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Abstract: Schwarzschild’s metric of the space inside a sphere of in-
compressible liquid is taken under focus. We consider a particular
case of the metric, where the surface of the liquid sphere meets the
radius of gravitational collapse calculated for the mass. It is shown
that, in this case, Schwarzschild’s metric transforms into de Sitter’s
metric given that the cosmological λ-term of de Sitter’s metric is pos-
itive (physical vacuum has positive density). Hence, in the state of
gravitational collapse, the λ-field (physical vacuum) is equivalent to
an ideal incompressible liquid whose density and pressure satisfy the
equation of inflation (noting that positive density yields negative pres-
sure). This result is then applied to the Universe as a whole, because
it has mass, density, and radius such as those of a collapsar. The main
conclusion of this study is: the Universe is a collapsar, whose inter-
nal space, being assumed to be a sphere of incompressible liquid, is
a de Sitter space with positive density of physical vacuum.
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§1. Problem statement. The main task of this study is to apply
an extension of Schwarzschild’s metric inside a sphere of incompressible
liquid to cosmology. In other words, we will consider the Universe as a
sphere of incompressible liquid. The extended Schwarzschild metric was
obtained in my previous study [1]. It differs from the classical metric of
the space inside a sphere of incompressible liquid, which was introduced
in 1916 by Karl Schwarzschild [2], in the term g11 which allows space
breaking. Schwarzschild omitted space breaks from consideration, which
was a limitation imposed by him on the geometry. In contrast, we
consider the geometry per se. This approach has already led us to some
success: considering the Sun as a sphere of incompressible liquid, it was
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obtained that the break of g11 in the space of the Sun meets the Asteroid
strip at the distance of the maximal concentration of substance [1].

The extended Schwarzschild metric has the form [1]

ds2 =
1
4

(
3

√
1− κρ0a2

3
−

√
1− κρ0r2

3

)2

c2dt2 −

− dr2

1− κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.1)

where κ is Einstein’s gravitational constant, ρ0 is the density of the
liquid, a is the radius of the liquid sphere, and r is the radial coordinate
(whose origin is located at the centre of the sphere).

As was shown [1], the internal metric (1.1) of the liquid sphere being
expressed through the density ρ0 = M

V , the volume V = 4πa3

3 , Einstein’s
constant κ= 8πG

c2 , and the Hilbert radius∗ rg = 2GM
c2 , takes the form

ds2 =
1
4

(
3
√

1− rg

a
−

√
1− r2rg

a3

)2

c2dt2 −

− dr2

1− r2rg

a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (1.2)

Assuming rg = a in the formula, we trivially arrive at the metric

ds2 =
1
4

(
1− r2

a2

)
c2dt2 − dr2

1− r2

a2

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.3)

which is a particular case of de Sitter’s metric. After the transformation
of the time coordinate t̃ = 1

2 t, this metric transforms into de Sitter’s
classical metric

ds2 =
(

1− λr2

3

)
c2dt2 − dr2

1− λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.4)

where λ = 3
a2 > 0 in the particular case.

∗This is the radius at which the field of a massive sphere (approximated as its
centre of gravity — a mass-point) is in the state of gravitational collapse (g00 =0).
It is also known as the Schwarzschild radius, despite the fact that Karl Schwarzschild
(1873–1916) never considered gravitational collapse in his papers of 1916 [2,3]. I refer
to it as the Hilbert radius after David Hilbert (1862–1944) who considered it in
1917 [4], on the basis of the Schwarzschild mass-point solution [3].
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Schwarzschild’s metric inside a sphere of incompressible liquid is a
solution of Einstein’s equations

Rαβ − 1
2

gαβ R = −κ Tαβ , (1.5)

containing the energy-momentum tensor Tαβ of ideal liquid, while the
λ-term is assumed to be zero. At the same time, de Sitter’s metric is a
solution of Einstein’s equations

Rαβ − 1
2

gαβ R = λ gαβ , (1.6)

where the energy-momentum tensor is zero, while the λ-term is nonzero.
Since, as was shown, Schwarzschild’s metric can be transformed into a
particular case of de Sitter’s metric, it would be interesting to find a
correspondence between the energy-momentum tensor of incompressible
liquid and the λ-term.

Proceeding from the formula for the energy-momentum tensor of
ideal (non-viscous) incompressible liquid, we will see that the medium is
equivalent to the λ-field (physical vacuum) under a particular condition,
where the density and pressure satisfy the inflation equation p =−ρc2

(keeping in mind that positive density yields negative pressure).

§2. A sphere of an incompressible liquid in the state of col-
lapse as a model of the Universe. Many models of the Universe
are known, due to relativistic cosmology, as respective solutions to Ein-
stein’s equations. Initially, Albert Einstein believed that only stationary
models of the Universe can be derived from the field equations. He there-
fore suggested a de Sitter space as a possible model of the Universe. This
is a spherical space, filled with the λ-field (physical vacuum), and is de-
scribed by de Sitter’s metric. Then Alexander Friedmann proved that
Einstein’s equations can have non-stationary solutions. He obtained
a class of solutions (models), which can be both stationary and non-
stationary. The non-stationary Friedmann models can be expanding,
compressing, or oscillating; the expanding models arise from a singu-
lar state, while the compressing and oscillating models can go through
singular states during their evolution. All Friedmann models are homo-
geneous and isotropic. They are commonly accepted as the basis of the
theory of a homogeneous, isotropic universe.

Already in 1966, Kyril Stanyukovich [5] had supposed that our Uni-
verse is a collapsar — an object in the state of gravitational collapse.
He proceeded from a calculation, according to which an object, having
mass and density equal to those of the Metagalaxy, has radius equal to
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the Hilbert radius calculated for the mass.
A collapsar means a static solution of Einstein’s equations. There-

fore, I suggest we go back to Einstein’s initial suggestion of a de Sitter
space, while taking Stanyukovich’s calculation into account. Namely, I
will consider the Universe as a collapsed sphere of incompressible liquid,
described by the extended Schwarzschild metric (1.2), which can also be
represented as a de Sitter space (1.3); thus the liquid gets the properties
of physical vacuum (λ-field).

The term “gravitational collapse” is regularly used in connexion to
the gravitational field derived from a spherical island of mass located
in emptiness (for which Einstein’s equations take the form Rαβ =0).
The metric attributed to such spaces was introduced in 1916 by Karl
Schwarzschild [3]. It is known as the Schwarzschild mass-point metric,
or the mass-point metric in short

ds2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg

r

− r2
(
dθ2 + sin2θ dϕ2

)
, (2.1)

where M is the island’s mass (source of the field), while rg = 2GM
c2 is

the Hilbert radius calculated for the mass M . Once r = rg, the time
component of the fundamental metric tensor becomes zero (g00 =0): all
the region under the surface r = rg around the massive island arrives
at the state of gravitational collapse. If the island’s radius r meets the
surface of gravitational collapse, the island is obviously a collapsar.

The radius rg is only defined by the mass of the massive island
(source of the field). The radius r of the massive island itself comes
from specific properties of the massive island itself. Therefore, in order
for a massive island to be a collapsar, we should determine its properties
so that its radius is equal to rg. We would like to discover such a case.

Consider the space inside a sphere of incompressible liquid, whose
radius is a. This case, first coined by Schwarzschild [2], arrives from
Einstein’s equations (1.5), where the energy-momentum tensor is attri-
buted to ideal liquid (whose density is constant, ρ = ρ0 = const)

Tαβ =
(
ρ0 +

p

c2

)
bαbβ − p

c2
gαβ , (2.2)

where p is the pressure of the liquid, while

bα =
dxα

ds
, bαbα = 1 (2.3)

is the four-dimensional velocity vector, which characterizes the reference
frame of an observer. The energy-momentum tensor should satisfy the
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conservation law
∇σ Tασ = 0 , (2.4)

where ∇σ is the symbol for generally covariant differentiation.
Assume, according to Stanyukovich [5], that the Universe is a col-

lapsar. In addition to it, assume that the Universe is a sphere of in-
compressible ideal liquid, where galaxies play the rôle of molecules. In
this case, the space of the Universe should be described by the extended
Schwarzschild metric (1.2) with an additional condition

g00 = 0 , (2.5)

which points to the state of gravitational collapse. This condition, being
applied to the metric (1.2), means that

g00 =
1
4

(
3

√
1− rg

a
−

√
1− rgr

a3

)2

= 0 . (2.6)

It follows from (2.6) that a photometric radial distance r = rc, at
which the gravitational collapse occurs, is

rc = a

√
9− 8a

rg
, (2.7)

thus rc takes real values if the radius a of the liquid sphere is

a <
9
8

rg , (2.8)

while the radius of gravitational collapse becomes zero (rc =0) under
the condition

a =
9
8

rg = 1.125 rg . (2.9)

Consider a particular case of (2.7), where the surface of the liquid
sphere meets the Hilbert radius. In this case, we have

a = rg (2.10)

and, as follows from (2.7), the photometric distance also meets the col-
lapse surface rc = rg = a. Hence:

The internal field of a sphere of incompressible liquid in the state
of gravitational collapse is equivalent to the external field of a
collapsing mass-point as well.

Now, since Schwarzschild’s metric of the space inside a sphere of in-
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compressible liquid transforms into de Sitter’s metric by the collapse
condition and the condition λ = 3

a2 , we arrive at the conclusion:
Space inside a sphere of incompressible liquid, which is in the state
of gravitational collapse, is described by de Sitter’s metric, where
the λ-term is λ = 3

a2 .
All these can be applied to the Universe as a whole, because it has

mass, density, and radius such as those of a collapsar. Therefore,
The Universe is a collapsar, whose internal space, being assumed
to be a sphere of incompressible liquid, is a de Sitter space with
λ = 3

a2 (here a is the radius of the Universe).

§3. Physically observable characteristics of a de Sitter space.
Herein, I consider physically observable properties of a de Sitter space,
described by the metric (1.3), where λ = 3

a2 . I use Zelmanov’s math-
ematical apparatus of chronometric invariants [6–8]: chronometrically
invariant quantities, being the respective projections of four-dimensional
quantities onto the line of time and the three-dimensional section of an
observer, are physically observable in his frame of reference.

According to the theory of chronometric invariants, the gravitational
potential w and the linear velocity vi of the rotation of space are

w = c2
(
1−√g00

)
, vi =

cg0i√
g00

, i = 1, 2, 3. (3.1)

In both Schwarzschild’s metric and de Sitter’s metric, all the g0i are
zero, thus vi =0 (such a space does not rotate). Therefore, in these
spaces, according to the chr.inv.-definition of the gravitational inertial
force Fi and the angular velocity Aik of the rotation of space [6–8],

Aik =
1
2

(
∂vk

∂xi
− ∂vi

∂xk

)
+

1
2c2

(Fivk − Fkvi) = 0 , (3.2)

Fi =
c2

c2 − w

(
∂w
∂xi

− ∂vi

∂t

)
= − c2

2g00

∂g00

∂xi
. (3.3)

Applying the formula for g00, which follows from the metric (1.3) of
the particular de Sitter space we are considering, we obtain

F1 =
c2r

a2 − r2
, F2 = F3 = 0 , (3.4)

where a2 = 3
λ . Since we are considering a region of r < a, F1 is positive.

Hence, this is a gravitational inertial force of repulsion.
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The chr.inv.-metric tensor, in a case of vi =0, takes the form

hik = −gik +
1
c2

vivk = −gik , hik = −gik, hi
k = δi

k , (3.5)

where its substantial components for the metric (1.3) are

h11 =
a2

a2 − r2
, h22 = r2, h33 = r2 sin2θ , (3.6)

h11 =
a2 − r2

a2
, h22 =

1
r2

, h33 =
1

r2 sin2θ
, (3.7)

h = det ‖hik‖ =
a2 r4 sin2θ

a2 − r2
. (3.8)

According to the chr.inv.-definition of the deformation of space,

Dik =
1
2

∗∂hik

∂t
= 0 , Dik = − 1

2

∗∂hik

∂t
= 0 , (3.9)

where
∗∂
∂t

= 1√
g00

∂
∂t

is the chr.inv.-operator of differentiation with respect
to time. Hence, such a space is free of deformation.

The chr.inv.-Christoffel symbols of the 1st kind and the 2nd kind

∆k
ij = hkm∆ij,m =

1
2

hkm

(∗∂him

∂xj
+
∗∂hjm

∂xi
−
∗∂hij

∂xm

)
, (3.10)

are defined through
∗∂

∂xi = ∂
∂xi + 1

c2 vi
∗∂
∂t

, which is the chr.inv.-operator of
differentiation with respect to the spatial coordinates. Their non-zero
components of the metric (1.3) are

∆11,1 =
a2r

(a2 − r2)2
, ∆22,1 = −r , ∆33,1 = −r sin2θ , (3.11)

∆12,2 = r , ∆33,2 = −r2 sin θ cos θ , (3.12)

∆13,3 = r sin2θ , ∆23,3 = r2 sin θ cos θ , (3.13)

∆1
11=

r

a2−r2
, ∆1

22=− (a2−r2)r
a2

, ∆1
33=− (a2−r2)r

a2
sin2θ , (3.14)

∆2
12 =

1
r

, ∆2
33 = − sin θ cos θ , (3.15)

∆3
13 =

1
r

, ∆3
23 = cot θ . (3.16)
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The chr.inv.-curvature tensor Clkij ,

Clkij = Hlkij − 1
c2

(
2AkiDjl + AijDkl + AjkDil +

+ AklDij + AliDjk

)
, (3.17)

which possesses all properties of the Riemann-Christoffel tensor in the
spatial section, is determined through the chr.inv.-Schouten tensor

H ···j
lki· =

∗∂∆j
kl

∂xi
−
∗∂∆j

il

∂xk
+ ∆m

kl∆
j
im −∆m

il ∆j
km . (3.18)

The contracted form Clk = C ···i
lki· of the chr.inv.-curvature tensor is

Clk = Hlk − 1
c2

(
AkjD

j
l + AljD

j
k + AklD

)
. (3.19)

In the absence of space rotation and deformation, which is specific
to both Schwarzschild spaces and de Sitter spaces, Hlkij and Clkij are
the same.

For the metric (1.3), we obtain, according to the definition (3.18),
the non-zero components of the chr.inv.-curvature tensor:

C ···2
121· = C ···3

131· = − 1
a2 − r2

, C ···3
232· = − r2

a2
, (3.20)

thus, respectively,

C1212 = − r2

a2−r2
, C1313 = −r2 sin2θ

a2−r2
, C2323 = −r4 sin2θ

a2
, (3.21)

and also, the non-zero components of the contracted tensor:

C11 = − 2
a2 − r2

, C22 = − C33

sin2 θ
= −2r2

a2
. (3.22)

As a result, we obtain the chr.inv.-curvature (observable curvature)
of the three-dimensional space (spatial section). It is

C = − 6
a2

= const < 0 , (3.23)

so a de Sitter space having the metric (1.3) is a space of constant nega-
tive three-dimensional curvature, where the curvature is inversely pro-
portional to the square of the radius of the space.

These are the physically observable characteristics of a de Sitter
space, which has the particular metric (1.3), where λ = 3

a2 .
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§4. The cosmological λ-field is equivalent to an ideal incom-
pressible liquid in the state of inflation. When looking for an
exact solution of Einstein’s equations while taking a given distribution
of matter (the energy-momentum tensor) into account, we should solve
them in common with the law of conservation (2.4), which determines
the distribution. As is known, de Sitter spaces are filled with λ-fields,
thus they are described by the particular form (1.6) of Einstein’s equa-
tions. On the other hand, as was shown earlier, a de Sitter space con-
taining λ = 3

a2 is a particular case of a Schwarzschild space inside a
sphere of incompressible liquid, wherein Einstein’s equations have the
form (1.5). Our task here is to find, by solving Einstein’s equations and
the equations of energy-momentum conservation, how the properties of
ideal liquid are linked to the λ-field in this particular case.

We therefore consider the general form

Rαβ − 1
2

Rgαβ = −κ Tαβ + λgαβ (4.1)

of Einstein’s equations, which covers both de Sitter spaces and Schwarz-
schild spaces.

According to the theory of chronometric invariants [6–8], the energy-
momentum tensor has three observable chr.inv.-components (as well as
any symmetric tensor of the 2nd rank):

ρ =
T00

g00
, J i =

c T i
0√

g00
, U ik = c2T ik, (4.2)

where ρ is the chr.inv.-density of the distributed matter, J i is the
chr.inv.-vector of the density of the momentum in the medium, U ik

is the chr.inv.-stress tensor.
Assume that the space is filled with an ideal (non-viscous) incom-

pressible (ρ = ρ0 = const) liquid. In this case, the energy-momentum
tensor has the form (2.2), where the density and pressure of the liquid
satisfy the equation of state

ρc2 = − p , (4.3)

known as the state of inflation. Respectively, we obtain the chr.inv.-
components of the energy-momentum tensor (2.2). They are

ρ = ρ0 , J i = 0 , U ik = phik = −ρ0 c2hik, (4.4)

being derived from (2.2) through the condition

bi =
dxi

ds
= 0 , i = 1, 2, 3, (4.5)
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which means that the observer accompanies his references. The first
chr.inv.-component, ρ = ρ0, means that the liquid is incompressible. The
second chr.iv.-component, J i =0, means that the liquid does not contain
flows of momentum. The third chr.inv.-component, U ik = phik, means
that the obsever accompanies the medium. In other words, a regular
observer rests with respect to the medium and its flows.

Chr.inv.-projections of Einstein’s equations (4.1) has been obtained
in the framework of the theory of chronometric invariants [6–8]. They
are known as the Einstein chr.inv.-equations
∗∂D

∂t
+DjlD

jl+AjlA
lj +∗∇jF

j− 1
c2

FjF
j =−κ

2
(
ρc2+U

)
+λc2, (4.6)

∗∇j

(
hijD −Dij −Aij

)
+

2
c2

FjA
ij = κJ i, (4.7)

∗∂Dik

∂t
− (

Dij + Aij

)(
Dj

k + A·jk·
)

+ DDik + 3AijA
·j
k· +

+
1
2

(∗∇iFk + ∗∇kFi )− 1
c2

FiFk − c2Cik =

=
κ
2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik , (4.8)

where U = hikUik is the trace of the chr.inv.-stress tensor Uik, while ∗∇i

is the symbol for chr.inv.-differentiation. The chr.inv.-components of
the conservation law (2.4) have the form [6–8]

∗∂ρ

∂t
+Dρ +

1
c2

DijU
ij +∗∇i J

i− 2
c2

FiJ
i = 0 , (4.9)

∗∂Jk

∂t
+DJk + 2

(
Dk

i +A·ki·
)
J i +∗∇i U ik− 2

c2
FiU

ik− ρF k = 0 . (4.10)

Take into account that for the metric (1.3)

Dik = 0 , Aik = 0 , J i = 0 , Uik = phik , U = 3p , (4.11)

and the inflation state ρc2 =−p. Under these conditions, the Einstein
chr.inv.-equations (4.6–4.8) take the form

∗∇j F j − 1
c2

FjF
j = − κ

2
(
ρ0c2 + 3p

)
+ λc2 = (κρ0 + λ) c2, (4.12)

1
2

(∗∇iFk + ∗∇kFi

)− 1
c2

FiFk − c2Cik =

=
κ
2

(
ρ0c2 − p

)
hik + λc2 = (κρ0 + λ) c2. (4.13)
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We calculate

∗∇j F j = ∗∇1F
1 =

∗∂F 1

∂x1
+
∗∂ ln

√
h

∂x1
F 1 =

c2(3a2 − 2r2)
a2(a2 − r2)

, (4.14)

∗∇1 F1 =
∗∂F1

∂xi
−∆1

11F1 =
c2

a2 − r2
+

c2r2

(a2 − r2)2
, (4.15)

∗∇2 F2 = −∆1
22F1 =

c2r2

a2
, (4.16)

∗∇3 F3 = −∆1
33 F1 =

c2r2 sin2θ

a2
, (4.17)

then substitute these, and also F1, C11, C22, C33 calculated according
to the formulae of §3, into the Einstein chr.inv.-equations (4.12–4.13).
After algebra, we obtain that only one equation of the Einstein chr.inv.-
equations remains non-vanishing:

3c2

a2
= (κρ0 + λ) c2. (4.18)

Consider two formal cases for this equation, satisfying both the
Schwarzschild metric and the particular de Sitter metric. Namely:

1) A case, where Tαβ 6=0 and λ =0. This means that the space is
filled only with distributed matter (ideal incompressible liquid, in
this case). Thus, we obtain, from the Einstein chr.inv.-equation
(4.18), the density and pressure of the liquid

ρ0 =
3
κa2

, p = −ρ0c2 = − 3c2

κa2
= const, (4.19)

while the chr.inv.-equations of the conservation law (4.9–4.10) are
satisfied as identities;

2) Another option is that of Tαβ =0 and λ 6=0. In this case, the space
is filled only with physical vacuum (λ-field). Thus, the Einstein
chr.inv.-equation (4.18) reduces to

λ =
3
a2

> 0 , (4.20)

so the density and pressure of physical vacuum are expressed
through the λ-term, according to the chr.inv.-equations of the
conservation law (4.9–4.10), as

ρ0 =
λ

κ
, p = −λc2

κ
= const. (4.21)
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Therefore, since these two cases meet each other in the particular
case under consideration, we arrive at the conclusion:

The λ-field (physical vacuum), which fills a particular de Sitter
space, where λ = 3

a2 > 0, is equivalent to an ideal incompressible
liquid in the state of inflation.

§5. Physically observable characteristics of a sphere of incom-
pressible liquid. Here we compare the details of two different states
of the space inside a sphere of incompressible liquid:

1) A regular state of the liquid sphere, where its radius a is much
larger than the Hilbert radius rg calculated for the mass (aÀrg). I
refer to such an object as a Schwarzschild bubble, since its internal
space is described by the Schwarzschild metric (1.2);

2) The liquid sphere is a collapsar — a body in the state of gravi-
tational collapse. In this case, the surface of the sphere meets its
Hilbert radius (a = rg). I suggest that such an object should be
referred to as a de Sitter bubble. This is because its internal space
is described by the particular de Sitter metric (1.3).

First of all, we would like to point out numerous principal differences
of this consideration from that according to the Schwarzschild mass-
point metric utilized by most relativists when considering collapsars [9].

According to the mass-point metric (2.1), g00> 0 in the space out-
side the collapsed surface (r >rg), g00=0 on the surface (r = rg), and
g00< 0 in the space inside it (r < rg). Thus the signature condition
g00> 0 is violated inside gravitational collapsars. In order to restore
the signature condition g00> 0 inside collapsars, another metric is sug-
gested: it is derived from the mass-point metric (2.1) by substitution of
r = ct̃ and ct = r̃, thus space and time replace each other. As a result,
the signature condition remains valid inside collapsars, but is violated
in the regular space surrounding them [9]. Also, the mass-point metric
does not specify the body’s radius. In other words, we cannot recognize,
without additional conditions, whether the object is a collapsar, or not.

By contrast, the signature condition g00> 0 is satisfied everywhere
inside a collapsar filled with incompressible liquid (Schwarzschild space)
or physical vacuum (de Sitter’s space). In addition to it, both metrics
contain the radius of space. Thus, we can clearly recognize, from the
metric itself, that the considered object is a collapsar (a = rg). These
are advantages of our approach.

Probably, there are many such objects in the Universe: consisting
of a substance similar to ideal incompressible liquid, they may trans-
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form into collapsars at the final stage of their evolution, thus becoming
de Sitter bubbles. These objects are hidden from observation, because,
being collapsars, they never allow light to leave their internal space for
the cosmos.

Let us derive a formula for the chr.inv.-vector of the gravitational
inertial force from the metric (1.2). We obtain that just one (radial)
component of the force is non-zero. It is

F1 = −c2rg r

a3

1(
3
√

1− rg

a
−

√
1− rgr2

a3

) √
1− rgr2

a3

. (5.1)

Since r < a inside the sphere, F1 < 0 therein. Hence, this is a force
of attraction. It is F1 =0 at the centre of the sphere, and F1→−∞ on
its surface (the surface of gravitational collapse).

Consider a regular case, where aÀ rg. Expanding
√

1− rg r2

a3 into
series, while neglecting the high order terms, we obtain

√
1− rgr2

a3
≈ 1− rgr2

2a3
, (5.2)

thus, once r = a, we have
√

1− rg

a
≈ 1− rg

2a
. (5.3)

Substituting (5.2) into (5.1), we obtain

F1 ≈ −c2 rg r

2a3
= −GMr

a3
. (5.4)

If r = a, we obtain a Newtonian gravitational force of attraction,
which is F1≈− GM

a2 .
It is easy to show that F1 (5.1) by a= rg takes the form

F1 =
c2r

a2 − r2
> 0 , (5.5)

which is a non-Newtonian gravitational force of repulsion:
The gravitational inertial force inside a regular sphere of incom-
pressible liquid and in that in the state of being a collapsar has
opposite signs. In a regular liquid sphere (Schwarzschild bubble),
this is a Newtonian gravitational force of attraction. In a liquid
sphere which is a collapsar (de Sitter bubble), this is a repulsing
non-Newtonian gravitational force.
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The pressure inside a regular liquid sphere (1.2) is formulated as [1]

p = ρ0c2

√
1− rgr2

a3 −
√

1− rg

a

3
√

1− rg

a
−

√
1− rgr2

a3

, (5.6)

so p> 0 under aÀ rg. Once a= rg, the pressure takes the form

p = −ρ0c2 = const, (5.7)

thus the medium is in the state of inflation. Since ρ0 > 0, we obtain
that p< 0 inside de Sitter bubbles. So, we conclude:

The pressure is positive in a regular sphere of incompressible liq-
uid. It is negative in a liquid sphere, which is a collapsar.

Consider the chr.inv.-curvature tensor Clkij for the metric (1.2).
First, we obtain the components of the chr.inv.-metric tensor

h11 =
1

1− rgr2

a3

, h22 = r2, h33 = r2 sin2θ , (5.8)

h11 = 1− rgr2

a3
, h22 =

1
r2

, h33 =
1

r2 sin2θ
, (5.9)

h = det ‖hik‖ =
r4 sin2θ

1− rgr2

a3

, (5.10)

and the chr.inv.-Christoffel symbols

∆11,1 =
rg r

a3

1
(
1− rgr2

a3

)2 , ∆22,1 = − r , ∆33,1 = − r sin2 θ , (5.11)

∆12,2 = r , ∆33,2 = − r2 sin θ cos θ , (5.12)

∆13,3 = r sin2 θ , ∆23,3 = r2 sin θ cos θ , (5.13)

∆1
11 =

rg r

a3
(
1− rgr

a3

) , ∆1
22 = −r

(
1− rg r2

a3

)

∆1
33 = −r

(
1− rg r2

a3

)
sin2θ





, (5.14)

∆2
12 =

1
r

, ∆2
33 = − sin θ cos θ , (5.15)

∆3
13 =

1
r

, ∆3
23 = cot θ . (5.16)
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Then we obtain the non-zero components of Ciklj

C1212 =
C1313

sin2θ
= − rg

a3

r2

1− rgr2

a3

, C2323 = − rg

a3
r4 sin2θ , (5.17)

which coincide with those (3.21) obtained for the particular de Sitter
metric (1.3) by the condition a= rg, i.e. when the liquid sphere is a col-
lapsar. Contracting these with hik, we obtain the non-zero components
of the contracted chr.inv.-curvature tensor

C11 = −2rg

a3

1

1− rgr2

a3

, C22 =
C33

sin2θ
= −2rg r2

a3
, (5.18)

and also the chr.inv.-curvature scalar (observable curvature of the three-
dimensional space)

C = −6rg

a3
= const < 0 , (5.19)

which coincides, by the collapse condition a = rg, with the respective
values (3.22) and (3.23), obtained for the particular de Sitter metric
(1.3). Hence, a Schwarzschild space with the metric (1.2) has a constant
negative observable (three-dimensional) curvature space.

It should be noted that, as one may find in any textbook of the theory
of relativity and relativistic cosmology, de Sitter spaces are constant
curvature spaces, while Schwarzschild spaces are not. This commonly
accepted terminology is based on the four-dimensional curvature K.
The observable (three-dimensional) chr.inv.-curvature C is calculated
in another way; it is linked to K only in constant curvature spaces such
as de Sitter spaces (see §5.3 in [10], for details). Thus,

In a de Sitter space, the four-dimensional curvature K and observ-
able (three-dimensional) curvature C are constants. A Schwarz-
schild space, which is inside a sphere of incompressible liquid, has
a variable four-dimensional curvature K and a constant observable
(three-dimensional) curvature C.

The observable three-dimensional curvature of such a Schwarzschild
bubble has a radius <, which, coming from the relation

C = −6rg

a3
=

1
<2

, (5.20)

which is obvious for a liquid sphere, is imaginary

< =
ia
√

a√
6rg

. (5.21)
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Respectively, the observable curvature radius of a de Sitter bubble,
according to the formula of C (3.23), is imaginary as well

< =
ia√
6

. (5.22)

Now, we consider the four-dimensional curvature of spaces with
the metrics (1.2) and (1.3). The Riemann-Christoffel curvature tensor
Rαβγδ has three chr.inv.-components [6–8]

Xik = −c2 R·i·k
0·0·

g00
, Y ijk = −c

R·ijk
0···√
g00

, Ziklj = c2Riklj , (5.23)

which, according to the theory of chronometric invariants, are generally
formulated through the chr.inv.-characteristics of the space of reference
of an observer as follows (the indices in Xik, Y ijk, Ziklj have been
lowered here by the chr.inv.-metric tensor hik):

Xik=
∗∂Dik

∂t
−(

Dl
i+A·li·

)(
Dkl+Akl

)
+

1
2
(∗∇iFk+∗∇kFi

)− 1
c2

FiFk , (5.24)

Yijk = ∗∇i

(
Djk+Ajk

)−∗∇j

(
Dik+Aik

)
+

2
c2

AijFk , (5.25)

Ziklj =DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c2Ciklj . (5.26)

Because Aik =0 and Dik =0 for both the metric (1.2) and the metric
(1.3), the formulae (5.24–5.26) take a simplified form, which is

Xik =
1
2

(∗∇i Fk + ∗∇k Fi

)− 1
c2

Fi Fk , (5.27)

Yijk = 0 , (5.28)

Ziklj = −c2Ciklj . (5.29)

In particular, we see that, in the metrics (1.2) and (1.3) (that is,
in the space inside a Schwarzschild bubble or a de Sitter bubble re-
spectively), the spatial observable projection Ziklj of the Riemann-
Christoffel curvature tensor (its distribution along the three-dimensional
spatial section) is proportional to the chr.inv.-curvature tensor Ciklj ,
taken with the opposite sign:

The observable distribution of the Riemann-Christoffel curvature
tensor inside both a Schwarzschild bubble and a de Sitter bubble
is the same as that of the observable three-dimensional curvature
tensor therein, but has the opposite sign.
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Let us calculate Xik for the metric (1.2). This is the chr.inv.-
projection of the Riemann-Christoffel curvature tensor onto the line
of time of an observer. Its formula (5.27) can be re-written, expanding
the symbol of the chr.inv.-differentiation, in the form

Xik =
1
2

(∗∂Fi

∂xk
+
∗∂Fk

∂xi

)
−∆m

ikFm − 1
c2

Fi Fk , (5.30)

thus we obtain nonzero components of Xik. They are

X11 = −c2rg

a3

1(
3
√

1− rg

a
−

√
1− rgr2

a3

) √
1− rgr2

a3

, (5.31)

X22 = −c2rg

a3

r2
√

1− rgr2

a3

3
√

1− rg

a
−

√
1− rgr2

a3

, (5.32)

X33 = −c2rg

a3

r2 sin2θ
√

1− rgr2

a3

3
√

1− rg

a
−

√
1− rgr2

a3

. (5.33)

Assuming a = rg that means the metric (1.3), we obtain the same
spatial components inside a de Sitter bubble

X11 =
c2

a2 − r2
, X22 =

c2r2

a2
, X33 =

c2r2 sin2θ

a2
. (5.34)

We see that all non-zero components of Xik are negative in Schwarz-
schild bubbles, while they are positive in de Sitter bubbles.

Let us compare the formulae of X11 with the respective formulae of
F1 in Schwarzschild bubbles (5.1) and in de Sitter bubbles (3.4). We
see that in both cases they are connected by the relation

F1 = rX11 , (5.35)

thus we arrive at the following important result:
The time observable component of the Riemann-Christoffel cur-
vature tensor has the same numerical value, but opposite signs in
the spaces of a Schwarzschild bubble and a de Sitter bubble. New-
tonian gravitational forces of attraction in Schwarzschild bubbles
and non-Newtonian gravitational forces of repulsion in de Sitter
bubbles are only due to the time observable component of the
curvature tensor.
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§6. Conditions of inhomogeneity and anisotropy. According to
the theory of chronometric invariants [6,8], the conditions of homogene-
ity have the form

∗∇j Fi = 0 , ∗∇j Aik = 0 , ∗∇j Dik = 0 , ∗∇j Cik = 0
∗∂ρ

∂xi
= 0 ,

∗∂p

∂xi
= 0 , ∗∇j βik = 0 , ∗∇j qi = 0



 , (6.1)

where βik =αik− 1
3 αhik is the anisotropic part of the viscous stress ten-

sor αik, α = αn
n, and qi = c2Ji is the chr.inv.-vector of the density of the

flow of energy. In other words, once a three-dimensional spatial section
satisfies the conditions (6.1), it is homogeneous from the point of view
of an observer located in it. The conditions of isotropy are

Fi = 0 , Aik = 0 , Πik = 0 , Σik = 0 , βik = 0 , qi = 0 , (6.2)

where Πik =Dik− 1
3 Dhik and Σik = Cik− 1

3 Chik characterize, respec-
tively, the anisotropy of the deformation and curvature of space. If a
spatial section satisfies the conditions (6.2), it is observed as isotropic.

Let us apply the physical conditions of the metrics (1.2) and (1.3)
to the conditions of homogeneity and isotropy. In both these metrics,
Aik =0 and Dik = 0. Also, we should take into account that ρ0 = const,
βik =0, and Ji =0 (see previous paragraphs of this paper, for details).
As a result, the conditions of homogeneity (6.1) and isotropy (6.2) take
a simplified form: the conditions of homogeneity become

∗∇j Fi = 0 , ∗∇j Cik = 0 ,
∗∂p

∂xi
= 0 , (6.3)

while the conditions of isotropy become

Fi = 0 , Σik = 0 . (6.4)

Let us calculate ∗∇j Cik and Σik = Cik− 1
3 Chik for the metrics (1.2)

and (1.3), according to the formulae of Cik obtained in §3 and §5, re-
spectively. We obtain that ∗∇j Cik =0 and Σik =0 are satisfied in both
cases, i.e. in both Schwarzschild bubbles and de Sitter bubbles.

However, Fi 6=0 in both the metrics (1.2) and (1.3). This means that
one of the conditions of isotropy (6.4), namely — Fi = 0, is violated in
Schwarzschild bubbles and de Sitter bubbles.

Two conditions ∗∇j Fi = 0 and
∗∂p

∂xi =0 of the conditions of homo-
geneity (6.3) remain for consideration.

First, we calculate ∗∇jFi =
∗∂Fi

∂xj −∆m
ji Fm for the metric (1.2). We

use the formula for F1 (5.1), which is the solely non-zero component of
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the force. We obtain

∗∇1 F1 = −c2rg

a3

1√
1− rgr2

a3

(
3
√

1− rg

a
−

√
1− rgr2

a3

) +

+
c2r2

g

a6

r2

(
1− rgr2

a3

)(
3
√

1− rg

a
−

√
1− rgr2

a3

)2
6= 0 , (6.5)

∗∇2 F2 =
∗∇3F3

sin2θ
= −c2rg

a3

r2
√

1− rgr2

a3

3
√

1− rg

a
−

√
1− rgr2

a3

6= 0 . (6.6)

For the metric (1.3), we use the formula for F1 (3.4). We obtain

∗∇1F1 =
c2a2

(a2 − r2)2
6= 0 , ∗∇2F2 =

∗∇3F3

sin2θ
=

c2r2

a2
6= 0 (6.7)

(these formulae can also be derived from the previous by substituting
the condition rg = a).

We see that the condition ∗∇jFi =0 is violated in both Schwarzschild
bubbles and de Sitter bubbles.

Calculating
∗∂p

∂xi for the metric (1.2), where the pressure p is expressed
as (5.6), we obtain

∂p

∂r
= −2rg r

a3

ρ0 c2
√

1− rg

a

(
3
√

1− rg

a
−

√
1− rgr2

a3

)2
6= 0 , (6.8)

while for the metric (1.3), where p =−ρ0c2 = const (5.7), we have

∂p

∂r
= 0 . (6.9)

In other words, the condition
∗∂p

∂xi = 0 is violated in Schwarzschild
bubbles, but is satisfied in de Sitter bubbles.

Finally, we conclude:
Space inside Schwarzschild bubbles and de Sitter bubbles is inho-
mogeneous and anisotropic due to the presence of the gravitational
inertial force Fi. Also, the pressure p inside a Schwarzschild bub-
ble is a function of distance, which generates an additional effect
on the inhomogeneity of space.
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At the same time, matter is homogeneously and isotropically dis-
tributed therein: this is incompressible liquid, which fills Schwarzschild
bubbles, and physical vacuum (λ-field), which fills de Sitter bubbles.
This is because the density of the liquid is ρ0 = const in Schwarzschild
bubbles (despite p 6= const therein), as well as ρ0 = const of physical vac-
uum (in the state of inflation, p =−ρ0c2) in de Sitter bubbles. In brief,
this situation can be resumed as follows:

Despite the fact that space inside Schwarzschild bubbles is inho-
mogeneous and anisotropic, incompressible liquid is distributed
homogeneously and isotropically therein. The same is true about
de Sitter bubbles (filled with physical vacuum).

A short important note should be made concerning the gravitational
inertial force Fi, which is the main factor of inhomogeneity and aniso-
tropy of Schwarzschild bubbles and de Sitter bubbles.

Consider the space inside a de Sitter bubble. This is a de Sitter
space, where the λ-term takes a particular value of λ = 3

a2 > 0. In this
case, de Sitter’s metric takes the form (1.3) and, as was shown in §4, the
λ-field has properties of ideal incompressible liquid in the state of infla-
tion. We have already obtained F1 for the metric (1.3). We calculate
the regular (contravariant) vector F 1 of the gravitational inertial force
from F1 (3.4), by lifting the index with the contravariant chr.inv.-metric
tensor hik (3.7). We obtain

F 1 =
c2 r

a2
=

λc2r

3
. (6.10)

Hubble’s constant H =(2.3±0.3)×10−18 sec−1 is expressed through
the radius of the Universe a =1.3×1028 cm as H = c

a . Taking this into
account, we obtain

F 1 = H2r , (6.11)

where Hubble’s constant plays the rôle of a fundamental frequency. This
formula meets the result recently obtained by Rabounski [11], according
to which the Hubble redshift is due to the rotation of the isotropic space
(home of photons) at the velocity of light. As was then shown [12], this
effect is presented in any case, even if the non-isotropic space (home of
solid bodies) does not rotate or deform.

Thus, according to the formula (6.11), the Hubble redshift has also
been explained in the space inside de Sitter bubbles. This is despite
that fact that the space does not expand or compress therein (it is free
of deformation according to de Sitter’s metric), i.e. the de Sitter bubble
is a static cosmological model.
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§7. Conclusion. In conclusion, we have arrived at Einstein’s initial
suggestion of de Sitter space as the basic cosmological model of our Uni-
verse (see page 5). Besides, it has been shown that this model satisfies
the observed parameters of the Universe only in a particular case, where
it is a collapsar (de Sitter bubble).

Among many advantages of the de Sitter bubble model, which have
been elaborated upon in this paper, one of the most important is that
the model allows us to calculate the characteristics of the Universe.
This is in contrast to the Friedmann models, where, as is known, the
parameter R (t) is indefinite: this is an arbitrary function contained in
the metric, so one should introduce it according to physical suggestions,
which is not so satisfactory. In the de Sitter bubble model, the param-
eters of the Universe are unambiguously determined by the metric. All
we need to do is substitute a = rg = 2GM

c2 and the numerical values of
the physical constants into the formulae obtained for the model.

For instance, let us substitute a =1.3×1028 cm, which is the radius
of our Universe. We obtain the following characteristics, which charac-
terize the Universe as a de Sitter bubble

rg =
2GM

c2
= a = 1.3×1028 cm, (7.1)

M =
ac2

2G
= 8.8×1055 gram, (7.2)

ρ0 =
3M

4πa3
=

3c2

8πGa2
= 9.5×10−30 gram/cm3

, (7.3)

λ =
3
a2

= κρ0 = 1.8×10−56 cm−2 (7.4)

p = −ρ0c2 = −λc2

κ
= − 3c2

a2κ
= 8.6×10−9 dynes/cm2

. (7.5)

These theoretical values correspond to those produced according to
observational estimations. Therefore, the de Sitter bubble model sug-
gested here is good enough to be a valid model of the Universe.
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