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Abstract: We suggest a theory of frozen light, which was first regis-
tered in 2000 by Lene Hau, who pioneered this experimental research,
which was then approved by two other groups of experimentalists.
Frozen light is explained here as a new state of matter, which differs
from the others (solid, gas, liquid, plasma). The explanation is given
through space-time terms of the General Theory of Relativity, employ-
ing the mathematical apparatus of chronometric invariants (physically
observable quantities) which are the respective projections of space-
time quantities onto the line of time and the three-dimensional spatial
section of an observer. We suggest to consider a region of space (space-
time), where the metric is fully degenerate. It is shown that this is
the ultimate case of the isotropic region (home of light-like massless
particles, e.g. photons), where the metric is particularly degenerate
so that the space-time interval is zero, while the observable time and
three-dimensional intervals are nonzero and equal to each other. Both
the space-time interval, the observable time interval, and the observ-
able three-dimensional interval are zero in a fully degenerate region.
This means that, from the point of view of a regular observer, any
particle of a fully degenerate region travels instantly. Therefore, we
refer to such a region and the particles inhabiting it as zero-space
and zero-particles. Moving to coordinate quantities inside zero-space
shows that the real speed therein is that of light, depending on the
gravitational potential and the rotation of space. It is shown that the
eikonal equation for zero-particles, expressed through physically ob-
servable quantities, is a standing wave equation: zero-particles appear
to a regular “external” observer as standing light waves (stopped, or
frozen light), while zero-space is filled with a system of standing light
waves (light-like holograms). In the internal reference frame of zero-
space, momentum does not conserve. This is solely a property of vir-
tual photons of Quantum Electrodynamics. Therefore zero-particles
(we can observe them as standing light waves) should play a rôle of vir-
tual photons. Thus the frozen light experiments are an experimental
“foreword” to discovery of zero-particles, which are virtual photons.

A thesis of this presentation has been submitted to the APS March
Meeting 2011, planned on March 21–25, 2011, in Dallas, Texas.
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§1. Frozen light. An introduction. In the summer of 2000, Lene
V. Hau, who pioneered light-slowing experiments over many years in the
1990’s at Harvard University, first obtained light slowed down to rest
state. In her experiment, light was stored, for milliseconds, in ultracold
atoms of sodium (with a gaseous cloud of the atoms cooled down to
within a millionth of a degree of absolute zero). This state was then
referred to as frozen light or stopped light. An anthology of the primary
experiments is given in her publications [1–5]. After the first success of
2000, Lene Hau still continues the study: in 2009, light was stopped for
1.5 second at her laboratory [6].

Then frozen light was approved, during one year, by two other groups
of experimentalists. A group headed by Ronald L. Walsworth and
Mikhail D. Lukin of the Harvard-Smithsonian Center for Astrophysics
stopped light in a room-temperature gas [7]. In experiments conducted
by Philip R. Hemmer at the Air Force Research Laboratory in Hanscom
(Massachusetts), light was stopped in a cooled-down solid [8].

The best-of-all survey of all experiments on this subject was given in
Lene Hau’s Frozen Light, which was first published in 2001, in Scientific
American [4]. Then an extended version of this paper was reprinted in
2003, in a special issue of the journal [5].

On the other hand, the frozen light problem was met by our theor-
etical study of the 1990’s, which was produced independently of the ex-
perimentalists (we knew nothing about the experiments until January
2001, when the first success in stopping light was widely advertised in
the scientific press). Our task was to reveal what kinds of particles
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could theoretically inhabit the space (space-time) of the General The-
ory of Relativity. We have obtained that, aside for mass-bearing and
massless (light-like) particles, those of the third kind may also exist.
Such particles inhabit a space with a fully degenerate metric, which is
the ultimate case of the light-like (particularly degenerate) space. This
means that the particles are the ultimate case of photons. It was shown
that, from the viewpoint of a regular observer, they should be perceived
as standing light waves (or frozen light, in other words).

These theoretical results were presented, among the others, in our
book [9], which was first published in 2001 and then reprinted in 2008.
However they were very fragmented along the book, where many prob-
lems (such as geodesic motion, gravitational collapse, and others) were
discussed commonly for all particles. Therefore we have decided to join
the results in this single paper, thus giving a complete presentation of
our theory of frozen light.

§2. Introducing fully degenerate space (zero-space) as the ul-
timate case of (particularly degenerate) light-like space. Once
we want to reveal a descriptive picture of any physical theory, we need
to express the results through real physical quantities (physical observ-
ables), which can be measured in experiments. In the General Theory
of Relativity, a complete mathematical apparatus for calculating phys-
ically observable quantities was introduced in 1944 by Abraham Zel-
manov [10, 11], and is known as the theory of chronometric invariants.
Its essence consists of projecting four-dimensional quantities onto the
line of time and the three-dimensional spatial section of an observer. As
a result, we obtain quantities observable in practice.

Expressing the four-dimensional (space-time) interval through phys-
ically observable quantities, we can reveal what principal kinds of space
(space-time) are conceivable in the General Theory of Relativity. We
show here how to do it, and the result we have obtained.

The operator of projection onto the time line of an observer is the
world-vector of his four-dimensional velocity

bα =
dxα

ds
, α = 0, 1, 2, 3, (2.1)

with respect to his reference body (the vector is tangential to the world-
trajectory of the observer). The theory assumes the observer to be rest-
ing with respect to his references. Thus bi =0 (i=1, 2, 3), while the rest
components of bα are: b0 = 1√

g00
, b0 =g0αbα =

√
g00 , bi = giαbα = g0i√

g00
.

The operator of projection onto the three-dimensional spatial section of
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the observer is the four-dimensional symmetric tensor

hαβ = −gαβ + bαbβ , (2.2)

while the properties of the operators are: bαbα =1, hi
αbα =0, hα

i hk
α = δk

i .
Thus, any world-vector Qα has two (observable) chr.inv.-projections,

while any 2nd-rank world-tensor Qαβ has three ones, respectively,

bαQα =
Q0
√

g00
, hi

αQα = Qi, (2.3)

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0√

g00
, hi

αhk
β Qαβ = Qik. (2.4)

For instance, projecting a world-coordinate interval dxα we obtain
the interval of the physically observable time

dτ =
√

g00 dt +
g0i

c
√

g00
dxi, (2.5)

and the three-dimensional coordinate interval dxi. The physically ob-
servable velocity is the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, viv

i = hik vivk = v2, (2.6)

which along isotropic (light-like) trajectories becomes the physically
observable velocity of light ci, whose square is cic

i = hik cick = c2.
The chr.inv.-metric tensor hik with the components

hik = −gik + bibk , hik = −gik, hi
k = −gi

k = δi
k (2.7)

is obtained after projecting the fundamental metric tensor gαβ onto the
observer’s three-dimensional spatial section. The chr.inv.-operators of
differentiation along the line of time and the spatial section

∗∂

∂t
=

1
√

g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
−

g0i

g00

∂

∂x0
, (2.8)

are non-commutative
∗∂2

∂xi ∂t
−

∗∂2

∂t ∂xi
=

1
c2

Fi

∗∂

∂t
,

∗∂2

∂xi ∂xk
−

∗∂2

∂xk ∂xi
=

2
c2

Aik

∗∂

∂t
(2.9)

thus determine the gravitational inertial force Fi acting in the space,
and the angular velocity Aik of the space rotation

Fi =
1

1 − w

c2

(
∂w
∂xi

−
∂vi

∂t

)

, (2.10)
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Aik =
1
2

(
∂vk

∂xi
−

∂vi

∂xk

)

+
1

2c2

(
Fivk − Fkvi

)
, (2.11)

where w = c2 (1−
√

g00) is the gravitational potential, while vi =− cg0i√
g00

is the linear velocity of the space rotation (its contravariant component
vi =− c g0i√g00 is determined through vi = hikvk and v2 = hik vivk).

We now express the four-dimensional interval ds through physically
observable quantities. We express gαβ from hαβ =−gαβ + bαbβ . Thus,

ds2 = gαβ dxαdxβ = bαbβ dxαdxβ − hαβ dxαdxβ , (2.12)

where bαdxα = cdτ , so the first term is bαbβ dxαdxβ = c2dτ2. The term
hαβ dxαdxβ is the same as the square of the physically observable three-
dimensional interval

dσ2 = hik dxidxk, (2.13)

because the theory of chronometric invariants assumes the observer to be
resting with respect to his references (bi =0). Thus the four-dimensional
interval being expressed through physical observables has the form

ds2 = c2dτ2 − dσ2. (2.14)

According to this formula, three principal kinds of subspace are pos-
sible in the space (space-time) of the General Theory of Relativity.

First. The subspace, where

ds2 = c2dτ2 − dσ2 6= 0 , c2dτ2 6= dσ2 6= 0 , (2.15)

is known as the non-isotropic space. This is the home of non-isotropic
(i.e. nonzero four-dimensional) trajectories and mass-bearing particles,
which are both regular subluminal particles and hypothetical superlu-
minal tachyons. Such trajectories lie “within” the light hypercone (the
home of subluminal particles), and also “outside” the light hypercone
(the home of tachyons).

Second. The subspace, where

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 6= 0 , (2.16)

is known as the isotropic space. This is the home of isotropic (i.e. zero
four-dimensional) trajectories. Along such trajectories, the space-time
interval is zero, while the interval of the physically observable time
and the three-dimensional physically observable interval are nonzero.
Isotropic trajectories lie on the surface of the light hypercone, which is
the surface of the light speed. Thus the isotropic space hosts particles
travelling at the velocity of light. Such particles have zero rest-mass.
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They are massless particles, in other words. These are, in particular,
photons. For this reason, particles of the isotropic space are also known
as massless light-like particles.

These two kinds of space (space-time) are originally well-known com-
mencing in the beginning of the 20th century, once the theory of space-
time-matter had been introduced.

We however suggest to consider a third kind of subspace (and parti-
cles), which are also theoretically possible in the space (space-time) of
the General Theory of Relativity. Consider isotropic (light-like) trajec-
tories in the ultimate case, where, apart from ds2 =0, they meet even
more stricter conditions c2dτ2 =0 and dσ2 =0, i.e.

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = 0 , dσ2 = 0 . (2.17)

This means that not only the space-time interval is zero along such
trajectories (ds2 =0 in any isotropic space). In addition to it, the ob-
servable interval of time between any events and all observable three-
dimensional lengths are zero therein (being registered by a regular sub-
luminal observer). Therefore, the space wherein such trajectories lie is
the ultimate case of the isotropic (light-like) space.

So forth, we go insightfully into the details of the conditions, which
characterize a space of this exotic kind. Taking into account the formu-
lae of dτ (2.5) and dσ (2.13), and also the fact that h00 = h0i =0, we
express the conditions c2dτ2 =0 and dσ2 =0 in the extended form

cdτ =

[

1 −
1
c2

(
w + viu

i
)
]

cdt = 0 , dt 6= 0 , (2.18)

dσ2 = hik dxidxk = 0 , (2.19)

where ui = dxi

dt
is the three-dimensional coordinate velocity, which is not

a physically observable chr.inv.-quantity.
As is known, the necessary and sufficient condition of full degenera-

tion of a space means zero value of the determinant of the metric tensor,
which characterizes the space. For the degenerate three-dimensional
physically observable metric dσ2 = hik dxidxk =0 this condition is

h = det ‖hik‖ = 0 . (2.20)

On the other hand, as was shown by Zelmanov [10], the determinant
g =det ‖gαβ‖ of the fundamental (four-dimensional) metric tensor gαβ

is connected to the determinant of the chr.inv.-metric tensor hik through
the relation

g = −hg00 . (2.21)
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Hence degeneration of the three-dimensional metric form dσ2, which
is characterized by the condition h =0, means degeneration of the four-
dimensional metric form ds2, i.e. the condition g =0, as well. Therefore
a four-dimensional space of the third kind we have herein suggested to
consider is a fully degenerate space. Respectively, the conditions (2.18)
and (2.19) which characterize such a space are the physical conditions
of full degeneration.

Also, we suggest to refer further to any regular isotropic space as
a particularly degenerate space. This is because the space-time interval
is zero therein, ds2 =0, but c2dτ2 6=0 and dσ2 6=0 thus the fundamental
metric tensor is not degenerate: g =det ‖gαβ‖ 6=0. In other words, a
regular isotropic space is “particularly degenerate”.

As has been said above, full degeneration requires not only ds2 =0
but also c2dτ2 =0 and dσ2 =0. Therefore, we suggest to refer further
to any fully degenerate space (space-time) as zero-space.

Substituting hik =−gik + bibk =−gik + 1

c2 vivk into the second con-
dition (2.19) of those two characterizing a fully degenerate space, then
dividing it by dt2, we obtain the physical conditions of full degeneration,
(2.18) and (2.19), in the final form

w + viu
i = c2, gik uiuk = c2

(
1 −

w
c2

)2
, (2.22)

where viu
i is the scalar product of the linear velocity of the space rota-

tion vi and the coordinate velocity ui in the space.
On the basis of the conditions of full degeneration, three subkinds

of fully degenerate space (zero-space) are conceivable:

1) If such a space is free of gravitational fields (w =0), the first con-
dition of the conditions of full degeneration (2.22) means viu

i = c2,
while the second condition of (2.22) becomes gik uiuk = c2. In this
particular case, the fully degenerate space rotates with the velocity
of light, and all speeds of motion therein are that of light;

2) Once a gravitational field appears in such a space, the space rota-
tion and speeds of motion become slower than light therein accord-
ing to the conditions of full degeneration (2.22). This is a general
case of fully degenerate space;

3) If a fully degenerate space does not rotate (vi =0), the gravita-
tional potential is w = c2 therein. This means, according to the
definition w = c2 (1−

√
g00) of the potential, that g00 =0 which is

the condition of gravitational collapse. Also, according to the
second condition of full degeneration (2.22), the equality w = c2

means gik dxidxk =0. This state, gik dxidxk =0, may realize itself
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in three cases: a) the three-dimensional coordinate metric gik de-
generates (det ‖gik‖=0); b) all trajectories within the space are
shrunk into a point (dxi =0); c) when both these conditions are
commonly present in the space. A fully degenerate space of this
subkind is collapsed: this is a fully degenerate black hole, in other
words. This particular case will be detailed in §4.

About the zero-space metric. As has been said above, all intervals
(space-time, time, and spatial ones) are zero in a fully degenerate space
from the point of view of an “external” observer located in a regular
(non-degenerate) space. The space-time (four-dimensional) interval is
invariant, thus its equality to zero remains unchanged in any reference
frame. However this is not true about non-invariant quantities, which
are the interval of the coordinate time dt and the three-dimensional coor-
dinate interval gik dxidxk. As follows from the conditions of full degen-
eration (2.22), the coordinate quantities can be nonzero in such a space
(except in the case of gravitational collapse, where gik dxidxk =0). So,
we can move from the quantities registered by a regular observer to the
coordinate quantities within a fully degenerate space, thus satisfying
our curiosity to see what happens therein.

The interval dμ2 inside a fully degenerate space (i.e. the zero-space
metric) can be obtained from the second condition of full degeneration
(2.22), due to the fact that the three-dimensional coordinate metric gik

does not degenerate. Thus, the zero-space metric has the form

dμ2 = gik dxidxk =
(
1 −

w
c2

)2
c2dt2 6= 0 , (2.23)

which, due to the first condition of full degeneration is w + viu
i = c2,

can be equally expressed as

dμ2 = gik dxidxk =
vivk uiuk

c2
dt2 6= 0 . (2.24)

The zero-space metric manifests that, everywhere in such a space,
the following condition

gik
∗
ui ∗

uk = c2, (2.25)

is true. Here
∗
ui = 1√

g00

dxi

dt
=

∗dxi

dt
is the physical coordinate velocity we

introduce through the “starry” derivative with respect to time in anal-
ogy to the respective “starry” chr.inv.-derivative (2.8).

According to (2.25), the physical velocities inside a fully degenerate
space are always equal to the velocity of light.
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The zero-space metric dμ2 (2.23) is not invariant: dμ2 6= inv. This
means that the geometry inside a fully degenerate space region is non-
Riemannian∗. As a result, from the viewpoint of a hypothetical observer
located in such a space, the length of the four-dimensional velocity vec-
tor does not conserve along its trajectory therein

uαuα = ukuk = gik uiuk =
(
1 −

w
c2

)2
c2 6= const (2.26)

but depends on the distribution of the gravitational potential. This fact,
in common with the circumstance that the physical velocities therein
are equal to the velocity of light, will lead us in §7 to the conclusion that
particles, whose home is zero-space, can be associated with virtual pho-
tons known due to Quantum Electrodynamics.

§3. The geometric structure of zero-space. So, a regular ob-
server perceives the entire fully degenerate space (zero-space) as a point-
like region determined by the observable conditions of full degeneration,
which are dτ =0 and dσ2 = hik dxidxk =0. These conditions mean that
he perceives any two events in the zero-space as simultaneous, and also
all three-dimensional lengths therein are perceived as zero. Such an ob-
servation can be processed at any point of our regular non-degenerate
(four-dimensional pseudo-Riemannian) space. This is only possible, if
we assume that our space meets the entire zero-space at each point, as
it is “stuffed” with the zero-space.

Let us now turn to the geometric interpretation of the conditions of
full degeneration. To obtain an illustrated view of the zero-space geo-
metry, we are going to use a locally geodesic frame of reference. The
fundamental metric tensor within the infinitesimal vicinity of a point in
such a frame is

g̃αβ = gαβ +
1
2

(
∂2g̃αβ

∂x̃μ ∂x̃ν

)

(x̃μ − xμ) (x̃ν − xν) + . . . , (3.1)

i.e. the numerical values of its components in the vicinity of a point
differ from those at this point itself only in the 2nd-order terms or the
higher other terms, which can be neglected. Therefore, at any point
in a local geodesic frame of reference, the fundamental metric tensor
gαβ is constant (within the 2nd order terms withheld), while the first
derivatives of the metric are zero.

∗As is known, Riemannian spaces are, by definition, those where: a) the space
metric has the square Riemannian form ds2 = gαβ dxαdxβ , and b) the metric is in-
variant ds2 = inv.
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It is obvious that a local geodesic frame of reference can be set up
within the infinitesimal vicinity of any point in a Riemannian space. As
a result, at any point belonging to the local geodesic frame of reference,
a flat space can be set up tangential to the Riemannian space so that
the local geodesic frame in the Riemannian space is a global geodesic
frame in the tangential flat space. Because the fundamental metric ten-
sor is constant in a flat space, the quantities g̃αβ converge to those of
the tensor gαβ in the tangential flat space, in the vicinity of any point in
the Riemannian space. This means that, in the tangential flat space, we
can set up a system of basis vectors ~e(α) tangential to the curved coor-
dinate lines of the Riemannian space. Because the coordinate lines of a
Riemannian space are curved (in a general case), and, in the case where
the space is non-holonomic∗, are not even orthogonal to each other, the
lengths of the basis vectors are sometimes substantially different from
the unit length.

Consider the world-vector d~r of an infinitesimal displacement, i.e.
d~r =(dx0, dx1, dx2, dx3). Then d~r =~e(α)dxα, where the components are

~e(0) = (e0
(0), 0, 0, 0) , ~e(1) = (0, e1

(1), 0, 0)

~e(2) = (0, 0, e2
(2), 0) , ~e(3) = (0, 0, 0, e3

(3))

}

. (3.2)

The scalar product of the vector d~r with itself gives d~rd~r = ds2. On
the other hand, it is ds2 = gαβ dxαdxβ . So, we obtain a formula

gαβ = ~e(α)~e(β) = e(α)e(β) cos (xα; xβ) , (3.3)

which facilitates our better understanding of the geometric structure of
different regions within the space. According to (3.3), therefore,

g00 = e2
(0) , (3.4)

where, as is known, g00 is included into the formula of the gravitational
potential w = c2 (1−

√
g00). Hence the time basis vector ~e(0) (tangential

to the line of time x0 = ct) has the length e(0) =1− w

c2 . Thus the lesser
the length of ~e(0) is (than 1), the greater the gravitational potential w.
In the case of gravitational collapse (w = c2), the length of the time basis
vector ~e(0) becomes zero.

Next, according to (3.3), the quantity g0i is

g0i = e(0)e(i) cos (x0; xi) , (3.5)

∗The non-holonomity of a space (space-time) means that the lines of time are
non-orthogonal to the three-dimensional spatial section therein. It manifests as the
three-dimensional rotation of the space.
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while, on the other hand, g0i =− 1

c
vi

(
1− w

c2

)
=− 1

c
vie(0). Hence, the lin-

ear velocity of the space rotation, determined as vi =− cg0i√
g00

, is

vi = − c e(i) cos (x0; xi) , (3.6)

and manifests the angle of inclination of the lines of time towards the
spatial section. Then, according to the general formula (3.3), we have

gik = e(i)e(k) cos (xi; xk) , (3.7)

hence the chr.inv.-metric tensor hik =−gik + 1

c2 vivk has the form

hik = e(i)e(k)

[
cos (x0; xi) cos (x0; xk) − cos (xi; xk)

]
. (3.8)

From formula (3.6), we see that, from the geometrical viewpoint, vi

is the projection (scalar product) of the spatial basis vector ~e(i) onto the
time basis vector ~e(0), multiplied by the velocity of light. If the spatial
sections are everywhere orthogonal to the lines of time (giving holonomic
space), cos (x0; xi)= 0 and vi =0. In a non-holonomic space, the spatial
sections are not orthogonal to the lines of time, so cos (x0; xi) 6=0. Gen-
erally |cos (x0; xi)|6 1, hence the linear velocity of the space rotation vi

can not exceed the velocity of light.
First, consider the geometric structure of the isotropic (light-like)

space. It is characterized by the condition c2dτ2 = dσ2 6=0. According to
this condition, time and regular three-dimensional space meet each
other. Geometrically, this means that the time basis vector ~e(0) meets
all three spatial basis vectors ~e(i), i.e. time “falls” into space (this fact
does not mean that the spatial basis vectors coincide, because the time
basis vector is the same for the entire spatial frame). In other words,
cos(x0; xk)=±1 everywhere in the isotropic space. At cos (x0; xi)=+1
the time basis vector is co-directed with the spatial ones: ~e(0)↑↑~e(i).
If cos (x0; xi)=−1, the time and spatial basis vectors are oppositely
directed: ~e(0)↑↓~e(i). The condition cos(x0; xk)=±1 can be expressed
through the gravitational potential w = c2 (1−

√
g00), because, in a gen-

eral case, e(0)=
√

g00 (3.4). Finally, we obtain the geometric conditions
which characterize the isotropic space. They are

cos (x0; xk) = ±1 , e(i) = e(0) =
√

g00 = 1 −
w
c2

, (3.9)

and, hence,

vi = ∓ ce(i) = ∓
√

g00 ci = ∓
(
1 −

w
c2

)
ci , (3.10)

hik =
(
1 −

w
c2

)2 [
1 − cos (xi; xk)

]
, (3.11)
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where ci is the chronometrically invariant three-dimensional vector of
the physically observable velocity of light, cic

i = hik cick = c2.
According to the obtained formula (3.10), we conclude, as well as it

was primarily concluded by one of us in a previous study [12]:

The isotropic space rotates at each point with a linear velocity,
which is basically equal, to the velocity of light, and is slowing
down in the presence of the gravitational potential.

The isotropic space exists at any point in the four-dimensional reg-
ular space as a light hypercone — a hypersurface whose metric is

gαβ dxαdxβ = 0 , (3.12)

or, in the extended form,
(
1 −

w
c2

)2
c2dt2 − 2

(
1 −

w
c2

)
vi dxidt + gik dxidxk = 0 , (3.13)

according to the formulae of the gravitational potential w = c2 (1−
√

g00)
and the linear velocity of the space rotation vi =− cg0i√

g00
.

This is a subspace of the four-dimensional space which hosts massless
(light-like) particles travelling at the velocity of light. Because the space-
time interval in such a region is zero, all four-dimensional directions
inside it are equal (in other words, they are isotropic). Therefore this
subspace is commonly referred to as the isotropic hypercone.

Let us now turn to the geometric structure of the zero-space. Be-
cause w and vi, being written in the basis form, are w = c2(1− e(0)) and
vi =−c e(i) cos (x0; xi), the condition of full degeneration w + viu

i = c2

can be written in the basis form as well

c e(0) = − e(i)u
i cos (x0; xi) . (3.14)

This formula can be regarded as the geometric condition of full de-
generation.

Because the four-dimensional metric is also equal to zero in the zero-
space, such a space exists at any point of the isotropic (light) hypercone
as a fully degenerate subspace of it. Such a fully degenerate isotropic
hypercone is described by a somewhat different equation

(
1 −

w
c2

)2
c2dt2 − gik dxidxk = 0 , (3.15)

or, due to the zero-space metric, which can equally be presented as
(2.23) and (2.24), by the equation

vivk uiuk

c2
dt2 − gik dxidxk = 0 . (3.16)
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The difference between such a fully degenerate isotropic hypercone
and the regular isotropic (light) hypercone is that the first satisfies the
condition of full degeneration w + viu

i = c2. Because vi is expressed in
both cases in the same form (3.10), we arrive at the conclusion:

The fully degenerate isotropic hypercone is a cone of light-speed
rotation as well as the regular isotropic hypercone. In other words,
the zero-space rotates at its each point with a linear velocity equal
to the velocity of light. Its rotation becomes slower than light in
the presence of the gravitational potential.

Finally, we conclude that the regular isotropic (light) hypercone con-
tains the degenerate isotropic hypercone, which is the entire zero-space,
as a subspace embedded into it at its each point. This is a clear illus-
tration of the fractal structure of the world presented here as a system
of the isotropic cones found inside each other.

§4. Gravitational collapse in a zero-space region. Fully degen-
erate black holes. As is known, gravitational collapsar or black hole
is a local region of space (space-time), wherein the condition g00 =0 is
true. Because the gravitational potential is defined as w = c2 (1−

√
g00),

the gravitational collapse condition g00 =0 means that the gravitational
potential is w = c2 in the region. We are going to consider how this
condition can be realized in zero-space.

The first condition of full degeneration (2.22) is w + viu
i = c2. Ac-

cording to the condition, if viu
i =0 in a local zero-space region, the

gravitational potential is w = c2 therein. This means that, in the case of
viu

i =0, the gravitational potential is strong enough to bring the local
region of zero-space to gravitational collapse. We suggest to refer to such
a region as a fully degenerate gravitational collapsar or, equivalently, as
a fully degenerate black hole.

The second condition of full degeneration becomes gik dxidxk =0 in
this case. Together with the previous, this means that three physical
and geometric conditions are realized in fully degenerate black holes

w = c2, vi u
i = 0 , gik dxidxk = 0 , (4.1)

whose physical meaning is as follows:

1) The gravitational potential inside fully degenerate black holes is
strong enough to stop the regular light-speed rotation of the local
region of zero-space, i.e.

vi = ∓ ce(i) = ∓
√

g00 ci = ∓
(
1 −

w
c2

)
ci = 0 ; (4.2)
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2) In this case, the time basis vector ~e(0) has zero length (intervals of
time are zero inside fully degenerate black holes)

e(0) =
√

g00 = 1 −
w
c2

= 0 ; (4.3)

3) In any case of zero-space, the condition cos (x0; xk)=±1 is true:
the time basis vector ~e(0) meets all three spatial basis vectors ~e(i)

(time “falls” into space). Therefore, the previous condition e(0) =0
means that all three three-dimensional (spatial) basis vectors ~e(i)

have zero length inside fully degenerate black holes as well, i.e.

e(i) = e(0) =
√

g00 = 1 −
w
c2

= 0 ; (4.4)

4) The condition e(i) =0 means that the entire three-dimensional
space inside fully degenerate black holes is shrunk into a point
(all three-dimensional coordinate intervals are dxi =0). Hence,
the third condition gik dxidxk =0 of the conditions inside fully
degenerate black holes (4.1) is due to dxi =0, while the three-
dimensional coordinate metric is not degenerate therein

det ‖gik‖ 6= 0 . (4.5)

Hence fully degenerate black holes are point-like objects, which keep
light stored inside themselves due to their own ultimately strong grav-
itation. In other words, they are “absolute black holes” of all gravita-
tional collapsars theoretically conceivable due to the General Theory of
Relativity.

§5. Zero-space: the gate for teleporting photons. As we men-
tioned above, a regular observer may connect to the entire fully degen-
erate space (zero-space) at any point or local region of the regular space
once the observable conditions of full degeneration, which are dτ =0
and dσ2 = hik dxidxk =0, are realized therein. The physical meaning of
the first condition dτ =0 is that the regular observer perceives any two
events in the zero-space region as simultaneous, at whatever distance
from them they are located. We will further refer to such a way of in-
stantaneous transfer of information as the long-range action. A process
in which a particle (a mediator of the interaction) may realize the long-
range action will be referred to as teleportation.

Therefore, the first condition of full degeneration dτ =0, which can
also be extended due to the definition of dτ (2.5) as

dτ =
(
1 −

w
c2

)
dt −

1
c2

vidxi = 0 , (5.1)
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thus expressed in the form w + viu
i = c2 (2.22), has also the physical

meaning of the teleportation condition.
Mediators of the long-range action are particles, which are a sort of

photons. This is because, as was detailed in page 8, the physical condi-
tions inside a zero-space region are the ultimate case of the conditions
of the regular isotropic (light-like) space, which is the home of photons.
In other words, the long-range action is transferred by special “fully
degenerate photons”, which exist under the physical conditions of full
degeneration. Such particles, what they are and how they seem from
the point of view of a regular observer, will be discussed in §6–§8.

Once a photon has entered into a local zero-space region at one
location of our regular space, it can be instantly connected to another
photon which has simultaneously entered into another zero-space “gate”
at another distant location. From the point of view of a regular “exter-
nal” observer, such a connexion is realized instantly. However, inside
the zero-space itself, fully degenerate photons transfer interaction be-
tween these two locations with the velocity of light (see comments to
formula 2.25 in page 10, for details).

Thus, we conclude that instant transfer of information is naturally
permitted in the framework of the General Theory of Relativity, despite
the real speeds of particles not exceeding the velocity of light. This is
merely a “space-time trick”, which may only be due to the space-time
geometry and topology: we only see that the information is transferred
instantaneously, while it is transferred by not-faster-than-light particles
travelling in another space which seems to us, the “external” observers,
as that wherein all intervals of time and all three-dimensional spatial
intervals are zero.

Until this day, teleportation has had an explanation given only by
Quantum Mechanics [13]. It was previously achieved only in the strict
quantum fashion — quantum teleportation of photons in 1998 [14] and
of atoms in 2004 [15, 16]. Now the situation changes: with our theory
we can find physical conditions for teleportation of photons in a non-
quantum way, which is not due to the probabilistic laws of Quantum Me-
chanics but according to the exact (non-quantum) laws of the General
Theory of Relativity following the space-time geometry. We therefore
suggest to refer to this fashion as non-quantum teleportation.

§6. Zero-particles: particles which inhabit zero-space. As is
obvious, the fully degenerate space can only host such particles for which
the physical conditions of full degeneration are true. The properties of
such particles will now be under focus. We will start this consideration
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from the regular (non-degenerate) particles, then apply the physical
conditions of full degeneration, thus determining the characteristics of
the particles hosted by the fully degenerate space (zero-space).

According to the General Theory of Relativity [17], any mass-bearing
particle is characterized by the four-dimensional vector of momentum

P α = m0
dxα

ds
, (6.1)

where m0 is the rest-mass characterizing the particle. In the framework
of de Broglie’s wave-particle duality, we can represent the same mass-
bearing particle as a wave characterized by the four-dimensional wave
vector

Kα =
ω0

c

dxα

ds
, (6.2)

while ω0 is the rest-frequency of the de Broglie wave. The square of the
momentum vector Pα and the wave vector Kα along the trajectory of
each single mass-bearing particle is constant, which is nonzero

PαPα = gαβ PαP β = m2
0 = const 6= 0 , (6.3)

KαKα = gαβ KαKβ =
ω2

0

c2
= const 6= 0 , (6.4)

i.e. Pα and Kα are non-isotropic vectors in this case.
As is seen, the space-time interval ds is applied as the derivation

parameter for mass-bearing particles. It works, because such particles
travel along non-isotropic trajectories, where, as is known, ds 6=0. Mass-
less (light-like) particles inhabit the isotropic space. They travel along
isotropic trajectories, where ds2 = c2dτ2−dσ2 =0 and c2dτ2 =dσ2 6=0.
The space-time interval is ds =0 therein, and thus cannot be applied
as the derivation parameter. Zelmanov [10] had removed this prob-
lem by suggesting the observable three-dimensional observable interval,
which is dσ 6=0 along isotropic trajectories. Moreover, dσ and dτ are
chronometric invariants: they are invariant along the three-dimensional
spatial section of the observer. Therefore they can be used as derivation
parameters along both isotropic and non-isotropic trajectories, in the
framework of the chronometrically invariant formalism.

Since ds2 in the chr.inv.-form (2.14) can be expressed through the
physically observable chr.inv.-velocity vi (2.6) as

ds2 = c2dτ2 − dσ2 = c2dτ2

(

1 −
v2

c2

)

, (6.5)
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we can write down the regular formulae of Pα (6.1) and Kα (6.2) as

Pα = m
dxα

dσ
=

m

c

dxα

dτ
, (6.6)

Kα =
ω

c

dxα

dσ
=

k

c

dxα

dτ
, (6.7)

where m is the relativistic mass (derived for massless particles through
their relativistic energy E = mc2), ω is the relativistic frequency, while
k = ω

c is the wave number.
In the case of massless particles (isotropic trajectories), the square

of the momentum vector Pα and the wave vector Kα is zero

PαPα = gαβ PαP β =
m2

c2

gαβ dxαdxβ

dσ2
=

m2

c2

ds2

dσ2
= 0 , (6.8)

KαKα = gαβ KαKβ =
ω2

c2

gαβ dxαdxβ

dσ2
=

ω2

c2

ds2

dσ2
= 0 , (6.9)

i.e. Pα and Kα are isotropic vectors in this case.
Calculation of the contravariant components of Pα and Kα gives

P 0 = m
dt

dτ
, P i =

m

c

dxi

dτ
=

1
c

mvi, (6.10)

K0 = k
dt

dτ
, Ki =

k

c

dxi

dτ
=

1
c

kvi, (6.11)

where mvi is the three-dimensional chr.inv.-momentum vector, while
kvi is the three-dimensional chr.inv.-wave vector.

The function dt
dτ

can be obtained from the equation of the square
of the four-dimensional velocity, which is gαβ uαuβ =+1 for subluminal
velocities, gαβ uαuβ =0 for the velocity of light, and gαβ uαuβ =−1 for
superluminal velocities. Extending gαβ uαuβ to component notation,
then substituting the definitions of hik, vi, vi into each of these three
formulae, we arrive at the same quadratic equation

(
dt

dτ

)2
−

2vivi

c2
(
1 − w

c2

)
dt

dτ
+

1
(
1 − w

c2

)2

(
1
c4

vivkvivk − 1

)

= 0 , (6.12)

which solves (to within positive roots) as

dt

dτ
=

1

1 − w

c2

(
1
c2

viv
i + 1

)

. (6.13)
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With this solution, we obtain the covariant components Pi and Ki,
then — the chr.inv.-projections of Pα and Kα onto the line of time

Pi = −
m

c
(vi + vi) ,

P0
√

g00
= m, (6.14)

Ki = −
k

c
(vi + vi) ,

K0
√

g00
= k . (6.15)

According to the chronometrically invariant formalism (see formula
(2.3) for detail), any world-vector Qα has two physically observable pro-
jections: Q0√

g00
and Qi. Hence, the physical observables are

1) the relativistic mass m,

2) the three-dimensional momentum mvi,

which are represented, in the framework of de Broglie’s wave-particle
duality, respectively by

1) the wave number k = ω
c ,

2) the three-dimensional wave vector kvi.

In the case of massless particles (isotropic trajectories), v i is equal
to the physically observable chr.inv.-velocity of light ci.

Now, we apply the physical conditions of full degeneration to the
obtained formulae, thus considering the particles hosted by the fully
degenerate space.

Using the definition of dτ (2.5), we obtain the relation between the
coordinate velocity ui and the physical observable velocity vi

vi =
ui

1 − 1

c2 (w + vkuk)
, (6.16)

which takes the first condition of full degeneration w + viu
i = c2 (2.22)

into account. Thus, we express ds2 in the form

ds2 = c2dτ2

(

1−
v2

c2

)

= c2dt2

{[

1−
1
c2

(
w+vkuk

)
]2

−
u2

c2

}

, (6.17)

containing the first condition of full degeneration as well. Hence, the
four-dimensional vector of momentum can be expressed in the form

Pα = m0
dxα

ds
=

M

c

dxα

dt
, (6.18)

M =
m0√[

1 − 1

c2 (w + vkuk)
]2
− u2

c2

. (6.19)
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Such a mass M depends not only on the three-dimensional velocity
of the particle with respect to the observer, but also on the gravitational
potential w, and on the linear velocity of the rotation vi of space at the
point of observation.

Substituting, into the formula of M , the quantity v2 = hikvivk de-
rived from (6.16), and m0 expressed through m, we arrive at the relation
between the relativistic mass m and the mass M

M =
m

1 − 1

c2 (w + viui)
. (6.20)

From the obtained formula we see that M , under the first condition
of full degeneration w + viu

i = c2, becomes a ratio between two quanti-
ties, each one is equal to zero, but the ratio itself is not zero: M 6=0.
This fact is not a surprise. The same is true for the relativistic mass m
in the case of v = c, which is the case of massless (light-like) particles.
Once there m0 =0 in the numerator, and the relativistic square-root
term is zero in the denominator (due to v = c), the ratio of these quan-
tities is still m 6=0.

In analogy to the momentum vector Pα, we can represent the wave
vector Kα is the form

Kα =
ω0

c

dxα

ds
=

Ω
c2

dxα

dt
, (6.21)

Ω =
ω0√[

1 − 1

c2 (w + vkuk)
]2
− u2

c2

=
ω

1 − 1

c2 (w + viui)
, (6.22)

which also takes the first condition of full degeneration into account.
It is easy to obtain that the components of the momentum vector in

the fully degenerate space (zero-space) are

P 0 = M 6= 0 , P i =
1
c

Mui 6= 0 , Pi = −
1
c

Mui 6= 0 , (6.23)

P0
√

g00
= M

[

1 −
1
c2

(
w + viu

i
)
]

= m = 0 , (6.24)

while the components of the wave vector are

K0 =
Ω
c
6= 0 , Ki =

1
c2

Ωui 6= 0 , Ki = −
1
c2

Ωui 6= 0 , (6.25)

K0
√

g00
=

Ω
c

[

1 −
1
c2

(
w + viu

i
)
]

=
ω

c
= 0 . (6.26)
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As is seen, the physically observable quantities P0√
g00

(6.24) and K0√
g00

(6.26), which are the projections of the world-vectors P α and Kα onto
the line of time, become zero under the first condition of full degen-
eration w + viu

i = c2. This is because, despite the quantities M and
Ω being nonzero, their multiplier in the brackets becomes zero under
the condition. This means, according to the obtained formulae (6.24)
and (6.26), that the relativistic mass m and the relativistic frequency
ω (which corresponds to the relativistic mass within de Broglie’s wave-
particle duality) are zero in the fully degenerate space.

As a result, we can conclude something about the physically observ-
able characteristics of the particles hosted by the fully degenerate space
(zero-space):

1) Such fully degenerate particles bear zero relativistic mass (m =0)
and zero relativistic de Broglie frequency (ω =0);

2) They also bear zero rest-mass (m0 =0). This follows from the fact
that the physical conditions inside a zero-space region are the ul-
timate case of the conditions of the regular isotropic (light-like)
space, which is the home of photons (see page 8 for detail).

Therefore, the particles hosted by the fully degenerate space (zero-
space) are the ultimate case of photons, which exist under the conditions
of full degeneration. They are “fully degenerate photons”, in other
words. Since not only their rest-mass m0, but also the relativistic mass
m and frequency ω are zero, we suggest to refer further to such fully
degenerate particles as zero-particles.

§7. Insight into zero-space: zero-particles as virtual photons.
As is well-known, the Feynman diagrams are a graphical description of
interactions between elementary particles. The diagrams show that the
actual carriers of the interactions are virtual particles. In other words,
almost all physical processes rely on the emission and the absorption of
virtual particles (e.g. virtual photons) by real particles of our world.

Hence, to give a geometric interpretation of the Feynman diagrams
in the space-time of the General Theory of Relativity, we only need
a formal definition for virtual particles. Here is how to do it.

According to Quantum Electrodynamics, virtual particles are those
for which, contrary to regular ones, the regular relation between energy
and momentum

E2 − c2p2 = E2
0 , (7.1)

where E = mc2, p2 = m2v2, E0 = m0c2, is not true. In other words, for
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virtual particles,
E2 − c2p2 6= E2

0 . (7.2)

In a pseudo-Riemannian space, the regular relation (7.1) is true.
It follows from the condition PαPα = m2

0 = const 6=0 for mass-bearing
particles (non-isotropic trajectories), and from the condition PαPα =0
for massless particles (isotropic trajectories). Substituting the respec-
tive components of the momentum vector Pα, we obtain the regular
relation, in the chr.inv.-form, for mass-bearing particles,

E2 − c2m2 viv
i = E2

0 , (7.3)

and that for massless ones, E2−c2m2vivi =0, that is the same as

hik vivk = c2. (7.4)

But this is not true in the fully degenerate space (zero-space). This
is because the zero-space metric dμ2 (2.23) is not invariant: dμ2 6= inv.
As a result, from the viewpoint of a hypothetical observer who is located
therein, a degenerate four-velocity vector being transferred in parallel
to itself does not conserve its length: uαuα 6= const (2.26). Therefore,
the regular relation between energy and momentum E2−c2p2 = const
(7.1) is not applicable to zero-particles, but another relation, which is
a sort of E2−c2p2 6= const (7.2), is true. Because the latter is the main
property of virtual particles, we arrive at the conclusion:

Zero-particles may play a rôle of virtual particles, which, according
to Quantum Electrodynamics, are material carriers of interaction
between regular particles of our world. If so, the entire zero-space
is an “exchange buffer” in whose capacity zero-particles transfer
interactions between regular mass-bearing and massless particles
of our world.

As has been shown on page 22, zero-particles are fully degenerate
photons. They can also exist in a collapsed region of zero-space, wherein
the condition of gravitational collapse is true (see §4). Hence, virtual
particles of two kinds can be presupposed:

1) Virtual photons — regular fully degenerate photons;

2) Virtual collapsars — fully degenerate photons, which are hosted
by the collapsed regions of zero-space.

All that we have suggested here is for yet the sole explanation of
virtual particles and virtual interactions given by the geometric methods
of the General Theory of Relativity, and according to the geometric
structure of the four-dimensional space (space-time).
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§8. Zero-particles from the point of view of a regular observer:
standing light waves. The following important question rises: if
zero-particles bear zero rest-mass and zero relativistic mass, how can
they be perceived by a regular observer like us who are located in the
regular (non-degenerate) space? To answer this question, we now con-
sider zero-particles in framework of the geometric optics approximation.

As is known [17], the four-dimensional wave vector of massless par-
ticles in the geometric optics approximation is

Kα =
∂ψ

∂xα
, (8.1)

where ψ is the wave phase (eikonal). In analogy to Kα, we suggest to
introduce the four-dimensional vector of momentum

Pα =
~
c

∂ψ

∂xα
, (8.2)

where ~ is Planck’s constant, while the coefficient ~
c equates the dimen-

sions of both parts of the equation. We obtain the physically observable
projections of these world-vectors onto the line of time

K0
√

g00
=

1
c

∗∂ψ

∂t
,

P0
√

g00
=
~
c2

∗∂ψ

∂t
. (8.3)

Equating these to the respective formulae obtained in §6, we obtain
that the relativistic frequency and mass are formulated, in the frame-
work of the geometric optics approximation, as

ω =
∗∂ψ

∂t
, m =

~
c2

∗∂ψ

∂t
, (8.4)

and, respectively, the generalized frequency and mass are

Ω =
1

1 − 1

c2 (w + viui)

∗∂ψ

∂t
, M =

~

c2
[
1 − 1

c2 (w + viui)
]
∗∂ψ

∂t
. (8.5)

Thus, we have a possibility of obtaining the respective formulae for
the energy and momentum of a particle, expressed through its wave
phase in the framework of the geometric optics approximation. In the
fully degenerate space (zero-space), the relativistic mass, momentum,
frequency, and energy are zero. However, the generalized mass M , mo-
mentum Mui, frequency Ω, and energy E are nonzero therein (see §6
for detail). As a result of (8.5), we obtain the formulae

E = ~Ω = Mc2 =
~

1 − 1

c2 (w + viui)

∗∂ψ

∂t
, (8.6)
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Mui = − ~hik
∗∂ψ

∂xk
, (8.7)

which, in the regular (non-degenerate) space, transform into

E = ~ω = mc2 = ~
∗∂ψ

∂t
, mvi = − ~hik

∗∂ψ

∂xk
. (8.8)

As is known [17], the condition KαKα =0, which is specific to mass-
less particles (isotropic trajectories), has the form

gαβ ∂ψ

∂xα

∂ψ

∂xβ
= 0 , (8.9)

which is the basic equation of geometric optics (the eikonal equation).
After formulating the regular differential operators through the chr.inv.-
differential operators (2.8), and taking into account the main property
gασgβσ = δβ

α of the tensor gαβ , which gives g00 = 1
g00

(
1− 1

c2 vi v
i
)
, we

arrive at the chr.inv.-eikonal equation for massless particles

1
c2

(∗∂ψ

∂t

)2
− hik

∗∂ψ

∂xi

∗∂ψ

∂xk
= 0 . (8.10)

In the same way, proceeding from the condition PαPα = m2
0 char-

acterizing mass-bearing particles (non-isotropic trajectories), we obtain
the chr.inv.-eikonal equation for mass-bearing particles

1
c2

(∗∂ψ

∂t

)2
− hik

∗∂ψ

∂xi

∗∂ψ

∂xk
=

m2
0c

2

~2
, (8.11)

which when m0 =0 becomes the same as the former one.
To obtain the chr.inv.-eikonal equation for zero-particles, we apply

the conditions m0 =0, m =0, ω =0, and PαPα =0, which characterize
the fully degenerate space (zero-space). After some algebra we obtain
the chr.inv.-eikonal equation for zero-particles

hik
∗∂ψ

∂xi

∗∂ψ

∂xk
= 0 . (8.12)

As is seen, this is a standing wave equation. This fact, and also that
zero-particles are the ultimate case of light-like particles (see page 22
for details), allows us to conclude how zero-particles could be registered
experimentally:

Zero-particles should seem from the point of view of a regular
observer as standing light waves — the waves of stopped light, in
other words. So, the entire zero-space should appear filled with
a system of standing light waves (light-like holograms).
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§9. Conclusion. What is frozen light? So, the geometric struc-
ture of the four-dimensional space (space-time) of the General Theory
of Relativity manifests the possibility of the ultimate case of photons,
for which not only the rest-mass is zero (as for regular photons), but
also the relativistic mass is zero. We therefore refer to them as zero-
particles. Such particles are hosted by a space with fully degenerate
metric, which is the ultimate case of the light-like (particularly degen-
erate) space. They are fully degenerate photons, in other words.

Zero-particles can be hosted by both regular regions and collapsed
regions of the fully degenerate space. In the latter case, they exist under
the condition of gravitational collapse (see §4).

The fully degenerate space looks like a local volume, wherein all ob-
servable intervals of time and all three-dimensional observable intervals
are zero. Once a photon has entered into such a zero-space “gate” at
one location of our regular space, it can be instantly connected to an-
other photon which has entered into a similar “gate” at another location.
This is a way for non-quantum teleportation of photons (see §5).

Also, the regular relation between energy and momentum is not
true for zero-particles. This means that zero-particles may play a rôle
of virtual particles, which are material carriers of interaction between
regular particles of our world (see §7).

From the point of view of a regular observer, zero-particles should
appear as standing light waves — the waves of stopped light (see §8).
The latter meets that which has been registered in the frozen light
experiment: there, a light beam being stopped is “stored” in atomic
vapor, and remains invisible to the observer until that moment of time
when it is set free again in its regularly “travelling state”. (See Intro-
duction and the original reports about the experiments referred therein.)

This means that the frozen light experiment pioneered at Harvard
by Lene Hau is an experimental “foreword” to the discovery of zero-
particles and, hence, a way for non-quantum teleportation.

With these we can mean frozen light as a new state of matter, which
differs from the others (solid, gas, liquid, plasma).
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