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Abstract: In the framework of the EGR theory, introduced recently
by the author as a non-Riemannian extension of the General Theory
of Relativity, the geodesic equations for a free neutral particle have
the same form as those in Riemannian geometry except that they de-
scribe the particle’s motion together with its own gravitational field,
thus forming a global dynamical massive entity. In this paper, we
show that in the case of a charged mass moving in an external elec-
tromagnetic field, the gravitational field of the global mass interacts
with the electromagnetic potential through its current density. This
interaction process must necessarily take a place in order for the global
charge’s lines of motion to satisfy a differential Finslerian system of
equations whose form is similar to that of Riemannian geometry, as
is the case for the neutral particle’s geodesics. This result represents
further evidence that the EGR model is an appropriate description of
the mass and its subsequent gravitational field as a whole.
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Chapter 1. The Neutral Mass

§1.1. The EGR energy-momentum tensor. The EGR theory
(Extended General Relativity) was introduced recently by the author [1]
as a non-Riemannian extension of the General Theory of Relativity. Let
us first recall the EGR source-free field equations

(Gab)EGR = (Rab)EGR − 1

2

[
gab(R)EGR − 2

3
Jab

]
= κ (Tab)field (1.1)

with
Jab = ∂aJb − ∂bJa , (1.2)

where κ is Einstein’s constant, and c=1. Here (Tab)field is the energy-
momentum tensor of the EGR persistent field related to the tensor den-
sity

√
−g (T ab)field =(T ab)field, which is determined through the equa-

tions

(T a
b )field =

1

2κ

[
∂bΓ

e
df

∂H
∂(∂aΓe

df )
− δab H

]
. (1.3)

The invariant density H is given by H=RabRab with the EGR Ricci
tensor density Rab =Rab√−g.

This background EGR field is assumed to be ever-present in vacuum.
When matter is present, our previous studies [1–3] have led us to infer
that the particle’s (bare) mass density ρ is slightly modified, thus de-
noted hereinafter by ρ∗. The global quantity ρ∗ is that part of the region
surrounding the mass density, where Riemannian geometry increasingly
dominates over the global one when asymptotically approaching the
“bare” mass density ρ: it eventually becomes the single true geometry
in the quasi “contact” situation. The reduction of the geometry in the
immediate vicinity of the mass, can best be depicted by the transition
of the surrounding EGR persistent field tensor density to the pseudo-
tensor density ill-defined by Landau and Lifshitz, which conventionally
describes the massive gravitational field

(T a
b )LL =

1

2κ

[
∂bGec ∂LE

∂(∂aGec)
− δabLE

]
, Gab =

√
−g gab, (1.4)

where LE =
√
−g gab

(
{eab}{dde}+ {dae}{ebd}

)
is the Einstein Lagrangian

density.
Therefore, the EGR theory enables to regard the quantity ρ∗ as

a generalized mass density including its own gravitational field, thus
forming a single dynamical entity. Naturally, the correction brought to
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Riemannian geometry is assumed to be weak. Hence, we write down
the global energy-momentum tensor as

(T ab)EGR = ρ∗(uaub)EGR (1.5)

or
(T ab)EGR = ρ(uaub)EGR + (tab)grav , (1.6)

where (tab)grav is the tensor of the gravitational field associated with the
mass density, which classically corresponds (in Riemannian geometry)
to the Landau-Lifshitz pseudo-tensor density (1.4).

The tensor (tab)grav is antisymmetric in accordance with the form of
the EGR Einstein tensor (Gab)EGR (1.1), and so is implicitly the tensor
(T ab)EGR (1.6).

The EGR Einstein tensor (Gab)EGR obeys the conservation law{
(Rb

a)EGR − 1

2

[
δba(R)EGR − 2

3
Jb
a

]}
′,b

= 0 . (1.7)

Unlike in Riemannian geometry wherein covariant derivatives are
constructed with the Christoffel symbols, the condition (1.7) utilizes the
generally covariant derivatives ′, (also denoted here by the symbol D)
built from the global connection [1]

Γd
ab =

{
d
ab

}
+ (Γd

ab)J =
{
d
ab

}
+

1

6

(
δda Jb + δdb Ja − 3gabJ

d
)
. (1.8)

Therefore, in the absence of matter, the persistent field tensor we
denote as (Tab)field should be conserved according to (1.7)[

(T b
a)field

]
′,b

= 0 . (1.9)

For the “ massive” case, we have[
(T b

a)EGR

]
′,b

=
[
ρ(ubua)EGR + (tba)grav

]
′,b

= 0 (1.10)

or, written equivalently,[
(T b

a)EGR

]
′,b

=
[
ρ∗(ubua)EGR

]
′,b

= 0 . (1.11)

§1.2. The EGR geodesics. A free neutral particle with mass m0

classically follows a time-like geodesic according to the equation

d2xb

ds2
+
{
b
cd

} dxc
ds

dxd

ds
= 0 (1.12)
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defined in a 4-Riemannian manifold equipped with a metric satisfying

gab u
aub = gabuaub = 1 , (1.13)

where ua= dxa

ds is the corresponding unit 4-vector (the world-velocity of
the particle).

Following the EGR theory, inspection shows that the time-like geo-
desic equations shall have the same form(

d2xb

ds2

)
EGR

+ Γb
cd

(
dxc

ds

dxd

ds

)
EGR

= 0 . (1.14)

Besides, the EGR world-velocity is slightly modified by the presence
of the linear (non-square) form

dJ = f (Jb)dx
b, (1.15)

so that the 4-velocity ua becomes

(ua)EGR =
dxa√

ds2 + dJ
. (1.16)

We also assume here that

gab (u
aub)EGR = gab (uaub)EGR = 1 . (1.17)

Chapter 2. The Charged Mass

§2.1. Charged density in an electromagnetic field. With fur-
ther contribution due to an external electromagnetic field, namely the
Maxwell tensor Fab, the geodesics of a particle with mass m0 and charge
e, are generated by the Finslerian curves which are known to be solu-
tions of the Riemannian differential system

ua ∇aub =
e

m0
Fbau

a =
µ

ρ
Fbau

a, (2.1)

where ρ and µ are, respectively, the mass density and the charge density
of the particle. An alternative form of (2.1) is given by the well-known
formula

d2xb

ds2
+
{
b
cd

} dxc
ds

dxd

ds
=
µ

ρ
F b
a

dxa

ds
, (2.2)

where the current vector is given by

ja = µua. (2.3)

The charged particle is said to satisfy a Finslerian flow line.
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Classically, the general electromagnetic field energy-momentum ten-
sor (Tab)elec is inferred from the Lagrangian

L = − 1

16π
F abFab − jaA

a. (2.4)

Henceforth, we use the Heaviside system of units where 1
4 is substi-

tuted to the Gauss system 1
16π .

As is well-known, the potential Aa(xa) is not a directly observable
quantity, but is determined within a gradient

A′a = Aa + ∂aψ. (2.5)

Therefore it is customary to adopt a special gauge, which may be
the Lorentz gauge. For the consistency of the theory, we keep this type
of gauge throughout the text.

The tensor (Tab)elec is symmetrized, so as to yield

(T ab)elec =
1

4
gabFcdF

cd + F amF ·b
m· + gabjmA

m − jaAb. (2.6)

However, the presence of sources violates (in general) the gauge in-
variance and also prevents this tensor from obeying the conservation
law. This is why, in order to fit in the (symmetric) Einstein equations,
one adds the symmetrized tensor (2.6) without source on the right-hand
side of the Einstein-Maxwell field equations as

Gab = κ
[
ρuaub + (Tab)elec

]
. (2.7)

This somewhat arbitrary “adjustment” is true evidence of the rather
awkward electromagnetic contribution to the classical field equations. In
this sense, Riemannian geometry appears to be unable to thoroughly de-
scribe electrodynamics in the standard general relativistic theory. The
problem can be cured by using the non-Riemannian connection as ap-
plied in the EGR theory, where the Einstein tensor is no longer symmet-
ric. This intrinsic property allows for a straightforward and natural use
of the canonical energy-momentum tensor of the electromagnetic field in
the EGR Einstein field equations. As will be shown in §2.2 this canonical
tensor is readily derived from a generalized Lagrangian density obtained
in an analogous way as that used to deduce the EGR field equations.

§2.2. The EGR electromagnetic current density. Introducing
the 4-potential Aa, the Maxwell tensor is written as

Fab = DaAb −DbAa . (2.8)
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We proceed in strict analogy to the EGR stationary principle and
set a Lagrangian density defined from the tensor and vector densities

F ab =
∂L
∂Fab

, Ia =
∂L
∂Aa

, (2.9)

F ab =
√
−g F ab, (2.10)

Ia =
√
−g Ia. (2.11)

The varied action is then given by

δS = δ

∫
L d4x = 0 . (2.12)

For a variation δAa, we further obtain

δS =

∫ (
1

2

∂L
∂Fab

δFab +
∂L
∂Aa

δAa

)
d4x = 0 , (2.13)

while the variation of L is expressed by∫ (
1

2
F abδFab + IaδAa

)
d4x = 0 . (2.14)

We integrate (2.14) by parts∫ [
1

2
F ab (∂aδAb − ∂b δAa) + Ia δAa

]
d4x =

= −
∫
∂b

(
F abδAa

)
d4x+

∫ (
∂bF ab + Ia

)
δAad

4x = 0 . (2.15)

If the variations of Aa are zero on the integration boundary, the first
integral yields no contribution. Then δS =0 implies

∂bF ab = −Ia. (2.16)

We clearly see that (2.8) and (2.16) represent the second group of
Maxwell’s equations given by the current density

Ia =
√
−g Ia. (2.17)

With a dynamical mass bearing its own gravitational field and hav-
ing charge density µ, the global electromagnetic current density is ob-
viously given by

Ia = µ(ua)EGR , (2.18)
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which is collinear with the unit vector (ua)EGR.
Since the EGR description includes the gravitational field of the

charged mass, it is natural to assume that this field interacts with the
external electromagnetic field through the coupling between the current
Ia and the potential Aa. This can be achieved by taking into account
the term represented by the tensor

(Tab)int = AaIb , (2.19)

which is equivalent to saying that the dynamical mass ρ∗ is affected by
the interaction as follows

ρ∗(uaub)EGR → ρ∗(uaub)EGR + (Tab)int = (ρ∗)int(uaub)EGR . (2.20)

This assumption will find its full justification in §3.2.

Chapter 3. The EGR Differential Equations

§3.1. The EGR energy-momentum tensor of an electromag-
netic field. Classically, the Lagrangian density displaying the current-
potential coupling, and the Lagrangian itself are written as

L =
1

2
F abFab −AaIa, L =

1

2
F abFab −AaI

a. (3.1)

Because we use the Heaviside system of units (see the note below
formula 2.4 in page 94), the Lagrangian has the form

L = −1

4
F abFab −AaI

a. (3.2)

The canonical energy-momentum tensor density (Eab)EGR of the elec-
tromagnetic field is inferred from the Lagrangian density L (3.1). This
(antisymmetric) tensor density has the usual generic form

(Eab)EGR =

[
∂L

∂(∂aAm)

]
∂bAm − gabL , (3.3)

which has also a tensor counterpart such that

√
−g Θab = (Eab)EGR . (3.4)

Since the EGR Einstein tensor (Gab)EGR is not symmetric, it is thus
most natural to apply the canonical energy-momentum tensor Θab right
away on the right-hand side of the EGR field equations. Therefore, in
the case of a massive charged matter, the EGR field equations can be
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written with the electromagnetic field tensor as

(Gab)EGR = κ
[
ρ∗(uaub)EGR +Θab

]
. (3.5)

The charged mass density is now represented by the global tensor

(Tab)EGR = ρ (ubua)EGR + (tab)grav +Θab =

= ρ∗(ubua)EGR +Θab . (3.6)

Obviously, the persistent field tensor (Tab)field does not appear ex-
plicitly on the right-hand side since we are here considering the “global
massive” case. Also, the global mass ρ∗ density is unaffected by the elec-
tromagnetic interaction (2.20) for the latter coupling is already included
in the canonical tensor Θab.

With the well-known classical identity

∂ (F klFkl)

∂(∂aAm)
= 4F am, (3.7)

we obtain the canonical tensor Θab, which is given in the EGR formu-
lation by the formula

Θab =
1

4
gabFklF

kl − F amDbAm + gabImA
m (3.8)

expressed with the EGR current density Im =µ(um)EGR (2.18).
Using the tensor relations deduced from the equations of motion

(2.16), and taking into account the antisymmetry of Fab

DaF
ba = Ib, (3.9)

we obtain a formula for the 4-divergence of Θab. It is

DaΘ
ab =

1

2

(
DbFkl

)
F kl − (DaF

am)DbAm − F amDbD
bAm +

+
(
DbIm

)
Am + ImDbAm =

= − 1

2
Db (DkAl +DlAk)F

kl +
(
DbIm

)
Am, (3.10)

which, due to the antisymmetry of Fkl, obviously reduces to

DaΘ
ab = (DbIm)Am. (3.11)

We note in passing that the canonical tensor is conserved in the
absence of electric current, which will be written as (Θab)free.
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In the latter case, the gauge change

A′
a → Aa − ∂aψ (3.12)

finally yields
(Θ′ab)free = (Θab)free −Dk (F

ak ∂bψ) (3.13)

having DkF
ka=Ia=0 taken into account.

Hence, (Θab)free is not gauge invariant, but the second divergence
term yields no contribution upon integration, and thus (Θab)free is here
a conserved quantity. Therefore, this (antisymmetric) canonical source-
free tensor should be the appropriate candidate for the EGR field equa-
tions (3.5), provided we use the modified global mass density (ρ∗)int.

In place of (3.6), we eventually write the equivalent formula

(Tab)EGR = (ρ∗)int(uaub)EGR + (Θab)free . (3.14)

Unlike in Riemannian geometry, we clearly see that the EGR for-
mulation allows us to include the electromagnetic source contribution
represented by (ρ∗)int, in the EGR Einstein-Maxwell equations.

In the absence of matter, the EGR energy-momentum tensor of the
pure electromagnetic field is simply

(Tab)EGR = (Tab)field + (Θab)free . (3.15)

§3.2. The EGR differential equations for the density flow lines
of a charged mass. Our final aim is to find a differential system
satisfied by the global charge, whose form is similar to the Riemannian
system (2.2), as is the case for a neutral mass. To this effect, we first
revert to the global energy-momentum as written in (3.6), for which the
conservation law is given by[

ρ∗(ubua)EGR +Θb
a

]
′,b

= 0 . (3.16)

We introduce the vector Kb defined by

ρ∗Kb = DaΘ
a
b = (Db Im)Am. (3.17)

For that, we write the right-hand side as follows

Db(ImA
m)− ImDbA

m = (Db Im)Am, (3.18)

and noting that

ImDbA
m =

1

2
Im(DbA

m −DmAb) (3.19)
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the conservation conditions for the global tensor take the form

Da

[
ρ∗(uaub)EGR

]
= −ρ∗Kb =

= Db (I
mAm)− 1

2
Im (DbA

m −DmAb) . (3.20)

Taking into account the formula

(ub)EGR Da(ub)EGR = 0 , (3.21)

which follows from differentiating (1.17), we find, after multiplying
through (3.20) by (ub)EGR,

Da

[
ρ∗(ua)EGR

]
= −ρ∗Ka(u

a)EGR . (3.22)

The continuity equation is thus expressed by

Da

[
ρ∗(ua)EGR

]
= −µ(ua)EGR ×

×
{
Da

[
(um)EGRA

m
]
− 1

2
(um)EGR

(
DaA

m −DmAa

)}
. (3.23)

After some simplifications, we arrive at the differential system de-
termining the flow lines of the charged particle

(ua)EGRDa(ub)EGR =
[
δab − (uaub)EGR

]
×

× µ

ρ∗

{
−Da

[
(um)EGRAm

]
+

1

2
Fam(um)EGR

}
. (3.24)

Now, if we assume that the dynamical mass density ρ∗ interacting
with the potential Am is modified so that

−Kb(ρ
∗)int = Da

[
(ρ∗)int(u

aub)EGR

]
= −µDb

[
(um)EGRA

m
]
, (3.25)

we eventually obtain

(ua)EGRDa(ub)EGR =
[
δab − (uaub)EGR

] 1
2
Fam(um)EGR . (3.26)

These equations are to be compared to the Riemannian differential
system

ua ∇aub =
(
δab − uaub

) µ
ρ
Famu

m, (3.27)

which reduces to the well-known classical equations ua∇aub =
µ
ρ Fbau

a

(2.1) since F am is antisymmetric.
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In other words, imposing the above-mentioned conditions, the Fins-
lerian trajectory of the global charged density will now satisfy the dif-
ferential system(

d2xb

ds2

)
EGR

+ Γb
cd

(
dxc

ds

dxd

ds

)
EGR

=
1

2

µ

(ρ∗)int
F b
a

(
dxa

ds

)
EGR

. (3.28)

Within the numerical factor 1
2 , this EGR formulation is formally

similar to the differential system of Riemannian geometry satisfied by
the charged mass density trajectory according to the classical General
Relativity.

Conclusion. Upon imposing the Lorentz gauge, we are able to gen-
eralize some basic principles of electrodynamics via the EGR theory. In
the EGR formulation, three main results readily emerge:

1) Unlike in Riemannian geometry, the (antisymmetric) canonical
electromagnetic energy-momentum tensor (3.8), as inferred from
the Lagrangian (3.2), can be readily used in the EGR field equa-
tions, without post-symmetrization adjustment;

2) The dynamical global charged mass (current) interacting with the
electromagnetic field implicitly appears in the EGR field equa-
tions. This result is impossible to express in Riemannian geometry
(classical General Relativity), which stands so far as a profound
loss of generality in the metric theory;

3) With the 2nd condition outlined above in this list, we are eventu-
ally able to infer the differential system (3.28) obeyed by the global
charged mass, which is formally similar to the differential system
(2.2) introduced according to Riemannian geometry, a similarity
already existent between the Riemannian and EGR geodesics for
the neutral mass, as given by (1.12) and (1.14). This last re-
sult gives us further evidence to substantiate the EGR model as
representing the motion of a mass dynamically bearing its own
gravitational field.

In conclusion, therefore, a last important point should be outlined
here. Either the geodesic equations (1.14) for a neutral particle, or the
Finslerian equations for a charged particle (3.28) (each system with its
own corresponding gravitational field), does not distinguish antimatter
from matter. The EGR model can, however, be adequately used to
interpret the fermionic-antifermionic symmetry as postulated by Louis
de Broglie, and generalized in [4].

Submitted on November 18, 2010



Patrick Marquet 101

1. Marquet P. The EGR theory: An extended formulation of General Relativity.
The Abraham Zelmanov Journal, 2009, vol. 2, 148–170.

2. Marquet P. Behaviour of the EGR persistent vacuum field following the Lich-
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