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Abstract: This research concerns gravitational waves and gravita-
tional inertial waves, considered as waves of the curvature of space
(space-time). It was produced using the mathematical apparatus
of chronometric invariants, which, being the projections of the four-
dimensional quantities onto the line of time and the spatial section of
an observer, are physically observable quantities. The wave functions
(d’Alembertian) of the chronometrically invariant (physically observ-
able) projections Xij , Y ijk, Ziklj of the Riemann-Christoffel curva-
ture tensor are deduced. The conditions of the non-stationarity of
the wave functions are taken into focus. It is shown that, even in the
absence of the deformation of space (Dik =0), the non-stationarity of
the wave functions is possible. Four such cases were found, depending
on the gravitational inertial force Fi and the rotation of space Aik:
1) Fi =0, Aik =0; 2) Fi = 0, Aik 6=0; 3) Fi 6=0, Aik =0; 4) Fi 6=0,
Aik 6=0. It is shown that in the first case, where Fi =0 and Aik =0,
in emptiness, space is flat. If one of the quantities Fi and Aik differs
from zero, the metric remains stationary in emptiness and in the
medium. If both Fi and Aik are nonzero, the metric can be non-
stationary in both emptiness and the medium, if the field Fi is vor-
tical. The main conclusion is that it is not necessary that only the
deformation of space be a source of gravitational waves and gravi-
tational inertial waves. The waves can exist even in non-deforming
spaces, if the gravitational inertial force Fi and the rotation of space
Aik differ from zero, and the field Fi is vortical.
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Preface. This is my BSc diploma study, which I produced during 1968
at the Sternberg Astronomical Institute of the Moscow State University,
where I was a student in the years 1962–1969. I presented the study on
January 27, 1969∗. Six years later, on March 04, 1975, the Faculty of
Theoretical Physics of the Patrice Lumumba University in Moscow con-
sidered this study (with minor changes) as a PhD thesis, and bestowed
upon me a PhD degree†.

This study met much interest from the side of the local scientific
community working in General Relativity and gravitation. This popu-
larity, however, was very unfortunate to me: the person who had been
formally nominated as my supervisor (despite the fact that I produced
this research by my own solitary strength), had included my study,
without any permission from my side, let alone a sense of dignity, as
a substantial part of his book surveying the gravitational wave problem‡.
This was a standard of poor behaviour in the formerly USSR, where
a young researcher (especially among women, who are a significant mi-
nority among the scientists), even a highly potential one, was often
treated with a deliberate dose of tyranny and neglect.

After four decades, I have decided to publish my first study in its
original form, in accordance with my unpublished draft of 1968. This is
because I think that the main research results (manifested in the resume
outlined above) may still be of interest to the scientists working on the
theory of gravitational waves.

September 16, 2010 Larissa Borissova

§1. Introduction. The gravitational wave problem remains unsolv-
ed until this day, in both the theoretical and experimental parts of it.
The theoretical foundations for gravitational waves have arrive from
the General Theory of Relativity. It is commonly accepted that the ex-
perimental registration of gravitational waves in the future will be one
more direct verification of Einstein’s field equations in particular, and
Einstein’s theory in general. Just after Albert Einstein introduced the
General Theory of Relativity, Arthur Eddington considered a linearized

∗Grigoreva L. Gravitational Waves and Gravitational Inertial Waves According
to the General Theory of Relativity. BSc Thesis. Sternberg Astronomical Institute,
Moscow, 1969.

†Borissova L. Gravitational Waves and Gravitational Inertial Waves. PhD The-
sis. Patrice Lumumba University, Moscow, 1975.

‡Zakharov V.D. Gravitational Waves in Einstein’s Theory of Gravitation. Trans-
lated by R. N. Sen, Halsted Press — John Wiley & Sons, Jerusalem — New York,
1973 (originally published in Russian by Nauka Publishers, Moscow, 1972).
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form of Einstein’s equations. He had found that the linearized equa-
tions have a non-stationary solution in emptiness. The discovered func-
tions depend on the argument ct+x1. Therefore, the non-stationary
solution was interpreted as an elliptically polarized plane wave of the
gravitational field (in other words, a gravitational wave) travelling in
the direction x1. Subsequently, Eddington suggested that the waves
should transfer gravitational radiation, which was already predicted by
Einstein. Commencing in the 1920’s, this kind of solutions has been
commonly assumed as a basis of the theory of gravitational waves. This
is because the cosmic bodies which could theoretically be the sources of
gravitational radiation are located very distant from the observer, thus
the arriving gravitational wave can be assumed to be weak and plane.

Meanwhile, I am convinced that we should not limit ourselves to
the single (simplest) metric of weak plane gravitational waves (I will
refer to it as the Einstein-Eddington metric). We should consider the
gravitational wave problem, including the Einstein-Eddington metric,
from different viewpoints.

Apart from the Einstein-Eddington theory, outlined above, there
are numerous other research directions, in which another determination
has been applied to gravitational waves, thus introducing not only weak
gravitational waves as in the Einstein-Eddington theory, but also strong
gravitational waves, including also gravitational inertial waves.

Many problems can be met in this way. From a formal point of view,
weak gravitational waves should serve as an approximation to strong
gravitational waves. However, the problem concerning which definition
should be applied to strong gravitational waves remains open until this
day. Besides that, there is another serious problem: we still have not
exact solution of the problem of the gravitational field energy. In other
words, we still have not real energy-momentum tensor of the gravita-
tional field in the theory, but only particular solutions of the problem:
this is the energy-momentum pseudo-tensor of the field, in its different
versions suggested by Einstein, Møller and Mitskievich, Stanyukovich,
and others.

As follows from that has been said above, we still have not final
clarity in the theoretical part of the gravitational wave problem. On the
other hand, it is obvious that there are many non-stationary processes
such as supernova explosions, binary star systems, and others, which,
according to Einstein’s theory, should produce gravitational radiation,
thus filling space with gravitational waves travelling in all directions.
In other words, the existence of gravitational waves is out of doubt.
Hence, we should continue research in the theory of gravitational waves
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in looking for new approaches which could give a better chance for
understanding the nature of the phenomenon. It is possible that one
of the new approaches will give the energy-momentum tensor of the
gravitational field, thus resolving the problem of the gravitational field
energy, including the wave energy of the field.

Generally speaking, all theoretical studies of gravitational waves can
be split into three main groups:

1) The first group consists of studies, which give a generally covariant
definition for gravitational waves; the presence of such waves in
space does not depend on the frame of reference of the observer.
These are studies produced by Pirani [1], Lichnérowicz [2–4], Bel
[5–8], Debever [9–11], Hély [12, 13], Trautman [14], Bondi [15],
and others. I refer to it as the generally covariant approach to the
gravitational wave problem.

2) The second group consists of studies, which give a chronometri-
cally invariant definition for gravitational waves. This definition
is invariant with respect to the transformations of time along the
three-dimensional spatial section of the observer, and is based on
the mathematical apparatus of chronometric invariants (physically
observable quantities) introduced by Zelmanov [16,17]. Due to the
common consideration of the fields of gravitation and rotation,
which is specific to the mathematical apparatus, this definition is
common to both gravitational waves (derived from masses) and
gravitational inertial waves (derived from the fields of rotation)
which thus are considered as two manifestations of the same phe-
nomenon. These studies were started by Zelmanov himself (his
results were surveyed by his student, Zakharov, in the publica-
tion of 1966 [18]), then continued in my early studies, and also in
the present paper. I refer to it as the chronometrically invariant
approach.

3) The third group joins studies around the search for such solutions
of Einstein’s equations, which, proceeding from physical consid-
erations, could describe gravitational radiation. These are stud-
ies produced by Bondi [19], Einstein and Rosen [20, 21], Peres
[22, 23], Takeno [24–26], Petrov [27], Kompaneetz [28], Robinson
and Trautman [29, 30], and others. I refer to it as the physical
approach.

Most criteria for gravitational waves were introduced proceeding
from the properties of the Riemann-Christoffel curvature tensor. There-
fore, it is commonly assumed that they are travelling waves of the cur-
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vature of space (space-time).
Besides that, the theory of gravitational waves is directly linked

to the classification of spaces introduced by Alexei Petrov [27], which
is known as Petrov’s classification. This is a classification according
to the algebraic structure of the Riemann-Christoffel curvature tensor.
According to the classification, three main kinds of spaces (gravitational
fields) exist. Petrov referred to them as Einstein spaces:

Einstein spaces of kind I. Fields of gravitation of kind I are derived
from island-like distributions of masses. An example of such a field
is that of a spherical mass, and is described by the Schwarzschild
mass-point metric. Spaces containing such fields approach a flat
space at an infinite distance from the gravitating island;

Einstein spaces of kinds II and III. Spaces filled with gravitation-
al fields of kinds II and III cannot asymptotically approach a flat
space even in the case where they are empty. Such spaces are
curved themselves, independently of the presence of gravitating
matter. They satisfy most of the invariant definitions given to
gravitational waves [18,29–32].

As is known (see Problem 1 to §102 Gravitational Waves in [33], and
also page 41 herein), the metric of weak plane gravitational waves is one
of the sub-kind N of kind II according to Petrov’s classification.

Note that we mean herein the Riemannian (four-dimensional) curva-
ture, whose formula contains the acceleration, rotation, and deformation
of the observer’s reference space. However, most analysis of the wave
solutions to Einstein’s equations has been limited to the idea that grav-
itational waves have a purely deformational origin, i.e. are waves of the
deformation of space.

Thus, considering only all aforementioned physical factors of grav-
itational waves, we can arrive at understanding the true origin of the
phenomenon. This is the main task of this study. We will do so by
employing the mathematical methods of chronometric invariants.

§2. The gravitational wave problem according to the classi-
cal theory of differential equations. So, there are three main ap-
proaches to the gravitational wave problem according to the General
Theory of Relativity: 1) the generally covariant criteria for gravitational
waves, whose existence does not depend on our choice of the reference
frame; 2) the chronometrically invariant approach, which gives defin-
itions for both gravitational waves and gravitational inertial waves,
determined in the real frame of reference connected to a real observer;
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3) gravitational waves, defined on the basis of physical considerations.
Before focusing on the approaches, I will consider the gravitational wave
problem from the viewpoint of the classical theory of differential equa-
tions.

An exact theory of gravitational waves became possible after de Don-
der [34] and Lanczos [35] who proved that Einstein’s equations are a sys-
tem of partial differential equations of the hyperbolic kind. The classi-
cal theory of differential equations characterizes a wave by a Hadamard
break [36] in the solutions of the wave equations in a hypersurface S
along the wave front (named after Jacques Salomon Hadamard). The
hypersurface wherein the field functions have a break is known as the
wave front surface, and is a characteristic hypersurface of the field equa-
tions. Therefore, looking for characterstics of the hypersurface is one
of the main tasks of the theory. The gravitational wave problem as a
particular problem of the solutions to Einstein’s equations is also linked
to Cauchy’s problem formulated for the system of quasi-linear partial
differential equations of the hyperbolic kind. Solving this problem con-
taining initial data depends on not only the class of smooth functions,
but also on the initial shape of the hypersurface. Because Hadamard
break plays a very important rôle in the further development of the
generally covariant theory of gravitational waves, it is reasonable to say
more on the topic.

At first, consider a scalar function ψ as an example. Let the function
ψ be continuous in each of the neighbourhoods 1 and 2, obtained due to
the hypersurface S which splits the given region of space (space-time).
Let also the function ψ approach to the boundary numerical values
ψ0

1 and ψ0
2 , once xα approaches to a point P0(xα0 ) of the respective

neighbourhoods 1 and 2 of the hypersurface. Given these assumptions,
a break of the function ψ in the hypersurface S is the following function
of the point P0

[ψ ] (P0) = ψ0
1 − ψ0

2 . (2.1)

Let the function ψ be continuous everywhere near S, but several of
their first partial derivatives ∂ψ

∂xα have finite breaks in S

[ψ ] = 0 ,
[
∂ψ

∂xα

]
6= 0 . (2.2)

Let the hypersurface S be determined by the equation ϕ (xα=0).
The normal vector ∂ϕ

∂xα of the hypersurface S is characterized by the
relation

∂ϕ

∂xα
dxα = 0 , α = 0, 1, 2, 3, (2.3)
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if the increment dxα lies in the hypersurface S. Hadamard [36] showed
that, in this case, the break of the first derivative of the function is
proportional to the derivative itself

[
∂ψ

∂xα

]
= χ

∂ϕ

∂xα
, (2.4)

where χ is a coefficient of proportion. If the first derivatives are contin-
uous, it is possible to show that the break of the second derivatives is
expressed with the formula

[
∂2ψ

∂xα∂xβ

]
= χ

∂2ϕ

∂xα∂xβ
. (2.5)

We are mostly interested in Cauchy’s problem for the tensorial func-
tion gαβ obtained from Einstein’s equations. In the case of Einstein’s
equations which determine an empty field of gravitation

Rαβ = 0 , (2.6)

where Rαβ is Ricci’s tensor, Cauchy’s problem is formulated as follows:
Cauchy’s problem. Consider an initial hypersurface S described by

the equation
ϕ (xα) = 0 . (2.7)

Let functions gαβ (xσ) and their first derivatives ∂gαβ(xσ)

∂xρ are pre-
sent on the hypersurface. It is required to find these functions
outside the hypersurface S given that they and their first deriva-
tives meet the respective functions on the hypersurface S, and
that all functions gαβ satisfy Einstein’s equations in emptiness.

A Hadamard break of a tensorial function gµν is determined accord-
ing to the equation [

∂2gµν
∂xα∂xβ

]
= aµν

∂2ϕ

∂xα∂xβ
, (2.8)

where aµν are coefficients of the breaking [14, 37]. The studies [14, 37]
manifest that, given all second derivatives of the function gµν , only those
by x0 can experience some breaking in the hypersurface S

[
∂2gµν
∂x0∂x0

]
= aµν . (2.9)

Concerning Einstein’s equations, this problem seems more particu-
lar. As is known, Einstein’s equations do not contain the second deriva-
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tives of g0α with respect to x0 = ct. It is important to know that, given
all second derivatives of gµν which are included into Einstein’s equa-
tions, only the second derivatives of the three-dimensional components
gij by x0 (where i, j=1, 2, 3) can experience a break in the hyperspace
S. André Lichnérowicz [38] had showed that Einstein’s equations in
emptiness, considered under the following condition g00 6=0, can have a
solution which has not a Hadamard break in S. This coincides with the
case where the second derivatives of gij by x0 are unambiguously de-
termined in common with the Cauchy initial data. If, however, g00 =0
in the neighbourhood of S, the derivatives and, hence, the respective
components R0i0j of the Riemann-Christoffel curvature tensor cannot
be unambiguously determined by the Cauchy initial data and Einstein’s
equations, thus the second derivatives of gij with respect to x0 experi-
ence a Hadamard breaking in the hypersurface S. This is known as a
Hadamard weak break of the 1st kind.

The condition g00=0, which determines the Hadamard break of the
Riemann-Christoffel curvature tensor in the initial hypersurface, can be
re-formulated in the generally covariant form

gαβ
∂2ϕ

∂xα∂xβ
= 0 , (2.10)

which is the same as the eikonal equation (equation of the wave phase)
known in geometrical optics. This is a necessary and sufficient con-
dition of the isotropy of the hypersurface S. Hence, the break of the
Riemann-Christoffel curvature tensor, which is the condition of that the
gravitational field in an empty space is a wave, is possible only if the
initial hypersurface is isotropic.

Lichnérowicz [39] had proven the following theorem (I refer to it as
Lichnérowicz’ theorem):
Lichnérowicz’ theorem. A Hadamard break of the curvature tensor

Rαβγδ in an empty space is possible only in the characteristic
hypersurface S of Einstein’s equations in emptiness, which is de-
termined by the eikonal equation.

A characteristic hypersurface is thus such that satisfies the eikonal
equation. An enveloping arc of the hyperplanes, which are tangential
to all hypersurfaces which are conceived at the given point, is known as
a characteristic cone [40].

Because the characteristic hypersurface of Einstein’s equations in
emptiness is isotropic (the interval of length is zero therein), the char-
acteristic cone of Einstein’s equations meets the light cone in an empty
space [38]. Bicharacteristics of Einstein’s equations, known also as rays,
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meet the lines of the current of a vectorial field lα, which is orthogonal
to the characteristic hypersurface S

lα = gαβ
∂ϕ

∂xβ
, (2.11)

and are characterized by the equation

dxα

dτ
= gαβ

∂ϕ

∂xβ
, (2.12)

where τ is a nonzero parameter taken along the ray. Lichnérowicz [38]
also showed that the functions of xα are geodesics of a Riemannian
space, whose metric is gαβ .

The theory of partial differential equations says that the bicharac-
teristics (rays) belong to the charactersic hypersurface, hence the lines
oriented tangentially to them are elements of the characteristic cone,
which, in this case, meets the light cone [38]. The following conclusion
follows herefrom:

The travelling rays of gravitational waves are isotropic geodesic
lines, as well as the travelling rays of light.

Proceeding from this analogy, Lichnérowicz [38] considered Cauchy’s
problem for Maxwell’s equations in a Riemannian space V4. He had
proved the following theorem (I refer to it as Lichnérowicz’ theorem on
characteristic manifolds):
Theorem on characteristic manifolds. The characteristic mani-

folds of Einstein’s equations and Maxwell’s equations meet each
other in a Riemannian space V4, and are determined by the solu-
tion of the eikonal equation of these fields.

Analysis of this theorem, while taking into account that has been
said on the rays of the travel of gravitational waves, necessarily leads to
the obvious conclusion:

The bicharacteristics of Einstein’s equations (the rays of gravi-
tational waves) coincide with the bicharacteristics of Maxwell’s
equations (the rays of electromagnetic waves). Thus, proceeding
from the classical theory of differential equations, gravitational
waves and electromagnetic waves travel at the velocity of light,
along the same isotropic geodesics.

In brief, the main results obtained due to the classical theory of dif-
ferential equations are such that the characteristic manifold of Einstein’s
equations is a hypersurface, wherein the Riemann-Christoffel curvature
tensor has a Hadamard break. Therefore, this hypersurface is the front
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of a gravitational wave. The bicharacteristics of Einstein’s equations
are trajectories of an isotropic vector, which is orthogonal to the wave
front, thus this is a wave vector. Because the characteristics of the char-
acteristic manifold are generally covariant quantities, the hypersurface
of Einstein’s equations can be considered as an invariantly determined
front of a gravitational wave, while the bicharacteristics of Einstein’s
equations — as invariantly determined rays. The front of an electromag-
netic wave in a Riemannian space V4 is determined by the characteristic
hypersurface of Maxwell’s equations. According to Lichnérowicz’ the-
orem on the characteristic manifolds, the front of an electromagnetic
wave coincides with the front of a gravitational wave, while the electro-
magnetic rays (bicharacteristics of Maxwell’s equations) coincide with
the gravitational rays (bicharacteristics of Einstein’s equations).

Despite having a general method determining gravitational waves as
kinds of Einstein’s equations in emptiness, or as kinds of the Einstein-
Maxwell equations in a space filled with both gravitational and elec-
tromagnetic fields, we cannot obtain exact solutions of the system of
Einstein’s equations (or the Einstein-Maxwell equations), because we
meet the following difficulties:

1) Einstein’s equations have a complicate non-linear structure. They
have not universal boundary conditions;

2) We have not an universal form of d’Alembert’s operator, which
could be explicitly expressed from Einstein’s equations. The core
of this problem is that the unknown variables of Einstein’s equa-
tions are the components of the fundamental metric tensor gαβ ,
which conserves in the generally covariant meaning: it satisfies the
generally covariant conservation law, thus ∇σ gαβ=0 (here ∇σ is
the symbol of absolute differentiation). Therefore, the generally
covariant d’Alembertian of the fundamental metric tensor is zero:
¤gαβ ≡ gρσ∇ρ∇σ gαβ≡ 0.

Einstein’s theory interprets gravitational fields as distortions of space
(space-time). Therefore, it is a naturally valid idea to connect gravi-
tational waves to the properties of the Riemann-Christoffel curvature
tensor Rαβγδ. The four-dimensional pseudo-Riemannian space, which
is the basic space-time of General Relativity, is characterized by the
curvature tensor: if the tensor is zero in a region, gravitational fields
are absent therein. The Riemann-Christoffel curvature tensor is not a
direct part of Einstein’s equations. Only its contacted forms, namely
— Ricci’s tensor and scalar, form the basis of the equations. Therefore,
other methods should be applied in order to study its structure. In par-
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ticular, we can impose some conditions (criteria) on the tensor, which
could allow to consider the curvature field as a gravitational wave. In
this direction, an emergent goal in the theory of gravitational waves
was included due to studies of the algebraic properties of the Riemann-
Christoffel curvature tensor produced by Petrov [27]. His classification
of the curvature tensor according to its algebraic structure allowed him
to determine several kinds of the solutions of Einstein’s equations as
gravitational wave fields.

We will consider the invariant criteria for gravitational waves, and
also Petrov’s results related to the algebraic structure of the curvature
tensor, in the next paragraphs §3 and §4.

§3. Generally covariant criteria for gravitational waves and
their link to Petrov’s classification. As was mentioned in the end
of §1, most analysis of the wave solutions to Einstein’s equations was
limited by an idea that they are only due to the factor of the deformation
of space, thus gravitational waves are waves of the deformation of space.
Here the next question arises. How well is this statement justified?
General covariant criteria for the wave solutions to Einstein’s equations
will be our task in this paragraph.

Einstein’s equations (gravitational field equations) have the form

Rαβ − 1
2
gαβR = −κTαβ + λgαβ , (3.1)

where Rαβ =Rσ · · ·
·ασβ is Ricci’s tensor, R= gαβRαβ is the scalar curvature,

κ= 8πG
c2

is Einstein’s gravitational constant, G is Gauss’ constant of
gravitation, λ is the cosmological term.

When studying gravitational waves, most scientists assume λ=0
thus considering a particular case of Einstein’s equations, which is

Rαβ = κgαβ . (3.2)

This is a case of spaces known, after Petrov [27], as Einstein spaces.
They can be either empty (κ=0) or filled with homogeneously distrib-
uted matter (in this case, Rαβ ∼κ Tαβ). If κ=0 in an Einstein space,
there is not distributed matter. If there is not islands of mass as well,
such an empty space can also be curved: in this case, it is related to
kinds II and III according to Petrov’s classification (see page 29).

As was mentioned in §2, according to the classical theory of differen-
tial equations, gravitational wave fields are determined by solutions of
Einstein’s equations, taken with the initial conditions of a characteris-
tic hypersurface of the equations. A gravitational wave is a Hadamard



36 The Abraham Zelmanov Journal — Vol. 3, 2010

break in the initial characteristic hypersurface of the equations; this
surface is the front of a gravitational wave. Let us re-write the formula
of a Hadamard break of a tensorial function gµν in a Riemannian space,
(2.8), as [

∂2gµν
∂xα∂xβ

]
= aµν lα lβ , lα ≡ ∂ϕ

∂xα
. (3.3)

According to Lichnérowicz [2–4], who followed with Hadamard’s
studies, a Hadamard break of the second derivatives of gµν can be
in a characteristic hypersurface of Einstein’s equation only due to a
Hadamard break in the field of the Riemann-Christoffel curvature ten-
sor, i.e. due to [Rαβγδ], which satisfies the equations (see [4])

lλ [Rµαβν ] + lα [Rµβλν ] + lβ [Rµλαν ] = 0 . (3.4)

Proceeding from this condition realized in a characteristic hypersur-
face of Einstein’s equations, and also because the break [Rαβγδ], located
at the front of a gravitational wave, is proportional to the curvature
tensor Rαβγδ itself (see §2 herein for detail), Lichnérowicz was able to
formulate his generally covariant criterion for gravitational waves [2–4]:
Lichnérowicz’ criterion. The Riemann-Christoffel curvature tensor

Rαβγδ 6=0 determines the state of “pure gravitational radiation”,
only if there is a vector lα, which is orthogonal to the characteristic
surface of Einstein’s equations, is isotropic (lαlα=0), and satisfies
the equations

lµRµαβν = 0

lλRµαβν + lαRµβλν + lβRµλαν = 0

}
. (3.5)

If Rαβ =0 (in an empty space, which is free of distributed matter
of any kind), the equations determine the field of “pure gravita-
tional radiation”.

There is also another generally covariant criterion for gravitational
waves, formulated by Zelmanov∗ [18]. It is indirectly connected to Lich-
nérowicz’ criterion. Zelmanov’s criterion proceeds from the d’Alembert
generally covariant operator

¤σ
σ ≡ gρσ∇ρ∇σ , (3.6)

and is formulated as follows:
∗This criterion was introduced by Abraham Zelmanov in the early 1960’s, and

was presented to a close circle of his associates. It was first published in 1966, in
the survey on the gravitational wave problem [18] authored by Zakharov, who was
a student of Zelmanov. Zakharov referred to Zelmanov in the publication.
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Zelmanov’s criterion. A space satisfies the state of gravitational ra-
diation, only if the Riemann-Christoffel curvature tensor a) does
not conserve (∇σRµαβν 6=0), and b) satisfies the generally covari-
ant condition

¤σ
σRµαβν = 0 . (3.7)

Any empty space, satisfying Zelmanov’s criterion, satisfies Lichné-
rowicz’ criterion as well. And vice versa: any empty space, which satis-
fies Lichnérowicz’ criterion (excluding constant curvature spaces, where
∇σRµαβν = 0), also satisfies Zelmanov’s criterion.

There are also numerous other generally covariant criteria for grav-
itational waves, introduced by Bel, Pirani, Debever, Maldybaeva and
others. Each of the criteria has its own advantages and drawbacks,
therefore none of the criteria can be considered as the final solution of
the gravitational wave problem. Therefore, it would be a good idea
to consider those characteristics of gravitational wave fields, which are
common to most of the criteria. Such an integrating factor is Petrov’s
classification according to the algebraic structure of the Riemann-
Christoffel curvature tensor [27]. This is a classification of spaces, which
satisfy the particular Einstein equations (3.2) and are known as Einstein
spaces. Thus, gravitational fields, which satisfy (3.2), can also be clas-
sified in this way.

As is known, the Riemann-Christoffel curvature tensor satisfies the
following identities

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ , Rα[βγδ] = 0 . (3.8)

Because of these identities, the curvature tensor is related to tensors
of a special family, known as bitensors. They satisfy two conditions:

1) Their covariant and contravariant valencies are even;
2) Both covariant and contravariant indices of the tensors are split

into pairs, and inside each pair the tensor Rαβγδ is antisymmetric.
A set of tensor fields located in an n-dimensional Riemannian space

is known as a bivector set, and its representation at a point is known
as a local bivector set. Every antisymmetric pair of indices αβ is de-
noted by a common index a, and the number of common indices is
N = n(n− 1)

2
. It is obvious that if n= 4 we have N =6. Hence a bitensor

Rαβγδ→Rab, located in a four-dimensional Riemannian space, maps
itself into a six-dimensional bivector space. It can be metrized by intro-
ducing the specific metric tensor

gab → gαβγδ ≡ gαγ gβδ − gαδ gβγ . (3.9)
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The metric tensor gab (where a, b= 1, 2, . . . N) is symmetric and non-
degenerate. If the metric is given for the sign-alternating gαβ , it is sign-
alternating as well, having a respective signature. So, for Minkowski’s
signature (+−−−) of gαβ , the signature of gab is (+++−−−).

Mapping the curvature tensor Rαβγδ onto the metric bivector space
VN , we obtain a symmetric tensor Rab (where a, b= 1, 2, . . . N) which
can be associated with a lambda-matrix

‖Rab − Λgab‖ . (3.10)

Solving the classical problem of linear algebra (reducing a lambda-
matrix to its canonical form along a real distance), we can find a clas-
sification for Vn under a given n. A specific kind of spaces, which are
Einstein spaces we are considering, is set up by a characteristic of the
respective lambda-matrix. This kind remains unchanged in the area,
where this characteristic remains unchanged.

Bases of the elementary divisors of the lambda-matrix for any Vn
have an ordinary geometric meaning as stationary curvatures. Natu-
rally, the Riemannian curvature K of Vn in a two-dimensional direction
is determined by an ordinary (single-sheet) bivector V αβ=V α(1)V

β
(2) as

K =
Rαβγδ V

αβV γδ

gαβγδ V αβV γδ
. (3.11)

If V αβ is non-ordinary, the invariant K is known as the bivector
curvature in the direction of the vector. Mapping K onto the bivector
space, we obtain

K =
RabV

aV b

gabV aV b
, a, b = 1, 2, . . . N. (3.12)

The ultimate numerical values of K are known as stationary curva-
tures at a given point, while the vectors V a corresponding to them are
known as stationary non-simple bivectors. In this case

V αβ = V α(1)V
β
(2) , (3.13)

so the stationary curvature is the same as the Riemannian curvature in
the given two-dimensional direction.

Finding the ultimate numerical values of K is the same as finding
those vectors V a, where K takes the ultimate numerical values. This
is the same as finding undoubtedly stationary directions. The necessary
and sufficient condition of a stationary state of V a is

∂

∂V a
K = 0 . (3.14)
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The problem of finding the stationary curvatures for Einstein spaces
had been solved by Petrov [27]. If the space metric is sign-alternating,
the stationary curvatures are complex as well as the stationary bivectors
relating to them in the space Vn. For Einstein spaces of four dimensions
with Minkowski’s signature, Petrov had formulated a theorem:
Petrov’s theorem. Given an ortho-frame gαβ = {+1,−1,−1,−1},

there is a symmetric paired matrix ‖Rab‖

‖Rab‖ =
∥∥∥∥

M N

N −M

∥∥∥∥ , (3.15)

where M and N are two symmetric square matrices of the 3rd
order, whose components satisfy the relationships

m11 +m22 +m33 = −κ , n11 + n22 + n33 = 0 . (3.16)

After transformations, the lambda-matrix ‖Rab−Λgab‖, where gab =
= {+1,+1,+1,−1,−1,−1}, takes the form

‖Rab−Λgab‖ =
∥∥∥∥

M + iN + Λε 0
0 M − iN + Λε

∥∥∥∥ ≡

≡
∥∥∥∥∥
Q (Λ) 0

0 Q̄ (Λ)

∥∥∥∥∥ , (3.17)

where Q (Λ) and Q̄ (Λ) are three-dimensional matrices, whose elements
are complex conjugates, and ε is the three-dimensional unit matrix.

The matrix Q (Λ) can have only one of the following three kinds of
characteristics: I) [111]; II) [21]; III) [3].

As a matter of fact that the initial lambda-matrix can have only one
characteristic drawn from: I) [111, 111]; II) [21, 21]; III) [3, 3].

The numbers in brackets means the multiplicity of roots of the char-
acteristic equation det ‖Rab−Λgab‖=0 (see Chapter 2 in [27]). Con-
sider a 6×6 matrix gab. Construct the characteristic equation for it.
This is a 6th order equation: it has 6 roots and, as Petrov showed, the
ultimate number of different roots is 3 as for a 3×3 matrix (also several
of these 3 pairs of roots can be complex conjugates). Obtain the roots,
then compare the obtained pairs of solutions. If all 3 pairs of roots differ
from each other, this is kind [111]. If two of them are the same, this is
kind [21]. If all 3 pairs of roots are the same, this is kind [3].

The bar in the second half of a characteristic means an imaginary
part of the complex conjugates. There is not bar in kind [3, 3], because
the elementary divisors are always real therein.
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Taking a lambda-matrix of each of three possible kinds, Petrov [27]
had deduced the canonical form of the matrix ‖Rab‖ in a non-holonomic
ortho-frame

Kind I

‖Rab‖ =
∥∥∥∥
M N
N −M

∥∥∥∥ ,

M =

∥∥∥∥∥∥

α1 0 0
0 α2 0
0 0 α3

∥∥∥∥∥∥
, N =

∥∥∥∥∥∥

β1 0 0
0 β2 0
0 0 β3

∥∥∥∥∥∥





, (3.18)

where
∑3
i=1 αi =−κ and

∑3
i=1 βi = 0 (so, here are 4 independent pa-

rameters, determining the space structure by an invariant form),

Kind II

‖Rab‖ =
∥∥∥∥
M N
N −M

∥∥∥∥ ,

M =

∥∥∥∥∥∥

α1 0 0
0 α2+1 0
0 0 α2−1

∥∥∥∥∥∥
, N =

∥∥∥∥∥∥

β1 0 0
0 β2 1
0 1 β2

∥∥∥∥∥∥





, (3.19)

where α1+ 2α2 =−κ and β1+ 2β2 =0 (here are 2 independent param-
eters determining the space structure by an invariant form),

Kind III

‖Rab‖ =
∥∥∥∥
M N
N −M

∥∥∥∥ ,

M =

∥∥∥∥∥∥

−κ
3 1 0

1 −κ
3 0

0 0 −κ
3

∥∥∥∥∥∥
, N =

∥∥∥∥∥∥

0 0 0
0 0 −1
0 −1 0

∥∥∥∥∥∥





, (3.20)

thus no independent parameters determining the space structure by an
invariant form exist in this case.

Thus Petrov has successfully resolved the problem of reducing a
lambda-matrix to its canonical form along a real path in a Riemannian
space with a sign-alternating metric. Despite the fact that his solution
is obtained only at a given point, the obtained classification is invariant
because the results are applicable to any point in the space.

Stationary curvatures take the form

Λi = αi + iβi (3.21)
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in spaces of kind III, where they take real values (Λ1 =Λ2 =Λ3 =−κ
3 ).

Numerical values of some stationary curvatures in spaces (gravita-
tional fields) of kinds I and II can coincide with each other. If they are
the same, we have sub-kinds of the spaces (fields). Kind I has 3 sub-
kinds: I (Λ1 6=Λ2 6=Λ3); D (Λ2 =Λ3); O (Λ1 =Λ2 =Λ3). If the space is
empty (κ=0), the sub-kind O of kind I gives a flat space. Kind II has
2 sub-kinds: II (Λ1 6= Λ2, Λ2 =Λ3) and N (Λ1 =Λ2). Kinds I and II are
the basic kinds of Petrov’s classifications.

In empty spaces (empty gravitational fields) the stationary curva-
tures are Λ =0, so empty spaces (fields) are degenerate.

Studies of the algebraic structure of the Riemann-Christoffel cur-
vature tensor for known solutions of Einstein’s equations showed that
most of the solutions are related to kind I. The curvature decreases with
distance from a gravitating mass. In the extreme case, where the dis-
tance becomes infinite, the space approaches a flat space. As was shown
in my early (unpublished) study, reported to Zelmanov when I was
a student, the Schwarzschild mass-point solution, which represents a
spherically symmetric gravitational field derived from an island of mass
located in emptiness, is classified as the sub-kind D of kind I.

General covariant criteria for gravitational waves are linked to the al-
gebraic structure of the curvature tensor, and thus should be associated
with the aforementioned types of Einstein spaces. Most gravitational
wave solutions of Einstein’s equations are attributed to the sub-kind N
of kind I. Several gravitational wave solutions are attributed to kinds II
and III. Note, spaces of kinds II and III cannot approach a flat space, be-
cause the components of the curvature tensor matrix ‖Rab‖ contain +1
and −1. This makes the approach of the curvature tensor to zero impos-
sible, and thus excludes approaching a flat space at infinity. Therefore,
gravitational waves (waves of the curvature) are present everywhere in
spaces of kinds II and III. Pirani [1] holds that gravitational waves are
solutions to the gravitational field equations in spaces of the sub-kind
N of kind II, or of kind III. The following solutions are classified to
the sub-kind N of kind II: Peres’ solution [22,23] which describes plane
gravitational waves

ds2 = (dx0)2 − 2α(dx0 + dx3)2 − (dx1)2 − (dx2)2 − (dx3)2, (3.22)

Takeno’s solution [24–26]

ds2 = (γ + ρ) (dx0)2 − 2ρdx0dx3 −
− α(dx1)2 − 2δdx1dx2 − β(dx2)2 + (ρ− γ) (dx3)2, (3.23)
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where α=α(x1−x0), while γ, ρ, β, δ are functions of (x3−x0), and
also Petrov’s solution [27], which was represented by Bondi, Pirani, and
Robertson in another coordinate system [15] as

ds2 = (dx0)2 − (dx1)2 + α(dx2)2 + 2βdx2dx3 + γ (dx3)2, (3.24)

where α, β, γ are functions of (x1 +x0).
A detailed survey of the relations between the generally covariant

criteria for gravitational waves and Petrov’s classification was presented
in the publication [18]. Among the other issues, two following theorems
were discussed therein:
Theorem. In order that a space satisfies the state of “pure gravita-

tional radiation” (in the Lichnérowicz sense), it is a necessary and
sufficient condition that the space is an Einstein space of the sub-
kind N of kind II according to Petrov’s classification, thus charac-
terized by zero curvature matrix ‖Rab‖ in the bivector space.

Theorem. An Einstein space satisfying Zelmanov’s criterion can only
be an empty space (κ=0) of the sub-kind N of kind II. And vice
versa, any empty space V4 of the sub-kind N satisfies Zelmanov’s
criterion as well. This is true excluding symmetric spaces∗ of this
kind; symmetric spaces of this kind have the metric

ds2 = 2dx0dx1 − sh2dx0 (dx2)2 − sin2dx0 (dx3)2. (3.25)

Proceeding from the theorems, we immediately arrive at a relation
between Zelmanov’s criterion for gravitational wave fields in emptiness
and Lichnérowicz’ criterion for “pure gravitational radiation”:
Theorem. Any empty space V4, satisfying Zelmanov’s criterion for

gravitational wave fields located in empty spaces, also satisfies
Lichnérowicz’ criterion for “pure gravitational radiation”. And
vice versa, any empty space Vn, satisfying Lichnérowicz’ criterion
(excluding the case of symmetric spaces), satisfies Zelmanov’s cri-
terion as well.

How are these criteria related to each other in a general case? This
problem is still open for discussion.

In [18] it was shown that all known solutions to Einstein’s equations
in emptiness, which satisfy Zelmanov’s criterion and Lichnérowicz’ cri-
terion, can be obtained as particular cases of a generalized metric whose
space permits a vector field lα, which conserves in the space and thus

∗A space is referred to as symmetric, if its curvature tensor Rαβγδ conserves and
thus satisfies the conservation condition ∇σRαβγδ =0.
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satisfies the conservation law

∇σ lσ = 0 . (3.26)

It is obvious that this condition leads to Lichnérowicz’ condition
(3.5), hence this empty space is classified as the sub-kind N of kind II,
and, also, the vector lα playing the rôle of a gravitational wave vector,
is unique and isotropic lαlα=0. According to Eisenhart’s theorem [41],
a Riemannian space V4 containing a unique isotropic vector lα (in other
words, an absolute parallel vector field), has the metric

ds2 = ε(dx0)2 + 2dx0dx1 + 2ϕdx0dx2 +

+ 2ψdx0dx3 + α(dx2)2 + 2γdx2dx3 + β(dx3)2, (3.27)

where ε, ϕ, ψ, α, β, γ are functions of x0, x2, x3, and lα= δα1 . This
metric satisfies the particular form (3.2) of Einstein’s equations. So this
is an exact solution to Einstein’s equations in emptiness or vacuum,
and satisfies Zelmanov’s criterion and Lichnérowicz’ criterion for grav-
itational waves. This solution generalizes those solutions suggested by
Takeno, Peres, Bondi, Petrov and others, which satisfy the Zelmanov
and Lichnérowicz criteria.

The metric (3.27), taken under additional conditions suggested by
Bondi [18], satisfies Einstein’s equations in their general form (3.1) in
the case where λ=0 and the energy-momentum tensor Tαβ describes
an isotropic electromagnetic field. Given an isotropic electromagnetic
field, Maxwell’s tensor Fµν of the field satisfies the conditions

FµνF
µν = 0 , FµνF

∗µν = 0 , (3.28)

where F ∗µν= 1
2 η

µνρσFρσ is a pseudotensor dual to Maxwell’s tensor,
while ηµνρσ is the completely antisymmetric discriminant tensor (it
makes pseudotensors out of tensors). Direct substitution shows that
this metric satisfies the following requirements: the Riner-Wheeler con-
dition discussed by Peres [42]

R = 0 , RαρR
ρβ =

1
4
δβα (RρσRρσ) = 0 , (3.29)

where δαβ = gαβ , and the Nordtvedt-Pagels condition [43]

ηµεγσ
(
Rδγ,σRετ −Rδε,σRγτ

)
= 0 , (3.30)

where Rδγ,σ= gσµ∇µRδγ .
We have an interest in isotropic electromagnetic fields because an

observer, who accompanies such a field, should be moving at the velocity
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of light [1,4]. Hence, isotropic electromagnetic fields can be interpreted
as fields of electromagnetic radiation without sources. On the other
hand, according to Eisenhart’s theorem [41], a Riemannian space V4

having the metric (3.27) permits an absolute parallel vector field lα.
Therefore, we conclude that the vector lα considered in this case satisfies
Lichnérowicz’ criterion for “pure gravitational radiation”.

Thus the metric (3.27), satisfying the conditions

Rαβ − 1
2
gαβR = −κ Tαβ

Tαβ =
1
4
FρσF

ρσgαβ − FασF
·σ
β ·

FαβF
αβ = 0 , FαβF

∗αβ = 0





(3.31)

and taken under the additional condition suggested by Bondi [18]

R2323 = R0232 = R0323 = 0 , (3.32)

is an exact solution to Einstein’s equations, which describes both grav-
itational waves and electromagnetic waves without sources. This solu-
tion does not satisfy Zelmanov’s criterion in a general case, but satisfies
it in particular cases where Tαβ 6=0, and also Rαβ 6=0.

A recursion curvature space is a Riemannian space, which has a cur-
vature satisfying the relationship

∇σRαβγδ = lσRαβγδ . (3.33)

Due to Bianchi’s identity, such a space satisfies

lσRαβγδ + lαRβσγδ + lβRσαγδ = 0 . (3.34)

A common classification for recursion curvature spaces had been
suggested by Walker [44]. His classification was then applied to the four-
dimensional pseudo-Riemannian space (the basic space-time of General
Relativity). Concerning the class of prime recursion spaces∗, we are
particularly interested in two metrics, which are

ds2 = ψ (x0, x2)(dx0)2 + 2dx0dx1 − (dx2)2 − (dx3)2, (3.35)

ds2 = 2dx0dx1 + ψ (x1, x2)(dx1)2 − (dx2)2 − (dx3)2, (3.36)

∗A recursion curvature space is prime or simple, if it contains n− 2 parallel vector
fields (isotropic and non-isotropic). Here n is the dimension of the space.
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where ψ> 0. In these metrics, only one component of Ricci’s tensor is
nonzero. It is R00 =− 1

2

∂2ψ

∂x0∂x0 in (3.35), and R11 =− 1
2

∂2ψ

∂x1∂x1 in (3.36).
Einstein spaces with these metrics can only be empty (κ= 0) and flat
(Rαβγδ =0). This can be proved by checking that both metrics satisfy
the Riner-Wheeler condition (3.29) and the Nordtvedt-Pagels condition
(3.30), which determine isotropic electromagnetic fields.

Both metrics (3.35) and (3.36) are interesting due to their physical
meaning: in such a space, the space curvature is due to an isotropic
electromagnetic field. Moreover, if we remove this field from the space,
the space becomes flat.

There are also numerous other metrics which are exact solutions to
the Einstein-Maxwell equations, related to the class of isotropic electro-
magnetic fields. However no one of them satisfies Zelmanov’s criterion
and Lichnérowicz’ criterion.

Minkowski’s signature permits only two metrics for non-simple re-
cursion curvature spaces. These are the metric

ds2 = ψ (x0, x2, x3)(dx0)2 + 2dx0dx1 +

+K22(dx2)2 + 2K23dx
2dx3 +K33(dx3)2

K22 < 0 , K22K33 −K2
23 < 0




, (3.37)

where ψ=χ1(x0)
(
a22(x2)2+2a23x

2x3+a33(x3)2
)
+χ2(x0)x2+χ3(x0)x3,

and the metric

ds2 = 2dx0dx1 + ψ (x1, x2, x3)(dx1)2 +

+K22(dx2)2 + 2K23dx
2dx3 +K33(dx3)2

K22 < 0 , K22K33 −K2
23 < 0




, (3.38)

where ψ=χ1(x1)
(
a22(x2)2+2a23x

2x3+a33(x3)2
)
+χ2(x1)x2+χ3(x1)x3.

Here aij and Kij (i, j= 2, 3) are constants.
The metrics (3.37) and (3.38) satisfy the Einstein space condition

Rαβ =κgαβ (3.2) only if κ=0 that leads to the relationship

K33a22 +K22a33 − 2K23a23 = 0 . (3.39)

The metrics (3.37) and (3.38) are related to the sub-kind N of kind
II according to Petrov’s classification. It is interesting that the metric
(3.38) is stationary and, at the same time, describes “pure gravitational
radiation” (in the Lichnérowicz sense).

In a general case, where Rαβ 6=κgαβ , the metrics (3.37) and (3.38)
satisfy the Riner-Wheeler condition (3.29) and the Nordtvedt-Pagels
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condition (3.30). Therefore these metrics are exact solutions to the
Einstein-Maxwell equations, which describe both gravitational waves
and electromagnetic waves without sources. In this general case both
metrics satisfy Zelmanov’s criterion and Lichnérowicz’ criterion.

§4. The chronometrically invariant criterion for gravitational
waves and its link to Petrov’s classification. All that has been
detailed above represents a generally covariant approach to the gravi-
tational wave problem: the presence of such waves in space does not
depend on the frame of reference of the observer. There is also an-
other approach to the gravitational wave problem. It determines not
only gravitational waves (they are derived from masses), but also grav-
itational inertial waves (derived from the fields of rotation), both in
a frame of reference connected to a real observer. This approach is due to
Zelmanov’s mathematical apparatus of chronometric invariants [16,17],
which are physically observable quantities in the basic space (space-
time) of General Relativity.

In all experimental tests of the General Theory of Relativity, the
most important fact is that any real observer, who processes the mea-
surements, rests with respect to his laboratory reference frame and all
physical standards located in it. In other words, he is located in a ref-
erence frame which accompanies his physical standards (the body of
reference). Zelmanov [16, 17] showed that quantities measured by the
observer in the accompanying reference frame possess the property of
chronometric invariance: they are invariant along the three-dimensional
section determined by the observer’s reference frame (along his three-
dimensional space). Keeping this fact in mind, Zelmanov formulated a
chronometrically invariant criterion for gravitational waves. This cri-
terion is invariant only for the transformations of that reference frame,
which rests with respect to the observer and his laboratory references.
Following this way, in contrast to the generally covariant approach, we
can match our theoretical conclusions and the results obtained from real
physical experiments.

Zelmanov showed that the property of chronometric invariance
means invariance with respect to the transformations

x̃0 = x̃0(x0, x1, x2, x3)

x̃i = x̃i(x1, x2, x3) ,
∂x̃i

∂x0
= 0



 , (4.1)

then he proved that chronometrically invariant quantities are the re-
spective projections of four-dimensional (generally covariant) quantities
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onto the line of time and the spatial section of the observer. He had de-
veloped a versatile mathematical apparatus, which allows one to derive
the chronometrically invariant projections from any generally covariant
quantities (and equations) and is known as the theory of chronometric
invariants. The core of the theory and necessary details were presented
by him in the publications [16,17].

In the framework of the theory, a chronometrically invariant d’Alem-
bert operator was introduced as

∗¤ = hik∗∇i∗∇k − 1
a2

∗∂2

∂t2
, (4.2)

where hik=−gik is the chr.inv.-metric tensor presented in its contravari-
ant form (its contravariant, covariant, and mixed forms differ, see be-
low), ∗∇i is the symbol of chr.inv.-differentiation (a chr.inv.-analogue
to the symbol ∇σ of generally covariant differentiation), a is the linear
velocity at which the attraction of gravity spreads,

∗∂
∂t

is the chr.inv.-
differential operator with respect to time.

This is Zelmanov’s chronometrically invariant criterion for gravita-
tional waves and gravitational inertial waves:
Zelmanov’s chr.inv.-criterion. If the metric of a space possesses

wave properties, the chr.inv.-quantities f , characterizing the local
reference space of an observer, such as the gravitational inertial
force Fi, the angular velocity of the rotation of the space Aik,
the deformation tensor Dik, the spatial curvature tensor Ciklj
(also the scalar quantities, derived from them), and the chr.inv.-
projections Xij , Y ijk, Ziklj of the Riemann-Christoffel curvature
tensor must satisfy the chr.inv.-d’Alembert equation

∗¤ f = A , (4.3)

where A is an arbitrary function of the four-dimensional coordi-
nates, and contains only first derivatives of the chr.inv.-quantities
represented by f .

Zelmanov’s chr.inv.-criterion is true for the generalized gravitational
wave metric (3.27) in the case where the gravitational inertial force F i

is a wave function. At the same time, the generally covariant criteria
for gravitational waves are derived from a limitation imposed on the
Riemann-Christoffel curvature tensor in order that it be a wave function.
Therefore, it would be interesting to study the chr.inv.-components of
the Riemann-Christoffel curvature tensor Rαβγδ [16]

Xik = − c2 R
·i·k
0 ·0·
g00

, Y ijk = − c R
·ijk
0 ···√
g00

, Zijkl = c2Rijkl (4.4)
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in the case, where they are wave functions as well.
What is common among Zelmanov’s generally covariant criterion

(3.7) and his chr.inv.-criterion (4.3)? The answer to the question arrives
from Zelmanov’s generally covariant criterion, ¤σ

σRµαβν=0 (3.7), re-
written in chr.inv.-form

∗¤Xij = Aij(1) ,
∗¤Y ijk = Aijk(2) ,

∗¤Ziklj = Aiklj(3) , (4.5)

where Aij(1), A
ijk
(2) , Aiklj(3) are chr.inv.-tensors, which contain only first

derivatives of the wave functions Xij , Y ijk, Ziklj . From these formulae
we arrive at an obvious conclusion, which is:

Spaces, which satisfy Zelmanov’s generally covariant criterion,
also satisfy Zelmanov’s chr.inv.-criterion. Therefore, the chr.inv.-
components of the Riemann-Christoffel curvature tensor play a
rôle of wave functions in gravitational wave fields.

Looking at the formula (4.2) of the chr.inv.-d’Alembert operator,
together with Zelmanov’s chr.inv.-criterion, we see two necessary con-
ditions for physically observable gravitational waves:

1) The chr.inv.-quantities f are non-stationary, i.e.
∗∂f
∂t
6= 0;

2) The field of each quantity f is inhomogeneous, i.e. ∗∇i fk 6=0.
The wave functions Xij , Yijk, Ziklj satisfy the requirements only

if the observable mechanical characteristics of the observer’s reference
space (the chr.inv.-quantities Fi, Aik, Dik) and its observable geometric
characteristic (the chr.inv.-curvature Ciklj) also satisfy them.

When Zelmanov began to construct his cosmological theory of an
inhomogeneous anisotropic universe [16], he introduced conditions of
the inhomogeneity of a finite region of space. The conditions of in-
homogeneity are formulated, in the framework of the chronometrically
invariant formalism, as follows [16,17]

∗∇iFk 6= 0 , ∗∇jAik 6= 0 , ∗∇jDik 6= 0 , ∗∇j Cik 6= 0 . (4.6)

It is obvious that the wave functions Xij , Y ijk, Ziklj , being taken
under these conditions, shall be inhomogeneous as well.

Considering the chr.inv.-formulae of the gravitational inertial force
Fi and the angular velocity of the rotation of space Aik [16,17]

Fi =
1√
g00

(
∂w
∂xi

− ∂vi
∂t

)
, w = c2 (1−√g00 ) , (4.7)

Aik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1
2c2

(Fivk − Fkvi) , (4.8)
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we see that non-stationary states of a gravitational inertial force field
are due to the non-stationarity of its gravitational potential w or the
linear velocity vi of the rotation of space, determined as

vi = −c g0i√
g00

, vi = −c g0i√g00 , vi = hikv
k, v2 = hik v

ivk. (4.9)

Two fundamental chronometrically invariant identities
∗∂Aik
∂t

+
1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
= 0

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+
1
2

(
FiAkm+FkAmi+FmAik

)
= 0





(4.10)

introduced by Zelmanov (I refer to them as Zelmanov’s identities),
linking Fi and Aik, lead us to the conclusion that the source of non-
stationary states of vi is the vortical nature of the gravitational inertial
force Fi (the vorticity means ∗∇kFi−∗∇iFk 6=0).

The cause of non-stationary states of the deformation Dik of space,
which is determined in chr.inv.-form as [16,17]

Dik =
1
2

∗∂hik
∂t

, Dik = −1
2

∗∂hik

∂t
, D = hikDik =

∗∂ ln
√
h

∂t
, (4.11)

where h=det ‖hik‖, is the non-stationarity of the physically observable
metric tensor hik, determined by Zelmanov [16,17] as

hik =−gik+
g0ig0k
g00

=−gik+
1
c2
vivk , hik=−gik, hik = δik . (4.12)

The non-stationarity of the chr.inv.-metric tensor hik is also the
cause of non-stationary states of the chr.inv.-curvature

Clkij = Hlkij − 1
c2

(
2AkiDjl +AijDkl +AjkDil +

+AklDij +AliDjk

)
(4.13)

and the chr.inv.-quantities Ckj =C ...ikij·=himCkimj and C =Cjj =hljClj
derived from it (the chr.inv.-scalar C is the three-dimensional observable
curvature). They are determined through the Schouten chr.inv.-tensor
H ···j
lki· and the Christoffel chr.inv.-symbols ∆k

ij

H ···j
lki· =

∗∂∆j
kl

∂xi
−
∗∂∆j

il

∂xk
+ ∆m

kl∆
j
im −∆m

il ∆
j
km , (4.14)

∆k
ij = hkm∆ij,m =

1
2
hkm

(∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)
, (4.15)
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which are Zelmanov’s remakes [16,17] of Schouten’s tensor and Christof-
fel’s symbols according to the chronometrically invariant formalism.

Here
∗∂
∂t

= 1√
g00

∂
∂t

and
∗∂
∂xi = ∂

∂xi + 1
c2
vi

∗∂
∂t

are the chr.inv.-differential
operators with respect to time and the spatial coordinates.

Zelmanov [16] had obtained how the chr.inv.-components Xij , Y ijk,
Ziklj of the Riemann-Christoffel curvature tensor Rαβγδ are expressed
through the (observable) chr.inv.-characteristics of space. These formu-
lae, having indices lowered by the chr.inv.-metric tensor hik, are

Xij=
∗∂Dij

∂t
−(
Dl
i+A

·l
i·
)(
Djl+Ajl

)
+

1
2
(∗∇iFj+∗∇jFi

)− 1
c2
FiFj , (4.16)

Yijk= ∗∇i
(
Djk+Ajk

)−∗∇j
(
Dik+Aik

)
+

2
c2
AijFk , (4.17)

Ziklj=DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c2Ciklj . (4.18)

We see from here that non-stationary states of the wave functions
Xij , Y ijk, Ziklj are due to the non-stationarity of the chr.inv.-charac-
teristics of space (Fi, Aik, Dik, Ciklj), thus — the non-stationarity of
the components of the fundamental metric tensor gαβ , namely

g00 =
(
1− w

c2

)2

, g0i =− 1
c
vi

(
1− w

c2

)
, gik =−hik+

1
c2
vivk . (4.19)

We consider each of these cases here, mindful of the need to find
theoretical grounds for the gravitational wave problem:

1) Non-stationary states of the time component g00 derive from the
time variation of the gravitational potential w;

2) Non-stationary states of the mixed components g0i derive from
the non-stationarity of the rotation of space or the gravitational
potential w (or from both these factors);

3) Non-stationary states of the spatial components gik derive from
the aforementioned two factors as well.

The metric of weak plane gravitational waves has the form

ds2 = c2dt2− (dx1)2− (1+a)(dx2)2 +2bdx2dx3− (1−a)(dx3)2, (4.20)

where a= a(ct+x1) and b= b(ct+x1) if the wave travels in the direc-
tion x1, and they are small values.

As seen, in this metric there is not a gravitational potential (w =0)
as soon as there is not rotation of space (vi = 0). For this reason we
arrive at a very important conclusion:
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Weak plane gravitational waves are derived from sources other
than gravitational fields of masses.

An analogous situation arises in relativistic cosmology, where, until
this day, the main rôle is played by the theory of a homogeneous isotropic
universe. This theory is based on the metric of a homogeneous isotropic
space (see Chapter 1 in [16], for detail)

ds2 = c2dt2 −R2 (dx1)2 + (dx2)2 + (dx3)2[
1 + k

4

[
(dx1)2 + (dx2)2 + (dx3)2

]]2

R = R (t) , k = 0,±1




. (4.21)

When one substitutes this metric into Einstein’s equations, one ob-
tains a spectrum of solutions, which are known as homogeneous isotropic
models, or the Friedmann cosmological models [16].

Taking our previous conclusion on the origin of weak plane gravita-
tional waves into account, we come to another important conclusion:

No gravitational wave fields derived from masses can exist in any
Friedmann universe. Moreover, any Friedmann universe is free of
gravitational inertial waves derived from the fields of rotation.

Currently there is not indubitable observational data supporting the
absolute rotation of the Universe. This problem is under considerable
discussion among astronomers and physicists over decades, and remains
open. Rotations of bulky space bodies like planets, stars, and galaxies
are beyond any doubt. But these rotations do not result from the abso-
lute rotation of the whole Universe, including the absolute rotation of
its common gravitational field.

Looking back at the question of whether or not gravitational waves
and gravitational inertial waves exist, or whether or not non-stationary
states of the wave functions Xij , Y ijk, Ziklj exist, we conclude that
non-stationary states of the wave functions are derived from:

1) The case, where the field of the acting gravitational inertial force
Fi is vortical (the non-stationarity of g00 and g0i);

2) Non-stationary states of the spatial components gik of the funda-
mental metric tensor gαβ .

In the first case, the effect of gravitational inertial waves or gravi-
tational inertial waves manifests itself as non-stationary corrections to
the clock of the observer. In the second case, the proper time of the
observer flows unchanged, while gravitational waves or gravitational in-
ertial waves are presented as waves of only the deformation of space.
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My task herein is to construct basics of the chronometrically invari-
ant theory of gravitational waves and gravitational inertial waves.

It is possible to show that the chr.inv.-components of the Riemann-
Christoffel curvature tensor, which are the wave functions Xij , Y ijk,
Ziklj , possess the properties

Xij = Xji , Xk
k = −κc2, Y[ijk] = 0 , Yijk = −Yikj . (4.22)

Equations (4.4) being taken in an ortho-frame (where g00 =1, g0i=0,
and gik= δik, thus there is not difference between the covariant and
contravariant components of a tensor) take the form

Xij = −c2R0i0j , Yijk = −cR0ijk , Ziklj = c2Riklj . (4.23)

Once we re-write the Einstein space condition Rαβ =κgαβ (3.2) in
an ortho-frame, we take the formulae (4.23) into account. Then, intro-
ducing three-dimensional matrices x and y such that

x ≡ ‖xik‖ = − 1
c2
‖Xik‖ , y ≡ ‖yik‖ = − 1

2c
‖εimnY ·mnk · · ‖ , (4.24)

where εimn is the three-dimensional completely antisymmetric discrim-
inant chr.inv.-tensor, we compose a six-dimensional matrix ‖Rab‖

‖Rab‖ =
∥∥∥∥
x y
y −x

∥∥∥∥ , a, b = 1, 2, . . . 6 , (4.25)

which satisfies the conditions

x11 + x22 + x33 = −κ , y11 + y22 + y33 = 0 . (4.26)

Now, let us compose a lambda-matrix

‖Rab − Λgab‖ =
∥∥∥∥
x+ Λε y
y −x− Λε

∥∥∥∥ , (4.27)

where ε is the three-dimensional unit matrix. After elementary trans-
formations, we reduce this lambda-matrix to the form

∥∥∥∥
x+iy+Λε 0

0 −x−iy−Λε

∥∥∥∥ =
∥∥∥∥
Q̄ (Λ) 0

0 Q̄ (Λ)

∥∥∥∥ . (4.28)

As is known according to Petrov [27], the initial lambda-matrix can
have only one of characteristics drawn from three kinds: I) [111, 111];
II) [21, 21]; III) [3, 3]. Using, according to Petrov, the canonical form of
the matrix ‖Rab‖ in a non-holonomic ortho-frame for each of these three
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kinds of the curvature tensor, we express the matrix ‖Rab‖ through the
chr.inv.-tensors Xij and Yijk. We obtain, for kind I,

Kind I

‖Rab‖ =
∥∥∥∥
x y
y −x

∥∥∥∥ ,

x =

∥∥∥∥∥∥

x11 0 0
0 x22 0
0 0 x33

∥∥∥∥∥∥
, y =

∥∥∥∥∥∥

y11 0 0
0 y22 0
0 0 y33

∥∥∥∥∥∥





, (4.29)

where
x11 + x22 + x33 = −κ , y11 + y22 + y33 = 0 . (4.30)

Using (4.24) we also express the stationary curvatures Λi (3.21)
(i=1, 2, 3) through Xij and Yijk

Λ1 = − 1
c2
X11 +

i

c
Y123

Λ2 = − 1
c2
X22 +

i

c
Y231

Λ3 = − 1
c2
X33 +

i

c
Y312





. (4.31)

Hence the chr.inv.-quantities Xik consist of the real parts of the sta-
tionary curvatures Λi (the term αi in 3.21), while the chr.inv.-quantities
Yijk consist the imaginary parts (the term iβi in formula 3.21). In spaces
of the sub-kind D (Λ2 =Λ3) we have: X22 =X33, Y231 =Y312. In spaces
of the sub-kind O (Λ1 =Λ2 =Λ3) we have: X11=X22=X33 =−κc2

3 ,
Y123 =Y231=Y312= 0. Hence Einstein spaces of the sub-kind O have
only real curvatures, while being empty they are flat.

For kind II we have
Kind II

‖Rab‖ =
∥∥∥∥
x y
y −x

∥∥∥∥ ,

x =

∥∥∥∥∥∥

x11 0 0
0 x22+1 0
0 0 x22−1

∥∥∥∥∥∥
, y =

∥∥∥∥∥∥

y11 0 0
0 y22 1
0 1 y22

∥∥∥∥∥∥





, (4.32)

where

x11 + x22 + x33 = −κ , x22 − x33 = 2 , y11 + 2y22 = 0 . (4.33)



54 The Abraham Zelmanov Journal — Vol. 3, 2010

The stationary curvatures in this case are

Λ1 = − 1
c2
X11 +

i

c
Y123

Λ2 = − 1
c2
X22 − 1 +

i

c
Y231

Λ3 = − 1
c2
X33 + 1 +

i

c
Y312





. (4.34)

From these results we conclude that the stationary curvatures Λ2

and Λ3 can never become zero in this case, so Einstein spaces (gravita-
tional fields) of kind II are curved in any case. They cannot approach
a flat space.

In spaces of kind II (Λ1 =Λ2 =0; if this is the sub-kind N of kind II,
there is also κ=0), in an ortho-frame, we have

X11 = X22 − κc2 = X33 + κc2, Y123 = Y231 = Y312 = 0 , (4.35)

so the stationary curvatures take real numerical values. In an empty
space of this kind, the matrices x and y are degenerate (determinants
of these matrices are zero). For this reason spaces of the sub-kind N
of kind II are degenerate. Thus, I refer to gravitational fields which fill
spaces of the sub-kind N of kind II as degenerate gravitational fields.
In emptiness (κ=0) several elements of the matrices x and y take the
numerical values +1 and −1 thereby making an ultimate transition to
a flat space impossible.

For kind III we have

Kind III

‖Rab‖ =
∥∥∥∥
x y
y −x

∥∥∥∥ ,

x =

∥∥∥∥∥∥

0 1 0
1 0 0
0 0 0

∥∥∥∥∥∥
, y =

∥∥∥∥∥∥

0 0 0
0 0 −1
0 −1 0

∥∥∥∥∥∥





. (4.36)

Here the stationary curvatures are zero and both the matrices x and
y are degenerate. Einstein spaces of kind III can only be empty (κ=0),
but, at the same time, they can never be flat.

These are the basics of the chronometrically invariant theory of grav-
itational waves and gravitational inertial waves, which I have introduced
in this paragraph for the case of empty Einstein spaces. Numerous im-
portant conclusions follow from the theory.
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The conclusions are related to the (observable) chr.inv.-components
Xik, Y ijk, Zijkm of the Riemann-Christoffel curvature tensor Rαβγδ,
which are wave functions in a wave gravitational field. Further, I will
refer to the chr.inv.-components according to their physical meaning:

1) Xik, as a projection onto the line of time, manifests the variation
of the curvature tensor with time at the same location. This is
the stationary observable component of the curvature tensor;

2) Y ijk is a mixed (space-time) projection. It manifests a shift of
the time variation of the curvature tensor with the variation of
the three-dimensional (spatial) coordinates. This is the dynami-
cal observable component of the curvature tensor. This is a “truly
gravitational wave component”, which, being nonzero (Y ijk 6=0),
manifests the presence of gravitational waves or gravitational in-
ertial waves travelling in space;

3) Zijkm, which is a purely spatial projection, is an “instant three-
dimensional shot” (or “section”) of the curvature tensor. This is
the distributive observable component.

Proceeding from the equations deduced for the canonical form of
the matrix ‖Rab‖, obtained in the framework of the chr.inv.-theory, we
conclude:

The dynamical observable component Y ijk of the curvature ten-
sor can be zero (Y ijk=0) only in spaces of kind I (the stationary
curvatures take real values in this case). Moreover, Y ijk= 0 in all
known metrics of kind I. Gravitational fields of spaces of kind I are
derived from islands of mass located in emptiness. Thus, gravita-
tional waves and gravitational inertial waves cannot derive from
islands of mass located in an empty space (at least, in the frame-
work of all known metrics of kind I).

In particular, this means that search for gravitational radiation, tar-
geting rotating cosmic bodies in emptiness as its source, cannot be a
proper experimental test to the General Theory of Relativity.

According to most of the gravitational wave criteria, the presence
of gravitational waves is linked to spaces of the sub-kind N of kind II,
and kind III, where the matrix yik has components equal to +1 or −1.
Moreover, in the fields of the sub-kind N of kind II, and kind III, the
numerical values +1 or −1 are attributed also to components of the
matrix xik. This implies that:

Spaces, which contain gravitational fields satisfying the gravita-
tional wave criteria (these are spaces of the sub-kind N of kind II,
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and kind III), are curved independently of whether or not they are
empty (Rαβ =0) or filled with distributed matter (Rαβ =κgαβ).
In any case, in these spaces gravitational radiation is derived from
the “interaction” between the stationary observable component
Xij and the dynamical observable component Y ijk of the curva-
ture tensor, which are nonzero therein.

Petrov’s classification of spaces (gravitational fields) applied here to
the gravitational wave problem is valid only to Einstein spaces. Solving
this problem for spaces of a general kind, where Rαβ 6=κgαβ , is a highly
complicate task due to some mathematical difficulties. Namely, when
having an arbitrary distribution of matter in a space, the matrix ‖Rab‖,
taken in a non-holonomic ortho-frame, is not symmetrically doubled; on
the contrary, the matrix takes the form

‖Rab‖ =
∥∥∥∥
x y
y′ z

∥∥∥∥ , (4.37)

where the three-dimensional matrices x, y, z are constructed on the
following elements, respectively∗

xik = − 1
c2
Xik

zik =
1
c2
εimnεkpqZ

mnpq

yik =
1
2c

εimnY
·mn
k · ·





, (4.38)

and y′ means transposition. It is obvious that reducing this matrix
to its canonical form will meet severe mathematical difficulties, thus
becoming a highly complicate task.

Nevertheless Petrov’s classification, which has successfully been ap-
plied here to the chr.inv.-theory of gravitational waves and gravitational
inertial waves, allows us to conclude:

The stationary observable component Xij and the dynamical ob-
servable component Y ijk of the curvature tensor are different in
their physical origin†. Space metrics can exist even in a case, where

∗In ortho-frames there is not difference between the covariant and contravariant
components of a tensor [27]. Therefore, we can replace zik = 1

c2
εimnεkpqZmnpq and

yik = 1
2c

εimnY ·mn
k · · with zik = 1

c2
εimnεkpqZmnpq and yik = 1

2c
εimnYkmn in (4.38).

This can also be applied to the equations of formula (4.24).
†We do not discuss the spatial observable component Ziklj , because, in an ortho-

frame, the matrices x and z are connected by the ratio x =−z. Therefore, the
components Xik and Ziklj are connected to each other in this case.
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Y ijk=0 but Xij 6=0 and Ziklj 6=0 (these are spaces of kind I).
However, among all known solutions of Einstein’s equations, there
is not a metric for which Y ijk 6=0 butXij=0 and Ziklj=0. There-
fore, in gravitational wave fields and gravitational inertial wave
fields, Y ijk 6= 0 and Xij 6=0 (and Ziklj 6=0 as well: see the foot-
note on page 56) everywhere and always.

§5. Physical conditions of the existence of gravitational waves
in non-empty spaces. In §4, I suggested a chr.inv.-theory of gravita-
tional waves and gravitational inertial waves for empty Einstein spaces.
Now, I extend the theory to non-empty Einstein spaces.

As was shown in §4, in the framework of the chr.inv.-theory of grav-
itational waves and gravitational inertial waves, the necessary condition
of the existence of the waves are the inhomogeneity and non-stationarity
of the wave functions Xij , Y ijk, Ziklj , which are the observable compo-
nents of the Riemann-Christoffel curvature tensor Rαβγδ. The condi-
tions of homogeneity in the presence of distributed matter (medium)
are formulated, in the framework of the chronometrically invariant for-
malism [16], as follows

∗∇iFk = 0 , ∗∇jAik = 0 , ∗∇jDik = 0 , ∗∇j Cik = 0
∗∂ρ
∂xi

= 0 , ∗∇j Ji = 0 , ∗∇jUik = 0



 , (5.1)

where ρ, Ji =hikJ
k, and Uik =himhknU

mn are the observable density of
matter, the observable density of momentum, and the observable stress
tensor, which are the respective chr.inv.-projections

ρ =
T00

g00
, J i =

cT i0√
g00

, U ik = c2T ik (5.2)

of the energy-momentum tensor Tαβ of the matter (from which we can
also obtain U =hikUik).

Once the conditions of inhomogeneity (5.1) are satisfied, the wave
functions represented by f in Zelmanov’s chr.inv.-criterion for gravita-
tional waves and gravitational inertial waves (4.3) are homogeneous as
well, thus the d’Alembertian (4.3) becomes trivial.

Now, let us study the conditions of the non-stationarity of the wave
functions Xij , Y ijk, Ziklj in the presence of a distributed matter. To
do it, we should express them through the chr.inv.-characteristics of
the matter. We will use Einstein’s equations and also the conservation
law of the energy-momentum tensor, written in chr.inv.-form. In [16],
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Zelmanov considered Einstein’s generally covariant equations (3.1) in
the general case, where any kind of distributed matter is presented:
the formula for the energy-momentum tensor Tαβ is not detailed there.
According to Zelmanov, they have chr.inv.-projections as follows (I refer
to them as the Einstein chr.inv.-equations)

∗∂D
∂t

+DjlD
jl+AjlAlj+∗∇jF j− 1

c2
FjF

j=−κ
2

(
ρc2+U

)
+λc2, (5.3)

∗∇j
(
hijD −Dij −Aij

)
+

2
c2
FjA

ij = κJ i, (5.4)

∗∂Dik

∂t
− (

Dij +Aij
)(
Dj
k +A·jk·

)
+DDik + 3AijA

·j
k· +

+
1
2

(∗∇iFk + ∗∇kFi )− 1
c2
FiFk − c2Cik =

=
κ
2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik , (5.5)

where ∗∇i is the symbol of chr.inv.-differentiation (a chr.inv.-analogue to
the symbol∇σ of generally covariant differentiation). He also considered
the general covariant conservation law equation

∇σT ασ = 0 (5.6)

of the energy-momentum tensor (also in the general case of arbitrary
matter). It has the following chr.inv.-projections [16]

∗∂ρ
∂t

+Dρ+
1
c2
DijU

ij+∗∇iJ i− 2
c2
FiJ

i = 0 , (5.7)

∗∂Jk

∂t
+DJk+ 2

(
Dk
i +A·ki·

)
J i+∗∇i U ik− 2

c2
FiU

ik− ρF k = 0 . (5.8)

We begin the study from the simplest case, where all kinematic
characteristics of a non-empty space are zero. In this case, the reference
frame of the observer (his local space of reference) falls freely, is free of
rotation, and does not deform. In other words,

Fi = 0 , Aik = 0 , Dik = 0 , (5.9)

thus the chr.inv.-components of the curvature tensor (the wave func-
tions) take the form

Xik = 0 , Y ijk = 0 , Ziklj = −c2Ciklj . (5.10)

It is easy to see that, in this case, the solely nonzero component Ziklj
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of the curvature tensor is stationary. Therefore, gravitational waves and
gravitational inertial waves are impossible in this case.

Construct the metric of a respective space (space-time) for this case.
The conditions Fi= 0 and Aik=0 mean, respectively, that g00= 1 and
g0i=0 in the space. The fact that the space does not deform (Dik=0)
points to the stationarity of the spatial components gik of the funda-
mental metric tensor gαβ . According to Cotton [45], in this case the
three-dimensional metric can be reduced to diagonal form. Therefore, a
space which satisfies the physical conditions (5.9) is a reducible space,
whose metric takes the form

ds2 = c2dt2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2, (5.11)

where the components gii do not depend on time.
Thus, we arrive at the following obvious conclusion:

In non-empty spaces, whose all kinematic characteristics are zero,
gravitational waves and gravitational inertial waves are impossi-
ble due to the stationarity of all the chr.inv.-components of the
curvature tensor (the wave functions of space).

Consider another kind of non-empty spaces, which do not contain
fields of acceleration (the gravitational potential is homogeneously dis-
tributed therein), do not deform, but rotate. A typical instance of such
spaces are those described by Gödel’s metric [46], where

Fi = 0 , Dik = 0 , Aik 6= 0 . (5.12)

The first condition of these, Fi=0, according to the chronometrically
invariant formalism, means

g00 = 1 ,
∗∂g0i
∂t

= 0 , (5.13)

therefore the rotation of a Gödel space is stationary. Because the
chr.inv.-metric tensor has the form hik =−gik+ g0ig0k

g00
, we see that gik

does not depend on time in this case. This means, being applied to the
wave functions Xik, Y ijk, Ziklj , that

∗∂Xik

∂t
= 0 ,

∗∂Y ijk

∂t
= 0 ,

∗∂Ziklj

∂t
= 0 , (5.14)

i.e. Gödel’s metric is completely stationary. Hence,
In non-empty spaces, which do not deform but rotate with a con-
stant linear velocity, gravitational waves and gravitational inertial
waves are impossible.
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Therefore, in searching for gravitational radiation, where binary
stars are targeted as its source, we should focus onto only those bi-
naries, whose rotation is non-stationary. In particular, if a satellite-star
decelerates (due to some reasons) when orbiting the main star, the bi-
nary system should emit gravitational radiation.

Now, consider that case of non-empty spaces, where spaces do not
deform, do not rotate, but contain fields of acceleration (the gravita-
tional inertial force is nonzero therein). In this case,

Fi 6= 0 , Aik = 0 , Dik = 0 . (5.15)

The condition Aik=0 means g0i=0. The condition Dik= 0, as was
explained above, means that the observable metric hik of the space is
stationary, hence gik does not depend on time: in this case, accord-
ing to Cotton [45], the three-dimensional metric can be transformed to
diagonal form. Finally, the metric of such a space takes the form

ds2 = g00 (ct, x1, x2, x3)c2dt2 + gii (x1, x2, x3)(dxi)2, (5.16)

so the chr.inv.-components of the curvature tensor take the form

Xik =
1
2

(∗∇iFk + ∗∇kFi
)− 1

c2
FiFk

Y ijk = 0 , Ziklj = −c2Ciklj



 . (5.17)

Due to the absence of the rotation and deformation, the wave func-
tion Ziklj is stationary. So, only the non-stationarity of the wave func-
tion Xik can be supposed. Using the Einstein chr.inv.-equations while
taking the physical conditions (5.15) into account, we express Xik (5.17)
through the chr.inv.-characteristics of the distributed matter

Xik = c2Cik +
κ
2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik . (5.18)

This, however, does not matter in this case. Anyhow, due to the fact
that the dynamical observable component Y ijk of the curvature tensor
is zero in such spaces, we immediately arrive at the folowing conclusion:

In non-empty spaces, which contain fields of the gravitational in-
ertial force, but are free of rotation and deformation, gravitational
waves and gravitational inertial waves are impossible.

Now, the last case of non-empty spaces remains under focus. In this
case, the space does not deform, but rotates and contains the field of
the gravitational inertial force

Fi 6= 0 , Aik 6= 0 , Dik = 0 . (5.19)
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Running ahead of the obtained result, I announce that this is the
most interesting case of non-deforming non-empty Einstein spaces, be-
cause it permits gravitational radiation.

The wave functions in this case take the form

Xik = 3Ai··jA
kj−c2Cik+

κ
2

(
ρc2hik+2U ik−Uhik)+λhik, (5.20)

Y ijk = ∗∇jAik− ∗∇iAjk+
2
c2
AjiF k, (5.21)

Ziklj = AikAlj−AilAkj+ 2AijAkl−c2Ciklj . (5.22)

Analyzing the formulae, we apply Zelmanov’s 1st identity (4.10),
which links the non-stationarity of Aik to the vortex of Fi. We take into
account that

∗∂Aik

∂t
=himhkn

∗∂Amn

∂t
in non-deforming spaces. We obtain

that: 1) the non-stationarity ofXik can be due to the vortex of the gravi-
tational inertial force Fi, the non-stationarity of the factors of the ob-
servable three-dimensional curvature Cik, the observable components
of the energy-momentum tensor, and the cosmological term, or due to
all these factors; 2) the non-stationarity of Y ijk can only be due to the
common presence of the vortex of the field Fi and the non-stationarity of
the force Fi; 3) the non-stationarity of Ziklj can be due to the vortex of
the field Fi or the non-stationarity of the observable three-dimensional
curvature Ciklj , or due to both these factors.

As was explained in §4, page 55, the dynamical observable com-
ponent Y ijk of the Riemann-Christoffel curvature tensor is a “truly
gravitational wave component”, which manifests the presence of grav-
itational waves or gravitational inertial waves travelling in space. The
fact that Y ijk 6= 0 in spaces of this kind means that gravitational waves
and gravitational inertial waves are possible therein.

Because Y ijk 6=0 (5.21) in the case, we obtain J i 6=0 from the Ein-
stein chr.inv.-vectorial equation (5.4), and

∗∂ρ
∂t
6= 0 due to the chr.inv.-

scalar conservation equation (5.7).
The first result, J i 6=0, implies the presence of a flow of energy-

momentum of the medium that fills the space. In other word, the ob-
server (and his frame of reference) does not accompany the medium,
but moves with respect to it. As was already shown in §2, the travelling
rays of gravitational radiation in emptiness are isotropic geodesics (the
rays of the light’s travel). Hence, gravitational wave fields and gravita-
tional inertial wave fields are non-isotropic in spaces of this kind: the
waves travel at another velocity than light, depending on the properties
of the medium.
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The second result,
∗∂ρ
∂t
6=0, means that the density of the medium

does not remain stationary, but changes with time according to the
transit of gravitational waves and gravitational inertial waves. In a
barotropic medium, as we know, p= p (ρ) is true. Therefore, if a space
of this kind is filled with a barotropic medium, gravitational waves and
gravitational inertial waves travelling therein are linked to the non-
stationarity of the pressure. If a space of this kind is filled with a baro-
cline medium (it is characterized by the condition p= p (ρ, T ), where T
is the absolute temperature of the medium), gravitational waves and
gravitational inertial waves are linked to the non-stationarity of the
pressure and temperature.

Thus, concerning non-empty spaces characterized by the physical
conditions (5.19), we conclude:

Non-empty spaces, which do not deform, but rotate and contain
fields of the gravitational inertial force, gravitational waves and
gravitational inertial waves are possible. In a barotropic medium,
the waves are linked to the non-stationarity of the pressure, while
in a barocline medium they are linked to the non-stationary of
the pressure and temperature. The waves travel with a velocity
different than that of light, depending on the properties of the
medium that fills the space.

An important note should be said in the end. When we considered
the physical conditions of the existence of gravitational waves in non-
empty spaces, we meant that the spaces do not deform (Dik=0). This
has been the main assumption and task of this study. As a matter of
fact, gravitational waves and gravitational inertial waves can exist in
deforming spaces as waves of the space deformation. Therefore, all that
has been obtained in this paragraph is related only to non-deforming
spaces. The main result obtained herein is:

It is not necessary that only the deformation of space is the source
of gravitational waves and gravitational inertial waves. The waves
can exist even in non-deforming spaces, if the gravitational inertial
force Fi and the rotation of space Aik differ from zero, and the
field Fi is vortical (that means the non-stationarity of Aik).

§6. Chronometrically invariant representation of Petrov’s
classification for non-empty spaces. In §4, I suggested a chr.inv.-
theory of gravitational waves and gravitational inertial waves in empty
Einstein spaces. The geometrical structure of Einstein spaces of all three
kinds was presented in terms of chronometric invariants. This study
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was extended to non-empty Einstein spaces in §5: physical conditions
of the existence of gravitational radiation in medium were discussed.
Now, I shall obtain chr.inv.-components of Weyl’s conformal curvature
tensor, and find their connexion with the chr.inv.-components of the
Riemann-Christoffel curvature tensor. The main task of this deduction
is understanding the rôle of matter in forming gravitational radiation
in non-empty non-Einstein spaces.

Petrov’s classification of spaces where Rαβ =κgαβ (Einstein spaces)
was a resolvable mathematical problem, because the matrix ‖Rab‖ of
the Riemann-Christoffel curvature tensor in an ortho-frame of a six-
dimensional Riemannian space is symmetrically doubled due to Ein-
stein’s equations. In the case where a space is filled with distributed
matter of an arbitrary kind, Einstein’s equations manifest that

‖Rab‖ =
∥∥∥∥
x y
y′ z

∥∥∥∥ , (6.1)

where y′ is a matrix transposed to the matrix y. This fact makes clas-
sification of the curvature tensor in non-empty spaces a very difficult
task (see page 56). Therefore, Petrov [27] suggested another solution to
this problem. He had constructed a special curvature tensor

Pαβγδ = Rαβγδ − Sαβγδ + σ
(
gαγ gβδ − gαδ gβγ

)
, (6.2)

which satisfies all algebraic properties of the Riemann-Christoffel tensor
in non-empty spaces, while the additional tensor Sαβγδ, which takes the
energy-momentum tensor (distributed matter) into account, possesses
all the properties as well, i.e.

Sαβγδ =
κ
2

(
gαβ Tδγ − gαγ Tβδ + gβγ Tαδ − gβδ Tαγ

)
. (6.3)

After contraction of the tensor by indices β and δ, and taking Ein-
stein’s equations into account, we obtain

Pαγ = (R+ 3σ) gαγ , (6.4)

where σ is a scalar. Once distribution of matter (the energy-momentum
tensor Tαβ) has been determined, the curvature of space can be found
with a precision to within the scalar σ. However the physical meaning of
the scalar is still unclear. Therefore, in order to introduce an algebraic
classification of non-empty spaces, Weyl’s conformal curvature tensor

Cαβγδ =Rαβγδ+
1
2

(
Rαγ gβδ+Rβδ gαγ−Rαδ gβγ−Rβγ gαδ

)
+

+
R

6
(
gβγ gαδ−gβδ gαγ

)
(6.5)
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should be applied. This tensor also possesses all the algebraical proper-
ties of the Riemann-Christoffel curvature tensor. Also, contracting it
by indices β and δ, we obtain

Cαγ = 0 . (6.6)

All these mean that applying Weyl’s contracted tensor Cαβ to non-
empty spaces, we arrive at an analogy to Ricci’s tensor Rαβ . Therefore,
classification of non-empty non-Einstein spaces according to the alge-
braic properties of Weyl’s conformal curvature tensor Cαβγδ should be
analogous to Petrov’s classification of Einstein spaces. The difference is
only that the matrices x̃ and ỹ should be used in Weyl’s tensor, instead
the matrices x and y of the Riemann-Christoffel tensor.

Here we suggest an algebraic classification of Weyl’s conformal cur-
vature tensor in terms of chronometric invariants. First, we define the
(observable) chr.inv.-components of Weyl’s tensor

X̃ik = − c2 C
·i·k
0 ·0·
g00

, Ỹ ijk = − c C
·ijk
0 ···√
g00

, Z̃iklj = c2Cijkl, (6.7)

which are formulated in analogy to those of the Riemann-Christoffel
curvature tensor Rαβγδ (4.4) as well as those of any 4th rank tensor of
the antisymmetric kind as these tensors. The chr.inv.-components (6.7)
possess the following properties

X̃ik = X̃ki , X̃k
k = 0 , Ỹ[ijk] = 0 , Ỹijk = −Yikj , (6.8)

where Yikj is that of Rαβγδ (4.4). In an ortho-frame, we have

X̃ik = − c2C0i0k , Ỹijk = − cCoijk , Z̃iklj = c2Ciklj . (6.9)

Now, we express the chr.inv.-components of Weyl’s tensor through
the (observable) chr.inv.-characteristics of the distributed matter that
fills the space. To do it, we apply the Einstein chr.inv.-equations (they
were presented in §5). In an ortho-frame, we obtain

C0i0k = − 1
c2
Xik − κ

2c2
Uik +

κρ
6
hik +

κ c2

3
Uhik , (6.10)

Ci0jk =
1
c
Yijk − κ

2c
(
hikJi − hijJk

)
, (6.11)

Ciklj =
1
c2
Ziklj− κ

2c2
(
hijUkl−hilUkj+hklUij−hkjUil

)−

− κ
3

(
ρ− U

c2

) (
hikhjl − hilhjk

)
. (6.12)
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In analogy to (4.24), we introduce three-dimensional matrices

x̃ = ‖ x̃ik ‖ = − 1
c2

∥∥∥X̃ik

∥∥∥

ỹ = ‖ ỹik ‖ =
1
2c

∥∥∥εimn Ỹ ·mnk · ·
∥∥∥

z̃ = ‖ z̃ik ‖ =
1

4c2

∥∥∥εimn εkpq Z̃mnpq
∥∥∥





. (6.13)

It is possible to show, from the Einstein equations Cαβ=0 written
in an ortho-frame, in analogy to Petrov [27] who did it for Einstein’s
original equations Rαβ=0, that x̃ik =− z̃ik. Therefore, we compose a
six-dimensional matrix ‖Cab‖ from Weyl’s conformal curvature tensor
Cαβγδ. We obtain a symmetrically paired matrix

‖Cab‖ =
∥∥∥∥
x̃ ỹ

ỹ −x̃
∥∥∥∥ (6.14)

whose elements are connected by the relations

x̃11 + x̃22 + x̃33 = 0 , ỹ11 + ỹ22 + ỹ33 = 0 , (6.15)

and, as is possible to show, the diagonal components of the matrix ỹ
meet the respective diagonal components of the matrix y.

ỹ11 =
1
c
Ỹ123 =

1
c
Y123 = y11

ỹ22 =
1
c
Ỹ231 =

1
c
Y321 = y22

ỹ33 =
1
c
Ỹ312 =

1
c
Y312 = y33





. (6.16)

Composing a lambda-matrix ‖Cab−Λgab ‖ then reducing it to the
canonical form in analogy to Petrov, who did it for the lambda-matrix
‖Rab−Λgab ‖, we obtain three kinds of non-empty non-Einstein spaces,
which are characterized according to Weyl’s tensor.

After transformations, we obtain the lambda-matrix ‖Cab−Λgab‖
in the form

‖Cab−Λgab‖ =
∥∥∥∥

x̃+ iỹ + Λε 0
0 x̃− iỹ + Λε

∥∥∥∥ ≡

≡
∥∥∥∥∥
Q(Λ) 0

0 Q̄ (Λ)

∥∥∥∥∥ . (6.17)
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In analogy to Petrov’s classification of the matrix ‖Rab‖, we obtain,
in an ortho-frame, three respective kinds of the matrix ‖Cab‖

Kind I

‖Cab‖ =
∥∥∥∥
x̃ ỹ
ỹ −x̃

∥∥∥∥ ,

x̃ =

∥∥∥∥∥∥

x̃11 0 0
0 x̃22 0
0 0 x̃33

∥∥∥∥∥∥
, ỹ =

∥∥∥∥∥∥

ỹ11 0 0
0 ỹ22 0
0 0 ỹ33

∥∥∥∥∥∥





, (6.18)

where x̃11+ x̃22 + x̃33 =0, ỹ11 + ỹ22+ ỹ33 =0 (so in this case there are 4
independent parameters, determining the space structure by an invari-
ant form),

Kind II

‖Cab‖ =
∥∥∥∥
x̃ ỹ
ỹ −x̃

∥∥∥∥ ,

x̃ =

∥∥∥∥∥∥

x̃11 0 0
0 x̃22+1 0
0 0 x̃22−1

∥∥∥∥∥∥
, ỹ =

∥∥∥∥∥∥

ỹ11 0 0
0 ỹ22 1
0 1 ỹ22

∥∥∥∥∥∥





, (6.19)

where x̃11 + x̃22+ x̃33 =0, x̃22− x̃33 =2, ỹ11 +2 ỹ22 =0 (so in this case
there are 2 independent parameters determining the space structure by
an invariant form),

Kind III

‖Cab‖ =
∥∥∥∥
x̃ ỹ
ỹ −x̃

∥∥∥∥ ,

x̃ =

∥∥∥∥∥∥

0 1 0
1 0 0
0 0 0

∥∥∥∥∥∥
, ỹ =

∥∥∥∥∥∥

0 0 0
0 0 −1
0 −1 0

∥∥∥∥∥∥





. (6.20)

As was shown in §3, the diagonal components of the matrices x and y
represent, respectively, the real and imaginary parts of stationary cur-
vatures Λi =αi + iβi (i=1, 2, 3) of the Riemann-Christoffel curvature
tensor. Accordingly, we obtain stationary curvatures of Weyl’s confor-
mal curvature tensor. They are

Λ̃1 = x̃11 + iỹ11 , Λ̃2 = x̃22 + iỹ22 , Λ̃3 = x̃33 + iỹ33 . (6.21)

As was mentioned above, the diagonal components of the matrix ỹ
coincide with the respective diagonal components of the matrix y.
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Now, we write the formulae of the stationary curvatures while taking
into account the obtained formulae of the components of Weyl’s tensor
Cαβγδ, expressed through the chr.inv.-properties of the medium that
fills the space. We obtain, for all three kinds of non-empty non-Einstein
spaces, respectively

Kind Ĩ

Λ̃1 = − 1
c2
X11 − κ

2c2
U11 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y123

Λ̃1 = − 1
c2
X22 − κ

2c2
U22 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y231

Λ̃1 = − 1
c2
X33 − κ

2c2
U33 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y312





, (6.22)

Sub-kind D̃ of kind Ĩ (Λ̃2 = Λ̃3)

X22 −X33 =
κ
2

(U33 − U22)

Y231 = Y312




, (6.23)

Sub-kind Õ of kind Ĩ (Λ̃1 = Λ̃2 = Λ̃3)

X11 +
κ
2
U11 = X22 +

κ
2
U22 = X33 +

κ
2
U33

Y123 = Y231 = Y312 = 0




, (6.24)

Kind ĨI

Λ̃1 = − 1
c2
X11 − κ

2c2
U11 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y123

Λ̃2 = − 1
c2
X22 − 1− κ

2c2
U22 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y231 =

= − 1
c2
X33 + 1− κ

2c2
U22 +

κ
6

(
ρ+

2U
c2

)
+
i

c
Y231





, (6.25)

Sub-kind Ñ of kind ĨI (Λ̃1 =Λ̃2)

X11 +
κ
2
U11 = X22 +

κ
2
U22 − c2 = X33 +

κ
2
U33 + c2

Y123 = Y231 = Y312 = 0




, (6.26)
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Kind ĨII

X11 +
κ
2
U11 = X22 +

κ
2
U22 = X33 +

κ
2
U33 = 0

Y123 = Y231 = Y312 = 0




. (6.27)

As seen, in spaces of kind ĨII all stationary curvatures are zero. How-
ever the aforementioned canonical representation of the matrix ‖Cab‖
of Weyl’s tensor in an ortho-frame manifests that both matrices x̃ and
ỹ are nonzero in any case, and this fact does not depend on the kind of
matter that fills the space.

Finally, our consideration of the canonical forms of Weyl’s confor-
mal curvature tensor, and its stationary curvatures for non-empty non-
Einstein spaces of all three kinds leads to the following conclusion:

The presence of distributed matter (medium) in a non-Einstein
space changes only the real parts of the stationary curvatures.
The impossibility of gravitational waves and gravitational inertial
waves, which is the condition Ỹijk =0 (equality to zero of the
dynamical observable component of Weyl’s tensor), can only be
realized in the non-empty spaces (gravitational field) of kind Ĩ,
where the stationary curvatures take real values. In non-empty
non-Einstein spaces of the kinds other than kind Ĩ, gravitational
waves and gravitational inertial waves are possible.
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2. Lichnérowicz A. Sur les ondes gravitationelles. Comptes Rendus hebdoma-
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ralisée. Comptes Rendus hebdomadaires des Séances de l’Académie des Scien-
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8. Bel L. In: Les Théories relativistes de la Gravitation, Colloques Interna-
tionaux du Centre National de la Recherche Scientifique, no. 91, Éditions du
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LATEX. Utförd genom Ubuntu Linux.

Copyright c© The Abraham Zelmanov Journal, 2010

All rights reserved. Electronic copying and printing of this journal for non-profit,
academic, or individual use can be made without permission or charge. Any part of
this journal being cited or used howsoever in other publications must acknowledge
this publication. No part of this journal may be reproduced in any form whatsoever
(including storage in any media) for commercial use without the prior permission
of the publisher. Requests for permission to reproduce any part of this journal for
commercial use must be addressed to the publisher.

Eftertryck förbjudet. Elektronisk kopiering och eftertryckning av denna tidskrift
i icke-kommersiellt, akademiskt, eller individuellt syfte är till̊aten utan tillst̊and
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