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Abstract: This is a translation of Schwarzschild’s pioneering pre-
sentation where he pondered upon the possible non-Euclidean struc-
ture of space and gave a lower limit for the measurable radius of cur-
vature of space as 4,000,000 astronomical units (supposing the space
to be hyperbolic) or 100,000,000 astronomical units (elliptic space).
The paper was originally published as: Schwarzschild K. Uber das
zulassige Kriimmungsmaafl des Raumes. Vierteljahrsschrift der As-
tronomische Gesellschaft, 1900, Bd. 35, S.337-347. Translated into
English in 2008 by Dmitri Rabounski. The translator thanks Ulrich
Neumann, Germany, for a copy of the Schwarzschild manuscript in
German, and also Stephen J. Crothers, Australia, for assistance.

Permitting myself to call your attention for this presentation, which
has neither practical purpose nor mathematical meaning, I should be
excused due to the theme of the presentation itself. This theme is obvi-
ously very attractive to most of you due to the fact that it is related to
the expansion of our views to boundaries far away from our everyday
experience, and opens beautiful horizons for possible experiments in the
future. The fact that all these lead us to the failure of numerous tra-
ditional views which are most hard rooted in the heads of astronomers,
is just an advantage of this new theme from the view of everyone who
believes in the relativity of our knowledge.

This talk is on the permissibility of curved space. You all know
that in the 19th century along with the Euclidean geometry numerous
other non-Euclidean geometrical systems were developed, which were
headed by the geometrical systems of so-called spherical space and of
so-called pseudo-spherical space (we will deal mainly with these two
systems here). It is possible to develop in detail a picture of what
would be observed in a spherically curved space or a pseudo-spherically
curved space. I however limit myself by only a reference to Helmholtz’
paper The Origin and Meaning of the Geometrical Azioms*. Here we

*Hermann von Helmholtz. Uber den Ursprung und die Bedeutung der geometri-
schen Axiome. Vortrag gehalten im Docentenverein zu Heidelberg, 1870, Universi-
tatsbibliothek Heidelberg. Published in English as: Hermann Helmholtz. The origin
and meaning of geometrical axioms. Mind, July 1876, vol. 1, no. 3, pages 301-321.
— Editor’s comment. D.R.
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are come into a fairyland of geometry, which is especially beautiful due
to the fact that it may relate to our real world, and finally we are unsure
in the impossibility of it. Here we consider how wide the boundaries
of this fairyland can be expanded, what is the largest numerical value
of the permissible curvature of space, what is the smallest radius of the
space curvature.

One usually answers this question unsatisfactorily, at least unsatis-
factorily from the viewpoint of an astronomer. In Euclidean geometry
the sum of the angles in a triangle is 2d; while in the case of the non-
Euclidean geometry the larger the triangle we are considering, the more
this sum differs from 2d. One may point out that even in the case of
the largest of the measured triangles (the apex of such a triangle is a
star, while the base is drawn by the diameter of the Earth’s orbit) the
sum of the angles in each of them wasn’t found to be different from 2d.
Hence the curvature of space should be negligible. In such an answer
people overlook just one circumstance. They don’t take into account
the circumstance that the angle at the star isn’t a subject of measure-
ment, but is obtained as a calculation resulting from the theorems of
Euclidean geometry, the correctness of which will be the subject of our
consideration here. Besides, an astronomer shouldn’t be satisfied by
the note, according to which he should neglect the curvature of space in
the scale of the nearest stars, whose parallax is accessible to measure-
ment; to obtain a picture of the interior of the world of stars, he should
take into account the distances to even the weakest stars, which are far
relative to us.

I begin consideration of this problem from the point of view which
gives the possibility of talking about the theoretical meaning of non-
Euclidean geometry. In order to measure the positions of three vertices
of a triangle, we will employ the light beams coming from one of the
vertices. The lengths of the sides a, b, ¢ of this triangle will be measured
according to the duration of time required for the light beam to travel
along the lengths, while the angles «, 3, v will be measured by a regular
astronomical instrument. Our everyday experience manifests in plane
trigonometry, true on all triangles within the precision of measurement.
Suppose that the regular trigonometry is not absolutely precise and
that in reality the sides and the angles of triangles are connected by the
following relations

b c

. . . .. a . .
sma:smﬁ:sm”y:smﬁzsm—:sm—, (a)

R R

c a b+, a . b ()
COSR—COSR COSR st st cos "y .



66 The Abraham Zelmanov Journal — Vol. 1, 2008

Here R is a very large interval we will refer to as the curvature radius
of space, by which we mean no close analogy to the curvature radius
known in the geometry of two dimensions. The aforementioned formulae
coincide with the main formulae of spherical trigonometry which, as well
known, transform into the regular trigonometric formulae in the case
where the sides of the triangle are small relative to the radius R of the
sphere. However taking R sufficiently large, the sides of any triangle we
are measuring become small relative to R. Therefore, by increasing R
we can always arrive at a case where the formulae (a) and (b) meet the
regular trigonometric formulae within the measurement precision. In
order words, it is enough to increase R to reduce the formulae (a) and
(b) into coincidence with our everyday experience.

Here we don’t consider a purely mathematical problem on the
grounds of acceptance of formulae (a) and (b) for any triangle, without
internal contradiction. As we know this question has been answered
positively. Besides, as shown by research, the requirement that spher-
ical trigonometry be applicable to all triangles in a space provides no
exact information about coherence of the space. Among the possible
forms of space which permit spherical trigonometry, the simplest and
most well-known are the so-called spherical space and the elliptic space.
The following common properties are attributed to a spherical space
and an elliptic space: such a space is finite, the volume of it is finite
as well and is dependent on the curvature radius. By following a path
in such a space, we arrive at the initial point. Relations given in a
plane of such a space are absolutely the same as those on the surface
of a sphere according to usual views. Besides that, a plane located in
a curved space is determined, as usual and everywhere, by all straight
lines — all beams of light which pass through two crossed light beams.
Any straight line in a plane of a such curved space is similar to a great
circle on the surface of a sphere. For two parallel straight lines, i.e. two
straight lines crossing a third straight line at equal angles (two right
angles, for instance), these straight lines are similar to two meridians
crossing the equator at right angles. Similarly for the crossing merid-
ians at the point of the pole, the straight lines cross each other in a
curved space at the distance gR in a curved space. One may say that,
concerning a plane of a curved space, two parallel straight lines should
cross each other twice like two great circles on a sphere. This hypothe-
sis lies at the foundation of spherical space. However it is possible that
two parallel straight lines cross each other only once; this assumption
leads us to “elliptic” space. It is possible to map a plane in a curved
space onto a usual spherical surface in such a way that each point of
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the plane conjugated, not only with the radius, but also the diameter
and, hence, two diametrically opposite points of the spherical surface.
Therefore, if taking great circles passing through a point of a spherical
surface, and crossing each other at the diametrically opposite point, the
incoming point and the point diametrically opposite to it are similar to
a single point of a plane in a curved space, where the respective straight
lines cross each other. From this we conclude that we, travelling by
way of the length 7R (not 27 R), arrive at the initial point and, at the
same time, the maximum distance between two points in such a space is
gR. Similarly we study elliptic space, which is the simplest of spherical
trigonometry spaces. (In talking above about spherical space instead
elliptic space, we merely used the more common and usual term.)

But first we should mention another very simple generalization of
non-Euclidean geometry. If in (a) and (b) we replace R with an imagi-
nary quantity ¢ R, we obtain
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where capital letters denote hyperbolic functions. These equalities
transform into the equalities of plane trigonometry with the increase
of R. There are various spatial forms wherein the special trigonometry
based on formulae (a’) and (') are true. The simplest of these spatial
forms is the so-called “pseudo-Riemannian” or “hyperbolic” space. Such
a space is infinite: therein each point is crossed by a couple of straight
lines without intersecting another given straight line. The geometry on
any of the planes of such a space is analogous to the geometry on a
so-called pseudo-sphere, which is constant negative curvature surface.
Now we turn our attention to the problem of how to determine the
parallax in the cases of both elliptic and hyperbolic spaces. Any of
the definitions of parallax can be reduced to the following: given two
times of observation separated by a half year duration, we measure the
angle created at the Earth by two straight lines which connect it with
two stars we observe. Assume, for simplicity, that one of these two
stars, S, is positioned exactly in the continuation of the diameter of
the Earth’s orbit, while the other star, Sy, is positioned in the line
which is approximately orthogonal to this direction. Denoting F; and
Es as the positions of the Earth at the times of observation (F1FE;=r
is the diameter of the Earth’s orbit), the observations give both angles

S1E1S=a and S1FE2S2=08. The quantity p:O‘T_B is known as the
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parallax of the star S;. The problem is as follows: having the elements
«, B, 2r, how to calculate the distances F1S2 =a and F3S2 =0 from
the star So to both locations of the Earth in the cases of spherical
trigonometry and pseudo-spherical trigonometry. Because the straight
line directed at So should be approximately orthogonal to EsF1S7, we
can assume a=>b=d where d is the distance from the star. We take
into account that fact that the parallax p is a very small angle, and
the curvature radius of the space should be undoubtedly much larger
than the diameter of the Earth’s orbit. With these we easily obtain the
following formulae for the distance in the case of an elliptic space

1
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and that in a hyperbolic space
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The last of these formulae leads to a conclusion concerning hyperbolic
space. Naturally, given each real distance d, the inequality p R > r should
hold. Therefore there is a minimum parallax, which is p = %, that should
be observed for even very distant stars. On the other hand we know
of many stars which don’t have a parallax of even 0.05”. Hence the
numerical value of the minimal parallax should be lesser than 0.05”. We

obtain the lower limit of the curvature radius of the hyperbolic space

d d
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> S that is R > 4,000, 000 radii of the Earth’s orbit.
arc.050”

According to this the curvature of the hyperbolic space is so small
that it doesn’t manifest in any measurements on the scale of the plan-
etary system. Besides, because any hyperbolic space is infinite, as is
any Euclidean space, it is impossible to find unusual phenomena by
observation of stars in the sky.

Before consideration of elliptic space, I remark that it was recently
shown by Prof. Seeliger that the most accurate representation of our
stellar system, on the basis of the observational data, concludes that all
stars we observe (the number of the stars is no greater than 40 million)
are located inside the space, the diameter of which is a few hundred mil-
lion times larger than the radius of the Earth’s orbit, beyond which a
large and approximately empty space begins. This concept bears some-
what comfortably upon our minds, because according to it the complete
study of the limited stellar system is an special stage in the evolution of
our knowledge about the world. But this comfort and satisfaction would
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be much more effective if we imagined the space enclosed in itself, in
a finite and complete manner, or approximately filled with this stellar
system. Naturally, if so, we could reach a stage when the space has
been studied completely, like the surface of the Earth has been studied,
so that any macroscopic studies of the space have ceased being subordi-
nate to microscopic studies. These very advanced studies may explain,
in my view, that strong interest that attracts us to the hypothesis of
elliptic space.

Now we look at the results of calculation of the parallax in the elliptic
space. Employing the aforementioned formula

cot E*E
gR_Tp,

we can obtain, concerning any measured parallax p of a star, a specific
real numerical value of the distance d to the star at any numerical value
of the curvature radius R. Thus we see that it would be erroneous to
think that the limit of R was found proceeding from only our measure-
ments of the stellar parallaxes. According to these measurements, it
would be possible that the space was so strongly curved that, travelling
along a path equal to approximately 1,000 distances from the Earth to
the Sun (i.e. the distance travelled by light during a few days), we would
arrived at the initial point of our journey. Therefore, not purely metric
reasons but physical reasons lead us to a conclude that the curvature
radius is much larger than that suggested.

A very small curvature radius would lead to the metric inconsisten-
cies in the planetary system. Because we further find a greater upper
limit of it, it is enough to say that, in the case of the curvature radius
equal to 30,000 radii of the Earth’s orbit, it produces an impercepti-
ble effect even in triangles which are as large as the distance to the
orbit of Neptune. This radius of the space curvature corresponds to
the length which is no larger than 1/10 part of the distance to the near-
est stars.

So, assume R = 30,000 radii of the Earth’s orbit. According to for-
mula (c), we calculate the distance to the stars at different numerical
values of the parallax. We obtain

for p = 10" 0.908 y = 42,800 radii of the Earth’s orbit,
" R-7m .. .
for p =101 0.991 —5 = 46, 700 radii of the Earth’s orbit,

R-
for p = 0.0” 1.000 Tﬂ = 47,100 radii of the Earth’s orbit.
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It is easy to see that we have arrived at quite ridiculous results.
There are maybe a hundred stars whose parallax is p > 0.1”. Thus these
hundred stars should be scattered at distances between one another no
larger than 46,700 radii of the Earth’s orbit, while the rest of the space at
only 400 radii of the Earth’s orbit is reserved for the remaining millions
of stars. In such a case the Sun would be located in a space of excep-
tionally small stellar density, while everywhere beyond a certain distance
from it there is an exceptionally large density of stars. To show this den-
sity of stars, I calculated the volume of the space limited by 46,700 radii
of the Earth’s orbit, and also the volume of the remaining part of the
space, then I calculated the average distance between two stars assuming
that there is exactly 100 million stars in total. I found that in the ap-
proximately empty space near the Sun the average distance between two
stars is about 15,000 radii of the Earth’s orbit, while in the high density
inhabited rest of the space the average distance is only 40 radii of the
Earth’s orbit. Of course, it is impossible to accept such a calculation re-
sult that stars are so close to each other; otherwise it would be found in
the physical interactions among the stars. It follows that the supposed
curvature radius of 30,000 radii of the Earth’s orbit is too small.

It is clear that by increasing R we may overcome all these difficulties,
because they all vanish at R= oo (this is an obvious assumption). It is
enough to take R so large that those 100 million stars with parallaxes
less than 01” we assumed inhabit the space, which is a million times
larger than the space inhabited by 100 million stars with parallaxes
bigger than 01”. Simple algebra shows that this takes place for

R = 160,000, 000 radii of the Earth’s orbit.

In the case of a similar radius of the space curvature, light would
travel around the whole space, along the path 7R, in 8,000 years. How-
ever the size of the respective elliptic space is approximate the same
as that suggested by Seeliger for the finite system of resting stars, not
yet so large a size as that of the stellar system known according to the
usual bounds. One could suggest R to be two or three times less than
the above, but even such a reduction of R doesn’t lead to the suggested
abnormal emptiness of stars in the neighbourhood of the Sun and their
high density at large distances from it.

Thus we arrive at the conclusion that the assumption, according
to which R is equal to approximately 100,000,000 radii of the Earth’s
orbit, doesn’t contradict the observational data. In the case of such a
numerical value of R the whole finite space is homogeneous, filled with
the observable stars.
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One more fact should also be noted here. Given an elliptic space,
any light beam arrives back at its initial point after travelling across
the whole space. So light beams emitted into such a space from the
opposite (invisible to us) side of the Sun should travel across the space
then also meet the Earth, then create an anti-image of the Sun from
the opposite side of the real image of it. This anti-image shouldn’t
fade with respect to the real image of the Sun, because light beams
compress upon returning to the initial point of travel, becoming such
ones as they travel in the least direct way from the source of light. But
due to that fact that such an anti-image of the Sun was never observed
we are enforced to suppose that light, travelling across the whole space,
experiences absorption which is so strong that the anti-image is invisible.
This supposition is true if supposing the absorption to be approximately
40 stellar magnitudes. There is no facts against the supposition of such
a numerical value of the absorption, which seems small compared to the
scale of the Earth.

In conclusion: it is possible to imagine, with no contradiction of the
experimental data, that the world is closed within a hyperbolic (pseudo-
spherical) space, the curvature radius of which is larger than 4,000,000
radii of the Earth’s orbit, or, alternatively — within an elliptic space,
the curvature radius of which is larger than 100,000,000 radii of the
Earth’s orbit. In addition, in the second case, it should be supposed
an absorption of light equal to 40 stellar magnitudes per around space
travel.

Now we should limit ourselves by these. At least, I see no other way
to make a principal step in this direction with use of the contemporary
methods of research, i.e. how to prove that the volume of the space is
so large with respect to the volume of the stellar system we observe,
or that the space has a really positive or negative curvature. On the
other hand, I can provide some considerations which, despite providing
no definite solution, may bring us to a specific preferential numerical
value of R within the aforementioned scale of the values.

It is well known that astronomers, in their study of the distribution
of stars in space, proceed from the simplest possible rational hypotheses
about the average luminosities of stars, then they distribute the stars
at different distances from the Sun by such methods that arrive at the
numbers of stars of each stellar magnitude obtained in astronomical ob-
servations. Such research — the main result of which was mentioned
above — was already produced by Prof. Seeliger. It could be produced
in the same way in the cases of a pseudo-spherical space or of an elliptic
space. I have calculated, in the cases of both spatial forms, the depen-
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dence of the number of stars from their stellar magnitude in the approx-
imation that the luminosities of all stars are the same, and also that the
density of the stellar population in all regions of the space is uniform.
I have found, using the same physical assumptions, that the number of
stars increases with the increase of their luminosity more slowly in the
pseudo-spherical space in contrast to that in the Euclidean space, while
in an elliptic space it increases faster than in the Euclidean space. In
the real situation, as is well known, the number of stars increases with
their luminosity slower than expected on the basis of the simple hy-
potheses about the Euclidean space. Proceeding from this fact, it could
be concluded that the pseudo-spherical space is real. But, of course,
no serious meaning can be attributed to these speculations, because the
hypotheses of the equal luminosities and the equal density of stars take,
as probable, no place in the real situation. However, as I have already
said, this theory could be developed in the case of a curved space on
the same bases used by Prof. Seeliger, who developed the theory in Eu-
clidean space. Comparing the conclusion with the observational data,
one could say then that the simplest picture of the distribution of stars
is obtained on the assumption that space has a non-zero curvature. Of
course, it is impossible to expect that a definite and final answer will
be obtained here. We therefore have to accept that sad fact that there
is little hope for a solid proof to the finitude of space.

Appendix. In the above, of all the spatial forms where “free motion
of solid bodies” is possible, only the main types were considered (as
has been noted by F. Klein). In order to finalize this theme, the other
spaces which have this property should be compared to the astronomical
data. I would exclude from consideration “spherical space” and other
so-called “double-spaces”, where all light emitted from a point travels
to another point, collecting all the light anew. This is because we have
no reason for introduction of such a complicated hypothesis. Therefore
we have to settle for the so-called “simple Clifford-Klein spatial forms”.

Of all these spatial forms, special is the one which amplifies the fact
that the acceptance of Euclidean geometry is not equivalent, as one
usually thinks, to the indefiniteness of the space. Imagine that we, after
greatly enhanced astronomical data, found that our universe consists
of countless copies of our Milky Way, that the infinite space can be
split into many cubes, each of which contains a stellar system that is
absolutely equivalent to the system of our Milky Way. Do we really stop
at the assumption of an infinite number of identical copies of the same
world-entity? To understand the absurdity of this, think about just one
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sequel: in such a case we ourselves, the observing objects, should exist
in an infinite number of manifestations. We would better go to the
assumption that these copies are only imaginary images, while the real
space permits such coherences due to which we, being left the cube from
one side and travelling always along a straight path, arrive at the cube
from its opposite side. Such a space as we have supposed is nothing
but the simplest of the Clifford-Klein spatial forms: a finite space of
Euclidean geometry. It is easy to see the sole condition which should
be attributed to such a Clifford-Klein space: because as yet nothing
has been found concerning the (imaginary) copies of the system of the
Milky Way, the volume of the space should be bigger than the volume
we attribute to the Milky Way on the basis of the theorems of Euclidean
geometry.

About the other simple Clifford-Klein spatial forms, we limit our-
selves by only a few words, due to that fact that these spaces aren’t
sufficiently studied as yet. All these forms are obtained in analogous
way by the identical imaginary copying of the same world-entity in a
FEuclidean space, in an elliptic space, or in a hyperbolic space. Exper-
imental data lead us, again, to the condition according to which the
volume of any such spaces should be bigger than the volume of the
stellar system we observe.
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