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Abstract: This note supplements Chapter 8 of my thesis that stud-
ies Maxwell’s equations under the Absolute Lorentz Transformation
(A.L.T.), and it compares in greater detail the fields transformed un-
der the A.L.T. with those under the L.T. The general covariance of
Maxwell’s equations is reviewed, and it is noted that in the case of flat
spacetime this includes the A.L.T. The d’Alembertian equation un-
der the A.L.T. is given for the vector potential in the Landau gauge
which is shown to be invariant under linear transformations. It is
also pointed out that the trajectory of a particle will be the same
with the L.T. or the A.L.T., except that the two sets of clocks will
record different travel times; although they will agree for a round-trip
journey.

This paper is a supplementary background to Chapter 8 of my the-
sis that will hopefully make it clear that certainly Maxwell’s equations
hold under the Absolute Lorentz Transformation (A.L.T.) as well as
further clarify how the electromagnetic fields transformed under the
A.L.T. compare with those transformed under the Lorentz Transfor-
mation (L.T.). First of all, it should be kept in mind that, following
Einstein’s principle of general covariance, when Maxwell’s equations are
written in generally covariant form they hold in all coordinate systems,
not just under the L.T. or the A.L.T. Unfortunately, for physicists and
engineers only exposed to special relativity, and who therefore think
solely in terms of the L.T., this more general result comes as something
of a shocker! But of course one has to consider carefully what are the
measured quantities when one employs these alternative transforma-
tions, and as regards the A.L.T. and the linear local time transforma-
tion, this is done in Chapter 8. But before going into this in detail, I
wish to review the generally covariant form of Maxwell’s equations.

As in special relativity, one introduces a second-rank antisymmetric
tensor for the electromagnetic field, Fµν =−Fνµ, with µ, ν=0, 1, 2, 3,
and for simplicity, c=1, and further on below I will occasionally set
x0 = t, x1 =x, x2 = y, x3 = z. One can readily show that because of the
asymmetry, Fµν has only six linearly independent components given by
F0i with (i=1, 2, 3) corresponding to the three components of the elec-
tromagnetic field, and to a suitable set of the components of the Fij

corresponding to the three components of the magnetic field. Note that
different authors have different conventions so that, e.g., F0i might for
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some correspond to the positive components of the electric field, while
for others it might correspond to the negative component. It is also
sometimes more convenient to work with the contravariant form of the
electromagnetic tensor which is given by Fµν = gµαgνβFαβ , and summa-
tion over the repeated indices α, β is understood. The second rank sym-
metric tensor gµν is the contravariant form of the metric tensor and is
also its inverse, so that gµαgνα = δµν , where the latter is the identity ma-
trix, with δµν =0, µ 6= ν, and δµν =1, µ= ν, no sum. One can show that
Fµν =−F νµ, as is true for the covariant form of the tensor used above.
(Note that the term covariant is used in two different ways: sometimes
it refers to putting equations in tensor form, and sometimes it refers to
where the tensorial indices are located, hence with covariant forms, the
indices are below, and with contravariant forms, the indices are above,
and for second rank tensors or higher, there are mixed forms.) The proof
of the asymmetry of Fµν follows from the asymmetry of Fµν and the
symmetry of gµν . One has F νµ = gνβgµαFβα =−gνβgµαFαβ =−Fµν .

It is shown in textbooks dealing with special relativity and electro-
magnetism that Maxwell’s equations in all Lorentz invariant systems
take the following form with partial derivatives replaced by a comma,
thus ∂f

∂x
is replaced by f,x , so that one has, see (8.1) in the thesis,

Fµν,λ + Fλµ,ν + Fνλ,µ =0 , (1)

Fµν
,ν = jµ. (2)

To put these equations in generally covariant form, one replaces the
commas by semicolons that indicate covariant derivatives, so that the
above equations become

Fµν;λ + Fλµ;ν + Fνλ;µ = 0 , (3)

Fµν
;ν = jµ . (4)

Now a remarkable simplification occurs because of the asymmetry of
the Fµν , and the symmetry of the Christoffel symbols that are involved
in the covariant derivatives that are in (3). The first term can be written,

Fµν;λ =Fµν,λ −Γα
µλFαν −Γβ

νλFµβ , and similar expressions for the other
two covariant derivatives. Well, one finds that all the terms involving
the Christoffel symbols cancel, so the covariant derivatives can all be
replaced by partial derivatives, or commas, so the equation takes the
same form as (1). Although in our work, all the Christoffel symbols
vanish, since they involve partial derivatives of the metric tensor, and we
are working within flat spacetime with Cartesian spacetime coordinates,
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for which all the metric coefficients are constants, and hence their partial
derivatives vanish, nevertheless it is interesting to see that the first
equation of Chapter 8 and (1) above holds more generally than in special
relativity: it is true even in general relativity in arbitrary systems of

coordinates. Now let us look at (4), the generally covariant divergence
equation. One can show that the covariant derivative takes the form

Fµν
;ν =Fµν

,ν + Γµ
αν F

αν + Γν
βν F

µβ . (5)

Now the second term on the right hand side of (5) vanishes, because
Fαν =−F να and Γµ

αν =Γµ
να. While for the third term on the right hand

side, one can show that Γν
βν =

∂ ln
√
−g

∂xβ
, where g is the determinant of the

metric tensor. Hence upon multiplication by Fµβ and then replacing β

by ν, since it is a “dummy” index, and then combining it with the first
term on the right hand side, and substituting in (4), one has

1√−g

∂
√−g Fµν

∂xν
= jµ. (6)

Now it turns out for the A.L.T. and for the L.T., as I point out in
the thesis, these transformations are “unimodular” so that their deter-
minant is −1, and hence

√−g=1. Thus the second of the two equations
labelled (8.1) in the thesis holds not only for the L.T., but for the A.L.T.
as well, as given in the second of the two equations labelled (8.3). Also,
importantly, because of the asymmetry of the Fµν , one readily derives
the continuity equation for the current four-vector

∂2Fµν

∂xµ∂xν
= Fµν

,µ,ν = jµ,µ =0 . (7)

What about the vector potential Aµ? In generally covariant form
Fµν =Aµ;ν −Aν;µ, and the generally covariant derivatives of the vec-
tors are given by Aµ;ν =Aµ,ν −Γλ

µνAλ and Aν;µ =Aν,µ −Γλ
νµAλ, and

since Γλ
µν =Γλ

ν mu, one has that the difference of the generally covariant
derivatives reduces to the difference of the partial derivatives, and hence
for the A.L.T. as for the L.T., or indeed for all coordinate systems in
general, one has remarkably

Fµν =Aµ,ν −Aν,µ . (8)

And if one substitutes this expression for the Fµν into the first of
the two equations in (8.1) of the thesis, and changes the indices in a
cyclical fashion, one readily finds that the six resulting terms cancel
one another, so that the equation is satisfied. Hence, as pointed out in
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thesis, if we assume the two equations in (8.1) to hold, say in the rest
frame, and then transform them by the A.L.T. to the moving frame,
then one has exactly the same form of the equations, but with a prime
on the variables, as in (8.3).

On the other hand, when one looks at the d’Alembertian wave equa-
tion for the vector potential, for convenience in the contravariant form,
Aµ, the difference between the A.L.T. and the L.T. manifests itself.
To obtain (8.4), we use Fµν = gµνgνλFαλ = gµαgνλ (Aα,λ −Aλ,α) =
= gνλA

µ
,λ − gµαAν

,α . At this point it is of interest to make a brief di-
gression into general relativity. You will notice that I raised the indices
on the vector potential in the last two expressions. I could do this be-
cause the metric tensor for the A.L.T. as well as the L.T. are constants,
and hence their partial derivatives vanish. I could have also done this if
we were working with general coordinates for which the components of
the metric tensor are not constants, provided the “comma” derivative
was replaced by the covariant derivative, i.e., the semicolon derivative,
since the covariant derivative of the metric tensor always vanishes. But
returning to flat spacetime, and the above results, when one takes the di-
vergence of Fµν , one gets two terms: the first term is the d’Alembertian
term given in (8.4) of the thesis, and the second term is −gµα ∂

∂xα

(

∂Aν

∂xν

)

.

Then (8.4) follows if one sets ∂Aν

∂xν
=0; this relation is sometimes called

the Landau gauge. Incidentally, you might wonder whether the Landau
gauge is invariant under transforming say from the Lorentz frame to the
A.L.T. frame. It turns out the gauge is invariant under all linear trans-
formations. Proof: Let the linear coordinate transformation be given as
dx′λ = aλν dx

ν , and hence Aν = āνµA
′µ with āνµa

λ
ν = δλµ. So the matrices

are inverse to each other. Then ∂Aν

∂xν
= āνµ

∂A′µ

∂x′λ

∂x′λ

∂xν
= āνµa

λ
ν
∂A′µ

∂x′λ
= ∂A′µ

∂x′µ
.

Hence, if it is the case that ∂Aν

∂xν
(which can also be written using the

comma notation as Aν
,ν) is chosen to vanish in one inertial frame, say

the ether frame, it vanishes in any other frame connected to it by a lin-
ear coordinate transformation. Incidentally you might wonder what the
situation is when we work with Aν

;ν , that is, when we work with the co-
variant (or semicolon) derivative rather than just the partial (or comma)
derivative? Well, from what I have written above one has Aν

;ν =Aν
,ν +

+Γν
ανA

α =Aν
,ν +

∂ ln
√
−g

∂xα
Aα, and upon making use of the fact that α

is a dummy index, and can be replaced by ν, the second term upon
combining with the comma derivative leads to the following expression
for the covariant divergence

Aν
;ν =

1√−g

∂
√−g Aν

∂xν
=Aν

,ν , (9)
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for
√−g=1 or, more generally, when

√−g is a constant.
Now let us suppose we have transformed from the rest frame to the

A.L.T. frame which, as above, will continue to be denoted by primes
on the coordinates and field quantities, then we arrive at (8.4) in the
thesis. However, the contravariant components of the metric tensor,
i.e., g′µν were not given explicitly in (8.4). They are the inverse to the
components of g′µν given in (1.11) of the thesis. One finds with c=1
that the non-vanishing components are the following: g′00 =(1 − v2),
g′01 = g′10=−v, g′11 = g′22 = g′33 =−1. So (8.4) becomes
[

(1 − v2)
∂2

(∂x′0)2
− 2v

∂2

∂x′0∂x′1
− ∂2

(∂x′2)2
− ∂2

(∂x′3)2

]

A′µ = j′µ. (10)

This is of course different than the d’Alembertian equation in the
corresponding Lorentz transformed frame, which is exactly of the same
form as the rest frame. The reason for the difference is that in the
A.L.T. frame, the speed of light is not the same in all directions, since
the clocks have been synchronized externally so as to keep simultaneity
invariant. On the other hand, as pointed out on numerous occasions
before, this does not contradict the fact that the out-and-back speed is
the same as for the Lorentz observer.

Since the subsequent material in the thesis through (8.7) is self-
explanatory, let me go now to the equations given in (8.8). You will
note that I have lowered the indices to obtain A′

0, j
′
0 in terms of their

contravariant expressions. Here we see another difference with the L.T.,
because gL00 =1, gL0i=0, one has AL0 =AL0, jL0 = jL0 in contrast to
the relations in (8.8). What is now of interest is that if we work with
the mixed components, A′

0, A
′i, the transformation from the rest frame

to the primed frame is exactly the same as would be the case for the
the Lorentz contravariant components, A0

L
, Ai

L
, and similarly for the

currents, so that j′0, j
′i are the same as j0

L
, ji

L
.

In the thesis, I then go on to say that (j′0, j′x)γ are to be iden-
tified with the quantities (j0, jx) in the rest frame. It follows from
the second equation of (8.7) that we have j′0γ= j0, but since in the
rest frame j0 = j0, the results follow for the zeroth component. To show
that the above is true for the x-component, we have j′x = g′x0 j

′0 + g′xx j
′x.

Then substituting the values of the metric tensor from (1.11) we have
j′x =−vj′0 − (1−v2)j′x, and upon substituting from the first equation
in (8.7) for j′x into the above expression one obtains the following:
j′x =−vj′0 − (1−v2)(γjx−γ2v j′0)=− 1

γ
jx, and since jx=−jx, upon

multiplying both sides by γ the result follows.
Now let’s work out some of the transformations leading to the rela-
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tions in (8.10). As introduced above, the quantities aρµ and āµρ are
the transformation coefficients and their inverse for the A.L.T., and
expressed in terms of partial derivatives, they are given by aρµ =

∂x′ρ

∂xµ
,

āµρ =
∂xµ

∂x′ρ
. Then, for example, F01 = a00a

1
1F

′
01 + a10a

0
1F

′
10, but since

a01 =
∂x′0

∂x1
=0, unlike the case for the L.T., one has F01 = γ 1

γ
F ′
01 =F ′

01

as in the thesis, but with the subscript “1” replaced by the letter “x”,
and recalling c=1, x0 = t, x′0 = t′. Let us now derive the contravariant
expressions given by F 01 = ā00 ā

1
1F

′01 + ā01 ā
1
0F

′10. Once again, the sec-
ond term on the right hand side vanishes for the A.L.T., and since its

inverse is given by x= 1
γ
x′ + vγt′, t= γt′, it follows that ā00 =

∂x0

∂x′0
= γ

and that ā11 =
1
γ
, hence it follows that F 01 = γ 1

γ
F ′01 =F ′01.

Thus we see that the covariant and contravariant forms of the anti-
symmetric electromagnetic field tensor are invariant under the A.L.T.
in the direction of motion! This is also true for the L.T. as shown in the
two top relations in (8.13), and as I will prove here explicitly further
below. But physically, why is this the case? The argument that I have
heard goes as follows. Let us imagine electric charge spread uniformly
on an infinite plane metal surface, which we will take to be the yz plane.
The electric field is uniform, and given by Ex, and in suitable units is
just the surface charge density. Now look at the field in a frame trav-
elling in the x-direction, i.e., normal to the plane. Since the electric
charge is conserved, as discussed in the paragraph following (8.4), and
since the y and z coordinates are left invariant under both the L.T. and
the A.L.T., then the surface charge density is invariant, and hence the
electric fields are invariant, which explains physically why the two top
equations for the electric fields in (8.13) come out the same for the two
transformations. I have only discussed here the electric fields in the
direction of motion, and you might find it interesting to work out the
case for the electric fields in the y and z directions as given in (8.10).

But before going on to the transformation that links the L.T. fields
with the A.L.T. fields, let us look at the transformation for the covariant
and contravariant components of the magnetic fields as given in (8.11).
Now Fyz is the magnetic field in the x-direction in the rest frame, and
we see it is the same as in the A.L.T. frame. Mathematically, this
comes about because Fyz = aµy a

ν
zF

′
µν , and since aµy = δµy , a

ν
z = δνz from

the A.L.T., the result given in the thesis follows. A similar argument
holds for F yz. Physically, this means the magnetic field in the direction
of motion is invariant under the A.L.T. as it is under the L.T. One
can show that this should be the case by an argument similar to the
argument for the electric field by thinking in terms of little current loops
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lying in the yz plane, and using the fact that the y and z coordinates
are not changed under either transformation. Once again you may wish
to work out the case for the other components of the magnetic field as
given in the remainder of the relations in (8.11).

Now let us turn to comparing the fields under the A.L.T. with those
under the L.T., and in order to be clear as to the physical circumstance
under which the comparison is being made, imagine we are on a train
travelling with velocity v in the x-direction with the station taken as the
rest frame. On the train there are two sets of clocks: one set has been
synchronized internally, either by the Einstein method, or by slowly
moving them. According to these clocks, the one-way speed of light is
the same in all directions. These are the clocks that obey the Lorentz
transformation. The second set of clocks are those associated with the
observers using the A.L.T. who have synchronized their clocks with
those in the station. As discussed in the thesis, the transformation
connecting the A.L.T. with the L.T. is a local time transformation:
tL = t′−vx′, xL =x′, yL = y′, zL = z′, which in differential tensorial form

as given in (8.12) is written dx
µ
L = ℓµν dx

′ν , and the inverse transforma-

tion is dx′µ = ℓ̄µν dx
ν
L
. Let us work out explicitly FL01 = ℓ̄

µ
0 ℓ̄

ν
1F

′
µν . Now

rewrite the local time transformation as t′ = tL + vxL, x′ =xL, y
′ = yL,

z′= zL, so that ℓ̄µ0 = ∂x′µ

∂x0

L

= δ
µ
0 , while ℓ̄′ν1 = ∂x′ν

∂x1

L

has two nonzero values

given by ℓ̄01 = v, and also ℓ̄11 =1. However, because F ′
µν is antisymmetric,

F ′
00 =0, and therefore the only term that survives corresponds to FL01 =

= ℓ̄00 ℓ̄
1
1F

′
01 =F ′

01 as given in the top left relation in (8.13). One can of

use the same analysis based on the local time transformation to derive
the rest of the relations I have given there.

What is very interesting is that we see that the covariant form of the
electric field (i.e., with both indices lowered as given in the upper left
column of (8.13) for the L.T. is exactly the same as for the corresponding
electric field for the A.L.T. This can be summarized in the following
way: FL0i =F ′

0i, i=1, 2, 3, or, i=x, y, z, as in the thesis. On the other
hand, when it comes to the magnetic field, as is clear from the lower right
hand column in (8.14), it is the contravariant components describing the
magnetic field that are the same for both transformations. It follows
that when we use the covariant components of the e-m field tensor for the
electric field, and the contravariant components for the magnetic field,
the transformation from the rest frame to the primed frame is exactly

the same as for the Lorentz transformation. We have already shown this
is the case for the components in the direction of motion, but now let us
look at the transverse components, and specifically, the y-component,
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since by isotropy, the result will hold for the z-component as well.
So let us go back to (8.10) and look at

F0y =
1

γ
F ′
0y − vγF ′

xy . (11)

We want to rewrite this so that instead of F ′
xy being present in (11),

we have F ′xy, and then verify that this relation has the same form as for
the Lorentz transformation. We use F ′

xy = g′xµ g
′
yνF

′µν = g′x0 g
′
yyF

′0y +
+ g′xxg

′
yyF

′xy, since all other terms vanish. Note that I have use x, y
instead of 1, 2 as indices at this point so as to make it easier to compare
with the thesis. Next, substituting values from the A.L.T. metric given
in (1.11) one finds

F ′
xy = vF ′0y + (1− v2)F ′xy. (12)

However we see that we have now introduced F ′0y which we do
not want. So we now use the following relation F ′0y = g′0µg′yνF ′

µν =
= g′00g′yyF ′

0y + g′0xg′yyF ′
xy =−(1−v2)F ′

0y + vF ′
xy, which we now sub-

stitute in (12) to obtain

F ′
xy = − v (1− v2)F ′

0y + v2F ′
xy + (1− v2)F ′xy . (13)

Upon bringing the term v2F ′
xy over to the left hand side and solving,

one finds that F ′
xy can be written as

F ′
xy = −vF ′

0y + F ′xy. (14)

Now substitute (14) in (11), so that we have F0y =
1
γ
F ′
0y − vγ×

×(−vF ′
0y+F ′xy), and rearranging terms, we have F0y = γ ( 1

γ2
+v2)F ′

0y−
− vγF ′xy, and using 1

γ2
+ v2 =1, we finally have that

F0y = γ
(

F ′
0y − vF ′xy

)

, (15)

which is exactly the transformation for the corresponding L.T. quanti-
ties, i.e., one has that

F0y = γ (FL0y − vF xy
L

) , (16)

which can be obtained directly by employing the L.T. for the covariant
components, and noting that for the L.T., unlike the case for the A.L.T.,
one has

FLxy = gLxµgLyνF
µν
L

= (−1)(−1)F xy
L

= F xy
L

, (17)

since all the off-diagonal terms vanish, and the diagonal terms for the
spatial components are equal to −1. And as we have shown, using the
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local time transformation, F ′
0y =FL0y, and one can show in the same

way, F ′xy =F
xy
L , and hence the equivalence of the results for the A.L.T.

and the L.T. is established.
It is interesting to note from (15) and (16) that while F ′

0y, F
′xy are

equivalent to what the L.T. observer says are the electric and magnetic
fields in the x and z directions, respectively, the A.L.T. observer says
that in addition, there is another projection of the magnetic field that
involves the velocity relative to the rest frame as well as the electric
field. Thus from (8.14) one has FLxy =F ′

xy + vF ′
0y, and from (8.13) one

has F ′
0y =FL0y, so that finally one has

F ′
xy = FLxy − vFL0y . (18)

However, unless one has some way of setting up an external syn-
chronization with the rest frame, F ′

xy is strictly unobservable. This is
the same situation that exists for the one-way velocity of light: if one
has no way of making an external synchronization, one relies on either
Einstein synchronization, or that with slowly moved clocks, in which
case the speed of light is c in all directions.

I think the remainder of section (8.1) in the thesis is self-explanatory,
but here is an additional comment that has bearing on section (8.2) that
deals with the equations of motion of a charged particle. Let us suppose
in a frame travelling uniformly with speed v in the x-direction relative
to the rest frame, one does an experiment, say with electrons in an
electromagnetic field, causing them to travel along some path, chosen
for simplicity to be in the plane zL = z′=0. Let us suppose the L.T.
observer finds an electron follows a path given by yL = f(xL). Then un-
der the local time transformation connecting the A.L.T. with the L.T.,
we must have y′= f(x′), so the electron will travel on the same path
for the A.L.T. observer as for the L.T. observer. However, if the elec-
tron left the point A at the L.T. time tL(A), and arrived at the point
B at the time tL(B), these times will in general be different for the
A.L.T. observer, who will assign them times corresponding to the local
time transformation. For convenience, one can assume initially that the
A.L.T. observer’s clock at A has been seen set to agree with that of the
L.T. observer’s clock, so that t′(A)= tL(A). Then, assuming the elec-
tron does not travel on a closed path, one has t′(B)= tL(B)+ vxL(B),
so that the two observers assign different travel times to the electron for
the same path, just as the A.L.T. observer assigns a different travel time
for light than the L.T. for the same path, provided it is not closed. For a
closed path, they of course agree, since the synchronization of separated
clocks is not involved, and the A.L.T. clock and the L.T. clock both
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keep time at the same rate. This underlies the agreement between the
A.L.T. and the L.T. for the Michelson-Morley and Kennedy-Thorndike
experiments.

Finally, I would like to remark, as I noted in my 1961 Supplemento

al Nuovo Cimento article, that the A.L.T. is useful in teaching students
about the meaning of general covariance in the simple case when the
metric tensor is not diagonal, but its coefficients are all constants, so
that all the Christoffel symbols vanish, and the covariant derivatives
reduce to ordinary partial derivatives. Also, there is an analogy with
quantum mechanics, in that one sees that the A.L.T., because of the
different synchronization of clocks from the L.T., splits the degeneracy
between covariant and contravariant components which, under the L.T.,
apart from a possible minus sign, are the same. So in the case of the
A.L.T., the student has to confront the different physical interpretation
of these now degeneracy-split terms, that would not be the case if one
only dealt with the L.T., and this can help to stimulate new insights into
special relativity and electromagnetic theory, and possibly even suggest
new experiments to be performed.

In conclusion, I would like to thank Dr. Gregory B. Malykin for his
interesting questions concerning this Chapter of the thesis, which led to
the above comments. I am also grateful to Dr. Dmitri Rabounski for
his strong support and helpful suggestions.

Submitted on April 25, 2009
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