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Abstract: We find a new charged black hole solution in three-
dimensional anti-de Sitter (AdS) space using an anisotropic perfect
fluid inspired by a non-commutative black hole as the source of matter
and a Gaussian distribution of electric charge. We deduce the thermo-
dynamical quantities of this black hole and compare them with those
of a charged Banados-Teitelboim-Zanelli (BTZ) solution.
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§1. Introduction. The theoretical discovery of radiating black holes
[1] disclosed the first physically relevant window regarding the myster-
ies of quantum gravity. The string-black hole correspondence princi-
ple [2] suggests that in this extreme regime stringy effects cannot be
neglected. One of the most interesting outcomes of string theory is that
target space-time coordinates become non-commuting operators on a
D-brane [3]. Thus, string-brane coupling has put in evidence the neces-
sity of space-time quantization. Recently, an improved version of field
theory of a non-commutative space-time manifold has been proposed as
a cheaper way to reproduce the string phenomenology, at least in the
low-energy limit. In this proposal, non-commutativity is encoded in the
commutator

[xμ, xν ] = iθμν , (1)

where θμν is an anti-symmetric matrix which determines the fundamen-
tal cellular discretization of space-time much in the same way as the
Planck constant ~ discretizes the phase space. This proposal provides
a black hole with a minimum scale

√
θ known as the non-commutative

black hole [4–8], whose commutative limit is the Schwarzschild metric.
The thermodynamics and evaporation process of the non-commutative
black hole has been studied in [9], while the entropy issue is discussed in
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[10, 11] and the Hawking radiation in [12]. Charged non-commutative
black holes have been studied in [13,14] and recently, a non-commutative
three-dimensional black hole whose commutative limit is revealed by
the non-rotating Banados-Teitelboim-Zanelli (BTZ) solution was stud-
ied in [15], while the three-dimensional rotating counterpart of it was
deduced in [16].
In this paper, we construct a new charged black hole in AdS3 space-

time using an anisotropic perfect fluid inspired by the four-dimensional
non-commutative black hole as the source of matter while considering a
Gaussian distribution of electric charge. The resulting solution exhibits
two horizons that degenerate into one in the extremal case. We compare
the thermodynamics of this non-commutaive black hole with that of the
charged BTZ solution [17,18].

§2. Derivation of the charged solution in three dimensions.
In the analysis of black holes in the framework of non-commutative
spaces, one has to solve the corresponding field equations. As argued
in [6,19] it is not necessary to change the Einstein tensor part of the field
equations because the non-commutative effects act only on the matter
source. The underlying philosophy of this approach is to modify the
distribution of point-like sources in favour of smeared objects. This is
in agreement with the conventional procedure for the regularization of
ultra-violet divergences by introducing a cut-off. As a gravitational ana-
logue of the non-commutative modification of quantum field theory [4],
we conclude that in General Relativity, the effect of non-commutativity
can be taken into account by keeping the standard form of the Einstein
tensor on the left-hand side of the field equations as well as by intro-
ducing a modified energy-momentum tensor as a source on the right-
hand side.
Therefore, one way of implementing the effect of smearing is the

following substitution rule: in three dimensions, the Dirac delta function
δ3D(r) is replaced by a Gaussian distribution with minimal width

√
θ,

ρ (r) =
M

4πθ
e−r

2/4θ (2)

giving a mass distribution in the form

m (r) = 2π

∫ r

0

r′ρ (r′) dr′ =M
(
1− e−r

2/4θ
)
. (3)

As coordinate non-commutativity is a property of the space-time
fabric itself, and not of its material content, the same smearing effect is
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expected to operate on electric charge [13,14]. Thus, a point-charge Q is
spread throughout a minimal-width Gaussian charge cloud according to

ρe(r) =
Q

4πθ
e−r

2/4θ. (4)

For a static, circularly symmetric charge distribution, the current
density Jμ is non-vanishing only along the time direction, i.e.

Jμ = (ρe , 0, 0) . (5)

In order to find a black hole solution in AdS3 space-time, we recall
the Einstein-Maxwell equations,

Rμν −
1

2
gμνR = 8π

(
T matterμν + T electrμν

)
+
1

`2
gμν , (6)

1
√
|g |
∂μ
(√
|g |Fμν

)
= Jν , (7)

where ` is related with the cosmological constant by

Λ = −
1

`2
. (8)

The energy-momentum tensor for matter will take the anisotropic
form

(Tμν )
matter

= diag (−ρ, pr , p⊥) . (9)

In order to completely define this tensor, we rely on the covariant
conservation condition Tμν,ν=0. This gives the source as an anisotropic
fluid of density ρ, radial pressure

pr = −ρ (10)

and tangential pressure

p⊥ = −ρ− r ∂rρ. (11)

The electromagnetic energy-momentum tensor T electrμν is defined in
terms of Fμν as

T electrμν = −
2

π

(

FμσF
σ ∙
∙ν −

1

4
gμνFρσF

ρσ

)

. (12)

By solving the Maxwell equations (7) with source (5), we obtain the
electric field

E (r) =
1

r

∫ r

0

r′ρe(r
′) dr′ =

Q

2πr

(
1− e−r

2/4θ
)
. (13)
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Using the static, circularly symmetric line-element

ds2 = −f(r) dt2 + f−1(r) dr2 + r2dϕ2, (14)

the Einstein field equations (6) are written accordingly as

1

r

df

dr
= −16πρ−

1

2
E2 +

2

`2
, (15)

d2f

dr2
= 16πρ⊥ +

1

2
E2 +

2

`2
. (16)

Solving the above equations, we find

f (r) = −8M
(
1− e−r

2/4θ
)
+
r2

`2
−

−
Q2

8π2

[

ln |r|+
1

2
Ei

(

−
r2

2θ

)

− Ei

(

−
r2

4θ

)]

, (17)

where Ei (z) represents the exponential integral function,

Ei (z) = −
∫ ∞

−z

e−t

t
dt. (18)

Note that when r
2

4θ →∞, either when considering a large black hole
(r →∞) or the commutative limit (θ → 0), we obtain the charged BTZ
solution,

fBTZ (r) = −8M +
r2

`2
−
Q2

8π2
ln |r| . (19)

The line-element (14, 17) describes the geometry of a non-commuta-
tive black hole with the corresponding event horizons given by the fol-
lowing condition imposed on f(r)

f (r) = −8M
(
1− e−r

2
±/4θ

)
+
r2±
`2
−

−
Q2

8π2

[

ln |r± |+
1

2
Ei

(

−
r2±
2θ

)

− Ei

(

−
r2±
4θ

)]

. (20)

This equation cannot be solved in closed form. However, by plotting
f(r) one can see obvious intersections with the r-axis and determine
numerically the existence of horizons and their radii. Fig. 1 shows that,
instead of a single event horizon, there are different possibilities for this
black hole:
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Fig. 1: Metric function f as a function of r. We have taken the values θ=0.1,
`=10 and Q=1. The minimum mass is M0≈ 0.00127.

1) Two distinct horizons for M >M0;

2) One degenerate horizon (extremal black hole) for M =M0;

3) No horizon for M <M0.

In view of this, there can be no black hole if the original mass is less
than the lower-limit mass M0. The horizon of the extremal black hole
is determined by the conditions f =0 and ∂rf =0, giving

[
4
(
1− er

2
0/4θ

)
θ + r2

][ 1
2
Ei

(

−
r20
2θ

)

− Ei

(

−
r20
4θ

)

+ ln |r0 |+

+
2θ

r20

(
3 + e−r

2
0/2θ − 3e−r

2
0/4θ − er

2
0/4θ

)]−1
=
Q2`2

8π2
(21)

and subsequently the mass of the extremal black hole can be written as

M0 =

2r20
`2θ
−

Q2

8π2θ

(
1 + e−r

2/2θ − 2e−r
2/4θ
)

4e−r
2
0/4θ

. (22)

§3. Thermodynamics. The Hawking temperature of the non-com-
mutative black hole is

TH =
1

4π
∂rf |r+ =

r+

2π`2

[

1−
2MH`

2

θ
e−r

2
+/4θ −

−
Q2`2

16π2r2+

(
1 + e−r

2
+/2θ − 2e−r

2
+/4θ

)]

, (23)
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Fig. 2: The Hawking temperature versus rH. The solid line represents the
temperature for the non-commutative black hole with θ=0.1. There is no
difference with respect to the charged BTZ solution (dashed line) for large
rH. In both cases, we use the values `=10 and Q=1.

where

MH =
r2+

8`2
(
1− e−r

2
+/4θ

) −
Q2

64π2
(
1− e−r

2
+/4θ

) ×

×

[

ln |r+|+
1

2
Ei

(

−
r2+
2θ

)

− Ei

(

−
r2+
4θ

)]

. (24)

For large black holes, i.e.
r2+
4θ � 0, one recovers the temperature of

the rotating BTZ black hole,

TBTZH =
r+

2π`2

(

1−
Q2`2

64π2r2+

)

. (25)

As shown in Fig. 2, the Hawking temperature is a monotonically
increasing function of the horizon radius for large black holes. For large
black holes, there is indeed no difference with respect to the charged
BTZ solution.
The first law of thermodynamics for a charged black hole reads

dM = THdS +ΦdQ, (26)

where the electrostatic potential is given by

Φ =

(
∂M

∂Q

)

r+

= −
Q

32π2
(
1− e−r

2
+/4θ

) ×

×

[

ln |r+|+
1

2
Ei

(

−
r2+
2θ

)

− Ei

(

−
r2+
4θ

)]

. (27)
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Fig. 3: Entropy versus rH. The solid line represents the entropy of the non-
commutative black hole with θ=0.1. The dashed line represents the entropy
of the charged BTZ black hole.

We calculate the entropy as

S =

∫ r+

r0

1

TH
dM , (28)

which gives

S =
π

2

∫ r+

r0

(
1

1− e−ξ2/4θ

)

dξ . (29)

The entropy as a function of r+ is depicted in Fig. 3. Note that,
in the large black hole limit, the entropy function corresponds to the
Bekenstein-Hawking entropy (area law), SBH=

πr+
2 .

§4. Conclusion. We have constructed a non-commutative electri-
cally charged black hole in AdS3 space-time using an anisotropic perfect
fluid inspired by the four-dimensional non-commutative black hole and
a Gaussian distribution of electric charge. The result yields two hori-
zons that degenerate into one in the extreme case. We have compared
the thermodynamics of this black hole with that of a charged Banados-
Teitelboim-Zanelli (BTZ) black hole. The Hawking temperature and
entropy for a large non-commutative charged black hole approach those
of the charged BTZ solution.
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