (33), (34), and the relativistic
equations of gravitation (35), (36), (37) have the non-relativistic anal-
ogy in, respectively, the relations (85), (88), the equations (83) and
(87), and the equations (86), (91), (90), (89). According to their physi-
cal meanings, (85) and (90) are identities like (84), (86) constitutes the
equations of equilibrium, (87) is the continuity equation, (88) and (89)
are the equations of motion of the medium, while (91), while taking (89)
into account, substitutes instead the equation of the potential. These
equations allow us to find the desired quasi-Newtonian approximation
for the curvature. Comparing (37) and (89), we obtain

c2Cik = DDik −DijD
j
k + 3AijA

·j
k· +∇ikΦ−

(

4πγρ + Λc2
)

hik (92)

that leads to

c2C = D2 −DjlD
jl + 3AjlA

jl − 16πγρ− 2Λc2. (93)

As seen, in the framework of the quasi-Newtonian (non-relativistic)
approximation, the equality (92) should be considered as the definition
of the curvature tensor Cik. At the same time, emphasizing the ex-
pansion of this formula by which comes the relativistic theory, we can
calculate, through the equality (92) and its sequel (93), the Riemannian
curvature and the Gaussian curvature of the accompanying space.

§19. Numerous researchers considered (and used) the similarity and
analogy between the relativistic equations, obtained in the framework
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of different cosmological models, and the non-relativistic equations, ob-
tained for the respective distribution and motion of masses. The first
persons who did it were Milne and McCrea [31–33], who used this anal-
ogy for the homogeneous isotropic models, Bondi [18], who applied this
analogy for the spherically symmetric models, and also Heckmann and
Schücking [37], in the case of the axially symmetric homogeneous mod-
els (see also Heckmann [7], for this case). They all considered the cases
with no pressure, viscosity and, flow of energy.∗ They removed Newto-
nian law of gravitation with a generalization of it, where the cosmo-
logical constant has been included. Such an application of Newtonian
mechanics and Newtonian law of gravitation, based on the aforemen-
tioned analogy, is known as Newtonian cosmology. In such a cosmology,
the uncertainty of the field of gravitation (the non-relativistic gravi-
tational paradox) was either ignored or removed, in a hidden form, by
some additional requirements, which are not usual in Newtonian theory.
Neither the chronometric invariants in the relativistic equations nor the
accompanying coordinates in the non-relativistic equations were applied
by the aforementioned researchers. Almost all of them (see [34, 36, 37])
and also Layzer [35] discussed the question about the legitimacy of such
a Newtonian cosmology. For instance, Heckmann and Schücking [38]
supposed some changes on the ultimate conditions on the Newtonian
potential at spatial infinity.

In contrast to the aforementioned authors, our method, which shows
how to use this analogy (we proposed this method in §18), works in the
framework of the following requirements:

1) Cancel any universal ultimate conditions on the potential at spa-
tial infinity. (Considering every particular problem, such ultimate
conditions or limitations used in the non-relativistic theory should
meet analogous conditions or limitations assumed in the same
problem considered in the relativistic theory);

2) Interpret the non-relativistic solutions as an approximation to the
relativistic solutions. The use of the non-relativistic equations as
the quasi-Newtonian approximation to the relativistic equations,
includes the calculation for the space curvature;

3) Use of the chronometrically invariant quantities and operators in
the relativistic equations. Such a use makes the relativistic equa-
tions look very similar to the non-relativistic equations;

4) Apply the accompanying coordinates in the non-relativistic equa-
tions. This makes the equations not only look similar to the rel-

∗The presence of the factors leads to the lowering of the aforementioned analogy.
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ativistic equations, but is also profitable to the quasi-Newtonian
approximation itself;

5) Consideration of not only particular models, but also, and mainly,
the general cases of relativistic cosmology.
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