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Abstract: Recently, the author has proposed an extension of the
General Theory of Relativity — the EGR theory, which allows for a
persistent gravity-like field to exist as a homogeneous energy density
background. In this paper, we demonstrate the continuity of this field
with respect to the gravitational field of a massive body. To achieve
this goal, we make use of the Lichnérowicz conjecture which formulates
the conditions required to match a hyperbolic 4-metric characterized
by a material-energy tensor, with a similar type of vacuum-solution
metric. This is herein applied to a spherically symmetric class of
the general relativistic solutions compatible with the Schwarzschild
exterior metric. The EGR covariant derivatives of the metric are then
only radial and time-dependent functions: the radial persistent field
tensor component vanishes on a hypersurface separating the vacuum
from the matter state. As a consequence, when this hypersurface is
narrowed down to the size of a particle, it follows a non-Riemannian
geodesic describing the trajectory of the particle whose mass slightly
increased: this effect can be interpreted as the bare mass carrying its
subsequent gravitational field.
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Introduction. The problem of matching two Riemannian hyperbolic
metrics in the sense of Lichnérowicz [1] can be stated as follows:

Given a metric solution corresponding to a “normal material ten-
sor” [2], we look for a hypersurface S where some “junction” con-
ditions must be fulfilled to match a similar vacuum metric, so that
some degrees of smoothness are not lost when approaching it form
either side of the hypersurface.

This mathematical procedure is derived from the evolution of Ein-
stein’s equations, which necessarily involves the Cauchy problem.

In order to have an appropriate simple picture of the situation, we
begin by regarding one of the “material metric” corresponding to a mas-
sive source, as generating a four-dimensional space-time “world tube”.
It is thus convenient to visualize the tube walls as a hypersurface S.
Lichnérowicz admissible coordinates [3] can be introduced from either
side of the hypersurface. Within the tube, the space metric satisfies the
“material” Einstein equations. Outside the tube, the metric satisfies
the source-free Einstein equations. The admissible coordinate condi-
tions imply G4

a =0 for the Einstein tensor Gab along with the time
component u4=0 of the unit vector ua on the dividing hypersurface S.
In this case, Lichnérowicz proved that the hypersurface S is generated
by a congruence of time-like geodesics, since S is tangent to those lines
and is thus itself time-like.

Let us imagine that the material tensor represents a massive parti-
cle, if the section of the tube is narrowing down to a particle size. In
this case, we easily verify that such a particle would follow a time-like
geodesic which is imposed by the field of the exterior metric.

Earlier on, guided by the equivalence principle whereby inertia is
not locally distinguishable from gravitation, Einstein extended the spe-
cial relativistic law of motion for a test particle to a gravitational field
geodesic. On the other hand, the fundamental consequence of the
matching conditions (which was later acknowledged by Einstein himself)
results in the following: the geodesic principle is no longer a postulate,
but a straightforward consequence of Einstein’s equations.

In this paper, we will be primarily concerned with the discontinuity
which the EGR persistent field [4] might undergo when switching from
the source-free metric to the material (matter-filled) metric. To answer
this question we are going to follow Lichnérowicz’ program applied to a
spherically symmetric class of Einstein’s field solutions that are to match
the Schwarzschild exterior metric. A particular importance is the as-
sumption of a homogeneously distributed EGR field, which in this case
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results in an extended Schwarzschild exterior solution fully compatible
with the standard Schwarzschild exterior solution (Riemannian geome-
try). Through this derivation, we are eventually led to reconsider the
matter under the form of a modified density.

Chapter 1. The Cauchy Problem in General Relativity

§1.1. Problem statement. As is well known, Einstein’s equations
are non-linear. The gravitational fields corresponded to the equations,
even when singled out, define the space-time over which they propagate.
As a result, the solution of the equations can be found to be unique
up to a diffeomorphism, and hence one is forced to introduce a fixed
background or hypersurface S onto which a set of initial data are given.
From these Cauchy data, it is thus possible to predict and study the
further evolution of Einstein’s equations in the neighbourhood of S.

The Cauchy problem in General Relativity was pioneered by Dar-
mois and Lichnérowicz [5], then extensively studied in [6]. We restrict
this topic to local considerations of the problem. For a full treatment of
the global aspect of the Cauchy problem in General Relativity, see for
instance Choquet-Bruhat and Geroch [7, 8], and others [9–12]. From a
strict mathematical point of view, the Cauchy problem can be formu-
lated as follows [13]:

Let S be a given three-dimensional manifold and a set of n ini-
tial data on it. We look for a four-dimensional Lorentzian man-
ifold (M, g) and an embedding f : S→M such that the metric
g= gabdx

a ⊗ dxb satisfies Einstein’s equations and the initial con-
ditions on f(S), and that f(S) constitutes a Cauchy hypersurface
for the manifold (M, g).

§1.2. The exterior situation. Following Lichnérowicz, we assume
that components of the metric tensor gab (as well as their first deriva-
tives) should be smooth and continuous on a given hypersurface S.
In the neighbourhood of S of any event, the potentials gab satisfy the
source-free Einstein equations

Gab = 0 , a, b = 1, 2, 3, 4, (1.1)

where the right-hand side can include the cosmological term.
We consider a space-like hypersurface x4=0: therein gab and their

first derivatives ∂4 gab are thus defined as the set of n initial data.
From the contracted Bianchi identities

Ga4
,4 = −Gaσ

,σ − {abc}Gcb −
{
b
bc

}
Gac (1.2)
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we see that the right hand side contains at most two differentiations
with respect to time and so it must be the case for the left-hand side.
Therefore,

Ga4 = 0 (1.3)

contains only first derivatives of the metric tensor with respect to time.
The second-order derivative ∂44 gab cannot be determined by the

field equations. Hence, no information can be extracted about the time
evolution from the four equations (1.3).

These equations are regarded as the constraint Einstein equations
for the set of n initial data, i.e. for gab and ∂4 gab. If they are satisfied
by the initial data, there exists a solution of the Cauchy problem for
the field equations Gab =0 in the neighbourhood of S.

So, we are left with 6 dynamical field equations

Gαβ = 0 , α, β = 1, 2, 3. (1.4)

For the second-order derivatives ∂44 gab (they are 10), we have a
four-fold ambiguity which can be removed by imposing four conditions
(known as the harmonicity conditions) on the metric tensor gab.

Explicitly, these conditions are

F b =
∂Gab

∂xa
= 0 , (1.5)

where Gab =
√
−g gab is the metric tensor density. With this choice of

harmonic coordinates, the Einstein tensor Gab can be written as

Gab =
(
Gab

)
harm

+Aab (1.6)

with

Aab =
1

2

(
gac∂cF

b + gbc∂cF
a
)

(
Gab

)
harm

=
gik

2
√
−g

∂2Gab

∂xi∂xk
+Hab

 , (1.7)

where Hab depends on the potentials and their first derivatives.
Hence, we can solve the reduced Einstein equations(

Gab
)
harm

= 0 . (1.8)

The solutions of the initial problem should satisfy the constraint
equations (1.3) at any later time.

Consider the conservation equations

∇aG
a
b = 0 , (1.9)
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that is
∇4G

4
b +∇αG

α
b = 0 . (1.10)

The constraints (1.3) are imposed so that Gab vanishes everywhere
along with Gαβ . It can also be shown that, taking into account (1.10)
on S where (1.3) is satisfied, the constraint equations are also satisfied
in the neighbourhood of S.

Therefore the equations (1.3) propagate, and the Einstein equations
are said to be in involution (not evolution), in the sense of Cartan.

§1.3. Interior situation. Here the problem is somewhat more com-
plex. Put it simply, the field equations are a part of the system

Gab = κ T ab

∇aT
ab = 0

}
, (1.11)

which is also in involution in the sense of Cartan. On the hypersurface
S (x4= const), we choose initial data satisfying the four conditions

G4
a = κ T 4

a (1.12)

for x4=0. Inspection shows that the Cauchy problem has a solution in
the neighbourhood of S, provided that the data are sufficiently differ-
entiable in the case of a massive tensor.

Chapter 2. Application to Spherically Symmetric Metrics

§2.1. The general solution. We begin by redefining a spherically
symmetric Lorentzian manifold (M, g) as a manifold admitting the group
SO(3) as an isometric group, in such a way that the group orbits are
two-dimensional space-like surfaces.

The group orbits are necessarily surfaces of constant positive curva-
ture. Thus, it is always possible to introduce coordinates such that the
metric has the regular form

ds2 = e2a(T,R)dT 2− e2b(T,R)dR2+ e2c(T,R)
(
dθ2+ sin2θdϕ2

)
. (2.1)

According to the EGR theory, 1) we keep the spherical symmetry
and maintain the normalization of R so that a circle has the circumfer-
ence 2πR; 2) we make the legitimate assumption that the EGR covari-
ant metric tensor variations only apply to T and R.

The general form of the EGR metric

(ds2)EGR = ds2 + dJ (2.2)
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has been postulated [4], where the linear form dJ = f (Ja)dx
a depends

on the covariant derivative of the metric tensor

Da gbc =
1

3

(
Jc gab + Jb gac − Ja gbc

)
. (2.3)

With our second assumption, we write the spherically symmetric
EGR metric as

(ds2)EGR = ds2 + (JT dT − JRdR) . (2.4)

A quick comparison with (2.1) readily leads to dT (e2a(T,R)dT +JT ),
which we write in the form dT 2 (e2A). In the same way, dR2 (e−2B).
Finally, we have the modified coefficients

A = a+ correction (R, T )

B = b+ correction (R, T )

C = c+ correction (R, T )

 , (2.5)

thus we write the EGR spherical metric in the form

(ds2)EGR = e2A(R,T )dT 2 − e−2B(R,T )dR2 −
− e2C(R,T )

(
dθ2 + sin2θ dϕ2

)
. (2.6)

Using Cartan’s calculus, we will be able to obtain formulae for the
EGR Ricci tensor and the EGR Einstein tensor.

First, we re-write the metric (2.6) with the Pfaffian forms

(ds2)EGR = (ω4)2 − (ωa)2, (2.7)

where the local basis Pfaffian forms are given by

ω4 = eAdT dT, ω1 = eBdR, ω2 = eCdθ , ω3 = eC sin θdϕ. (2.8)

Now, we need the connection forms, which will be obtained from the
first Cartan structure equations

dω = −ωa
b ∧ ωb. (2.9)

Determining first the exterior derivatives

dω4 = A′e−Bω1∧ ω4

dω1 = Ḃ e−Aω4∧ ω1

dω2 = Ċ e−Aω4∧ ω2 + Ċ e−Bω1∧ ω2

dω3 = Ċ e−Aω4∧ ω3 + Ċ e−Bω1∧ ω3 +
1

R
cot θ

(
ω2∧ ω3

)


, (2.10)
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where A′= ∂A
∂R

and Ḃ= ∂B
∂T

, then using of (2.9), we find

ω4
1 = ω1

4 = A′e−Bω4 + Ḃe−A ω1

ω4
2 = ω2

4 = Ċ e−A ω2

ω4
3 = ω3

4 = e−A Ċω3

ω2
1 = −ω1

2 = C′

ω3
1 = −ω1

3 = C′ e−B ω3

ω3
2 = ω2

3 = − 1

R
cot θ ω3


. (2.11)

The ansatz (2.11) satisfies

ωab + ωba = 0 , (2.12)

since the basis ωa is chosen to be orthonormal.
From the second structure equation

Ωa
b = dωa

b + ωa
c ∧ ωc

b , (2.13)

we obtain the EGR curvature forms

Ω4
1 = Eω4∧ ω1

Ω4
2 = F ω4∧ ω2 +Hω1∧ ω2

Ω4
3 = F ω4∧ ω3 +Hω1∧ ω3

Ω1
2 = I ω1∧ ω2 −Hω4∧ ω2

Ω1
3 = I ω1∧ ω3 −Hω4∧ ω3

Ω2
3 = Dω2∧ ω3


, (2.14)

where we use the short denotations

E = e−2A(B̈ + Ḃ2 − ḂȦ
)
− e−2B(A′′ +A′2 −A′B′)

F = e−(A+B)
(
Ċ′ + Ċ C′ − ĊA′ − ḂC′)

H = e−2A(C̈ + Ċ2 − ĊȦ
)
− e−2BA′C′

D = e−2A Ċ2 − e−BC′2 + e−2C

I = e−2A Ċ Ḃ − e−2B(C′′ + C′2 − C′B′)


. (2.15)
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Hence, we can infer the needed diagonal components of the EGR
Ricci tensor (Rab)EGR. We obtain

(R44)EGR = −E − 2F

(R11)EGR = E + 2I

(R22)EGR = (R33)EGR = E +D + I

 , (2.16)

while the curvature scalar is given by

(R)EGR = − 2 (E + I)− 4 (F + I) . (2.17)

We can now calculate the useful components of the EGR Einstein
tensor [4], which is defined as follows

(Gab)EGR = (Rab)EGR − 1

2

[
gab (R)EGR − 2

3
Jab

]
. (2.18)

In our particular case, the diagonal components reduce this tensor
to the Riemannian form

Gab = Rab −
1

2
gabR , (2.19)

so that the diagonal components of the EGR Einstein tensor are

(G4
4 )EGR = (G44)EGR = D + 2I

(G1
1 )EGR = (G11)EGR = 2F +D

(G22)EGR = (G33)EGR = E + I + F

 . (2.20)

According to the EGR theory [4], for the interior metric, and assum-
ing for the EGR unit 4-velocity that (uau

a)EGR=1, these components
are associated with the material tensor and the persistent field

(G4
4 )EGR = κ

[
T 4
4 + (t44)EGR

]
= κ

[
ρ+ (t44)EGR

]
= κρ∗, (2.21)

(G1
1 )EGR = κ (t11)EGR , (2.22)

and (G22)EGR=κ (t22)EGR, (G33)EGR=κ (t33)EGR, thus

(t22)EGR = (t33)EGR , (2.23)

where ρ∗ stands for the modified material density, which was already
introduced by the EGR theory.
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Our main task will be to show that the external (radial) component
of the EGR persistent field is vanishing at the contact of the spherical
mass (source of the field), thus ensuring the continuity with the modified
massive density. To be more specific, we expect to see that the vacuum
EGR persistent field will actually vanish when approaching asymptot-
ically a region around the bare mass. Such a global region represents
the modified massive quantity, i.e. the bare mass carries its subsequent
gravitational field.

§2.2. The Schwarzschild metric (classical solution). We first
consider the classical Schwarzschild solution, which is obtained in the
framework of Riemannian geometry. Then we represent it according to
the EGR theory.

As is known, the Schwarzschild metric in the spherical coordinates
has the form

ds2 = e2a(r) dt2 − e2b(r) dr2 − r2
(
dζ2 + sin2ζ dϕ2

)
. (2.24)

We rewrite this linear element with the Pfaffian forms

ds2 = (θ4)2 − (θa)2, (2.25)
where we have chosen

θ4 = eadt, θ1 = ebdr , θ2 = rdζ , θ3 = r sin ζ dϕ. (2.26)

Exterior differentiation of these results immediately in

dθ4 = a′eadr∧ dt

dθ1 = 0

dθ2 = dr∧ dζ

dθ3 = sin ζ dr∧ dϕ+ r cos ζ dζ∧ dϕ

 . (2.27)

Comparison with the first structure equation leads to the following
expressions for the connection forms

ω4
1 = ω1

4 = a′e−b θ4

ω2
1 = ω1

2 =
1

r
e−b θ2

ω3
1 = −ω1

3 =
1

r
e−b θ3

ω3
2 = −ω2

3 =
1

r
(cot ζ) θ3

ω4
2 = ω2

4 = ω4
3 = ω3

4 = 0


. (2.28)
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From the second structure equation, we obtain the curvature forms

Ω4
1 = e−2b

(
a′b′ − a′′ − a′a′

)
θ4∧ θ1

Ω4
2 = −a′e−b

r

(
θ4∧ θ2

)
Ω4

3 = −a′e−2b

r

(
θ4∧ θ3

)
Ω1

2 =
b′e−2b

r

(
θ1∧ θ2

)
Ω1

3 =
b′e−2b

r

(
θ1∧ θ3

)
Ω2

3 =
1− e−2b

r2
(
θ2∧ θ3

)



. (2.29)

For the Einstein tensor, we obtain the useful mixed diagonal com-
ponents

G4
4 =

1

r2
− e−2b

(
1

r2
− 2b′

r

)
, (2.30)

G1
1 =

1

r2
− e−2b

(
1

r2
+

2a′

r

)
, (2.31)

G2
2 = G3

3 = −e−2b

(
a′2 − a′b′ + a′′ +

a′ − b′

r

)
. (2.32)

The vacuum solutions are then given by

G4
4 +G1

1 = 0 , (2.33)

which imply that a′ + b′, and hence a+ b = 0, since a, b approach zero
asymptotically such that the Schwarzschild metric becomes asymptoti-
cally flat, i.e. a = −b.

Integrating (2.30), we obtain

e2a = e−2b = 1− m

r
. (2.34)

The constant m is determined as follows: at large distances we must
have the Newtonian limit

g44 ≈ 1 + 2U, (2.35)

where U=−GM
r is the classical gravitational potential, where M is the

mass producing the field. Hence, m=GM (we have assumed c=1).



Patrick Marquet 81

Once
(
1− 2m

r

)
has been substituted into the curvature forms (2.29),

we find, for the curvature tensor components,

R4141=−R2323=2L , R1212=R1313=R4242=−R4343=L , (2.36)

where
L =

m

r3
. (2.37)

§2.3. The Schwarzschild metric (the EGR formulation). Fol-
lowing the same procedure as in §2.2, we write the extended Schwarz-
schild solution

(ds2)EGR = e2A(r,t)dt2 − e2B(r,t)dr2 − r2
(
dζ2 + sin2ζ dϕ2

)
, (2.38)

where the coefficients A and B are formulated as

A = a+ correction (r, t) , B = b+ correction (r, t) . (2.39)

In Riemannian geometry, the Schwarzschild metric is obtained as a
vacuum solution. According to the EGR theory, there is not source-
free solution: the field equations are characterized by a persistent field
tab. Therefore, applying the “vacuum” formulae (2.30) and (2.31) of the
classical Schwarzschild solution, we obtain

(G4
4 )EGR = κ t44 , (G1

1 )EGR = κ t11 , (2.40)

thus we have
(G4

4 )EGR + (G1
1 )EGR = κ

(
t44 + t11

)
. (2.41)

According to the EGR theory, the persistent field is assumed to be
homogeneously distributed as a background energy density. Under the
assumption of spherical symmetry we thus need only the components
(2.40), so that we have

t44 = − t11 . (2.42)

The obtained EGR formula (2.41) is similar to that according to
Riemannian geometry (2.32). Therefore, we have the most important
result which formulates as:

According to the aforementioned (mixed) diagonal conditions, the
classical Schwarzschild exterior solution is equivalent to the EGR
Schwarzschild metric.

This circumstance enables us to set forth

e2A = e−2B = 1− m∗

r
, (2.43)
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where m∗ is a modified mass we have introduced through the relation

m∗ = m+ correction. (2.44)

We note here the very consistency with our previous result (2.21),
where we have been able to determine a modified density ρ∗. We thus
extrapolate (2.37) as

(L)EGR =
m∗

r3
. (2.45)

The corresponding EGR curvature forms are

(Ω4
1)EGR = 2 (L)

EGR

(
θ4∗∧ θ1∗

)
(Ω4

2)EGR = − (L)
EGR

(
θ4∗∧ θ2∗

)
(Ω4

3)EGR = − (L)
EGR

(
θ4∗∧ θ3∗

)
(Ω2

3)EGR = 2 (L)
EGR

(
θ2∗∧ θ3∗

)
(Ω1

3)EGR = − (L)
EGR

(
θ3∗∧ θ1∗

)
(Ω1

2)EGR = − (L)
EGR

(
θ1∗∧ θ2∗

)


, (2.46)

where θa∗ are the EGR Pfaffian forms which are determined by the
EGR coefficients of the metric (2.38).

Chapter 3. The Local Matching Conditions

§3.1. General definition. In a space-time manifold (M, g), where
matter generates a world-tube limited by a hypersurface S, we are in the
presence of an interior metric satisfying the massive field equations, and
an exterior metric satisfying the source-free Einstein equations. From
either side, gab are defined and smoothly and continuous in each open
sub-domain. The purpose of the current work is to analyse the continu-
ous properties required for the metrics when approaching and crossing S.
To start with, we indicate the matching conditions as was first stated
by Lichnérowicz:

Given x∈S, there exists a frame of admissible coordinates whose
domain includes x, and the potentials gab (related to this frame)
as well as their first derivatives be continuous when crossing S.

Anticipating on the final proof result, Lichnérowicz also showed that
the matching conditions requires for S to be a time-like hypersurface.

Let a Riemannian metric

ds21 = gab dx
adxb (3.1)
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be defined on an open subset O1 ⊂ (M, g) (a four-dimensional manifold).
Denote the respective metric tensor and Riemannian connection as g1(x)
and { }1(x), with x ∈ O1. Consider another metric

ds22 = gc′d′ dxc′dxd′
(3.2)

defined on O2 which is connected to (M, g), with g2(x
′) and { }2(x′)

(we mean here that x′ ∈ O2).
Provided that ds21 and ds22 are attributed to the same hyperbolic

type (and having the same signature), they can be matched in the sense
of Lichnérowicz, if there exists:

1) Functions
xe′ = xe′(xa) , (3.3)

whose non-vanishing Jacobian Jc′

a = ∂xc′

∂xa satisfies Jc′

a Jb
c′ =δba;

2) A hypersurface S represented by a local equation f(xa)= 0 on
which holds

gab = J i′

a J
k′

b gi′k′ , (3.4){
c
ab

}
= Jc

d′J i′

a J
k′

b

{
d′

i′k′

}
+ Jc

d′ ∂aJ
d′

b . (3.5)

§3.2. Application to a natural basis. In view of applying our next
program for the matching conditions, it suffices to adopt the approxi-
mated Minkowskian forms of the metrics (3.1) and (3.2)

ds21 = ηab ω
a∧ ωb, (3.6)

ds22 = ηe′l′ θ
e′∧ θl

′
, (3.7)

where the Pfaffian forms are defined by

ωa = Aa
b dx

b, θe
′
= Be′

l′ dx
l′ . (3.8)

The change of variables (3.3) performed on θe
′
yields

θe
′
= Le′

a ω
a, (3.9)

where
Le′

a = Be′

l′ Ll′

b (A
−1)ba . (3.10)

It can be shown that the conditions (3.5) are equivalent to

ωa
b = La

e′ θ
e′

l′ Ll′

b + La
k′ dLk′

b . (3.11)
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Since we consider a Lorentzian manifold (M, g) with n=4, the ma-
trix L is an element of the special Lorentz group which is reduced into
the boost

Le′

a =


γ −vγ 0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1

 , γ =
1√

1− v2
. (3.12)

The Lorentz invariance is also obtained by setting tanhχ= v, in
which case we have for L the following form

La
e′ =


coshχ sinhχ 0 0
sinhχ coshχ 0 0

0 0 1 0
0 0 0 1

 , (3.13)

Le′

a =


coshχ − sinhχ 0 0
− sinhχ coshχ 0 0

0 0 1 0
0 0 0 1

 , (3.14)

where the parameter χ will be defined later on.
Remarkably, we check in passing that the components of the Rie-

mann tensor in the classical Schwarzschild metric (2.24) are unchanged
with respect to a radial co-moving reference frame (uα=0, u4u

4=1)

R′
4141 = La

4′ Lb
1′ Lc

4′ Ld
1′ Rabcd =

= R4141 =
(
cosh4χ− 2 cosh2χ sinh2χ+ sinh4χ

)
R4141 ,

(3.15)

since cosh2χ− sinh2χ=1. In a similar manner, inspection shows the
invariance of the other components in this particular frame of reference.

Let us now set

Qa
b = ωa

b − La
e′ θ

e′

l′ Ll′

b − La
k′ dLk′

b . (3.16)

According to (3.11), the form Qa
b should be zero on the hypersur-

face S. Therefore the surface element dQa
b must satisfy

dQa
b∧ df = 0 , (3.17)

where df is the normal to S.
We are going to find the matching relation between the considered

two metrics referred to the same basis ωa.
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To this effect, we first notice that the curvature form related to the
metrics ds21 and ds22 is expressed, respectively, by

Ωa
b =

1

2
Ra···

·bki ω
k∧ ωi, (3.18)

Ωe′

l′ =
1

2
Re′···

· l′c′d′ ωc′∧ ωd′
. (3.19)

Hence,

La
e′ Ω

e′

l′ Ll′

b =
1

2
La
e′ R

e′···
· l′c′d′ Ll′

b Lc′

k Ld′

i ωk∧ ωi (3.20)

and dQa
b∧ df is now written(

Ωa
b − La

e′ Ω
e′

l′ Ll′

b

)
∧ df = 0 (3.21)

on the hypersurface S.
In particular, the latter equation can be written in terms of the

Einstein tensor Gab as(
Ga

b − La
e′ G

e′

l′ Ll′

b

)
∂af = 0 (3.22)

on the hypersurface S (this has been formulated, in another form than
3.22, by Lichnérowicz [5, p. 62]).

§3.3. Conditions for matching the EGR metrics. The curva-
ture form is here given by

(Ωa
b )EGR =

1

2
(Ra···

·bki)EGR ωk∧ ωi, (3.23)

where the EGR curvature tensor has the form

(Rabki)EGR = Rabki +Babki , (3.24)

where
Babki = Babki(Jmn) , Jmn = ∂mJn − ∂nJm , (3.25)

and the Pfaffian forms ωa are adapted accordingly.
We then denote the EGR Schwarzschild solutions as (ds21)EGR and

(ds22)EGR. The spherical symmetry suggests us to set

θ = ζ , φ = ϕ , t = t (T ) . (3.26)

In order to investigate the possible consequences of matching the
EGR metrics (ds21)EGR and (ds22)EGR, we compute the exact components
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of Qa
b with the help of (2.29) and (2.46), where the EGR Pfaffian forms

of ds22 are implicitly denoted by θa∗. We eventually obtain

Q4
1 = (E − 2L)ω4∧ ω1

Q4
2 = (F + L)ω4∧ ω2

Q4
3 = (F + L)ω4∧ ω3

Q2
3 = (D − 2L)ω2∧ ω3

Q3
1 = (I + L)ω3∧ ω1

Q1
2 = (I + L)ω1∧ ω2


. (3.27)

A short inspection shows that fulfilling the condition (3.17), implies
that we must set

df ∝ ω1, (3.28)

D − 2L = 0 , F + L = 0 (3.29)

on S. That is the hypersurface S is time-like as it should be.
Indeed, had we chosen df = dω4, we would then have been left with

vanishing conditions involving the terms E and I 6=0, whose coefficient
B is time-dependent, and therefore contradicting the nature of the hy-
persurface S which would be space-like in this case.

From (3.28) and (3.29), we have

2F +D = 0 (3.30)

on S, which, taking (2.40) into account, yields the fundamental result

(t11)EGR = 0 . (3.31)

The radial component of the EGR persistent field tensor vanishes
on the time-like hypersurface S.

Ultimately, as is easy to show, the EGR coefficients of (2.5) and
(2.39) define the parameter χ of (3.13) and (3.14) so that

sinhχ = − Ċ eB+C−A, coshχ = C ′eB+C−B. (3.32)

Discussion and concluding remarks. Under the above symmetry
assumptions, the radial component is only the “dynamical” component,
which is of importance here.

Therefore, we clearly see that, provided that the hypersurface S
strictly divides the exterior EGR Schwarzschild solution from the EGR
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spherically symmetric interior metric, there exists a physical continu-
ity between the exterior EGR persistent field tensor and the interior
modified material tensor.

In Riemannian geometry, an interior spherically symmetric class
of solutions of Einstein’s equations corresponds to a normal material-
energy tensor, i.e., to that of the generic form

Tab = ρ uaub −Πab (3.33)

compatible with the spherical symmetry.
It was shown [14, 15] that under the assumption of spherical sym-

metry (uα=0, uku
k=1), all such interior solutions can be matched

with the Schwarzschild exterior solution, provided that the radial pres-
sure component Π1

1 = p vanishes on the time-like hypersurface S. This
purely theoretical result has not any physical grounds.

On the contrary, the EGR theory provides here a much better in-
terpretation: the continuity of the EGR persistent field presents in-
deed a physical consistency with the Lichnérowicz conjecture imposed
as metric-matching conditions, which is a direct consequence of the
Cauchy problem.

Following this pattern applied to two spherically symmetric mod-
els, it has indeed been rigorously shown that the EGR persistent field
which pre-exists in the EGR “no-mass” metric, vanishes on the contact
separation S between another metric containing a material source.

Reverting to the aforementioned picture where the “S-tube” section
is considered as narrowing down to a particle’s size, we can extend this
proof by stating that the resulting principle of geodesics, still holds in
the EGR theory for a neutral particle.

The essential difference lies in that the time-like geodesic is derived
from the non-Riemannian EGR connection. As a result, the material
source behaves as if it was modified by the “absorbed EGR field” pre-
sented in the matter.

As a matter of fact that a body’s mass is not affected by the absorp-
tion of the EGR persistent field, but rather, the mass is now considered
together with its own gravitational field, which has so far implicitly been
described by an energy-momentum pseudo-tensor.

The EGR theory allows for an explicit description of a massive par-
ticle accompanied by its gravitational field, thus forming a single dy-
namical entity. If one still adopts the Riemannian picture, the “bare”
proper mass of the particle is seen as being subjected to the influence of
an environmental hidden medium that causes this mass to “fluctuate”,
according to de Broglie’s Double Solution Theory [16]. Now, we clearly
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see that the random fluctuations are the manifestation of the particle’s
gravitational field, which is linked to the surrounding EGR field.

In conclusion, it should be noted that of importance is a pertinent
analysis about the diagonal Gauss coordinates adopted in the framework
of the admissible Lichnérowicz coordinate conditions, and related to the
matching conditions applied to the Schwarzschild metric [17].
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