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Introduction

According to the ideas of special relativity the transformation connect-
ing two uniformly moving frames must be such as to leave the metric ten-
sor an invariant, and given by the diagonal tensor ηµν =(1,−1,−1,−1),
thus preserving the same value for the speed of light in all uniformly
moving frames. On the other hand, from an intuitive standpoint, such
a result is quite paradoxical, since one would expect that for two frames
in relative motion with speed v, the velocity of light ought to differ in
the two frames by quantities of the first order in v

c . The absence of such
an effect cannot be explained by Lorentz contraction of rods and the
slowing down of clocks, since these are second order effects. The answer
to the paradox, of course, lies in the fact that in special relativity, one
deals with clocks which have been synchronized in a certain manner in-
volving quantities of the first order in v

c so that a cancellation with the
above expected effect can occur. Thus the original objection is removed
— provided one agrees that this method of synchronization does not
contain any assumptions about the propagation of light which involve
a petitio principii.

It is the purpose of this paper to examine this method of synchro-
nization from the broader mathematical viewpoint of general relativity
which, based as it is on general covariance, enables one to envisage
more general transformations connecting uniformly moving frames. In-
deed we shall consider transformations in which clocks are synchronized
with “absolute signals”, that is, signals travelling with infinite or ar-
bitrarily large velocity. In our discussion we have not enquired into
the dynamics of such signals. For the purpose here, such signals serve
merely as a kinematic method for formulating in the framework of gen-
eral covariance certain types of experiments which are unthinkable in
the more restricted framework of special relativity. In the concluding
chapter some of the possibilities and difficulties associated with such
signals are briefly examined.

Using these signals, one arrives at the view of an absolute rest frame
(or ether frame) in which the velocity of light is the same in all di-
rections; but for observers in motion relative to this frame with speed
v, the velocity of light is not the same in all directions and differs in
different directions to first order by amounts of v

c , in agreement with
one’s intuitive ideas. With absolute signals, it is possible to measure
this speed v, and hence to linearly order all frames according to the
magnitude of this quantity. On the other hand, measurements made
with light signals do not make it possible to measure v. In the Ap-



Frank Robert Tangherlini 47

pendix the present status of the absolute frame and Mach’s principle
in general relativity is reviewed in connection with effects observed in
rotating frames.

Some of the basic physical ideas underlying the discussion here are
contained in the work of H. E. Ives [1], wherein the view is expressed
that the “out” and “back” velocities of light are in general different in
uniformly moving frames, and the Lorentz transformation is recast to
take this difference into account. The approach in this paper makes
it possible to circumvent the unnecessarily cumbersome algebra of his
formulation. Recently, in a comprehensive review of the foundations
of special relativity Grünbaum [2] has criticized the viewpoint of Ives
as being logically inadequate. However, since Grünbaum also observes
that other synchronization procedures than the usual one are logically
possible, and since an alternative synchronization procedure in general
leads to an asymmetry between out and back velocities, the approach
given here is mathematically equally valid from either the standpoint of
Ives or Grünbaum. Some valuable general remarks on the problems of
the one-way velocity of light are to be found in Bridgman [3].

As was already remarked, the mathematical technique that is em-
ployed is based on general covariance which permits one to write equa-
tions independently of the coordinate system, in contrast with special
relativity, where one is restricted to coordinate systems connected by
Lorentz transformations. However, while covariance makes it possible to
formulate equations independently of the coordinate system, the results
obtained by measurement would of course depend on these coordinates
if they had direct physical significance in terms of measuring rods and
clocks. For example, if one could construct rods and clocks that did not
exhibit the Lorentz contraction and time dilatation, one could use these
(non-physical) rods and clocks to define a Galilean coordinate system,
or set of coordinate systems, in which the velocity of light would not be
independent of the motion of the frame. The mathematical framework
of general relativity is broad enough to handle measurements made in
these arbitrary coordinate systems.

As was pointed out originally by Kretschmann [4], (see also Bridg-
man [5], Fock [6]) there is therefore a difference between the notion of
“relativity” as it is employed in general relativity where it means, from
the standpoint of general covariance, a removal of restriction on coordi-
nate systems, and the notion as it is employed in special relativity where
it entails a restriction on coordinate systems. As a consequence, from
the standpoint of general covariance alone, there is no necessity for two
uniformly moving frames to be connected by a Lorentz transformation.
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However, the “relativity” of general relativity is to be found really in an-
other equally important assumption [7], namely: in a sufficiently small
region of a frame, the propagation of light as measured by (rigid) rods
and clocks is such that it is locally describable by the line element of
special relativity and more generally, the laws of special relativity hold
locally — to a first approximation when such a line element cannot be
introduced in the large. In the case of uniformly moving frames, where
it is possible to introduce the special relativity line element in the large,
it is this assumption which then leads to the Lorentz transformation
connecting two such frames. It will be shown in what follows that this
latter assumption of general relativity is unnecessarily restrictive on the
basis of what is experimentally measured, and can be broadened to per-
mit the use of a line element in which there is an asymmetry in the
velocity of propagation of light.

Chapter 1. The Absolute Lorentz Transformation

In the absence of gravitational sources, the field equations of general
relativity reduce simply to

Rµν − 1

2
gµνR = 0 , µ, ν = 0, 1, 2, 3. (1.1)

The solutions to (1.1) with gµν constant are called “Cartesian
frames”. It is in such frames that we shall work. Since gµν is by defi-
nition a symmetric tensor, the coefficients of the quadratic form ds2 =
= gµν dx

µdxν , there are ten constants at our disposal, and with no other
assumptions, a tenfold infinity of such Cartesian frames. However, be-
cause of the symmetry of the gµν it can always be reduced by real linear
transformations to a diagonal matrix with diagonal values given by ±1,
or 0. The case with zero we exclude, since we are interested in working
with the full 1+3 dimensionality of the time and space coordinates. By
further demanding that the spatial coordinates of the reduced form sat-
isfy the Pythagorean law, the signature of the quadratic form becomes
±1,±(1, 1, 1). In order that ds2 =0, have real solutions correspond-
ing to displacements along the light cone, we finally arrive at the two
signatures, ±1,∓(1, 1, 1), one “time-like”, the other, “space-like”. For
such frames, the determinant of the metric tensor g satisfies the relation
g < 0. If we adopt the convention that ds2 should in the limit of small

velocities dxi

dx0 ≈ 0 (where i=1, 2, 3) reduce to (dx0)2, we finally arrive
at the canonical time-like metric tensor ηµν of special relativity.

However such frames are still too general, for consider a frame which
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originally had the line element

ds2 = −(dx̄0)2 + (dx̄1)2 − (dx̄2)2 − (dx̄3)2 (1.2)

by making the transformation, x̄0 →x1, x̄1 →x0, x̄2 →x2, x̄3 →x3 it
can be brought into the canonical form. Nevertheless the spatial part of
the line element originally does not satisfy the Pythagorean law. Frames
for which this requirement is not satisfied (to within a spatial coordinate
transformation) can be shown in some cases to be moving with velocities
greater than that of light. For example, the transformation of [8],

x̄1 =
x1 − vx0

√

v2 − 1
, x̄2 = x2

x̄0 =
vx1 − x0

√

v2 − 1
, x̄3 = x3



















(1.3)

also transforms (1.2) into the canonical form. Since it is not our purpose
to consider phenomena in such frames here, it is necessary to restrict
the metric tensor gµν in the following way. Solving for the time ∆x0

for a light signal to propagate through a distance ∆xi one has, setting
ds2 = gµν dx

µdxν =0,

∆x0 = − g0i
g00

∆xi ± 1

|g00|

√

(g0ig0j − gijg00)∆xi∆xj . (1.4)

The average out-and-back time for a light signal to propagate is
therefore, choosing the positive root in order to make the time delay
positive,

1

2

(

∆x0
out +∆x0

back

)

=
1

|g00|

√

γij∆xi∆xj , (1.5)

with γij ≡ g0ig0j − gijg00. Now unless γij is positive definite, there will
be directions corresponding to the choice of the ∆xi for which the delay
either vanishes or becomes imaginary. Such a situation occurs, for ex-
ample, in a frame moving faster than light. Moreover, in such a frame,
a light signal emitted say from the origin cannot be reflected back to
the origin since it cannot overtake the frame. Or again, consider the
line element,

ds2 = (dx0)2 − (dx1)2 − (dx2)2 + (dx3)2, (1.6)

for which γij is not positive definite: light cannot propagate in the
cones opening above and below the (x1, x2) plane along the x3 axis.
Since, as remarked previously we wish to remain in frames in which light
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propagates in the customary manner, freely in all directions and with
non-zero average delay, and for such frames to provide an alternative
description to that given by special relativity, we therefore impose the
requirement,

γij : positive definite

γ11 > 0 ,

∣

∣

∣

∣

∣

γ11 γ12

γ21 γ22

∣

∣

∣

∣

∣

> 0 ,

∣

∣

∣

∣

∣

∣

∣

γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

∣

∣

∣

∣

∣

∣

∣

> 0 . (1.7)

This requirement, needless to say, imposes a restriction on allowed
coordinate transformations, for example, the transformation, x0 →x1,
x1 →x0, x2 →x2, x3 →x3, is excluded. In order to arrive at the time-
like definition of ds2, it is necessary to further impose the restriction
g00 > 0; a relation which will then be preserved under all real transfor-
mations which leave γij positive definite.

By the above assumptions and restrictions we therefore arrive at a
multiplicity of frames in which light propagates in the usual manner
and such that by a real linear transformation the metric tensor may be
brought into the canonical form. Such frames we shall call “Lorentz-
reducible” frames. Because these frames are all related to one another by
linear transformations, they are easily seen to be in uniform translation
(or at rest) with respect to one another. Thus for two such frames

dxµ = bµν dx
′ν , (1.8)

where the bµν do not depend on the coordinates, then

dxi

dx0
=

bi0 +
b
i
jdx

′j

dx′0

b00 +
b
0

j dx
′j

dx′0

, i, j = 1, 2, 3. (1.9)

Hence, if a point in the primed frame is at rest dx′i

dx′0 =0, its velocity
in the unprimed frame is constant and given by

dxi

dx0
=

bi0
b00

. (1.10)

The above result holds for more general frames than Lorentz-
reducible ones (since all that is required is a linear transformation con-
necting the two frames), so that actually we are dealing with a subset
of uniformly translating frames, namely, ones travelling less than the
speed of light.
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Now it is customary to impose a further restriction on Lorentz-
reducible frames, that of special relativity, so that we exclude frames
with gµν not given by ηµν . For example, we exclude Galilean frames.
This exclusion is not demanded by anything in the structure of gen-
eral covariance, or anything we have done in the above derivation. It
is imposed by the hypothesis that all uniformly translating frames are
in every sense equivalent, and consequently there should be nothing in
the metric tensor which would imply a difference in the propagation of
light signals in one frame as distinguished from another.

But if we do not impose this relativity requirement, a variety of other
expressions are obtained for the line element, depending upon one’s
choice of coordinate system. It is our purpose to investigate to what
extent some of these alternative line elements are physically permissible,
in the sense that they do not violate experimental evidence, taking into
account the manner in which the experiments are performed.

Consider a frame with the following expression for the line element,

ds2 = g′µν dx
′µdx′ν = dt′2−2vdx′dt′−

(

1− v2
)

dx′2−dy′2−dz′2, (1.11)

where we introduce units such that c =1, also x′0 = t′, x′1 = x′, x′2 = y′,
x′3 = z′, and v is a parameter. From the customary standpoint, one
would say that this line element represents an improper choice of coor-
dinate system and that one should perform a further coordinate trans-
formation to put the metric tensor in canonical, diagonal form and the
observer in a special relativistically admissible coordinate system. But
there is more than one way to diagonalize (1.11), each with a different
physical significance.

Thus one method to diagonalize (1.11) is to make the coordinate
transformation (provided v < 1),

x′ = γ (x− vt) , y′ = y

t′ =
1

γ
t , z′ = z











(1.12)

with γ≡ 1√
1−v2

, (1.12) has the inverse

x =
1

γ
x′ + γvt′, y = y′

t = γ t′, z = z′







. (1.13)

What meaning are we to assign to the transformation (1.12)? We
interpret the meaning as follows: 1) the frame with coordinates (t′, x′,
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y′, z′), which we shall call S′, is in uniform translation with speed v in
the x-direction with respect to the frame with coordinates (t, x, y, z),
which we shall call S; 2) rods in S′ are contracted with respect to those
in S by the factor 1

γ , and clocks in S′ indicate less elapsed time than
those in S, again by the factor 1

γ .
Thus the transformation is in some respects similar to the Lorentz

transformation, but clearly the clocks have been synchronized in a dif-
ferent manner, since the time t′ in S′ only depends on the time t in S,
and not on the spatial coordinates.

Moreover, we note that unlike the case with the Lorentz transfor-
mation, a measurement of a rod at rest in S, by an observer in S′,
leads to the conclusion that the rod in S has expanded relative to a rod
at rest in S′, similarly such an observer would say that a clock in S
is going faster than a clock in S′. One does not have the paradoxical
situation of special relativity that both observers say each other’s rods
have shrunk, or each other’s clocks are moving more slowly, rather, one
has an absolute relationship. If we regard S as the fundamental frame,
then it is the rods in S′ which have contracted, so that conversely the
rods in S appear expanded with respect to the contracted rods in S′,
and similarly for clocks. Consider a third frame, S′′ in motion with
respect to S, and with speed w; clearly, we can state whether S′′ is
moving faster or slower than S′ with respect to S simply by comparing
the rates of clocks in S′′ and S′, since

t′′ = t′

√

1− w2

1− v2
. (1.14)

In other words, all uniformly moving frames S′, S′′, etc., may be
linearly ordered with respect to S in terms of a parameter v, the speed of
the moving frame relative to S, and this ordering is absolute in the sense
that observers in the two frames S′, S′′ by comparing the relative rates
of their clocks can assert which is moving faster than the other relative
to the frame S — without referring to the frame S — a situation which
is not possible in special relativity. Because of this absolute property, we
shall refer to (1.12) as the Absolute Lorentz Transformation (A.L.T.),
and S as the absolute frame.

So far we have not shown that the A.L.T. is actually physically
allowable, in the sense that it doesn’t violate experimental evidence. In
the following chapters we shall show that when measurements are made
in the customary manner this is indeed the case.

Let us now observe that instead of diagonalizing the quadratic form
by the A.L.T., one might also have chosen to diagonalize it by the
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transformation,

tL = t′ − vx′, yL = y′

xL = x′, zL = z′

}

. (1.15)

A point at rest in the primed frame is at rest in the frame SL and
conversely. Thus there is a different physical significance to the two
transformations: In the one case (A.L.T), the diagonalized frame is in
motion relative to the undiagonalized frame and in the second case,
the two frames are at rest relative to one another but there has been a
resynchronization of clocks.

Now we note that the transformation above connecting SL with S′,
when multiplied by the A.L.T., connecting S′ with S, is a Lorentz trans-
formation. Thus since the frame S′ may all be ordered with respect to S
according to the parameter v, and since to each of these frames S′ there
is a corresponding Lorentz frame SL at rest relative to S′, it follows the
Lorentz frames themselves may be ordered with respect to S. On the
other hand, it is clear that unless the observer in SL has some way of
factoring out of the Lorentz transformation the above synchronization
of clocks so as to make measurements in S′, the ordering with respect
to v is lost and one is back to the situation of special relativity.

Chapter 2. Factorization of the Lorentz Transformation

The results of diagonalization obtained above may be stated more ele-
gantly in the following way. Define the three unimodular transforma-
tions (we are using “unimodular” in the sense that the determinant is
unity),

O1 ≡











1 0 0 0

−v 1 0 0

0 0 1 0

0 0 0 1











, O2 ≡











γ−1 0 0 0

0 γ 0 0

0 0 1 0

0 0 0 1











O3 ≡











1 −v 0 0

0 1 0 0

0 0 1 0

0 0 0 1





































































(2.1)

and the column vectorsX =(t, x, y, z), X ′=(t′, x′, y′, z′), XL =(tL, xL,
yL, zL), then the A.L.T. may be written

X ′ = O2O1X (2.2)
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and the Lorentz transformation

XL = O3O2O1X. (2.3)

Thus we have a factorization of the Lorentz transformation into three
sub-transformations O1, O2, O3. Such a factorization is meaningless in
special relativity (since only transformations which leave the diagonal
form invariant are permitted), whereas it is not in general relativity
because there is the freedom of considering arbitrary coordinate trans-
formations. Thus, reading from right to left, the transformations say,

O1X : Make a Galilean transformation from the frame S to a frame
moving with velocity v in the x-direction with respect to S;

O2O1X : In the new frame, shrink the rods (that are oriented along
the x-axis) and slow down the clocks — renormalization of length
and time;

O3O2O1X : Without changing the state of motion of the frame,
resynchronize the clocks.

In addition, because the determinant of each of the transformations
is unity, they preserve the four dimensional volume element dxdydzdt
for each of the intermediate steps. Further, since O1, O2, O3 do not
commute among one another, the order in which they are performed
is significant. For example, if O2 is performed before O1, one will
pick a frame which does not have velocity v with respect to S, but
a velocity v (1− v2). It is interesting to note that O1 and O3 gener-
ate subgroups in themselves, since O2

1 (v)=O1(2v), O
−1
1 (v)=O1(−v),

O0
1 (v)=O1(0)=1, the identity, and similarly for O3, but O2 does not

have this property.
Let us now observe that in the original diagonalization of the line

element in S′, we might have proceeded by first performing the operation
O−1

2 which would have brought us without changing the state of motion
into the Galilean frame with line element

ds2 =
(

1− v2
)

dt2g − 2vdtgdxg − dx2
g − dy2g − dz2g , (2.4)

with
tg = γ t′, yg = y′

xg =
1

γ
x′, zg = z′











(2.5)

and then proceeded from the Galilean frame Sg to the rest frame S.
Note that in the Galilean frame, the velocity of light in the principal
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directions has the “classical” values,

dxg

dtg
= ± (1∓ v) ,

dyg
dtg

= ±
√

1− v2 ,
dzg
dtg

= ±
√

1− v2 , (2.6)

while in the Lorentz frame SL at rest with respect to Sg, the velocity
has the values, ±1. The values in S′ we shall discuss in detail in the
subsequent chapters.

Chapter 3. Velocity of Light and Synchronization of Clocks

under the Absolute Lorentz Transformation

The physical picture presented by A.L.T., then, is that of clocks and
rods which have experienced a change in rate and length due to their
motion relative to the absolute frame (or ether). (This was the picture
used in the era preceding special relativity.) But unlike the situation
with the usual Lorentz transformation, we have not further synchronized
the clocks in the moving frame by demanding that the velocity of light
be the same in all direction as in the absolute frame. Rather, the clocks
have been synchronized in the following way: all clocks in both the frame
S′ and S have been initially synchronized from one clock by a signal
travelling with infinite velocity in all directions; upon being synchro-
nized, the clocks keep time at their “natural” rate, the natural rate in
the moving frame S′ being slower than the natural rate in the rest frame

S. This is the physical meaning of the transformation, t′ =
√

1− v2 t. It
is not our purpose here to enquire as to how one might generate such sig-
nals, for example, by using the frames previously mentioned which were
travelling with v > 1. In a later chapter we shall examine the question
as to whether such signals violate any fundamental ideas of causality.
Consider now, measurements of the velocity of light made by observers
in S′. The relative velocity in S′ of a point travelling with constant
velocity in the x′-direction is given by, upon using the A.L.T.,

dx′

dt′
=

dx

dt
− v

1− v2
. (3.1)

So that since the velocity of light in S is 1, one obtains in the positive
and negative directions,

dx′

dt′
=

1

1 + v
, − 1

1− v
. (3.2)

A result which one obtains directly in the primed frame by setting
ds2 = g′µν dx

′µdx′ν =0, and solving for the roots. For the transverse
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direction one finds

dy′

dt′
= ±1 ,

dz′

dt′
= ±1 . (3.3)

One might feel that such results violate experience; we shall see
that this is not the case because of the way in which measurements
are made. Thus consider a measurement of the velocity of light along
the x′-axis. One sends a light signal from the origin in S′, to a point
located at positive distance ∆x′ from the origin and back again. The
time required is

∆t′out = (1 + v)∆x′

∆t′back = (1− v)∆x′

}

. (3.4)

And hence the average time, which is used in obtaining the velocity
of light is

1

2
(∆t′out +∆t′back) = 1 ·∆x′, (3.5)

so that one obtains the same value as in the unprimed frame, or the
Lorentz frame. We see that there is an exact cancellation that comes
about due to the fact that the reciprocal of the velocity or “slowness” of
the light signal is a linear function of the velocity of the primed frame.
For an arbitrary direction, corresponding to displacements, ∆x′, ∆y′,
∆z′, we have, setting ds2 =0,

∆t′ = v∆x′ +

√

∆x′2 +∆y′2 +∆z′2 . (3.6)

On the outward and return paths, ∆x′ changes sign, hence

1

2
(∆t′out +∆t′back) =

√

∆x′2 +∆y′2 +∆z′2 . (3.7)

Thus the same average value of the out and back times is obtained
in S′ as would be obtained by Lorentz observers. We note further that
it is the reciprocal of the average slowness which is obtained in a typical
out-and-back determination of the “velocity of light”.

In sending a light signal to a point ∆x′ from the origin, we see that
the delay consists of two parts: ∆x′ and v∆x′, that is, the delay one
uses in special relativity and an additional part associated with the fact
that one has synchronized the clocks with absolute signals. Since the
extra delay is constant for a given frame, depending only on the location
of the clock and the speed v of the frame, one can introduce a new time
tL, given by

tL = t′ − vx′. (3.8)
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So that the delay in sending a light signal becomes

∆tL = ∆t′ − v∆x′ = (1 + v)∆x′ − v∆x′ = 1 ·∆x′, (3.9)

the delay assigned in special relativity for the process. Indeed, on in-
troducing the expressions for the A.L.T., (3.8) reduces to

tL = γ (t− vx) , (3.10)

or the well known relativistic transformation for time. The transforma-
tion (3.8) is our previously described transformation O3. It is interest-
ing to note historically that the above transformation was first given by
Lorentz [9] using Galilean coordinates, under the title, “local time”, in
order to eliminate first order effects, so that his original transformation
was O3O1. After he discovered O2, he still gave the transformation in
the form (3.8), instead of the relativistic form. We see therefore that
the possibility of introducing the “local time” arises as a consequence of
the arbitrariness of the synchronization of separated clocks when there
are no absolute signals present. However, one might wonder whether by
considering two similar clocks, synchronized at the origin A, and then
slowly moving one of the clocks to B, ∆x′ from the origin, and then
measuring the velocity of light, one could not perhaps determine v∆x′,
and hence v. This is not possible for the following reason: In terms of
a clock located at the origin in the unprimed frame, initially coincident
with that of the primed frame, the time of the two clocks at the origin
in the primed frame is given by

t′ =
√

1− v2 t . (3.11)

Then, on slowly moving one of the clocks in the primed frame to the
point B, one has a change in rate of the clock given by

δt′ = − vδv
√

1− v2
t . (3.12)

On the other hand, the time t required to move the clock through a
distance ∆x in the absolute frame is

(v + δv) t = ∆x =
√

1− v2 ∆x′ + vt , (3.13)

or

t =

√

1− v2

δv
∆x′, (3.14)
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and hence,
δt′ = − v∆x′, (3.15)

so that there is an exact cancellation in the limit δv=0. We shall use
this result later in “deriving” the absolute Lorentz transformation.

In the above we assumed δv→ 0; for clocks moving with finite veloc-
ities, we encounter the following: Since the rate of the clock varies with
the velocity with which we move the clock, it is also necessary to know
this velocity in order to correct for this change in rate. But how can we
measure the velocity of the clock? In order to measure the velocity we
need to know the time it left the origin t′

A
which we can measure and

the time t′
B
which it arrived at the point B, which we cannot measure.

We can of course send a light signal back to the origin when the clock
arrives. But how long did it take the light signal to go from B back to
the origin? This is precisely what we were looking for originally! Thus
we arrive at the following remarkable and somewhat astonishing result:

Unless one can synchronize separated clocks absolutely, it is im-
possible to determine the one-way velocity of an object, since ve-
locity is defined non-locally and one has no way of determining
the time of arrival in terms of the time of departure.

Einstein [10], in formulating special relativity attempted to circumvent
this difficulty in the following way:

“We have not defined a common “time” for A and B, for the latter
cannot be defined at all unless we establish by definition that the
“time” required ”by light to travel from A to B equals the “time”
it requires to travel from B to A”.

Such a definition assumes more than is warranted by experiment, since
only the out-and-back propagation time of light is measured, or, if mea-
sured one-way, the motion of clocks is involved. Eddington [11] consid-
ered in detail this problem of the one-way velocity of light and attempted
to actually give a “formal proof” that the out and back velocities must
be the same. Thus he says:

“If v (θ) is the velocity of light in the direction θ, the experimental
result is

1

v (θ)
+

1

v (θ + π)
= const = C

1

v′ (θ)
+

1

v′ (θ + π)
= const = C′

(v, v′ refer to S and S′ respectively — our note) for all values of
θ. The constancy has been established to about 1 part in 1010.
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It is exceedingly unlikely that the first equation would hold
unless

v (θ) = v (θ + π) = const

and it is fairly obvious that the existence of the second equation
excludes the possibility altogether”.

We shall not attempt to discuss his “proof”, but merely point out
that these “unlikely” results are precisely what the line element associ-
ated with the A.L.T. yields. Thus as we have shown, ∆t′ = v∆x′ +

+
√

∆x′2 +∆y′2 +∆z′2, hence introducing dσ′ = dx′2 + dy′2 + dz′2,
where dσ′ is the spatial distance; one may write the above as

∆t′

∆σ′
= v cos θ′ + 1 , (3.16)

where cos θ′ = ∆x′

∆σ′
, and we see that the slowness in the direction θ′, and

θ′ + π, satisfy
∆t′

∆σ′
(θ′) +

∆t′

∆σ′
(θ′ + π) = 2 , (3.17)

for all θ′, and this result is independent of the velocity v of the frame
relative to S. The difference in slowness is given by

∆t′

∆σ′
(θ′)− ∆t′

∆σ′
(θ′ + π) = 2v cos θ′, (3.18)

which, together with (3.17) summarizes our previous results expressed
in terms of the principal directions.

Although for convenience in the above discussion we have chosen v
to lie along x, this is clearly not necessary. Thus if the velocity of S′

with respect to absolute frame S has components vi, the line element
in S′ becomes

ds2 = g′µν dx
′µdx′ν = dt′2 − 2vidx

′idt′− dx′idx′j + vivj dx
′idx′j . (3.19)

upon replacing the local time dtL by dt′ − vidx
′i in the Lorentz line

element for the corresponding Lorentz frame. Setting ds2 =0, the time
∆t′, for light to traverse ∆x′i is

∆t′ = vi∆x′i +∆σ′, (3.20)

which may be written in the form (3.16) and the above results hold pari

passu. To avoid confusion it should be noted that the notation “vi”
is not meant in a covariant sense, but as a simplified way of writing
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quantities which are, mathematically, components of the various coor-
dinate transformations relating SL, S

′, S. Thus since S is connected
with S′ via dxµ = āµνdx

′ν , and since the vi are defined as the velocity of

S′, one has vi =
dxi

dx0
=

āi
0

ā0
0

, since ā0
i =0. Also writing dxµ

L = lµνdx
′ν , one

has vi =− l0i . Finally, from (3.19) it follows g′0i=−vi and we shall also
see g′0i =−vi.

Chapter 4. Derivation and Generalization of the Absolute Lo-

rentz Transformation

In the preceding, some of the consequences of the A.L.T. have been
examined. Let us now reverse the procedure and undertake to see what
postulates are necessary in the framework of general covariance to derive
the transformation.

We assume that there exists an absolute (or ether) frame S, and
in this frame the propagation of light is governed by (assuming that
Rµν − 1

2
gµνR=0)

ds2 = dt2 − dx2 − dy2 − dz2 = 0 , (4.1)

so that the time for light to go from A to B is the same as the time from
B to A, the “time” being measured by clocks at rest in the absolute
frame and synchronized with absolute signals. Such an expression is
taken to hold irrespective of the state of motion of the source of the
light , an assumption wherein general relativity, special relativity, and
the ether theories of light all agree.

We now consider a frame S′, with coordinates t′, x′, y′, z′ in uniform
motion with speed v in the positive x-direction as measured in S, and
look for a linear transformation of the form,

t′ = g0 (v) t , y′ = g2 (v) y

x′ = g1 (v)(x − vt) , z′ = g3 (v) z

}

. (4.2)

The physical interpretation of this transformation is that the rods
and clocks in S′ have changed their length and rate with respect to
those in S, but that the synchronization of clocks in S′ with those in
S has been without delay. Under the above transformation, the line
element becomes

ds2 =

(

1− v2
)

g20
(dt′)

2 − 2v

g0 g1
dt′dx′ −

− 1

g21
(dx′)

2 − 1

g22
(dy′)

2 − 1

g23
(dz′)

2
. (4.3)
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If we demand that the average slowness (or equivalently, the out-
and-back velocity) be the same in all directions — as experiments so far
have indicated — we arrive at

g0
g1

γ2 = n(v) ,
g0
g2

γ = n(v) ,
g0
g3

γ = n(v) , (4.4)

where n(v) represents the average slowness in S′ and is a positive quan-
tity. It should be remarked that nothing in the above derivation requires
that n(v) be unity.

Let us now require that for a slowly moved clock, the shift in set-
ting on being moved from A to B be just such as to compensate the
extra delay experienced by light in travelling from A to B, so that a
one-way measurement of the velocity of light will give n(v). For a dis-
placement in the positive x′ direction by amount ∆x′, this extra delay
is given by

[

g0
g1

1

1− v
− n(v)

]

∆x′. (4.5)

Then by the same argument as in the previous Chapter we are led
to the differential equation,

g0
g1

1

1− v
− n(v) +

1

g1

dg0
dv

= 0 , (4.6)

which becomes, upon substitution from (4.4),

1

g0

dg0
dv

= − v

1− v2
(4.7)

and hence since g0 (0)=1, because the clock rates are the same when
S′ is at rest relative to S,

g0 (v) =
√

1− v2 . (4.8)

The same result would have been obtained had the clock been moved
in the negative x′ direction. For motion in the transverse direction,
the change in setting is zero, since δg0(v)=− 1√

1− v2
vy δvy =0, since

vy =0. It is therefore necessary and sufficient that g0(v)=
√

1− v2 in
order that a clock slowly moved in any direction, yield n(v) for a one-
way determination of the velocity of light. Using this value for g0(v)
one finds,

g1(v) = γn(v)−1

g2(v) = g3(v) = n(v)−1

}

. (4.9)
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Thus we are led to a transformation of the form

t′ =
1

γ
t , y′ = n(v)−1y

x′ = γn(v)−1 (x− vt) , z′ = n(v)−1z







, (4.10)

which we shall refer to as the generalized A.L.T. Under this transfor-
mation, the line element becomes,

ds2 = dt′2 − 2vdx′dt′n(v)−
−n(v)2

(

1− v2
)

dx′2 − n(v)2dy′2 − n(v)2dz′2. (4.11)

If one now assumes that in S′, the average slowness must be the same
as in S, one has n(v)= 1, and the A.L.T. is derived. More generally, if
one obtains the same contraction of rods independently of whether the
frame was moved in the positive or negative x direction, corresponding
to setting v→−v, n(v)=n(−v). Further, for v=0 , since the frames
coincide, n(0)= 1.

One can proceed to define a local time tL for the generalized trans-
formation (4.10) in the same way as for the A.L.T. Thus set,

tL = t′ − n(v)vx′ (4.12)

so that,
∆tL = ∆t′ − n(v)v∆x′ (4.13)

and since the slowness of light from (4.10) is, for the positive and neg-
ative x′ directions,

∆t′

∆x′
= n(v) (1 + v) , −n(v) (1− v) , (4.14)

it follows
∆tL = n(v)∆x′ (4.15)

which is the delay desired. One therefore arrives at the transformation
connecting tL with the absolute frame,

tL = γ (t− vx) (4.16)

so that the local time does not actually depend on n(v). Using tL, the
line element (4.11) becomes

ds2 = dt2
L
− n(v)2

(

dx′2 + dy′2 + dz′2
)

. (4.17)

It follows from the derivation of (4.10) and (4.17) that if n(v) were
not strictly independent of v, it still would not be possible to determine
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v by non-absolute measurements of the velocity of light in S′ alone. For
example, a Michelson-Morley type of experiment in a uniformly moving
frame can only lead one to conclude the relations (4.4) when combined
with the assumption that the velocity of light is independent of the
source.

On the other hand, since for the Earth, v varies as a function of
time, an experiment with an interferometer having unequal arms, such
as the one of Kennedy-Thorndike [12], would show a periodic shift in the
fringe system from one time of the year to the next. Thus with unequal
interferometer arms ∆x′, ∆y′, the difference of the average times in the
two directions is

∆T ′ = n(v) (∆x′ −∆y′) (4.18)

and hence,

δ∆T ′ = 2

(

dn

dv2

)

vδv (∆x′ −∆y′) . (4.19)

The rotational and orbital motion of the Earth will give rise to pe-
riodicities in the term vδv causing a displacement in the fringe system
proportional to dn

dv2
. In the theory of their experiment, Kennedy and

Thorndike did not consider the possibility that n(v) was not unity and
so regarded their measurements in terms of checking the time dilatation,
∆t′ = 1

γ ∆t and interpreted their data correspondingly. Thus assuming
only the Lorentz contraction and independence of the velocity of light
on the source, they showed one is led to an expression of the form,

∆T = γ (∆x′ −∆y′) ≈
(

1 +
1

2
v2
)

(∆x′ −∆y′) (4.20)

which can be obtained from (4.18) by setting n(v)=1 and ∆T ′= 1
γ ∆T .

Hence as v varies,

δ∆T = vδv (∆x′ −∆y′) . (4.21)

However, if in fact ∆t′ = 1
γ ∆t, as experiments for example with

meson lifetimes indicate, there is still an effect to be expected unless
dn
dv2

=0, as derived above. Interpreting their data from this standpoint,
the values they quote for an absolute velocity are to be regarded as
being the quantity 2v dn

dv2
. They found from an analysis of the diur-

nal periodicities in the fringe system, 2v dn
dv2

=24± 19 km/sec and for

the annual periodicities 2v dn
dv2

=15± 4 km/sec. They concluded that
because these velocities were so small compared to the velocities of
thousands of kilometers per second known to exist among the nebulae,



64 The Abraham Zelmanov Journal — Vol. 2, 2009

and since moreover the directions of the two velocities differed by 123◦,
their experiment was to be interpreted as yielding a null result. How-
ever the results could mean merely dn

dv2
is small. Since in this paper we

are primarily interested in showing that the A.L.T. and the associated
line element contain the results of special relativity because of the way
in which measurements are made, we shall assume that dn

dv2
=0. Under

these circumstances, n(v)= 1 and (4.10) reduces to the A.L.T.
Alternatively, in deriving the A.L.T. we could have proceeded in the

following manner: after requiring that the average slowness be inde-
pendent of direction (which led to equation 4.4), we could have further
demanded that it also be independent of the absolute velocity of the
frame. Under these circumstances, n(v)= 1, and (4.4) becomes

g1 =
g0

1− v2
, g2 = g3 =

g0
√

1− v2
. (4.22)

The corresponding transformation is

t′ = g0 t , y′ = g0γ y

x′ = g0γ
2 (x− vt) , z′ = g0 γ z

}

(4.23)

for which the line element takes the form,

ds2 =
1

(γ g0)
2

(

dt′2 − 2vdt′dx′ −
(

1− v2
)

dx′2 − dy′2 − dz′2
)

. (4.24)

For a line element of this form it is clear that no effect is to be
expected in either the Michelson-Morley or Kennedy-Thorndike exper-
iment. If one now makes the assumption that the one-way velocity as
determined by slowly moved clocks is the same as that yielded by the
out-and-back methods, then (4.6) reduces to

1

g0

dg0
dv

= − v

1− v2
, (4.25)

and once again g0 =
1
γ .

Thus we see, in summary, that the A.L.T. follows uniquely as a
consequence of the following postulates:

1. There exists a frame S in which light propagates with a constant
velocity, the same in all directions, independently of the motion
of the source;

2. In a coordinate frame S′, in uniform translation with respect to S,
the out-and-back travel time for light is independent of direction,
and the velocity of S′ with respect to S;
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3. The one-way velocity of light as measured with clocks that have
been synchronized together and then slowly separated is the same
as the value yielded by the out-and-back technique.

In addition, we have employed a synchronization procedure based
on the hypothetical “absolute” or “instantaneous” signal, in contrast
with the usual relativistic approach based on establishing, by definition,
the equality of the out and back times for the propagation of a light
signal.

A similar approach to the one above for obtaining the line element in
the moving frame has been given by Robertson [13]. However, because
he employs the relativistic synchronization procedure before using ex-
periment to restrict the coefficients in the metric of the moving frame,
his derivation leads to the ordinary Lorentz transformation and the
metric ηµν , rather than the A.L.T.

Let us now observe that in the above derivation of the A.L.T.,
nowhere was the assumption made that ds is the proper time, but
merely that ds2 =0 represents the propagation of light. But now set-

ting dxi

dt
= vi in the line element viewed in the absolute frame, ds2 =

=
(

1− v2
)

dt2, so that for a clock at rest in S′, since dt′2 =
(

1− v2
)

dt2,
one has ds2 = dt′2. Thus the assumption about the property of slowly
moved clocks which yielded g0 =

1
γ , is equivalent to demanding

ds2 = dt′2 for a clock at rest in S′, as indeed an examination of the
line element (4.3) indicates.

Chapter 5. Velocity of Light in a Moving Refractive Medium

and Further Applications Involving Relative Vel-

ocity

So far our discussions have pertained only to the velocity of light in the
vacuum, and we have seen that in S′ the relative velocity of light is dif-
ferent in different directions but unobservable with present techniques
so that one cannot measure the velocity v of S′. The questions arise
as to whether such a velocity v might be detectable by a) causing the
light to pass through a refractive medium at rest in S′ and determining
whether the out-and-back time is a function of v, b) comparing the
time it takes light to travel a distance ∆x′ in the refractive medium
to the time it takes to travel the same distance in the vacuum and
seeing whether this time difference, varies with v. But we know by,
experiment (at least to the approximation n(v) is unity mentioned in
the preceding chapter) that there are no effects of the kind a) and b).
The problem is therefore to write down a line element for the propaga-
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tion of light in a refractive medium at rest in S′ which exhibits these
properties.

Consider the line element,

ds2 = dt′2 − 2vdx′dt′ −
(

n2 − v2
)

dx′2 − n2dy′2 − n2dz′2, (5.1)

which reduces to the vacuum A.L.T. line element for n=1, where n
is the index of refraction when the refractive medium is at rest in S,
the absolute frame (the index of refraction n used here should not be
confused with n(v) used in the preceding chapter, although they are
somewhat similar in character). The line element (5.1) has the property
that under the local time transformation, tL = t′ − vx′, it goes into the
form

ds2 = dt2
L
− n2

(

dx′2 + dy′2 + dz′2
)

, (5.2)

which, upon setting ds2 =0, yields the same slowness for light in all

directions, ∆tL =n∆σ′, where ∆σ′ is as before
√

∆x′2 +∆y′2 +∆z′2

and thus (5.1) predicts the results of special relativity.
Setting ds2 =0 in (5.1) one finds

∆t′ = v∆x′ + n∆σ , (5.3)

and hence the average out-and-back time is

1

2
(∆t′out +∆t′back) = n∆σ (5.4)

so that there are no effects of the kind mentioned in a). The slowness

of light in the direction θ′, with cos θ′ = ∆x′

∆σ′
is,

∆t′

∆σ′
= n+ v cos θ′. (5.5)

On the other hand, for a comparison stretch in the vacuum, as was
shown previously,

(

∆t′

∆σ′

)

VAC
=1+ v cos θ′. Hence the time difference per

distance ∆σ′ is

∆t′

∆σ′
−
(

∆t′

∆σ′

)

VAC

= n− 1 (5.6)

and so there are no effects of the kind mentioned in b).
Let us now enquire as to what the velocity of light through the

refractive medium at rest in S′ appears to be as measured in the absolute
frame. For simplicity we consider the light to be moving in the positive
x′ direction. Then using the formula for the relative velocity given by
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the A.L.T., namely, dx′

dt′
= dx/dt−v

1−v2
, we have

dx

dt
=
(

1− v2
) dx′

dt′
+ v (5.7)

and hence since dx′

dt′
= 1

n+v
from (5.5), it follows

dx

dt
=

1
n + v

1 + 1
n v

, (5.8)

so that we have the same result as that prescribed by special relativity,
but without requiring the slowness of light in the refractive medium in
S′ to be n.

In the above, for simplicity, we considered only two frames S′ and
S, but suppose, as in the Fizeau experiment, the refractive medium is
in motion relative to the terrestrial frame, which in turn is in motion
relative to the absolute frame, what value do we obtain for the refractive
index in the terrestrial frame as a function of the relative velocity of the
refractive medium? Let the moving refractive medium have velocity v2
in the positive x direction relative to the absolute frame, and the Earth
frame a velocity v1, then the relative velocity u1, of the light in the
refractive medium with respect to the Earth frame is

u1 =

(

1
n + v2

1 + 1
n v2

− v1

)

1

1− v21
, (5.9)

and the slowness 1
u1
. Now in order to measure this slowness one has

to know, as remarked previously, the time ∆t′ to traverse a distance
∆x′ which one has no way of measuring without absolute signals. If
we employ the special relativistic convention that light travels with unit
speed in a comparison vacuum stretch ∆x′, we are actually assigning a
slowness 1

u1
− v1, to the light in the refractive medium, hence a velocity

given by u1

1−u1v1
. A simple calculation yields

u1

1− u1v1
=

1
n + vr

1 + 1
n vr

, with vr =
v2 − v1
1− v2v1

, (5.10)

which is again the relativistic result. On the other hand, measurements
made with absolute signals in the Earth frame would give the value
u1. Clearly if v1 =0, u1

1−u1v1
reduces to u1 so that the relative veloc-

ity with respect to the absolute frame is the same for observers using
the A.L.T. or special relativity, since under these circumstances both
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observers agree that the slowness of light is unity. In order to avoid
confusion with the various “relative velocities” that we encounter it will
be convenient to use the following terminology:

“Galilean relative velocity”:
dxg

dtg
=

dx

dt
− v

“A.L.T. relative velocity”:
dx′

dt′
=

dx
dt

− v

1− v2

“relativistic relative velocity”:
dxL

dtL
=

dx
dt

− v

1− dx
dt

v







































(5.11)

and for the quantity dx/dt, the “velocity relative to the absolute frame”
or simply, “absolute velocity”.

Another example illustrative of calculating with the A.L.T. is the
following: consider twin observers, initially at rest at the origin in the
primed frame, and let them be moved with equal and opposite velocities
in the positive and negative x′ direction, by equal amounts ∆x′; do they
have the same age upon arriving at their respective destinations? In
special relativity the answer is clearly, yes; however, one might wonder
whether the same would be true in the conceptual framework presented
here, since the twin that went in the positive x′ direction will have a
larger velocity relative to the absolute frame than the twin that went in
the negative x′ direction (except as discussed below) and hence the rate
of ageing of the former is greater than the rate of ageing of the latter
— and in an absolute sense. However, the key to the discrepancy in
the two results lies in the phrase, “equal and opposite velocities”. As
discussed before, we have with current techniques no way of measuring
their velocities; on the other hand, special relativity states that the two
twins had equal and opposite velocities, if upon arrival, they each sent
back light signals which arrived at the origin simultaneously. Let us
calculate with this requirement in the framework of the A.L.T. and see
what result is obtained.

If the twins have A.L.T. relative velocities u−, u+ to the left and
right respectively, the total time elapsed after they have left the origin
and the two light signals return is

(

1

u−

+ 1 + v

)

∆x′ =

(

1

u+

+ 1− v

)

∆x′, (5.12)

since the two signals are required to arrive simultaneously, and the slow-
ness of light is 1+ v in the positive direction and 1− v in the negative
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direction. Hence, 1
u−

+ v= 1
u+

− v. Now the twin that went to the right,

required a time ∆t′ in the primed frame given by ∆t′ = 1
u+

∆x′, which

in the absolute frame meant a time ∆t= 1
u+

∆x′γ. Hence a clock at rest

with the twin indicated a time

∆t′′+ = ∆t

√

1− (v+

2 )
2 =

1

u+

∆x′ γ

√

1− (v+

2 )
2 , (5.13)

where v+

2 is the absolute velocity of the twin that went to the right. From

the relation, u+ =
v+
2 −v

1−v2
, one has v+

2 = u+(1− v2) + v and inserting this

in (5.13) and simplifying, there results,

∆t′′
+
= ∆x′

√

(

1

u+

− v

)2

− 1 , (5.14)

and similarly for the twin that went to the left,

∆t′′
−
= ∆x′

√

(

1

u−

+ v

)2

− 1 . (5.15)

Hence, since 1
u−

+ v= 1
u+

− v, the two ages are the same. Moreover we

note 1
u+

− v, 1
u−

− v are nothing but the expressions for the reciprocal

of the relativistic relative velocities, namely,

1

u+

− v =
1− v2

v+

2 − v
− v =

1− v+

2 v

v+

2 − v
≡ 1

v+
r
, (5.16)

also, remembering 1
u−

is treated as a magnitude above,

1

u−

+ v =
1− v2

v − v−

2

+ v =
1− v−

2 v

v − v−

2

≡ 1

|v−

r |
, (5.17)

so that, as one would calculate relativistically,

∆t′′
±
=

∆x′

v±

r

√

1− (v±

r )
2
, (5.18)

where we can omit the absolute magnitude sign of v−

r treating ∆x′ as
negative for motion to the left.

From the above we see that since 1
u+

= 1
u−

+2v, the twin that went

to the right actually had less A.L.T. relative velocity than the twin
that went to the left. So that an observer using absolute signals would
not agree with a relativistic observer that the twins had arrived “si-
multaneously” at their (respective destinations. Had we therefore made
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u+ = u−, their ages upon arrival would have been different, as may be
seen from (5.14) and (5.15) and indeed, as was surmised initially, the
twin that went to the right would have been younger when he arrived
than-the twin that went to the left.

It should be noted that in the theory presented here there is no twin
paradox of the kind in special relativity, since time can be measured in
an absolute sense. For a “twin” moved to the right from the origin in
S′, the rate of ageing is less than a twin at the origin.

When the twin returns (provided of course he doesn’t return so
swiftly that his absolute velocity is greater than v) his rate of ageing is
greater than the twin at the origin. But the total ageing for the journey
is always less than that for the twin who remained at the origin. Thus
the out-and-back time ∆t̄′ measured by a twin at the origin is,

∆t̄′ =
1

u+

∆x′ +
1

u−

∆x′ (5.19)

and the total ageing of the twin that travelled out and back is,

∆t̄′′ = ∆x′

√

(

1

u+

− v

)2

− 1 + ∆x′

√

(

1

u−

+ v

)2

− 1 (5.20)

and using the relations, 1
v+
r
= 1

u+
− v, 1

|v−
r |

= 1
u−

+ v, one has

∆t̄′

∆x′
=

1

v+
r
+

1

|v−

r |
(5.21)

and
∆t̄′′

∆x′
=

1

v+
r

√

1− (v+
r )

2
+

1

|v−

r |

√

1− (v−

r )
2

(5.22)

and since all quantities are positive, one always has,

∆t̄′

∆x′
>

∆t̄′′

∆x′
(5.23)

a result which is expected from simpler considerations using special
relativity. On the other hand, the following result is meaningless in
special relativity.

Let there be two pairs of identical clocks in S′, one pair at A, call
them a1, and a2, and the other pair at B, call them b1, and b2. And
let B be at a positive distance ∆x′ from A. Let both sets of clocks be
synchronized with absolute signals at some time t′ =0 and then permit-
ted to run at their natural rates. Now let a2 be moved to the right to
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B, and let b2 be moved to the left to A. Then the above considerations
show that while the time indicated by a2 when it arrives at B will al-
ways be less than the time indicated by b1, the time indicated by clock
b2 when it arrives at A will be greater than, equal to, or less than the
time indicated by a1, according to the following scheme,

tb2 > ta1 :

∣

∣

∣

∣

−2v

1− v2

∣

∣

∣

∣

> u− > 0

tb2 = ta1 :

∣

∣

∣

∣

−2v

1− v2

∣

∣

∣

∣

= u−

tb2 < ta1 :

∣

∣

∣

∣

−2v

1− v2

∣

∣

∣

∣

< u−



































. (5.24)

Since the elapsed time read by a1 is 1
u−

∆x′ and the time by b2 is
1
u−

∆x′γ
√

1− v22 , where v2, is the absolute velocity of b2 corresponding

to u−, u−=
∣

∣

(v2−v)

1−v2

∣

∣, and their ratio is γ
√

1− v22 which by the above

scheme may be adjusted to be equal to, or less than unity.
The relation between u− and v−

r which was found in the preceding
by essentially a physical argument follows quite simply from the local
time transformation: tL = t′ − vx′, xi

L
=x′i, since this may be written,

upon using ∆σL =∆σ′,

∆tL
∆σL

=
∆t′

∆σ′
− v cos θ′, (5.25)

and hence for θ′ =0, 1
vr

= 1
u − v. If we take ∆tL

∆σL
=1, we obtain the ex-

pression, for the slowness of light found in (3.16), ∆t′

∆σ′
=1+ v cos θ′.

Chapter 6. Measurements with Signals Travelling with Finite

Velocities

As has been shown, it is possible to determine the asymmetries in the
propagation of light in S′ using absolute signals, but can one measure
such asymmetries with signals travelling with merely finite velocities
greater than that of light? Before determining the answer to this ques-
tion, let us note it is possible to define operationally such superlight (or
“supervidic”) signals without any assumptions about the synchroniza-
tion of separated clocks. Let there be two similar clocks in S′, one at
the origin A, and the other ∆x′ from the origin at B. Let a light signal
and the signal in question be sent out simultaneously from A, and let
their respective times of arrival, t′1 and t′2 be measured at B. Then if
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t′2 − t′1 > 0, the signal in question traveled more slowly than light, and
if the time difference is negative, t′2 − t′1 < 0, the signal traveled faster
than light and was a superlight signal. Note that there is nothing in
the above definition about the magnitudes of the velocities, but rather
a statement about their ordering as to magnitude.

Consider a set of such superlight signals, arriving at B at times t′2,
t′3, etc., each travelling faster than the other, then

|t′2 − t′1| < |t′3 − t′1| < · · · < |t′m − t′1| . (6.1)

The upper bound of this sequence defines the absolute signal. More-
over there exists such a bound, since the absolute (and largest) delay
for light is (1+ v)∆x′ in the positive x′-direction, hence |t′m − t′1| 6
6 (1+ v)∆x′, the equality sign holding for the absolute signal.

Let us now suppose we wish to determine the velocity of the frame S′

(say the Earth frame) with respect to the frame S; can this be done with
a superlight signaling apparatus? In order to make such a measurement
one would do the following: Compare the difference in times of arrival of
the light signal and the superlight signal from A to B with the difference
in times of arrival from B to A. Thus

(

1 + v − 1

u+

)

∆x′ = ∆t′
+

(

1− v − 1

u−

)

∆x′ = ∆t′
−



















, (6.2)

where u+, u− represent the magnitudes of the A.L.T. relative velocities
of the superlight signals in the positive and negative directions. It will
be seen one has two equations in three unknowns so that in general
there is no solution. However for special cases there are solutions, the
simplest situation being 1

u+
, 1
u−

≪ v so that effectively we are dealing

with absolute signals. Or again, if one discovers by experiment that the
velocity of the super-light signal is independent of the velocity of the
source (as is the case for light signals) and given by w> 1, then

u+ =
w − v

1− v2
, u− =

|−w − v|
1− v2

, (6.3)

and one has two equations in two unknowns. For the time differences
one finds

∆t′+ −∆t′
−
= 2v

(

w2 − 1

w2 − v2

)

∆x′, (6.4)
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and for the sum,

∆t′+ +∆t′
−

= 2

(

1− w
1− v2

w2 − v2

)

∆x′, (6.5)

from which one can determine w and v.
One can for such a signal, formally define a line element ds in the

absolute frame given by

ds̄2 = dt2 − 1

w2

(

dx2 + dy2 + dz2
)

, (6.6)

which under the A.L.T. becomes in S′,

ds̄2 =
1

w2

[

w2−v2

1−v2
(dt′)2−2vdx′dt′−

(

1−v2
)

dx′2−dy′2−dz′2
]

, (6.7)

and hence setting ds̄2 =0, the time ∆t′ for such signals to traverse ∆x′,
∆y′, ∆z′ is

∆t′ =
v
(

1− v2
)

∆x′

w2 − v2
±

± 1− v2

|w2 − v2|

√

w2 (∆x′)
2
+

w2 − v2

1− v2
(∆y′2 +∆z′2) . (6.8)

Although the above results were derived assuming w> 1, it is inter-
esting to note that they also hold if w< 1, except that under these cir-
cumstances the slower-than-light signal cannot propagate in certain di-
rections in the primed frame if w<v, namely those directions for which

w2 (∆x′)
2
+

w2 − v2

1− v2

[

(∆y′)
2
+ (∆z′)

2
]

< 0 , ∆t′ < 0 (6.9)

since in these directions the delay in sending such a signal is neither real
nor positive. The signals are therefore confined to a cone opening in the
negative x′ direction. On the other hand when w>v, all directions are
allowed.

Using these slower-than-light signals it would also be possible to
detect the absolute motion of the Earth as with superlight signals for
which w is constant, employing (6.4) and (6.5) if w>v, and if w<v,
measuring the slope of the cone of preferred directions and ∆t′

−
above

— from which it is possible to obtain v and w by a simple calculation. It
is interesting to note that if w is zero, the cone shrinks to a line. Physi-
cally, this “signal” consists in the identification of a point in the absolute
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frame which then in S′ moves rearward with velocity −v
1−v2 . Compar-

ing the delay of such a “signal” with a light signal we find using (6.2)
∆t′

−
=
(

1
v − 1

)

∆x′ and hence v can be found in this case as well.
Thus we see that a sufficient condition for it to be possible to detect

the absolute motion of a frame S′ is that there be at least one other
signal propagating with constant absolute velocity w in the vacuum,
with w 6= 1.

Chapter 7. Dynamics of a Free Particle

§7.1. Energy-momentum relations in an A.L.T. frame

As was remarked in the Introduction, a fundamental distinction between
special relativity and general relativity (from the standpoint of general
covariance) is that “invariance” in the former implies a restriction, on
coordinate transformations, whereas invariance in the latter is really a
tautology. Given any contravariant vector V µ, and its covariant vector
Vµ = gµνV

ν , the statement,

VµV
µ = “an invariant” (7.1)

is true independently of what coordinate transformation is made; it is
a tautology of general covariance. On the other hand, the statement,

V 0V 0 − V iV i = “an invariant” (7.2)

is in general not true except for certain transformations, the Lorentz
transformations, so that it is a “conditional” invariance relation. This
relation in special relativity leads to the result, p0

L
p0

L
− pi

L
pi

L
=m2, where

pµL are the momenta in a Lorentz frame. Let us now seek to find the
analogous conditional invariance relation when the A.L.T. is employed,
and finally, for further comparison, the relation when the Galilean trans-
formation is employed.

Let a particle of mass m, be moving with absolute velocities, ẋ, ẏ, ż,
the equations of motion are obtained from the variational principle,

δ

∫

mds = 0 , ds =
√

ηµν dxµdxν . (7.3)

In the primed frame S′, under the A.L.T., the variational principle
becomes

δ

∫

m
√

g′µν dx
′µdx′ν =

= δ

∫

m
√

1− 2vux − (1− v2)u2
x − u2

y − u2
z dt′ = 0 , (7.4)
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when t′ is taken as parameter, and where ux=
dx′

dt′
, uy =

dy′

dt′
, uz =

dz′

dt′
.

The Lagrangian is therefore,

L = m
√

1− 2vux − (1− v2) u2
x − u2

y − u2
z . (7.5)

The covariant momenta are,

p′x =
∂L

∂ux
= −mΓ

[

v +
(

1− v2
)

ux

]

, p′y = −mΓuy

p′0 = −ui
∂L

∂ui
+ L = mΓ (1− uxv) , p′z = −mΓuz

Γ =
m

L
=

1
√

1− 2vux − (1− v2)u2
x − u2

y − u2
z











































. (7.6)

Alternatively, the expression for p′0 is more generally obtainable us-

ing p′0 =
∂L
∂u0

, where u0 =
dt′

ds
, and after differentiation, setting dt′

ds
=1,

if t′ is taken as parameter. The contravariant metric tensor g′µν is
obtained from inverting g′µν is given by

‖g′µν‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1− v2 −v 0 0

−v −1 0 0

0 0 −1 0

0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (7.7)

If the velocity of the frame S′ were not along the x axis but in an
arbitrary direction vx, vy, vz, g

′µν is obtained from inverting the tensor
given in (3.19) and is

‖g′µν‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1− v2 −vx −vy −vz

−vx −1 0 0

−vy 0 −1 0

−vz 0 0 −1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (7.8)

For simplicity we shall continue to restrict our discussion, to motion
of S′ along the x-axis.

The contravariant momenta are then obtained from (7.6) and (7.7),

p′x = g′x0p′0 + g′xxp′x = mΓux , p′y = mΓuy

p′0 = g′0xp′x + g′00p′0 = mΓ , p′z = mΓuz

}

. (7.9)
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In order to obtain the momenta in the unprimed frame, it is the con-
travariant quantities above which are to be transformed via the A.L.T.,
hence as is the case with the coordinates

px =
1

γ
p′x + γ vp′0, py = p′y

p0 = γ p′0, pz = p′z











. (7.10)

Using the transformation properties of the absolute relative veloci-
ties,

ux = (ẋ− v) γ2, uy = γ ẏ , uz = γ ż , (7.11)

one can rewrite Γ as

Γ =
γ̄

γ
, γ̄ ≡ 1

√

1− ẋ2 − ẏ2 − ż2
. (7.12)

Substituting this expression for Γ, together with the expressions for
the velocities (7.11) and the momenta (7.10) into the transformation
yields

p0 = mγ̄ , px = mγ̄ ẋ, py = mγ̄ ẏ , pz = mγ̄ ż (7.13)

as would have been obtained using the ordinary Lorentz transforma-
tion, or as we shall now show, any transformation. The line element,

ds=
√

ηµν dxµdxν =
√

ηµν
dxµ

dτ
dxν

dτ
dτ , where τ is an arbitrary parameter,

under the transformation, dxµ = bµν dx
′ν , becomes

ds =
√

ηµν b
µ
λb

ν
ρdx

′λdx′ρ =

√

ηµν b
µ
λb

ν
ρ

dx′λ

dτ

dx′ρ

dτ
dτ ′, (7.14)

where τ ′ is another arbitrary parameter. The momenta (per unit mass)
are

p′ρ = ηµν b
µ
λb

ν
ρ Γ

dx′λ

dτ ′
, p′ρ = Γ

dx′ρ

dτ ′
, Γ ≡ dτ ′

ds
. (7.15)

The coordinate transformation may be written,

dxµ

ds
= bµν

dx′ν

ds
= bµν

dx′ν

dτ ′
dτ ′

ds
(7.16)

and if in the unprimed frame dτ
ds

≡ γ̄,

γ̄
dxµ

dτ
= bµν Γ

dx′ν

dτ ′
, (7.17)

which is the desired result when dτ = dx0 ≡ dt, dτ ′ = dx′0 ≡ dt′.
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Let us now observe that in the primed frame, the following relation-
ship holds:

(p′0)
2 − (p′x)

2 − (p′y)
2 − (p′z)

2
= m2. (7.18)

That is, the covariant energy and the contravariant spatial momenta
satisfy the usual relativistic energy-momentum relationship for a free
particle of mass m. Since this invariance relation, does not depend
upon v, the absolute velocity of the frame, it is true in all uniformly
moving frames for which the A.L.T. holds. It is the conditional in-
variance relation for which we were seeking that is the analog of (7.2).
Moreover one finds after some manipulation that,

p′x = mγr vrx , p′y = mγr vry

p′0 = mγr , p′z = mγr vrz

}

(7.19)

with γr ≡ 1
√

1−(vrx)
2−(vry)

2−(vrz)
2
, and

vrx =
ẋ− v

1− vẋ
=

1
1
ux

− v

vry =

√

1− v2

1− vẋ
ẏ =

uy

1− uxv

vrz =

√

1− v2

1− vẋ
ż =

uz

1− uxv







































. (7.20)

Thus p′0, p
′i are to be identified with their relativistic counterparts,

p0
L
, pi

L
based on using the ordinary Lorentz transformation. This re-

sult may be made more transparent by noting that the transformation
connecting p′0, p

′i to the absolute frame is the Lorentz transformation.
Thus, as may be shown,

p′0 = p′0 − vp′x (7.21)

(which follows most easily from recognizing dt= dt′ − vdx′ and making
the appropriate identification — alternatively, from suitably reshuffling
the terms in the line element or more formally, using p′0 = g′0µp

′µ), and
hence substituting for p′0 in the transformation (7.10), there results,

px = (p′x + vp′0) γ , py = p′y

p0 = (p′0 + vp′x) γ , pz = p′z

}

. (7.22)

The fact that the (p′0, p
′i) are to be identified with what are called

the energy and momentum in special relativity, provides us therefore
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with a very simple way of transcribing the dynamical laws of one theory
in terms of the other, and moreover, as we have been showing, when
measurements are made in certain ways, they are the same laws.

Let us now enquire as to the physical meaning of the momenta com-
plementary to the above, p′0, p′i. On using the relations, Γ= γ̄

γ , ẋ=

=(1− v2)ux + v etc., we find,

p′x = −mẋ
γ̄

γ
, p′y = −mẏ γ̄

p′0 = m
γ̄

γ
, p′x = −mż γ̄















(7.23)

so that apart from the time dilatation factor 1
γ , these quantities are

nothing but the covariant momenta pµ as measured in the absolute
frame. They are therefore “unobservables” unless measurements are
made with absolute signals or the equivalent. Note the square of these
momenta satisfy,

γ2
[

(

p′0
)2 −

(

p′x
)2
]

−
(

p′y
)2 −

(

p′z
)2

= m2, (7.24)

which contains explicit reference to the absolute velocity of the frame
and is therefore not an invariance relation.

These complementary momenta do not have the same kind of re-
flection properties that are possessed by the (p′0, p

′i). Thus consider a
particle moving in S′ along the x′ axis, upon colliding elastically with
a sufficiently heavy object, the quantities p′0, p

′x satisfy (the subscripts
i and f denoting initial and final states)

(p′0)f = (p′0)i , (p′x)f = − (p′x)i (7.25)

the same as for the Lorentz observer. Whereas, for the quantities p′0,
p′x one has since p′x=−p′x − vp′0, p

′0 = p′0 + vp′x,

(p′0)f = (p′0)i − v (p′x)i 6= (p′0)i = (p′0)i + v (p′x)i

(p′x)f = (p′x)i − v (p′0)i 6= − (p′x)i = (p′x)i + v (p′0)i

}

. (7.26)

This result is the analogue of the effect that was discussed in Chap-
ter 5, where we saw that a Lorentz observer says two objects are moving
with equal speeds in opposite directions if |v−

r | = v+
r whereas the A.L.T.

observer using u+, u− finds the two objects are in fact travelling in gen-
eral with different speeds. Despite this lack of symmetry, both species
of momenta are conserved in a collision process. For indeed, if one is
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conserved, so is the other, since they are linearly dependent. Thus if
∑

i p
′x =

∑

f p
′x,
∑

i p
′
0 =
∑

f p
′
0, then

∑

i

p′x −∑
f

p′x = −
(

∑

i

p′x −∑
f

p′x
)

− v
(

∑

i

p′0 −
∑

f

p′0

)

= 0

∑

i

p′0 −∑
f

p′0 =
∑

i

p′0 −
∑

f

p′0 + v
(

∑

i

p′x −∑
f

p′x
)

= 0















, (7.27)

where
∑

i ,
∑

f represent the summation over the momenta of the par-
ticles in the initial and final states.

§7.2. Energy-momentum relations in a Galilean frame

It is of interest to see what the preceding method yields when applied
to a Galilean frame. The line element ds2 = ηµν dx

µdxν becomes under
the Galilean transformation, tg = t, xg =x− vt, yg = y, zg = z, as given
earlier in (2.5),

ds2 =
(

1− v2
)

dt2g − 2vdtgdxg − dx2
g − dy2g − dz2g ,

the contravariant metric tensor for the Galilean frame being the covari-
ant metric tensor for the A.L.T. frame and conversely. The momenta are

pgx = −mΓg (v + ẋg) , pgy = −mΓg ẏg

pg0 = mΓg

(

1− vẋg − v2
)

, pgz = −mΓg żg

pxg = mΓg ẋg , pyg = mΓg ẏg

p0g = mΓg , pzg = mΓg żg

Γg =
1

√

(1− v2)− 2vẋg − ẋ2
g − ẏ2g − ż2g



























































. (7.28)

Relating the contravariant momenta via the Galilean transformation
to their values in the absolute frame by

px = pxg + vp0g , py = pyg

p0 = p0g , pz = pzg

}

(7.29)

one also obtains the expressions for the energy and momenta given by
(7.13) as our general arguments showed must be the case.
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However, unlike the situation with the A.L.T., these Galilean quan-
tities can not be identified with appropriate relativistic counterparts
in the Lorentz frame. Indeed, on using ẋ= ẋg + v, etc., and observing,
Γg =

1
√

1−(ẋg+v)2−ẏ2
g−ż2

g

= γ̄, we have the following identification,

pgx = −mγ̄ ẋ = px , pgy = −mγ̄ ẏ = py

p0g = mγ̄ = p0 , pgz = −mγ̄ ż = pz

}

(7.30)

so that these quantities are in fact, the covariant absolute momenta.
Thus the Galilean observer states the same invariance relation as the
absolute observer but with a change in notation, i.e., (p0g)

2 − (pgx)
2 −

− (pgy)
2 − (pgz)

2 =m2.
Consider now the complementary quantities pg0, p

i
g: we note Γg can

also be written

Γg =

√

1− v2 γr
1− vẋ

(7.31)

and using the expressions for vrx, vry, vrz we find,

pxg =
mγr vrx

γ
, pyg = mγr vry

pg0 =
mγr
γ

, pzg = mγr vrz











(7.32)

so that these quantities are almost, but not quite, the Lorentz momenta.
They satisfy,

γ2
[

(

pg0
)2 −

(

pxg
)2
]

−
(

pyg
)2 −

(

pzg
)2

= m2 (7.33)

which is not a conditional invariant for arbitrary Galilean observers,
depending as it does on v. It is analogous to the expression (7.24).

Chapter 8. Transformation of Maxwell’s Equations and Fur-

ther Applications

§8.1. Transformation of Maxwell’s equations

In the absolute frame S, Maxwell’s equations may be written

∂Fµν

∂xλ
+

∂Fλµ

∂xν
+

∂Fνλ

∂xµ
= 0

∂Fµν

∂xν
= jµ















. (8.1)
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Under a transformation to S′, given by

dx′µ = aµν dx
ν , dxν = āνµdx

′µ, aµν ā
ν
ρ = δµρ , (8.2)

where the aµν , ā
ν
µ are the coefficients of the A.L.T. and its reciprocals,

the above equations take the same tensor form,

∂F ′
µν

∂x′λ
+

∂F ′
λµ

∂x′ν
+

∂F ′
νλ

∂x′µ
= 0

∂F ′µν

∂x′ν
= j′µ















. (8.3)

The above results of course are not conditional on using the A.L.T.;
they are true for any transformation (for non-linear transformations
with Fµν and jµ replaced by tensor densities). As remarked in the
preceding chapter the above result is simply a tautology of covariance.

On introducing the vector potential A′
µ defined by F ′

µν =
∂A′

µ

∂x′ν
− ∂A′

ν

∂x′µ
,

the second Maxwell equation becomes

g′λν
∂2A′µ

∂x′λ∂x′ν
= j′µ (8.4)

with the imposition of the gauge condition, ∂A′µ

∂x′ν
=0. Since g′λν is an

explicit function of the absolute velocity of the frame S′, it is in this form
of the Maxwell’s equations that the fundamental difference between the
A.L.T. and the Lorentz transformation manifests itself.

An invariant element of charge at rest in the frame S′ is given by δe=

= j′0
√

−g′dx′dy′dz′ where g′ is the determinant of the metric tensor g′,
but since A.L.T. is unimodular−g′=−η=1 (where η is the determinant
of ηµν). Hence j′0dx′dy′dz′ is an invariant of the transformation , and
one may write

δe = j′0dx′dy′dz′ = j0dxdydz (8.5)

which is the same law as for the Lorentz observer. However, for charges
in motion in S′, the quantity j′0 is not what a Lorentz observer would
associate with j0

L
(= jL0), as we shall see it is j′0, which for charges at

rest in S′ is given by j′0 = g′0ν j
′ν = j′0. The transformation laws for the

A′µ, j′µ are, as before, for the momenta,

Ax =
1

γ
A′x + γvA′0, Ay = A′y

A0 = γA′0, Az = A′z







, (8.6)
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jx =
1

γ
j′x + γvj′0, jy = j′y

j0 = γ j′0, jz = j′z







. (8.7)

As before in dealing with the momenta we may write

A′
0 = g′0µA

′µ = A′0 − vA′x

j′0 = g′0µ j
′µ = j′0 − vj′x

}

. (8.8)

And hence the transformation for the potential and current using
these mixed quantities becomes that of the Lorentz quantities:

Ax = (A′x + vA′
0) γ , Ay = A′y

A0 = (A′
0 + vA′x) γ , Az = A′z

}

(8.9)

and similarly for the currents. Thus (A′
0, A

′i), (j′0, j
′i) are to be identi-

fied with the Lorentz quantities (A0
L
, Ai

L
), (j0

L
, ji

L
), whereas for example

(j′0, j′x)γ are (j0, jx), the latter being the quantities measured in the
absolute frame — as was the case for the momenta, and is indeed true
for all vectors.

Let us now relate the electromagnetic field quantities F ′
µν , F

′µν to

their values in the absolute frame. One has, Fµν = aρµa
λ
νF

′
ρλ, Fµν =

= āµρ ā
ν
λF

′ρλ, which reduce to

F0x = F ′
0x , F 0x = F ′0x

F0y =
1

γ
F ′
0y − γvF ′

xy , F 0y = γF ′0y

F0z =
1

γ
F ′
0z − γvF ′

xz , F 0z = γF ′0z



























, (8.10)

Fyz = F ′
yz , F yz = F ′yz

Fxy = γF ′
xy , F xy =

1

γ
F ′xy + γvF ′0y

Fzx = γF ′
zx , F zx =

1

γ
F ′zx + γvF ′z0



























. (8.11)

In order to compare the quantities F ′
µν , F

′µν with the values ob-
tained by a Lorentz observer FLµν , F

µν
L , we use the transformation O3

relating Lorentz coordinates to the primed coordinates,

dxµ
L
= ℓµν dx

′ν , dx′µ = ℓ̄µν dx
ν
L
, ℓµν ℓ̄

ν
λ = δµλ . (8.12)
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as given in Chapter 1. So that FLµν = ℓ̄ρµℓ̄
λ
νF

′
ρλ, Fµν

L = ℓµρℓ
ν
λF

′ρλ one
obtains,

FL0x = F ′
0x , F 0x

L
= F ′0x

FL0y = F ′
0y , F 0y

L
= F ′0y − vF ′xy

FL0z = F ′
0z , F 0z

L
= F ′0z − vF ′xz















, (8.13)

FLyz = F ′
yz , F yz

L
= F ′yz

FLxy = F ′
xy + vF ′

0y , F xy
L

= F ′xy

FLzx = F ′
zx + vF ′

z0 , F zx
L

= F ′zx















. (8.14)

Thus the electromagnetic field quantities F ′
0i, F

′ij are what corre-
spond to the electric and magnetic fields as measured by a Lorentz ob-
server at rest with respect to S′. Using the above expressions one can
rewrite the transformations from the primed frame to the unprimed
frame in the form,

F0x = F ′
0x , F yz = F ′yz

F0y =
(

F ′
0y − vF ′xy

)

γ , F xy =
(

F ′xy − vF ′
0y

)

γ

F0z = (F ′
0z − vF ′xz) γ , F zx = (F ′zx − vF ′

0z) γ















(8.15)

thereby exhibiting explicitly the Lorentz-like behaviour of (F ′
0i, F

′ij).
Denoting these quantities then by E ′,H′, it follows that E ′2−H′2, E ′ ·H′

are the conditional invariants under the A.L.T. On the other hand, the
quantities (F ′0i, F ′

ij) do not have this property, as may be inferred from
the manner in which they are connected with the absolute frame as
given above, such a product would contain explicit references to the
absolute velocity of the frame.

§8.2. Equations of motion of a charged particle

Let us now consider the equations of motion of a particle interacting
with the electromagnetic field, as observed in S′. We shall see that they
may be written in a form identical to that seen by a Lorentz observer
and for the same quantities but with a different label.

The variational principle in the absolute frame is

δ

∫

mds+ eAµ ẋ
µds = 0 , (8.16)

(where ẋµ = dxµ

ds
) and under the A.L.T., or indeed any transformation,
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becomes

δ

∫

mds+ eA′
µ ẋ

′µds = 0 , (8.17)

so that the equations of motion, written in both contra-and covariant
form, are

dẋ′ν

ds
=

e

m
ẋ′
µF

′µν

dẋ′
ν

ds
=

e

m
ẋ′µF ′

µν















. (8.18)

Consider the equation for the development of the energy,

dẋ′
0

ds
=

e

m
ẋ′iF ′

i0 . (8.19)

As we saw ẋ′
0 has the same value as the Lorentz quantity, ẋL0, sim-

ilarly ẋ′i = ẋi
L
, F ′

i0 =FLi0 hence, this equation may be written

dẋL0

ds
=

e

m
ẋLFLi0 (8.20)

and is therefore identical to the corresponding equation as seen by the
Lorentz observer. Consider now the equations

dẋ′i

ds
=

e

m
ẋ′
µF

′µi; (8.21)

they may be written

dẋ′i

ds
=

e

m

(

ẋ′
0F

′0i + ẋ′
jF

′ji
)

; (8.22)

but as we saw in (8.13), F 0y
L =F ′0y−vF ′xy which generalized for motion

of the frame S, with velocity vx, vy, vz, becomes F 0i
L

=F ′0i−vjF
′ji, but

F 0i
L

=−FL0i =−F ′
0i, hence

F ′0i = −F ′
0i + vj F

′ji; (8.23)

(which may also be derived using F ′
0i = g′0µg

′
ivF

′µν) so that the above
equation may be written

dẋ′i

ds
=

e

m

(

− ẋ′
0F

′
0i +

(

ẋ′
0vj + ẋ′

j

)

F ′ji
)

(8.24)

but ẋ′j = g′jµẋ′
µ =−vẋ′

0− ẋ′
j , hence

dẋ′i

ds
=

e

m

(

−ẋ0F
′
0i − ẋ′jF ′ji

)

, (8.25)
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and now noting F ′
0i =−F 0i

L
, ẋ′j = ẋj

L =− ẋLj , the equation is identical to

dẋ′i
L

ds
=

e

m
ẋLµF

µi
L

(8.26)

and our original observation is proved.
The importance of this result is that it means provided an observer in

S′ makes measurements of velocity using light signals or slowly moving
clocks, he always arrives at the same equations of motion as the Lorentz
observer at rest with respect to S′; on the other hand, if he makes
observations using absolute signals, he can arrive at a second set of
equations of motion, namely those given by

dẋ′
i

ds
=

e

m
ẋ′µF ′

µi

dẋ′0

ds
=

e

m
ẋ′
µF

′µ0















(8.27)

which do not reduce to the equations of motion as seen by the Lorentz
observer. With current techniques, these equations are “unobservables”,
since they involve knowledge of the absolute velocity of the frame.

Finally, we note that in the presence of an electromagnetic field
the conditional invariance relation on the momentum under the A.L.T.
(7.18) becomes

(

p′0 − eA′
0

)2 −
(

p′i − eA′i
)2

= m2. (8.28)

§8.3. Unobservability of a correction to the wave number un-

der the A.L.T.

In the discussions given in previous chapters it was shown that there
were no effects to be expected due to the asymmetric propagation of
light in S′ because of the way in which measurements are made. This
was done using the line element and observing the cancellation in the
out-and-back slowness. It is also possible to give an analogous discussion
from a wave standpoint working with the D’Alembertian equation in S′.
One has
[

(

1− v2
) ∂2

∂t′2
− 2v

∂2

∂x′∂t′
− ∂2

∂x′2
− ∂2

∂y′2
− ∂2

∂z′2

]

A′i = 0 , (8.29)

and one looks for plane wave solutions of the form, exp±i
(

k′µx
′µ
)

, the
k′µ satisfying

(

1− v2
)

k′20 − 2vk′0k
′
x − k′2x − k′2y − k′2z = 0 . (8.30)
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This expression may be diagonalized by using k′x=−vk′0−k′x, so
that (upon introducing k′y =−k′y, k

′z =−k′z), the above reduces to the
usual conditional invariance relation,

k′20 − (k′x)
2 − (k′y)

2 − (k′z)
2
= 0 . (8.31)

And hence for the phase we may write

k′0 t
′ − (vk′0 + k′x)x′ − k′y y′ − k′zz′. (8.32)

By introducing the local time tL = t′−vx′, the above expression be-
comes the usual relativistic one,

k′0 tL − k′xx′ − k′yy′ − k′zz′ = k0
L
tL − ki

L
xi

L
(8.33)

with the previously noted identity between (k′0, k
′i), and the correspond-

ing Lorentz quantities (k0
L
, ki

L
) in the case of particle dynamics.

It is now our purpose to show that even though one has an expression
for the phase given by (8.32), that in any typical measurement involving
this phase, the quantity vk′0x

′ cancels out, so that effectively one is
dealing with the Lorentz expression (8.33). The argument is a trivial
extension of ones given previously.

Thus consider a typical interference experiment involving two beams
of light. They will each propagate from an initial point P ′

1(x
′
1, y

′
1, z

′
1),

where they were initially in phase, via two different paths, to a final
point P ′

2(x
′
2, y

′
2, z

′
2) where a phase comparison is to be made. Then we

have for their respective phases along the two paths

Path 1:

P ′
2

∫

P ′
1

(vk′0 + k′x) dx′ + k′ydy′ + k′zdz′

Path 2:

P ′
2

∫

P ′
1

(vk′0 + k′x) dx′ + k′ydy′ + k′zdz′











































. (8.34)

And we see that in the phase difference, the term of interest,

P ′
2

∫

P ′
1

vk′0dx
′ −

P ′
2

∫

P ′
1

vk′0dx
′ = vk′0

∮

dx′ (8.35)

reduces to a line integral around a closed contour and hence vanishes,
leaving the customary relativistic expression for the phase difference.
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In the above we have assumed the light paths to be in vacuum, how-
ever the interposition of refractive media causes no difficulty. Taking the
inverse of the metric tensor given in (5.1), the D’Alembertian equation
on these paths becomes

[(

1− v2

n2

)

∂2

∂t′2
− 2v

n2

∂2

∂t′∂x′
− 1

n2

∂2

∂x′i∂x′i

]

A′i = 0. (8.36)

Proceeding as before, the wave numbers satisfy

(

1− v2

n2

)

k′20 − 2v

n2
k′0k

′
x − 1

n2
(k′i)

2
= 0 . (8.37)

Using k′µ = g′µνk′ν , one has k′x =−vk′0−n2k′x, k′y =−n2k′y, k′z =

=−n2k′z, and the above may be written, k′20 −n2k′ik′i=0. Hence nk′i,
rather than k′i represents the wave number in vacuum. Denoting nk′i

by k′i, they satisfy k′20 − k′ik′i=0, and the phase may be written

k′0 t
′ −
(

vk′0 + nk′x
)

x′ − nk′yy′ − nk′zz′, (8.38)

and as before,
∫

vk′0dx
′ vanishes along a closed path leaving the usual

expression. This result may be also derived noting that for a Lorentz
observer, the phase in a refractive medium is, k0

L
t
L
−nki

L
xi

L
, where ki

L

are the vacuum wave numbers, hence setting tL = t′−vx′ and making
the appropriate correspondences, the result follows.

It is interesting to note that what a Lorentz observer describes
to be a plane wave propagating perpendicular to the x′ axis (say in
the y′ direction) with kx

L
= k′x=0 , an A.L.T. observer using absolute

signals describes as propagating in a direction tilted with respect to
the y′ axis and with wave number vk′0 along the x′ axis. This fol-
lows immediately from the expression for the phase, but it is interest-
ing to give a physical reason for this result. Now a Lorentz observer
would declare the relative phase of two portions of a wave front cross-
ing the x′ axis to be the same if, as they crossed say at −∆x′

2
, ∆x′

2
,

they each triggered a device which sent light signals to the origin, one
from the left, one from the right, which arrived simultaneously. But
as we have seen, the slowness of the light signal propagating from the
right to the origin is (1−v), and slowness from the left to the ori-
gin is (1+v), hence two signals arriving simultaneously correspond to

a time difference of (1−v)∆x′

2
− (1+v)∆x′

2
, and a phase difference of

k′0

[

(1−v)∆x′

2
− (1+v)∆x′

2

]

=−vk′0∆x′, as indicated above. Thus for
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an A.L.T. observer it is necessary for −k′x= k′x+vk′0 to vanish to
have transverse propagation; one then has, k′x =−vk′0 also using (8.30)
k′y = 1

γ k
′
0 , so that a relativistic observer would declare the wave is prop-

agating with direction
kx
L

ky
L

= k′x

k′y
=−vγ.

§8.4. Transformation of energy-momentum and angular mo-

mentum tensors

Let us now consider the transformation properties of the energy-
momentum tensor T µν which for the electromagnetic field is given by
T µν =FµλF ν

λ − 1
4
FλρF

λρgµν . However, in the following, for general-
ity, we shall consider T µν to be an arbitrary energy-momentum tensor
that in the absolute frame has the properties of being symmetric and
satisfying the conservation law ∂Tµν

∂xν =0. Then since these are tensor
properties they also hold in the A.L.T. frame,

T ′λµ = aλν a
µ
ρ T

νρ = aµρ a
λ
ν T

ρν = T ′µλ

∂T ′λµ

∂x′µ
= āνµa

λ
ρ a

µ
ς

∂T ρς

∂xν
= aλρ

∂T ρν

∂xν
= 0











. (8.39)

It follows from these two properties that angular momentum will be
conserved in the A.L.T. frame. Define the generalized angular momen-
tum density M

′µλν about the origin to be

M
′µλν ≡ x′µ T ′λν − x′λ T ′µν , (8.40)

then
∂M′µλν

∂x′ν
= T ′λµ − T ′µλ = 0 . (8.41)

Since this derivation does not depend on the coordinate system (al-
though we are here only working in Cartesian frames), this conservation
law is a typical example of a result which follows from general covariance
rather than one which follows from working in the restricted (Lorentz)
coordinate frames of special relativity.

The tensors T ′
µν , T

′µν , T ′µ
ν are related to the tensors in the corre-

sponding Lorentz frame by

TLµν = ℓ̄ρµ ℓ̄
λ
ν T

′
ρλ

T µν
L = ℓµρ ℓ

ν
λ T

′ρλ

T ν
Lµ = ℓ̄λµℓ

ν
ρ T

′ρ
λ



















. (8.42)
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Obtaining ℓµν , ℓ̄
µ
ν , from dtL = dt′−vjdx

′j , dxj
L = dx′j , one has

TL00 = T ′
00

TL0i = T ′
0i + viT

′
00

TLij = T ′
ij + viT

′
0j + vj T

′
0i + vivj T

′
00

T 00
L

= T ′
00 − 2vi T

′i0 + vivj T
′ij

T 0i
L

= T ′0i − vj T
′ji

T ij
L

= T ′ij

T 0
L0 = T ′0

0 − viT
′i
0

T i
L0 = T ′i

0

T 0
Li = T ′0

i + viT
′0
0 − vj T

′j
i − vivj T

′j
0

T i
Lj = T ′i

j + vj T
′i
0



































































































. (8.43)

Because of the general relations T ′µν = g′µλg′νρ T ′
λρ, T

′µ
ν = g′µλ T ′

λν

there are actually only ten linearly independent components to the stress
tensor. As can be seen from the above, the ten components which are
to be identified with the quantities measured by the Lorentz observer
are T ′

00, T
′i
0 , T

′ij ; the other twenty-six components T ′
µj , T

′0µ, T ′0
µ ,T ′i

j ,
except for special cases of symmetry, are unobserveables unless mea-
surements are made with absolute signals. It will be noted that while
T ′
µν , T

′µν are both symmetric tensors T ′µ
ν does not have this property.

In the Lorentz frame one has T 0
Li=−T i

L0, T
i
Lj =T j

Li while for T ′µ
ν , from

above
T ′i
j − T ′j

i = vi T
′j
0 − vj T

′i
0 , (8.44)

and using T ′i
0 = g′iλ T ′

λ0, T
′0
i = g′0λ T ′

λi,

T ′i
0 = −vi T

′
00 − T ′

i0

T ′0
i =

(

1− v2
)

T ′
0i − vjT

′
ji

}

. (8.45)

In the limiting case vi =0, the relations that hold on the mixed
tensor in the absolute frame and the Lorentz frame follow.

The momentum of the field as measured by the Lorentz observer
is Pµ

L =
∫

T µ
L0d

3xL, and since d3xL = d3x′, T j
L0 =T ′j

0 , T 0
L0 =T ′

00, this
corresponds to the A.L.T. quantities

P ′
0 =

∫

T ′
00 d

3x′, P ′i =

∫

T ′i
0 d3x′ (8.46)
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in analogy to the correspondence found in the particle case. Consider
now, for simplicity, the field to be sufficiently localized (that of a par-
ticle) so that the total angular momentum about the origin may be
written

M ′ij = x′ip′j − x′jp′i; (8.47)

because of the above correspondence, this is the same as that obtained
by the Lorentz observer, that is,

M ′ij = M ij
L
. (8.48)

On the other hand, employing the relations p′i=−p′i− vip0, x
′i =

=−x′
i− vix

′
0, one obtains

M ′ij = M ′
ij − x′

0

(

vip
′j − vjp

′i
)

− p′0
(

x′ivj − x′jvi
)

(8.49)

whereas for the Lorentz observer M ij
L =MLij .

Thus, in summary, we have shown by explicit calculation that in
an A.L.T. frame there always exists a set of tensors which are identi-
cal (apart from label) to a corresponding set obtained in the Lorentz
frame. Consequently, it is always possible for the A.L.T. observer to
write his equations in the same form employing the same quantities as
the Lorentz observer. On the other hand, the A.L.T. observer finds
there are additional quantities involving the absolute motion of the
frame. The fact that the A.L.T. observer finds there are these addi-
tional quantities is an expression of the possibility he has for another
method of measurement (based on absolute synchronization) not avail-
able to the Lorentz observer, the results of which will not in general yield
the same value as for the Lorentz observer. This was seen most clearly
in connection with the one-way velocity of light. On the other hand,
as we also saw in this connection, when the A.L.T. observer performs
his measurements in the same way as the Lorentz observer, he obtains
the same results — indeed this formed the basis for the derivation of
the A.L.T.

Chapter 9. Kinematic Implications of Superlight Signals for

Relativistic Causality

The basic idea of causal propagation is that a disturbance from a mea-
surement propagates only forward in time. In order to violate causal
propagation it would be necessary to have “signals” that propagate
backwards in time. As we shall see, however, this condition is not suf-
ficient due to the different ways in which various observers define time.
For brevity, signals that propagate backwards in time will be called
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“acausal”, independently of whether or not they actually lead to a vio-
lation of causality.

It will be shown that when there are faster-than-light signals present,
they can appear to an infinite class of Lorentz observers as exhibiting
this acausal propagation, although for an A.L.T., observer this is not
the case. However it will also be shown that if two measurements do
not interfere for an A.L.T. observer, they do not interfere for a Lorentz
observer, so that the latter cannot use such acausal signals to influence
events before they occurred. In the language of general relativity one
would say this acausal propagation is due to an improper choice of
coordinate system, namely: the use of the Lorentz local time. Indeed
one can always in a given frame make any signal propagating forwards
in time propagate backwards in time by redefining time, say T = t− qx,
and choosing q sufficiently large; this will be discussed in detail anon.

Let us now temporarily confine our attention to the absolute frame
so that observers using the ordinary Lorentz transformation, the A.L.T.
and the Galilean transformation all agree that the velocity of light is
the same in all directions and of magnitude unity. Consider two mea-
surements being made on the x axis (for convenience) one at the point
x0 at time t0, and the other at x1 >x0 and at time t1 >t0. Then in
order for a light signal emitted at (x0, t0) to be unable to interfere with
the measurement at (x1, t1), it is necessary that

t1 − t0 < x1 − x0 (9.1)

or more generally, t1 − t0 < |~x1 − ~x0 |, that is, the interval must be space-
like, to guarantee non-interference of an earlier measurement with a
later measurement. This is the “relativistic causality” assumption. But
actually it contains two distinct assumptions, namely:

1. There are no signals that travel faster than light forward in time;

2. There are no signals that travel backward in time.

For, if merely 1 were satisfied, a signal violating 2 could leave the later
measurement at (x1, t1) and arrive in time to interfere with the earlier
measurement at (x0, t0).

Let us now suppose that 1 is violated and there are indeed su-
perlight signals available, of constant velocity vs in the absolute frame
S, but that there are no acausal signals present. Under these circum-
stances, the assumption that the interval be space-like to guarantee
non-interference is no longer sufficient. A Lorentz observer, an A.L.T.
observer and a Galilean observer at rest in S would all agree that the
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above requirement is to be replaced by

t1 − t0 <
1

vs
(x1 − x0) , (9.2)

and more generally,

t1 − t0 <
1

vs
|~x1 − ~x0 | . (9.3)

An interesting situation now arises in the limit vs →∞, since the
condition for non-interference reduces to the requirement t1 − t0 < 0,
that is the measurement at (x1) was earlier in time than the measure-
ment at (x0). This is in contradiction with our initial assumption that
t1 >t0. Indeed, if we allow t1 to be earlier than t0, the former measure-
ment could then have influenced the latter measurement, and hence
the requirement (9.2) would no longer be applicable in guaranteeing
non-interference. In other words we are actually working with a set of
inequalities

0 < t1 − t0 <
1

vs
(x1 − x0) . (9.4)

The first inequality, to guarantee the measurement at t1 does not
interfere with the one at t0 (based on assumption 2), and the second
inequality to prevent interference of the earlier measurement with the
later measurement by putting it outside the superlight cone. Clearly
the limiting case vs →∞ does not belong to the set.

On the other hand, if instead of the above we employ

0 6 t1 − t0 6
1

vs
(x1 − x0) , (9.5)

we do not arrive at a self-contradictory requirement in the limit. Hence,
if we wish to include the absolute signal as a limiting case of causal prop-
agation, the conditions for non-interference of a measurement at t1 with
one at t0 is that the former measurement be later than or simultaneous
with the latter measurement, t1 > t0, rather than simply t1 > t0 as we
have been working with above. Since the inclusion of the equality sign
may seem paradoxical, it is necessary to include a stipulation that the
“effect” or disturbance occur after the arrival of the initiating causal im-
pulse. For example, in a classical case, the effect or disturbance might
be a pointer displacement, the cause, a force producing a unit acceler-
ation commencing at time t=0. Then the displacement is d= 1

2
t2 and

there is no displacement until t> 0. For simplicity in what follows, vs
will be taken to be finite although arbitrarily large.
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With the above qualification on vs, let us now return to the require-
ment (9.2) and ask the question, does this requirement guarantee that
two measurements which did not interfere in the absolute frame will
not interfere for the several observers in the moving frame? Moreover,
if a signal propagates causally in the absolute frame, will it propagate
causally in the moving frame? We shall consider three cases: Galilean
observer, A.L.T. observer, and Lorentz observer.

Case I: Galilean observer. The transformation notation is as be-
fore, xg = x− vt, tg = t. The elapsed time ∆t(vs) for the signal in
the unprimed frame to travel the distance x1 −x0 is x1−x0

vs
; hence the

Galilean observer describes the signal as having occupied the same (pos-
itive) interval of time

∆tg(vs) = ∆t(vs) =
x1 − x0

vs
. (9.6)

The time interval between measurements is

∆tg(1, 0) = ∆t(1, 0) = t1 − t0 . (9.7)

Hence by our original assumptions t1 − t0 <
x1−x0

vs
, it follows

∆tg(1, 0)−∆tg (vs) < 0 , (9.8)

and the measurements do not interfere; also, the signal is clearly causal,

since it traverses the distance, ∆xg(vs)=(x1−x0)− v (x1−x0)
vs

=(x1−x0)×
×
(

1− v
vs

)

, in a positive interval of time.

Case II: The A.L.T. observer. The above argument is basically
unchanged. One has, for the signal,

∆t′ (vs) =
x1 − x0

vsγ
(9.9)

and for the time interval between measurements,

∆t′ (1, 0) =
t1 − t0

γ
(9.10)

and hence,

∆t′ (1, 0)−∆t′ (vs) < 0 (9.11)

and the measurements do not interfere. Moreover the signal is causal
since the time interval is positive to traverse the distance ∆x′ (vs)=
=∆xgγ.
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Case III: The Lorentz observer. Proceeding as above, the time
intervals are

∆tL(vs) =

[

x1 − x0

vs
− v (x1 − x0)

]

γ (9.12)

∆tL(1, 0) =
[

(t1 − t0)− v (x1 − x0)
]

γ (9.13)

and once again, ∆tL(1, 0)−∆tL(vs)< 0.
It will be noted however, that for an infinite class of Lorentz ob-

servers it is possible to choose v such that vvs > 1, and the time in-
terval ∆tL(vs) becomes negative. Hence the above class of Lorentz
observers declare the superlight signal to have propagated acausally.

However if vvs > 1, since x1−x0

t1−t0
>vs,

v(x1−x0)
t1−t0

>vvs, ∆tL(1, 0) is also
negative, and the Lorentz observer asserts that the measurement at
x1 took place earlier than the measurement at x0. Moreover since
∆tL(1, 0)<∆tL(vs), he would then say the superlight acausal signal
did not propagate backwards in time sufficiently fast to influence the
earlier measurement. Thus, insofar as genuinely violating causality is
concerned, this “acausal” propagation of the superlight signal is spuri-
ous, and arises only because of the method of synchronization employed
by the Lorentz observer.

To complete the above discussion, it is necessary to show that when
v is chosen such that the later event is mapped onto an earlier event,
so that ∆tL(1, 0) is negative, a superlight signal that was emitted from
the event at (x1, t1) cannot arrive before the event at (x0, t0) as seen in
the new Lorentz frame. Denoting by ∆tL(vs) the interval for the signal
to propagate from right to left, one has

∆tL(vs) =

[

x1 − x0

vs
+ v (x1 − x0)

]

γ (9.14)

so that ∆tL(vs) is positive. Hence it is necessary to show ∆tL(vs)−
−
(

−∆tL(1, 0)
)

> 0. Using the expression for ∆tL(1, 0) given in (9.13)
one obtains

∆tL(vs)−
(

−∆tL(1, 0)
)

=
x1 − x0

vs
+ (t1 − t0) > 0 (9.15)

and hence the signal arrives later.

Tolman [14] has given a discussion of this problem, but upon showing
that a superlight signal can propagate backwards in time for a class of
Lorentz observers, he inferred that such signals violate causality. As we
have just seen this conclusion is invalid, since it is not sufficient to show
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merely that such signals propagate backwards in time in the new Lorentz
frame, one must also show that the signals interfere with measurements
that, in the original frame, occurred before their arrival — which is not
the case.

Let us now re-derive the above results working in the moving frame
S′ alone, thus giving us a more general proof that if two measure-
ments do not interfere for an A.L.T. observer, they do not interfere
for a Lorentz observer, although the latter will in general have to admit
of acausal propagation to describe the propagation of causal superlight
signals.

In the primed frame S′, the A.L.T. observer describes the two mea-
surements as having occurred at (x′

0, t
′
0) and (x′

1, t
′
1), with t′1 > t′0 > 0,

since the latter measurement is by assumption later. A superlight sig-
nal leaves the earlier event and propagates to the point x′

1, with A.L.T.
relative velocity u, moreover since the measurements did not interfere

t′1 − t′0 <
x′
1 − x′

0

u
. (9.16)

The time interval for the signal to propagate is,

∆t′ (u) =
x′
1 − x′

0

u
. (9.17)

The local time interval for the propagation is,

∆tL(u) = ∆t′ − v∆x′ =
x′
1 − x′

0

u
− v (x′

1 − x′
0) (9.18)

and the local time interval between measurements is

∆tL(1, 0) = (t′1 − t′0)− v (x′
1 − x′

0) . (9.19)
Hence,

∆tL(1, 0)−∆tL(u) = (t′1 − t′0)−
x′
1 − x′

0

u
< 0 (9.20)

and the measurements did not interfere. It will be noted that the
acausality condition is now vu> 1, but since u= vs−v

1−v2
, this is equivalent

to vsv−1
1−v2

+1> 1, and hence vvs > 1, as before.

Alternatively, the above discussion might be carried out using the
expressions for relative velocity in the moving frame. The Galilean rela-
tive velocity and the A.L.T. relative velocity both transform a superlight
signal that was causal in the absolute frame into a causal signal in the
moving frame. But the denominator of the relativistic relative veloc-
ity, vr =

vs−v
1−vvs

changes sign for vvs > 1, which does not mean the signal

propagated in a reversed direction in positive time, but as we saw, the
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signal propagated in a positive direction backwards in time, an inter-
esting example of the ambiguity in velocity. For vvs =1, the Lorentz
observer says the signal propagated with infinite velocity. Consider now
the relation between vr and the A.L.T. relative velocity u developed in
preceding chapters. The Lorentz observer has corrected (or phased) his
clocks so as to make the slowness of light unity by effectively subtract-
ing v∆x′, and hence declares a signal of slowness 1

u to be of slowness
1
vr

= 1
u − v. For vvs < 1, 1

u >v, and the relativistic slowness 1
vr

is posi-

tive, for vs =
1
v , u also equals 1

v (interestingly enough), and 1
vr

vanishes,

becoming negative for vs >
1
v , and hence 1

u <v. Thus vr has the char-
acter of a phase velocity in these regions, which can be made to run
forward or backward in time by appropriate relative synchronization of
clocks corresponding to the choice of Lorentz frame.

Chapter 10. The A.L.T. Line Element under Improper Trans-

formations

As we have seen, given an A.L.T. frame S′ with the general line element

ds2 = dt′2 − 2vidt
′dx′i − dx′idx′i + vivj dx

′idx′j

it is possible to pass, via the local time transformation, to the corre-
sponding Lorentz frame SL with line element ds2 = dt2

L
− dxi

L
dxi

L
. Now

the metric tensor ηµν of the Lorentz line element is invariant under
the improper transformations T : (tL →−tL, x

i
L
→xi

L
), P : (xi

L
→−xi

L
,

tL → tL) and the problem is to study the behaviour of the A.L.T. line
element under similar transformations.

Denoting the improper coordinate transformations by

T ′ :
(

t′ → −t′, x′i → x′i
)

P ′ :
(

x′i → −x′i, t′ → t′
)

}

, (10.1)

one has that under either T ′ or P ′, the line element becomes

ds2 = dt′2 + 2vidt
′dx′i − dx′idx′i + vivj dx

′idx′j (10.2)

so that in the reflected coordinate system g′0i →−g′0i, the other com-
ponents of the metric tensor remaining unchanged. Thus unlike the
situation with the Lorentz observer, the metric tensor is not invariant
under the improper transformations, the new line element being that
for an A.L.T. frame translating with absolute velocity −vi, without re-
flection of time or space. Let us examine how this lack of invariance
would show up in a classical experiment performed in S′.
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Consider first an experiment designed to check invariance under T ′.
An observer in S′ sends a light signal from the origin in the direction
θ′ through a distance ∆σ′ to a point A and measures the delay to be
∆t′ = (1 + v cos θ′)∆σ′. Now in reversed time, the signal returned from
A back to the origin in the direction θ′+π. The expression for slowness in
reversed time obtained from (10.2) is ∆t′ =(1−v cos θ′)∆σ′ and hence
for θ′ → θ′ + π, the delay is the same as on the outward journey. On the
other hand, invariance under time reversal in a given frame means that
the motion observed in the time reversed frame is a possible state of
motion in the original frame before time reversal. Hence a light signal
sent from A to the origin in the original frame should also exhibit the
same delay as it did on its outward path, which is of course not the case,
the delay being ∆t′ =(1+ v cos(θ′ + π))∆σ′ =(1− v cos θ′)∆σ′. Thus
T ′ is not an invariance operation in the given frame S′.

The physical reason for this lack of invariance is clear: in reversed
time not only did the light signal return from A to the origin but the
frame itself also reversed its direction of absolute motion, whereas in the
above experiment only the direction of motion of the light signal was
reversed, not the frame. Thus in order to preserve overall invariance
with respect to time reversal it is necessary to go outside the given
frame and include the frame travelling with absolute velocity −vi, the
only exception being the absolute frame for which vi = 0.

Similarly the parity transformation P ′ : (x′i →−x′i, t′ → t′) is not
an invariance operation in the given frame: a clock slowly moved in the
direction θ′ does not read the same as a clock moved in the opposite
direction θ′ + π. Once again, to obtain overall invariance with respect
to parity one must include the frame travelling in the opposite direction
with absolute velocity −vi.

On the other hand, strong reversal, T ′P ′, does represent an invariant
transformation, since the two operations have the effect of cancelling
the asymmetry produced by the absolute motion so that the metric
tensor is left unchanged. Thus unlike the Lorentz line element, for which
T , P , TP represent invariant improper coordinate transformations, the
A.L.T. line element possesses only one, T ′P ′. However the possibility
of performing the local time transformation tL = t′ − vix

′i has the effect
of restoring the full symmetry of the absolute frame to one in uni-
form motion.

The lack of invariance under P ′ in a given A.L.T. frame is of course
of an entirely different character than the parity violations observed
in the weak interactions. In the former case vi is a polar vector and
the correlated asymmetry in the propagation of light is likewise polar,
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whereas in the weak interactions one has a correlation between an axial
vector and a polar vector. To obtain the latter kind of correlation on
the basis of the metrical structure of the line element it would be neces-
sary that g′0i be an axial vector, so that light propagated with different
slownesses, for example, parallel and anti-parallel to the “direction” of
an axial vector.

Chapter 11. Invariance under the Local Time Transformation

Although it has been shown that for the usual classical-mechanical and
electromagnetic type of experiments, the absolute velocity v cancels out
in a typical measurement, so that utilization of the A.L.T. does not
lead to any contradictions, the question arises as to what are some of
the effects to be expected at the quantum level. It will be shown that
in a given Lorentz frame, upon resynchronizing the clocks absolutely,
by means of the local time transformation, so as to transform to the
A.L.T. frame, the Schrödinger state function undergoes a unitary trans-
formation so that the measureables of the two observers are the same.
(The method of proof, however, will lead to a result of somewhat greater
generality which will be discussed below.) That such a unitary transfor-
mation should exist follows on general principles from the fact that as
was shown in Chapter 7, the energy-momentum relation for an A.L.T.
observer satisfies the conditional in variance relation p′20 − p′jp′j =m2,
and as was shown in Chapter 8, the equations of motion for an A.L.T.
observer can be written in a form involving the same quantities in the
same way as for a Lorentz observer.

Consider first the Schrödinger representation in a given Lorentz
frame. In this representation, the state vector satisfies the equation,
for units in which ~=1,

i
∂

∂tL
Ψ(tL) = HΨ(tL) , (11.1)

where the Hamiltonian H is a time independent Hermitian operator
whose relativistic transformation properties will discussed below.
Choose a representation for the Ψ’s in which H is diagonal and the
Ψ’s are the energy eigenstates of H , then

i
∂

∂tL
ΨE(tL) = EΨE (tL) . (11.2)

Consider now a transformation from the Lorentz frame to the A.L.T.
frame, employing tL = t′ − vjx

′j , xj
L = x′j , then

∂

∂tL
→ ∂

∂t′
, ΨE (tL) → ΨE (t

′ − vjx
′j) . (11.3)
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But since the ΨE are energy eigenstates, their time dependence is of
the form exp (−iEtL) and hence under the above time transformation,

ΨE(tL) = UΨE (t
′) , U ≡ exp

(

iEvjx
′j
)

. (11.4)

Hence the Schrödinger equation becomes

i
∂

∂t′
ΨE(t

′) = U−1EUΨE (t
′) = EΨE (t

′) (11.5)

and the energy levels and eigenfunctions are the same for the A.L.T.
observer as for the Lorentz observer.

It is interesting to note that the proof of (11.5) did not rely on
the relativistic properties of H , all that was required was that H be a
time independent operator and that there exist stationary solutions of
the form: ΨE(tL)= exp (−iEtL) ΦE, with

∂ΦE

∂tL
=0, HΦE =EΦE . In-

variance under the local time transformation is therefore an extremely
fundamental property of Schrödinger-type equations which deserves to
be further exploited. On the other hand, when we are not dealing with
a Lorentz invariant system, upon performing the local time transforma-
tion, we are not of course transforming to an A.L.T. frame, since the
concepts of Lorentz frame and A.L.T. frame are no longer defined; we
are then simply transforming from a frame with coordinates labelled xµ

L

to one with coordinates labelled x′µ.
So far we have confined our remarks to systems in an eigenstate of

energy with H diagonal, when this is not the case, the generalization of
U is the displacement operator, which may be formally represented by

U = exp

(

−vjx
′j ∂

∂t′

)

. (11.6)

We arrive at such an operator by looking for a generalization of
(11.4), namely: an operator for which the following holds

Ψ
(

t′ − vjx
′j
)

= UΨ(t′) (11.7)

even when Ψ is not eigenstate of energy. Although a great many interest-
ing mathematical questions occur in connection with such an operator,
its use here will be justified by showing for the space with which we are
working U is unitary. This is done rather simply by first noting that
our above analysis has actually given us the unitary “eigenvalues” of U ,
that is,

UΨE(t
′) = eiEvjx

′j

ΨE (t
′) . (11.8)
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Now in order to establish unitarity, we must show that U preserves
the “lengths” of vectors: ‖UΨ‖= ‖Ψ‖. But since U clearly leaves in-
variant the lengths of the orthogonal base vectors ΨE, which by com-
pleteness span the space, U is unitary and U †=U−1=exp

(

vj x
′j ∂

∂t′

)

.
Thus we have in general that under the above assumptions, under

the local time transformation,

i
∂

∂t′
Ψ(t′) = U−1HUΨ(t′) = HΨ(t′) . (11.9)

We may see more explicitly how U acts by expressing H in the form
H
(

∂

∂xj
L

, xj
L

)

and noting that under the local time transformation H be-

comes H
(

∂
∂x′j

+vj
∂
∂t′

, x′j
)

but since
(

∂
∂x′j

+vj
∂
∂t′

)n
UΨ=U

(

∂
∂x′j

)n
Ψ, we

have, assuming we can expandH in a power series,H
(

∂
∂x′j

+vj
∂
∂t′

, x′j
)

U

=UH
(

∂
∂x′j

, x′j
)

and the result (11.9) follows.
As an illustration of the above in the relativistic case, we consider

the Dirac equation
(

−iγµ ∂
∂xµ

L

+m
)

Ψ(xµ
L)= 0, since the invariance of

the Klein-Gordon equation is immediate. Transforming to the A.L.T.
frame under the local time transformation, the Dirac equation becomes
[

− i
(

γ0 + γjvj
) ∂

∂t′
− i γj ∂

∂x′j
+m

]

Ψ
(

t′ − vjx
′j , x′j

)

= 0 . (11.10)

It will be noted that if we define γ′0 ≡ γ0 + γjvj , γ
′j ≡ γj they satisfy

γ′µγ′ν + γ′νγ′µ = 2g′µν

g′00 =
(

1− v2
)

, g′j0 = −vj , g′jk = −δjk

}

(11.11)

as would be the case if we had formulated the equation in the A.L.T.
frame directly. Proceeding as above, we set Ψ(t′ − vjx

′j , x′j)=
=UΨ(t′, x′j), hence since

− iγj ∂

∂x′j
UΨ(t′, x′j) = U

(

−iγj ∂

∂x′j
+ ivj γ

j ∂

∂t′

)

Ψ(t′, x′j) , (11.12)

we obtain finally
(

−iγµ ∂
∂x′µ

+m
)

Ψ(x′µ) = 0.
Let us now observe in connection with the above that after making

the unitary transformation, the spatial momenta obtained from i ∂
∂x′j

are not p′j but −p′j and are therefore the Lorentz observer’s covariant
momenta pLj . Before performing the unitary transformation on Ψ for
a plane wave state ΨE one has

p′jΨE = i
∂

∂x′j
ΨE = −

(

p′j + vjE
)

ΨE . (11.13)
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The unitary transformation is therefore a method for eliminating the
“unobservable” components of the A.L.T. covariant spatial momenta,
i.e., −vjE. Alternatively stated, from the standpoint of quantum me-
chanics, the reason that they are unobservable is that they can be elim-
inated by a unitary transformation. Thus a breakdown of some one or
more of the assumptions we have employed here would be necessary to
make v an observable.

The possibility of introducing an absolute time and ether velocity
into quantum field theory has been discussed by Dirac [15] in connection
with a reformulation of electrodynamics.

Chapter 12. Conclusions

The preceding analysis shows that the experimental results of special
relativity may be obtained without imposing the usual requirement that
the line element be the same in all uniformly moving frames. Rather, we
may employ the A.L.T. line element which leads to an asymmetry in the
propagation of light, depending on the absolute velocity of the frame.
As we have seen in the various examples presented, this absolute velocity
always cancels when measurements are performed in the usual manner.
Under these circumstances, from the standpoint of mathematical sim-
plicity, it is advantageous to further introduce the local time transfor-
mation, since the results do not depend on the absolute synchronization
of separated clocks. Thus the final diagonalization of the line element
in the moving frame appears as a convenient but unnecessary step.

On the other hand, one might legitimately raise the question: if
this velocity relative to an absolute frame were to always cancel out,
would it and the absolute frame have any physical significance? Cer-
tainly it would be unsatisfactory to introduce these concepts, together
with others employed here such as instantaneous synchronization, su-
perlight signals, etc., in order to justify certain intuitive ideas about the
propagation of light, and then show that they play no role in physical
phenomena.

At the present time this unsatisfactory situation does seem to exist

insofar as uniformly moving frames are concerned; but if we consider
phenomena in rotating frames, as is discussed in the Appendix, the
situation is somewhat different. As is pointed out there, general rela-
tivity does not entail Mach’s principle, without which, inertia must be
regarded as being relative to space rather than the “fixed stars”, and
hence, rotation as absolute, rather than merely relative to these fixed
stars, indeed, throughout the preceding discussion, we have worked with



102 The Abraham Zelmanov Journal — Vol. 2, 2009

solutions to Rµν − 1
2
gµνR=0, that is, a space in which the effect of

other matter is vanishingly small. Nevertheless, this did not prevent
us from assigning inertia to a particle, and propagation properties to
light, which would not have been possible if Mach’s principle were con-
tained in the theory. Under these circumstances, one has no choice but
to regard the gµν as representing a description of space-time itself, as
manifested in the propagation of light, the behaviour of rods and clocks,
and the inertial properties of bodies.

Once this view of the gµν is accepted, the objections raised above
are considerably lessened but not eliminated, since one still has the
problem of how uniform motion relative to space is to be measured
and the absolute velocity thereby determined. As we have seen, this
determination could be made if, in the simplest case, there were signals
propagating with arbitrarily large velocities. The well known arguments
for excluding such signals are based on the following: Since the energy
of a particle increases according to mγ, it would require infinite energy
even to achieve to the speed of light, while beyond the speed of light
the energy would become imaginary — both of which are physically
untenable requirements. However, while the first objection is certainly
valid in classical mechanics, where, to produce a particle travelling faster
than light, one would first have to accelerate it through the speed of
light, the situation is somewhat different in quantum field theory. For
in this case, one can conceive of the possibility of creating, via a collision
process, particles (e.g. a pair) that are already in the faster-than-light
region. Thus the infinite energy at the speed of light would then divide
the spectrum of particles with non-zero mass into two classes: those
travelling with v < 1, and those with v > 1.

It is therefore the second objection, the imaginary energy for v > 1,
that represents the serious problem. From a classical standpoint, this
imaginary energy can be avoided by transferring to the space-like branch
of the energy momentum relations as seen in the absolute frame S. Thus
we formally define the line element for a particle moving v > 1 to be

ds2 = dx2 + dy2 + dz2 − dt2, (12.1)

where the coordinates of the particle are measured in S. Then ds2 is
real for v > 1, and the energy and momentum satisfy p2 −E2 =m2 and
are also real. Also setting ds2 =0, yields, necessarily, the same prop-
agation properties for light in S as the time-like definition. (It should
be noted that frequently in the literature (12.1) appears in connection
with the usual relativistic theory; however, since −ds2 is employed for
the particle variational principle, δ

∫

m
√
−ds2 =0, one is really working
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with the time-like branch. Similarly in quantum field theory although
gµν =−ηµν is sometimes used, this is compensated for by employing
±im where one would have had m working with the time-like metric.)
By employing the transformation (1.3), one can transform to the moving
frame bringing the line element into the diagonal form

ds2 = dt̄ 2 − dx̄2 + dȳ2 + dz̄2, (12.2)

or, employing the analogue of the A.L.T., into the non-diagonal form

ds2 = dt′2 + 2vdx′dt′ +
(

v2 − 1
)

dx′2 + dy′2 + dz′2. (12.3)

In either case, light cannot propagate freely in all directions as must
be the case for a frame travelling with v > 1. However, whether one can
build a consistent extension to field theory that includes this space-like
branch is an open question.

At present, therefore, we can only conclude that the above objections
to particles travelling with v > 1 do not as yet suffice to exclude such
states and further study is necessary. The principal objection, then, that
can be raised is that such states have not been experimentally observed
— in agreement with the fundamental viewpoint of special relativity.
However, this objection can be turned around and used in the construc-
tion of a faster-than-light field theory which makes such states difficult
to observe. Thus the fact that they have not been observed could be
taken to imply some combination of the following: the coupling is weak;
the lifetime is short; the threshold for production is high; the particles
are neutral. (Charged particles with v > 1 would exhibit Cherenkov-like
radiation, since space-like energy-momentum relations permit a spon-
taneous “wake” radiation. Such states need not on this account be
eliminated since the threshold might be high, the lifetime short.) Thus
the rather extensive possibilities that exist in quantum field theory sim-
ply do not permit any firm conclusions about the non-existence of such
states to be drawn from present experimental data.

Let us now turn to a question of a different nature: the significance
of the transformation O2. As we have seen, it is this transformation in
conjunction with O1, the Galilean transformation, which gives rise to
an extension of the relativity of Newtonian mechanics to include fields
propagating with the speed of light. Were it not for O2, it would not be
possible to eliminate the absolute velocity from the line element even
after performing a local time transformation. For example, the local
time transformation, dtℓ = dtg − dxg

v

1−v2
, diagonalizes the line element

in the Galilean frame but it does not eliminate v; an observer could
still detect his motion through space by a Michelson-Morley type of ex-
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periment. Thus, while we have made it clear in the derivation of the
A.L.T. that O2 must arise in conjunction with O1, to make v unob-
servable in the usual experiments, we have not in turn indicated why
this should be the case from the standpoint of some more fundamen-
tal dynamical principle. It would perhaps be more satisfactory from
the standpoint of logical economy of postulates if it were possible to
show that just as O3 is generated from O2 and O1, that O2 in turn
follows from O1, and as a consequence of the nature of the equations
with which we are dealing. It should be stressed that this problem does
not exist for the Lorentz observer for whom it is impossible in princi-
ple to ever determine v and hence O2 by measurements made in his
frame. But for the A.L.T. observer such measurements are in princi-
ple possible, and therefore the contractions and dilatations are some-
thing to be explained in the sense that they are for him an observable
function of v. On the other hand, as was pointed out when he makes
measurements in the same way as the Lorentz observer, v is no longer
determinable, and as was proved in Chapter 11, to the extent the usual
quantum mechanical principles hold, it is in this manner that he will
make measurements. Moreover this rather general invariance that was
found under the local time transformation, even when the concepts of
Lorentz observer and A.L.T. observer no longer apply, indicate O3 is
in every respect as fundamental to the problem as O2 and O1, and so
one might rather regard O2 as being generated as a consequence of O3

and O1.

In conclusion then, there are two theoretical problems to be solved
to complete the point of view developed here:

1. An extension of quantum field theory to include states with v > 1
(or alternatively, a demonstration that there can exist another
signal propagating with constant velocity 6= 1 in the absolute
frame);

2. A further simplification of the postulates underlying the A.L.T.

On the other hand, to lend support to the opposite view that motion
relative to the absolute frame has no physical significance, it would be
logically necessary to:

a) develop a modification or extension of general relativity that fully
incorporates Mach’s principle;

b) demonstrate that any extension of field theory along the lines of
1 above would lead to a contradiction with known phenomena.
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Appendix. Mach’s Principle and the Concept of an Absolute

Frame

As the development in the preceding chapters indicates, it is possible
to construct a mathematical formalism yielding the same experimental
results as special relativity, but in which uniform motion is referred to
an absolute frame. Since the treatment was premised on the assumption
of absolute signals, for which there is as yet no experimental evidence,
the question arises as to whether there are any known physical phe-
nomena which would lend support to the notion of an absolute frame.
To find such phenomena it is necessary to go outside the framework of
uniformly translating systems and consider other types of motion such
as, for example, rotation. Because of the non-inertial character of a
rotating frame, an observer located in such a frame can determine he is
in rotation, without reference to the “fixed stars”, by a variety of me-
chanical and optical experiments: Foucault pendulum, precessing gyro,
the rotating-interferometer of Sagnac [16], the Michelson-Gale experi-
ment [17].

The latter experiment, which may be regarded as the optical ana-
logue of the Foucault pendulum, determines the angular velocity of the
Earth by sending two beams of light around a large rectangle (in the
actual experiment 2010×1113 feet) in opposite directions, whereupon
the beams are made to interfere and a fringe displacement is measured
relative to a fringe system produced by sending the beams around a
smaller rectangle as a reference. The shift can be calculated very sim-
ply from a classical picture in which one takes the Earth as rotating
relative to an absolute frame in which the velocity of light is c, so that
the velocity of light is different in opposite directions relative to the
terrestrial path. Alternatively, one may calculate the effect from the
standpoint of general relativity employing the line element

ds2 =

(

1− Ω2r2

c2

)

c2dt2 − 2r2Ωdφdt− dr2 − r2dφ− dz2, (A.1)

obtained from the usual expression for the line element in cylindrical
coordinates by substituting φ→φ+Ωt, and leaving the other coordi-
nates unchanged. In both cases one finds [18] to first order in Ω (which
represents the limits of experimental accuracy) that the time difference
is 1

c2
4AΩ for the two beams of light to traverse a figure of area A.

In neither method of calculation is there any reference to the other
matter of the universe, the result being a consequence of purely kine-
matical considerations which, to first order in Ω, do not even involve
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relativity. Of particular interest is the appearance in the above line el-
ement of the cross term 2r2Ωdφdt, which has the consequence that the
time it takes light to go a distance r∆φ is different in opposite direc-
tions ±∆φ. The effect of this cross term is therefore entirely analogous
to that of the cross term 2vdx′dt′ we encountered in the A.L.T. line
element which also gave rise to a difference in the velocity of propaga-
tion in different directions. Without absolute signals, however, as we
saw, this cross term cancels out in a typical interference measurement,
because effectively all that is measured is the average slowness of light
which does not involve v. But in a rotating frame one has the oppor-
tunity, due to the symmetry involved, to measure the difference of the
slowness in opposite directions around the light path and hence obtain
the effect of the cross term. Thus, using the A.L.T. expression for the
slowness (with c=1) ∆t′

∆σ
=1+ v cos θ′, we have the following expression

for the time difference for the two light beams traversing a closed circuit
in opposite directions (+,−),

∫

(+)

∆t′ −
∫

(−)

∆t′ =

∫

(+)

v cos θ′∆σ′ −
∫

(−)

v cos θ′∆σ′ =

=

∫

(∇×~v) d ~A′ +

∫

(∇×~v) d ~A′ = 4Ω̄A′ (A.2)

where Ω̄ is the average normal component of 1
2
∇×~v over the area. This

derivation is of course not rigorous since the expression for the slowness
was derived assuming uniform motion; however, one can always consider
a series of uniformly moving frames oriented along the light path as
having instantaneously the same value of ~v as the point the light is
traversing. Since the contractions and dilatations are second order,
the use of Stokes’ theorem to first order is justified. Thus from the
standpoint of the A.L.T., the effect observed in rotation is simply the
measurement of the curl of the absolute velocity appearing in the set
of A.L.T. line elements instantaneously defining the light path in the
rotating frame, and hence Ω is to be regarded as the angular velocity
of the terrestrial frame relative to the absolute frame.

Needless to say such an interpretation is inadmissible if one holds to
the relativistic viewpoint that motion of a material body has meaning
only with respect to other material bodies or reference frames. Under
these circumstances it is logically necessary for the relativist to inter-
pret the apparent absolute character of the effects observed in rotating
frames (or more generally, non-inertial frames) from the standpoint of
Mach’s idea [19], as formulated into a principle by Einstein [20]. Ac-
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cording to this principle, bodies do not have inertia relative to space
but relative to the totality of matter in the universe which not only
influences the inertia of a body but somehow produces it. This totality
of matter, of which the “fixed stars” constitute the visible and presum-
ably principal component, then determines via an averaging process the
fundamental inertial frame (to within an inertial motion: uniform trans-
lation, free-fall in a local gravitational field) relative to which rotations
and other apparently “absolute” motions are to be referred.

From the standpoint of the relativity of motion and the elimination
of non-observable frames, Mach’s idea is very attractive; however, it has
never been successfully incorporated into a dynamical scheme. Thus in
general relativity, as we have seen, a possible solution to the field equa-
tions in the absence of sources is gµν = ηµν , or ds

2 = dt2−dx2−dy2−dz2,
and hence the usual Euler-Lagrange equations follow, indicating a sin-
gle particle can have inertia without other masses being present. The
field equations therefore admit of solutions in which inertia is relative
to space. In order to satisfy Mach’s principle, however, it would be
necessary that the field equations have no solutions admitting of inertia
in the absence of other matter. It was with the idea of securing this
result that Einstein introduced the modification of the field equations
involving the famous cosmological constant, an attempt which was later
abandoned since, among other reasons, the equations still possessed a
solution admitting of inertia in the absence of other matter, de Sitter’s
“empty” universe [21]. The rotating shell model of Thirring [22], which
is sometimes taken as suggesting that general relativity contains Mach’s
principle, suffers from the difficulties that the “shell” would have to be
travelling faster than the speed of light even for the nearest stars, let
alone distances as great as the fixed stars, and hence Thirring’s solution
does not apply. Also the mass of the shell is introduced ad hoc into the
equations, whereas according to Mach’s principle the mass of the shell
must arise as a consequence of the interaction.

Thus the situation still remains that when one calculates the effects
observed in rotating bodies using general relativity, one is not mak-
ing a calculation whose physical interpretation is Machian, but rather
Newtonian (in the sense of an absolute frame). The view that general
relativity in its present form does not entail Mach’s principle has been
expressed by many authors including Beck [23], Bondi [24] and at the
1955 Jubilee of Relativity at Bern by Heckmann and Robertson and
by Pauli [25]. A recent interesting attempt to construct an alternative
theory to general relativity by R.H.Dicke [26] can be easily shown to
admit a line element of the form ds2 = dt2 − dx2 − dy2 − dz2 even
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in the absence of matter and therefore likewise does not entail Mach’s
principle.

On the basis of experimental evidence the simplest assumption that
summarizes the facts of rotation seems to be:

There is a universal frame, embracing the “fixed stars”, relative
to which it is possible to determine that a material body is in
rotation by mechanical and electromagnetic measurements made
on the body without reference to the stars. (This frame we shall
call the “absolute frame” or simply the “ether”.)

The absolute frame as described and defined above is essentially what
Newton referred to as “absolute space”, except that we have now at-
tributed to it, on the basis of experiment, electromagnetic properties
as well as mechanical ones. In so doing, it has been tacitly assumed
that the angular velocity one determines by the mechanical experiment
(Foucault pendulum) agrees with that determined by the optical ex-
periment (Michelson-Gale experiment), an assumption in accordance
with the experimental facts but not a priori necessary. The assumption
of “universality” is needed to correlate these determinations of Ω with
those determined from the observations of the fixed stars. The apparent
rotation of the fixed stars is then due simply to the fact that the Earth
is rotating in the ether and the stars travelling with velocities less than c
relative to the ether, and at these distances c

RΩ
≪ 1. Their influence on

the events (e.g. precession of Foucault pendulum) observed in the Earth
frame is, in the absence of Mach’s principle, presumably very small and
would appear only through their influence on the metric structure of
the absolute frame, say via the field equations of general relativity. In
addition to the fixed stars, as Eddington [27] points out, more locally
gravitating bodies can produce effects simulating a rotation of the coor-
dinate system, however such effects are quite small (a few seconds per
century for the Moon’s orbit) and do not entail Mach’s principle∗. How-
ever because of these effects, one cannot regard the absolute frame as
a rigid structure existing independently of matter as in the Newtonian
theory or Lorentz’s theory of the ether, but rather as in general relativ-
ity, a (space-time) structure capable of being influenced and perturbed
by the distribution of matter. Once an absolute frame is admitted on
the basis of providing a simple explanation for the rotation experiments,

∗Eddington is not talking about the Thirring model, but about the modification
of the Moon’s orbit based on the analysis due to de Sitter. See pp. 95–99 of the
reference, not just p. 99. See also the detailed analysis in Ciufolini & Wheeler’s book
Gravitation and Inertia, 1995, pp. 133–134. — Note by the Author, 2009.
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there is no reason for rejecting it on the basis of the Michelson-Morley
experiment, etc., since as was shown, the A.L.T. is capable of provid-
ing the same results as special relativity without requiring the complete
equivalence of uniformly moving frames — the requirement that was
primarily responsible for discarding the absolute frame.
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