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Abstract: In this paper we apply the instanton representation
method to the construction of spherically symmetric blackhole so-
lutions. The instanton representation implies the existence of addi-
tional Type D solutions which are axially symmetric. We explicitly
construct these solutions, and show that they are fully consistent with
Birkhoff’s theorem.
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§1. Introduction. In [1] a new formulation of General Relativity has
been introduced, known as the instanton representation of Plebanski
gravity. The basic variables are a SO(3,C) gauge connection Aaμ and a
3×3 matrix Ψae which takes its values in two copies of SO(3,C). The
equations of motion of the instanton representation imply the Einstein
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equations when the initial value constraints of General Relativity are
satisfied, and imply that the gauge curvature of Aaμ is Hodge self-dual
with respect to the same metric gμν solving these equations.

∗ As a con-
sistency condition on this formulation, one should require that the 3-
metric hij determined using the constraint solutions and the 3-metric
defined by the Hodge duality condition be equal to one another. In this
way, which we will refer to as the instanton representation method, one
has a new recipe for constructing General Relativity solutions.
The initial value constraint solutions of General Relativity can be

classified according to the Petrov classification of spacetime, which de-
pends on the multiplicity of eigenvalues and eigenvectors of Ψae (see e.g.
[2, 3]). The instanton representation is concerned with the cases where
Ψae has three linearly independent eigenvectors, such as for Petrov
Types I, D and O where its equivalence with General Relativity is man-
ifest. In the Petrov Type D case there are two distinct eigenvalues of
Ψae, which can be permuted in three different ways. In the Type O case
there is only one distinct eigenvalue and permutation, whereas in the
Petrov Type I case there are three distinct eigenvalues with six possible
permutations. The instanton representation method implies that there
should be a separate General Relativity solution associated with each
permutation of eigenvalues of Ψae.
In this paper we apply the instanton representation method to the

construction of spherically symmetric General Relativity solutions. Ac-
cording to Birkhoff’s theorem [4], any spherically symmetric vacuum
solution of the Einstein field equations must be static and must agree
with the Schwarzschild solution. The Schwarzschild metric is a Type D
vacuum solution, which as we will show in the instanton representation
corresponds to a particular permutation ~λ(1) of eigenvalues solving the
initial value constraints. There are two additional permutations ~λ(2)
and ~λ(3) of this same set of eigenvalues. The instanton representation
implies that these latter permutations should also correspond to solu-
tions, which leads to the following obvious question. Are the ~λ(2) and
~λ(3) solutions consistent with the Birkhoff theorem or do they lead to a
contradiction? In other words, is the Hodge duality condition of the in-
stanton representation subject to the initial value constraints consistent
with the ansatz of spherical symmetry and time-independence for any
metrics other than the Schwarzschild metric? In this paper we find that
the ~λ(2) and ~λ(3) metrics are different from the Schwarzschild metric, yet
in a sense which this paper will make precise are not in contradiction

∗The latter actually follows from the equations of motion, and does not have to
be added in as a separate postulate.
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with Birkhoff’s theorem.
The organization of this paper is as follows. In §2 we present some

basic background on the initial value constraints problem in terms of the
instanton representation phase space variables. In §3 we specialize the
constraints to Type D spacetimes for a diagonal Ψae for simplicity. §4
puts in place the ingredients necessary to produce spherically symmetric
solutions. This uses a particular ansatz for the spatial connection Aai
of a certain form, which includes time-independence of its components.
§5, §6 and §7 apply the aforementioned instanton representation method
to the construction of the metrics for the eigenvalue permutations ~λ(1),
~λ(2) and ~λ(3). The ~λ(1) permutation leads to the Schwarzschild metric,
and the remaining permutations lead to metrics which do not meet the
conditions under which Birkhoff’s theorem holds. §8 provides a sum-
mary and a brief discussion of these results.

§2. The initial value constraints. The dynamical variables in
the instanton representation of Plebanski gravity are a SO(3,C) gauge
connection Aaμ and a 3×3 complex matrix Ψae ∈ SO(3,C)⊗ SO(3,C).

∗

The variables are subject to the following constraints on each three-
dimensional spatial hypersurface Σ

we{Ψae} = 0 , εdaeΨae = 0 , Λ + trΨ−1 = 0 , (1)

where Λ is the cosmological constant.† We require that det‖Ψ‖6=0,
which means that the eigenvalues λ1, λ2 and λ3 of Ψae must be nonva-
nishing. The first equation of (1) is defined as

we{Ψae} = ve{Ψae}+ Cbe
(
fabf δge + febgδaf

)
Ψfg = 0 , (2)

where fabc are the SO(3) structure constants, and we have defined the
vector fields va and a magnetic helicity density matrix Cae given by

va = B
i
a∂i , Cae = A

a
i B
i
e . (3)

In (3) we have defined the magnetic field Bia, which we assume to have
nonvanishing determinant det‖B‖6=0, as

Bia = ε
ijk ∂jA

a
k +
1

2
εijkfabcA

b
jA
c
k . (4)

∗For index conventions we use lower case symbols from the beginning of the
Latin alphabet a, b, c, . . . to denote internal SO(3,C) indices, and from the middle
i, j, k, . . . for spatial indices. Spacetime indices are denoted by μ, ν, . . .

†The constraints in (1) are respectively the Gauss’ law, diffeomorphism and Ham-
iltonian constraints. These constraints were also written down by Capovilla, Dell
and Jacobson in the context of the initial value problem of General Relativity [5].
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These variables define a spacetime metric gμν , written in 3+1 form,
as follows

ds2 = −N2dt2 + hij ω
i ⊗ ωj , (5)

where hij is the spatial 3-metric with one forms ω
i= dxi−N idt, where

Nμ=(N,N i) are the lapse function and shift vector. The 3-metric hij
can be constructed from the constraint solutions, and is given by

(hij)Constraints = (det‖Ψ‖)
(
Ψ−1Ψ−1

)
ae
(
B−1

)
a
i

(
B−1

)
e
j
(det‖B‖) , (6)

where Ψae and A
a
i are solutions to (1). The constraints (1) do not fix

Nμ, and make use only of the spatial part of the connection Aaμ.

From the four-dimensional curvature F aμν and using F
a
0i= Ȧ

a
i −DiA

a
0

for the temporal component one can construct a matrix cij , given by

cij = F
a
0i

(
B−1

)
a
j
, c ≡ det‖c(ij)‖ . (7)

The separation of cij into symmetric and antisymmetric parts defines a
3-metric (hij)Hodge and a shift vector N

i, given by

(hij)Hodge = −
N2

c
c(ij) , N i = −

1

2
εijkcjk . (8)

Equation (8) arises from the Hodge duality condition implied by the
instanton representation [1]. Equations (8) and (6) are 3-metrics con-
structed using two separate criteria, and as a consistency condition must
be set equal to each other. This is the basic feature of the instanton
representation method in constructing General Relativity solutions in
practice, which enables one to also write (5) as

ds2 = −N2
[

dt2+
1

c
c(ij)

(
dxi+

1

2
εimncmndt

)(
dxj+

1

2
εjrscrsdt

)]

. (9)

Since Ψae is a nondegenerate complex matrix by supposition, then it
is diagonalizable when there are three linearly independent eigenvectors
[2]. This enables one to classify solutions according to the Petrov type
of the self-dual Weyl tensor ψae. The matrix ψae is symmetric and
traceless, and related to Ψae in the following way

Ψ−1ae = −
Λ

3
δae + ψae . (10)

So for this paper we assume that Ψae is invertible, which requires the
existence of three linearly independent eigenvectors. Hence, the results
of this paper are limited to Petrov Types I, D and O. For each such Ψae,
combined with a connection Aai solving the constraints (1), the Hodge
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duality condition (8) should yield a metric solving the vacuum Einstein
equations.

§3. Application to Petrov Type D spacetimes. For the pur-
poses of this paper we will restrict attention to the case where Ψae=
=diag(Ψ11,Ψ22,Ψ33) is diagonal. Then from equation (1) the diffeo-
morphism constraint is automatically satisfied since a diagonal matrix
is already symmetric. We can then associate the elements of Ψae with
its eigenvalues, and the Hamiltonian constraint is given by

Λ +
1

Ψ11
+
1

Ψ22
+
1

Ψ33
= 0 . (11)

The Gauss’ law constraint can be written as

ve{Ψae}+ Cbe
(
fabfΨfe + febgΨag

)
= 0 . (12)

Since restricting to diagonal Ψae, we need only consider the terms of
(12) with e= a on the first term, e= f on the second and a= g on the
third. This is due to the fact that a is a free index while the remaining
are dummy indices. Then we get the following equations

v1{Ψ11}+ C23(Ψ33 −Ψ11) + C32(Ψ11 −Ψ22) = 0

v2{Ψ22}+ C31(Ψ11 −Ψ22) + C13(Ψ22 −Ψ33) = 0

v3{Ψ33}+ C12(Ψ22 −Ψ33) + C21(Ψ33 −Ψ11) = 0





. (13)

Equation (13) is a set of three differential equations which can be put
into the operator-valued matrix form






v1−C[23] −C32 C23

C31 v2−C[31] −C13
−C21 C12 v3−C[12]











Ψ11

Ψ22

Ψ33




 =






0

0

0




 ,

where we have defined C[ae]=Cae−Cea. Since we have already removed
three degrees of freedom by choosing Ψae to be diagonal, and Gauss’
law is a set of three conditions, we would rather not overconstrain Ψae
any further. In other words, we will regard the Gauss’ law constraint
as a set of conditions fixing three elements of the connection Aai , with
Ψae constrained only by the Hamiltonian constraint (11). We will from
now on make the identifications

Ψ11 = ϕ1 , Ψ22 = ϕ2 , Ψ33 = ϕ3 , (14)

defined as the eigenvalues of Ψae. We will now specialize to the Petrov
Type D case, where two of the eigenvalues are equal with no vanishing
eigenvalues.
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§3.1. The Hamiltonian constraint. Denote the eigenvalues of Ψae
by λf=(ϕ1, ϕ, ϕ) and all permutations thereof. Then the Hamiltonian
constraint (11) reduces to

1

ϕ1
+
2

ϕ
+ Λ = 0 . (15)

Equation (15) yields the following relations which we will use later

ϕ1 = −

(
ϕ

Λϕ+ 2

)

, ϕ1 − ϕ = −ϕ

(
Λϕ+ 3

Λϕ+ 2

)

. (16)

The diagonalized self-dual Weyl curvature for a spacetime of Type D
is of the form ψae=diag(−2Ψ,Ψ,Ψ) for some function Ψ. The corre-
sponding CDJ matrix is given by adding to this a cosmological contri-
bution as in (10), which in matrix form is given by

Ψ−1ae =






−Λ3 −2Ψ 0 0

0 −Λ3 +Ψ 0

0 0 −Λ3 +Ψ




 .

One can then read off the value of ϕ in (15) as

ϕ =
1

−Λ3 +Ψ
, Λϕ+ 2 =

(
Λ
3 +2Ψ

−Λ3 +Ψ

)

, Λϕ+ 3 =
3Ψ

−Λ3 +Ψ
. (17)

From (17) the following quantities Φ and ψ can be constructed

Φ =
ϕ(Λϕ+ 3)2

(Λϕ+ 2)3
= 9

(
1

2Ψ1/3 + Λ3 Ψ
−2/3

)3

ψ = ϕ2(Λϕ+ 3) = 3

(
1

−Λ3 Ψ
−1/3 +Ψ2/3

)3






, (18)

which will become useful later in this paper.

§3.2. The Gauss’ law constraint. Next, we must set up the Gauss’
law constraint (13) for the Type D case. There are three distinct permu-
tations of eigenvalues to consider

~λ(1) = (ϕ1, ϕ, ϕ) , ~λ(2) = (ϕ,ϕ1, ϕ) , ~λ(3) = (ϕ,ϕ, ϕ1) , (19)

which we will treat individually. The steps which follow will refer to ~λ(1),
with the remaining cases obtainable by cyclic permutation. The Gauss’
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law constraint for permutation ~λ(1) reduces to





v1 − C[23] −C32 C23

C31 v2−C[31] −C13
−C21 C12 v3−C[12]











ϕ1

ϕ

ϕ




 =






0

0

0




 ,

which leads to the following equations

v1{ϕ1} = C[23](ϕ1 − ϕ)

v2{ϕ} = C31(ϕ− ϕ1)

v3{ϕ} = C21(ϕ1 − ϕ)





. (20)

Using the results from (16), the first equation of (20) implies that

−v1

{( ϕ

Λϕ+ 2

)}

= −C[23]ϕ

(
Λϕ+ 3

Λϕ+ 2

)

. (21)

Since the vector fields va are first-derivative operators, equation (21)
can be written as

1

ϕ

(
Λϕ+ 2

Λϕ+ 3

)

v1

{(
ϕ

Λϕ+ 2

)}

= C[23] =

=
1

ϕ

(
Λϕ+ 2

Λϕ+ 3

)[
(Λϕ+ 2)v1{ϕ} − ϕ v1{Λϕ+ 2}

(Λϕ+ 2)2

]

, (22)

where we have used the Leibniz rule. Equation (22) then simplifies to

2v1{ϕ}
ϕ(Λϕ+ 2)(Λϕ+ 3)

=
1

3
v1{lnΦ} = C[23] , (23)

which gives
v1{lnΦ} = 3C[23] (24)

with Φ given by (18).
The second equation of (20) implies that

v2{ϕ} = C31 ϕ

(
Λϕ+ 3

Λϕ+ 2

)

. (25)

Using (16), equation (25) simplifies to

1

ϕ

(
Λϕ+ 2

Λϕ+ 3

)

v2{ϕ} =
1

3
v2
{
ϕ2(Λϕ+ 3)

}
= C31 , (26)

which gives
v2{lnψ} = 3C31 . (27)
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The manipulations of the third equation of (20) are directly analo-
gous to (26) and (27), which implies that

v3{ϕ} = −C21ϕ

(
Λϕ+ 3

Λϕ+ 2

)

−→ v3{lnψ} = −3C21 . (28)

Hence the three equations for ~λ(1) can be written as

v1{lnΦ} = 3C[23] , v2{lnψ} = 3C31 , v3{lnψ} = −3C21 , (29)

where Φ and ψ are given by (18).

For the second permutation of eigenvalues ~λ(2) we have ~ϕ=(ϕ,ϕ1, ϕ),
which leads to the Gauss’ law equations

v2{lnΦ} = 3C[31] , v3{lnψ} = 3C12 , v1{lnψ} = −3C32 . (30)

For the third permutation of eigenvalues ~λ(3) we have ~ϕ = (ϕ,ϕ, ϕ1),
which leads to the Gauss’ law equations

v3{lnΦ} = 3C[12] , v1{lnψ} = 3C23 , v2{lnψ} = −3C13 . (31)

The implication of this is the following. If there exists a General Rel-
ativity solution for a particular eigenvalue permutation, say ~λ(1), then
there must exist solutions corresponding to the remaining permutations
~λ(2) and ~λ(3).

§4. The spherically symmetric case. We are now ready to pro-
ceed with the instanton representation method. We must first choose a
connection Aaμ which will play dual roles. On the one hand A

a
μ will define

a metric based on the Hodge duality condition, and on the other hand
its spatial part Aai will in conjunction with Ψae form a metric based on
the solution to the Gauss’ law and the Hamiltonian constraints. For the
purposes of this paper we will choose a connection Aaμ which is known
to produce spherically symmetric blackhole solutions. This paragraph
will show that the requirements on (hij)Hodge and on (hij)Constraints are
in a sense complementary. Then in the subsequent paragraphs of this
paper we will equate these two metrics, which, as we will see, imposes
stringent conditions on the form of the final solution.

§4.1. Ingredients for the Hodge duality condition. Let the con-
nection Aaμ be defined by the following one-forms

A1 = i
f ′

g
dt+

(
cos θ)dφ , A2 = −

(
sin θ

g

)

dφ , A3 =
dθ

g
, (32)
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where f = f(r) and g= g(r) are at this stage arbitrary functions of ra-
dial distance r and a prime denotes differentiation with respect to r.
Equation (32) yields the curvature 2-forms F a= dAa+ 12 f

abcAb∧Ac,
given by

F 1 = −

(
if ′

g

)′
dt ∧ dr − sin θ

(

1−
1

g2

)

dθ ∧ dφ

F 2 = −
g′

g2
sin θ dφ ∧ dr −

if ′

g2
dt ∧ dθ

F 3 = −
g′

g2
dr ∧ dθ −

if ′

g2
sin θ dt ∧ dφ






. (33)

From this we can read off the nonvanishing components of the magnetic
field Bia and the temporal component of the curvature F

a
0i, given by

B11 = sin θ

(

1−
1

g2

)

, B22 = −
g′

g2
sin θ , B33 = −

g′

g2

F 101 = −

(
if ′

g

)′
, F 202 = −

(
if ′

g2

)

, F 303 = −

(
if ′

g2

)

sin θ






. (34)

Since (34) form diagonal matrices, then the antisymmetric part of
(B−1)ai F

a
0j is zero which according to (8) makes the shift vector N

i

equal to zero. Then following suit with (7) we have

cij = F
a
0i (B

−1)aj = −i








(f ′/g)′

sin θ
(
1− 1

g2

) 0 0

0 (f ′/g′) 1sin θ 0

0 0 (f ′/g′)sin θ







.

The determinant of c(ij) is given by

c = det
∥
∥(B−1)a0F

a
0j

∥
∥ = i

(f ′/g)′ (f ′/g′)2
(
1− 1

g2

)
sin θ

. (35)

So Hodge duality for the chosen connection Aaμ implies, using (8), that
the 3-metric (hij)Hodge is given by

(hij)Hodge = −N
2









(g′/f ′)2 0 0

0

(
1− 1

g2

)

(f ′/g)′ (f ′/g′)
0

0 0

(
1− 1

g2

)

(f ′/g)′ (f ′/g′)
sin2θ








.
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According to Birkhoff’s theorem, any spherically symmetric solution
for vacuum General Relativity must be given by the Schwarzschild so-
lution. Hodge duality alone is insufficient to select this solution, since
it presently allows for three free functions f , g and N . Let us deter-
mine the minimal set of additional conditions necessary to obtain the
Schwarzschild solution. Spherical symmetry (gθθ=r

2 and gφφ=r
2 sin2θ)

in conjunction with the choice N = f leads to the condition
(
1− 1

g2

)

(f ′/g)′ (f ′/g′)
= r2, (36)

which still contains one degree of freedom in the choice of g. For example

let us further choose g= 1
f
. Then g′=− f

′

f2
, which yields

1

2

d2f2

dr2
=
1

r2
(
f2 − 1

)
. (37)

Defining u= ln r, then this leads to the equation
(
d2

du2
−

d

du
− 2

)

f2 = −2 (38)

with solution f2=1+ k1e
−u+k2e

2u for arbitrary constants k1 and k2.
This yields the solution

f2 = 1 + k1 r
−1 + k2 r

2. (39)

Upon making the identification k1≡−2GM and k2≡− Λ3 one recognizes
(39) as the solution for a Schwarzschild-de Sitter black hole.∗

§4.2. Ingredients for the Gauss’ law constraint. The conditions
determining (hij)Constraints are fixed by the spatial connection A

a
i and

Ψae solving the constraints (1). Note in (32) that A
a
i depends only on

g and not on f . This means that only g can be fixed by the Gauss’ law
constraint, and that f must be fixed by equality of (8) with (6). We
will now proceed to solve the Gauss’ law constraint for our connection
(32), with spatial part given in the matrix form

Aai =






A1r A1θ A1φ

A2r A2θ A2φ

A3r A3θ A3φ




 =






0 0 cos θ

0 0 − sin θ
g

0 1
g

0




 ,

∗We will show that the set of conditions leading to (39) arise precisely from the
equality of (8) with (6), namely that the Hodge-duality metric solve the Einstein
equations. Without this, the solution is not unique.
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where g= g(r) is an arbitrary function only of radial distance r from
the origin. By this choice we have also made the choice of a coordinate
system (r, θ, φ) to whose axes various quantities will be referred. From
(4), one can construct the magnetic field Bia

Bia =







−
(
1− 1

g2

)
sin θ 0 0

0 sin θ d
dr
g−1 0

0 0 d
dr
g−1





 ,

and the magnetic helicity density matrix Cae, given by

Cae = A
a
iB
i
e =

∂

∂r








0 0 cos θ
g

0 0 sin θ
2

(
1− 1

g2

)

0 − sin θ2

(
1− 1

g2

)
0







.

The vector field va=B
i
a∂i can be read off from the magnetic field

matrix

v1 = − sin θ

(

1−
1

g2

)
∂

∂r

v2 =
d

dr

(
1

g

)

sin θ
∂

∂θ
, v3 =

d

dr

(
1

g

)
∂

∂φ






. (40)

These will constitute the differential operators in the Gauss’ law con-
straint. The ingredients for (6) for the configuration chosen are

(det‖Ψ‖)
(
Ψ−1Ψ−1

)
ae = −









Λ
3+2Ψ

(−Λ3+Ψ)
2

0 0

0
1

Λ
3+2Ψ

0

0 0
1

Λ
3+2Ψ









for the part involving Ψae, and

ηaeij ∼ (B
−1)a

i
(B−1)e

j
(det‖B‖) −→

−→ −










(
d
dr g

−1
)2

1− 1

g2

0 0

0 1− 1
g2

0

0 0
(
1− 1

g2

)
sin2θ









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for the part involving the magnetic field Bia. We have, in an abuse of
notation, anticipated the result of multiplying the matrices needed for
(6) for this special case where the matrices are diagonal. We will be
particularly interested in the Λ=0 case, as it is the simplest case to
test for the Hodge duality condition.∗ For Λ=0 the 3-metric based on
the initial value constraints (6) is given by

(hij)Λ=0 =
1

2Ψ










4
(
d
dr g

−1
)2

1− 1

g2

0 0

0 1− 1
g2

0

0 0
(
1− 1

g2

)
sin2θ









.

We are now ready to apply the instanton representation method to
the construction of solutions.

§5. First permutation of eigenvalues ~λ(1). We will now produce
some of the known blackhole solutions corresponding to the eigenvalue
permutation ~λ(1). The first equation of (29) for the chosen connection
reduces to

v1{lnΦ}=3C[23] −→ − sin θ

(

1−
1

g2

)
∂ lnΦ

∂r
= 3 sin θ

∂

∂r

(

1−
1

g2

)

(41)

where we have used (40), which integrates to

Φ = c (θ, φ)

(

1−
1

g2

)−3
, (42)

where c at this stage is an arbitrary function of two variables not to be
confused with the c in (7). The second equation of (29) is given by

v2{lnψ} = 3C31 −→

(
d

dr
g−1

)

sin θ
∂ lnψ

∂θ
= 0 , (43)

which implies that ψ=ψ (r, φ). The third equation of (29) is given by

v3{lnψ} = −3C21 −→

(
d

dr
g−1

)
∂ lnψ

∂φ
= 0 . (44)

In conjunction with the results from (43), one has that ψ=ψ (r)
must be a function only of r. Note that this is consistent with Φ being
solely a function of r as in (42), which requires that c(θ, φ)=c be a num-

∗The Λ 6=0 case will be relegated for future research.
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erical constant. Continuing from (42) we have

(
1

2Ψ1/3 + Λ3 Ψ
−2/3

)3

= c

(

1−
1

g2

)−3
, (45)

which upon redefining the parameter c yields the solution

g2 =

(

1−
2

c
Ψ1/3 −

Λ

3c
Ψ−2/3

)−1
. (46)

So knowing Ψ, which comes directly from the CDJ matrix for Petrov
Type D, enables us to determine the connection Aai explicitly in this
case.
We can now proceed to compute the 3-metric hij for the chosen

configuration. We would rather like to express the metric directly in
terms of Ψ, which is the fundamental degree of freedom for the given
Petrov Type. Hence from (45) we have

1−
1

g2
=
1

c
Ψ−2/3

(

2Ψ +
Λ

3

)

, (47)

which yields

d

dr
g−1 = −

1

3c
Ψ−5/3

(

1−
2

c
Ψ1/3−

Λ

3c
Ψ−2/3

)−1/2(

−
Λ

3
+Ψ

)

Ψ′, (48)

where Ψ′= dΨ
dr
. Then the magnetic field part ηaeij of the metric can be

written explicitly in terms of Ψ

ηaeij = −
1

c









1
9

Ψ−8/3(Ψ′)2

1− 2cΨ
1/3− Λ

3cΨ
−2/3

(−Λ3+Ψ)
2

2Ψ+Λ3
0 0

0 Ψ−2/3
(
2Ψ+ Λ

3

)
0

0 0 Ψ−2/3
(
2Ψ+ Λ

3

)
sin2θ








.

Multiplying this matrix by (det‖Ψ‖)
(
Ψ−1Ψ−1

)
ae, we obtain the 3-

metric

(hij)~λ(1) =
1

c







1
9

Ψ−8/3(Ψ′)2

1− 2cΨ
1/3− Λ

3cΨ
−2/3

0 0

0 Ψ−2/3 0

0 0 Ψ−2/3 sin2θ





 .

This is a general solution for the permutation sequence ~λ(1) for the
chosen connection. As a doublecheck, let us eliminate the constant of
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integration c via the rescaling Ψ→Ψc−3/2. But the shift vector N i and
the lapse N have remained undetermined based purely on the initial
value constraints. For N i=0, which is a result of the Hodge duality
condition, this yields a spacetime metric of

ds2 = −N2dt2 +
1

9

(
Ψ−8/3(Ψ′)2

1− 2Ψ1/3c−3/2 − Λ3 Ψ
−2/3

)

dr2 +

+Ψ−2/3
(
dθ2 + sin2θ dφ2

)
. (49)

Already, it can be seen that (49) can lead to some known General
Relativity solutions. Taking Ψ= 1

r3
, c=(GM)−2/3, N i=0 and N2=

=1− 2GM
r
− Λ3 r

2 where N is the lapse function, we obtain

gμν =










1− 2GM
r
− Λ3 r

2 0 0 0

0
1

1− 2GMr −Λ3 r
2
0 0

0 0 r2 0

0 0 0 r2 sin2θ









,

which is the solution for a Euclidean Schwarzschild-de Sitter blackhole.
For Λ=0, gμν reduces to the Schwarzschild metric and for G=0, it
reduces to the de Sitter metric.∗ There clearly exist solutions corre-
sponding to ~λ(1), since it is known that the Einstein equations admit
blackhole solutions. On the other hand, the instanton representation
implies that there must be additional solutions corresponding to the re-
maining permutations ~λ(2) and ~λ(3). We must now check for consistency
of these additional solutions, if they exist, with Birkhoff’s theorem. Let
us examine the different eigenvalue permutations in turn.

§5.1. Hodge duality condition for λ(1) for Λ=0. Note that the
lapse function N at the level of (5) is freely specifiable and not fixed
by (6). To make progress we will need to impose the Hodge duality
condition, namely the equality of (6) with (8). From the Gauss’ law
constraint we can read off from (47) in the Λ=0 case that

Ψ =
1

8

(

1−
1

g2

)3
. (50)

So upon implementation of the Hodge duality condition, then the

∗Setting M =0 corresponds to a transition from Type D to Type O spacetime,
where Ψ=0.
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3-metric must satisfy the condition (hij)Constraints=(hij)Hodge, or

(hij)Λ=0 = −









16
(
d
dr
g−1

)2(
1−

1

g2

)−4
0 0

0 4
(
1−

1

g2

)−2
0

0 0 4
(
1−

1

g2

)−2
sin2θ








=

= −N2









(g′/f ′)2 0 0

0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
0

0 0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
sin2θ








.

As a consistency condition on the radial component grr we must
require that

N2
(
g′

f ′

)2
= 16

g′

g2

(

1−
1

g2

)−4
, (51)

and as a consistency condition on gθθ we must require that

N2

(
1− 1

g2

)

(f ′/g)′ (f ′/g′)
= 4

(

1−
1

g2

)−2
. (52)

Equations (51) and (52) are a set of two equations in three unknowns
N , g and f . Upon dividing equation (52) into (51), then N2 drops out
and we have the following relation between f and g

1

f ′

(
f ′

g

)′
=

4

g2 − 1
−→

f ′′

f ′
=
g′

g
+
4g

g2 − 1
. (53)

Integration of (53) determines f = f [g ] explicitly in terms of g, and
substitution of the result into (51) determines N =N [g ] via

f = k2 + k1

∫
dr g exp

[

4

∫
gdr

g2 − 1

]

N2 =
16

g′g2

(

1−
1

g2

)−2(

k2 + k1

∫
dr g exp

[

4

∫
gdr

g2 − 1

])2






. (54)

Recall that g is fixed by the Gauss’ law constraint on the spatial hy-
persurface Σ, and that f and N have to do with the temporal part of
the metric. The function g is apparently freely specifiable, and each g
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determines f and N . So the Hodge duality condition determines the
temporal parts of gμν from the spatial part.
There are an infinite number of solutions parametrized by the func-

tion g. But according to Birkhoff’s theorem there should be only one
static spherically symmetric vacuum solution, namely the Schwarzschild
solution. The Hodge duality condition by itself is insufficient to select
this solution. First, we must impose the spherically symmetric form
gθθ= r

2 and gφφ= r
2 sin2θ, which implies

4

(

1−
1

g2

)−2
= r2 −→ g =

(

1−
2

r

)−1/2
, g′=−r−2

(

1−
2

r

)−3/2
(55)

in units where GM =1. Substitution of (55) into (51) and (52) yields

N2= r4
(

1−
2

r

)

φ2, N2=−
1

2
r5
(

1−
2

r

)

φ′φ, φ= f ′
(

1−
2

r

)1/2
. (56)

Equating the first and second equations of (56) leads to the condition
that φ= r−2. Putting this into the third equation allows us to find f

f =

∫
dr r−2

(

1−
2

r

)−1/2
= −

(

1−
2

r

)

−→ N2 = 1−
2

r
, (57)

as well as the lapse function N . Putting (57) back into (51) then deter-
mines grr, given by

grr = −
1

1− 2
r

. (58)

The final result is that the condition of spherical symmetry gθθ= r
2

in addition to Hodge duality of the curvature of the chosen Aai fixes the
lapse function N , which yields the spacetime line element

−ds2 =

(

1−
2

r

)

dt2 +

(

1−
2

r

)−1
dr2 + r2

(
dθ2 + sin2θ dφ2

)
. (59)

The result is the Euclidean Schwarzschild metric, as predicted by Birk-
hoff’s theorem.

§6. Second permutation of eigenvalues ~λ(2). We have found
spherically symmetric blackhole solutions using the first permutation
~λ(1). According to the Birkhoff theorem there should be no additional
spherically symmetric time-independent solutions. But we will never-
theless proceed with the construction of any solutions implied by the



88 The Abraham Zelmanov Journal — Vol. 4, 2011

instanton representation for the second permutation ~λ(2). The Gauss’

law constraint equations associated with ~λ(2) are given by (30)

v2{lnΦ} = 3C[31] , v3{lnψ} = 3C12 , v1{lnψ} = −3C32 (60)

with Φ and ψ given by (18). The first equation of (60) yields

v2{lnΦ} = 3C[31] −→

(
d

dr
g−1

)

sin θ
∂ lnΦ

∂θ
= 3

∂

∂r

(

−
cos θ

g

)

(61)

which integrates to

Φ = c (r, φ) sin−3θ , (62)

where c is at this stage an arbitrary function of two variables. The
second equation of (60) yields

v3{lnψ} = 3C12 = 0 −→

(
d

dr
g−1

)
∂ lnψ

∂φ
= 0 , (63)

which implies that ψ=ψ (r, θ). The third equation of (60) yields

v1{lnψ} = −3C32 −→

−→ − sin θ

(

1−
1

g2

)
∂ lnψ

∂r
=
3

2
sin θ

∂

∂r

(

1−
1

g2

)

, (64)

which integrates to

ψ = k (θ, φ)

(

1−
1

g2

)−3/2
. (65)

For consistency of (65) with the results of (62) and (63), we must
have that c (r, φ)= c (r) and k (θ, φ)= k(θ). Therefore ψ and Φ are
given by

ψ = 3

(

−
Λ

3
Ψ−1/3 +Ψ2/3

)−3
= k (θ)

(

1−
1

g2

)−3/2

Φ = 9

(
Λ

3
Ψ−2/3 + 2Ψ1/3

)−3
= c (r) sin−3 θ






. (66)

Equations (66) yield the following two conditions which must be satisfied

−
Λ

3
Ψ−1/3+Ψ2/3= k (θ)

√

1−
1

g2

Λ

3
Ψ−2/3+2Ψ1/3= c (r) sin θ





. (67)
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It appears not possible to satisfy both conditions in (67) unless Λ=0.
Setting Λ=0, then we have the following consistency condition

[
c (r) sin θ

]2
= k (θ)

√

1−
1

g2
−→ c(r) =

(

1−
1

g2

)1/4

k (θ) = sin2θ





. (68)

Substituting (68) back into (67), we obtain

Ψ = Ψ(r, θ) =

(

1−
1

g2

)3/4
sin3 θ . (69)

Using the magnetic field for the configuration chosen, which is the same
as for the previous permutation ~λ(1), then (6) yields a 3-metric

(hij)~λ(2) = −
1

2

(

1−
1

g2

)−3/4
sin−3 θ ×

×









4
(
d
dr g

−1
)2

1− 1

g2

0 0

0 1− 1
g2

0

0 0
(
1− 1

g2

)
sin2θ








.

This particular permutation of eigenvalues is allowed only for Λ=0.

§6.1. Hodge duality condition for λ(2) for Λ=0. The initial
value constraints imply the existence of a spatial 3-metric (hij)~λ(2) . We

must enforce the Hodge duality condition as a consistency condition,
and examine the implications with respect to the Birkhoff theorem.
From the Gauss’ law constraint we can read off from (69) that

Ψ =

(

1−
1

g2

)3/4
sin3 θ . (70)

So upon implementation of the Hodge duality condition, which re-
quires equality of (6) with (8), the 3-metric must satisfy the condition

(hij)Λ=0 = −
1

2
sin−3 θ ×

×









(
4
d

dr
g−1
)2(
1− 1

g2

)−7/4
0 0

0
(
1− 1

g2

)−1/4
0

0 0
(
1− 1

g2

)−1/4
sin2θ








=
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= −N2









(g′/f ′)2 0 0

0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
0

0 0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
sin2θ








.

Consistency of the conformal factor fixes the lapse function as

N2 =
1

2
sin−3 θ . (71)

The remaining consistency conditions are on grr, namely

4
g′

g2

(

1−
1

g2

)−7/4
=

(
g′

f ′

)2
−→ f ′ =

1

2
g2
(

1−
1

g2

)7/8
, (72)

as well as on gθθ
(

1−
1

g2

)1/4
=

(
1− 1

g2

)

(f ′/g)′(f ′/g′)
−→

(
f ′

g

)′
f ′ = g′

(

1−
1

g2

)3/4
. (73)

Putting the result of (72) into (73) leads to the condition

g′
(

1−
1

g2

)7/8[

1 +
7

4g2

(

1−
1

g2

)−1
−
4

g2

(

1−
1

g2

)3/4]

= 0 . (74)

The solution to (74) is g′=0, which means that g is a numerical constant
given by the roots of the term in brackets. This is a seventh degree
polynomial, which we will not attempt to solve in this paper. Note for
g constant that grr=0. If any of the roots of the polynomial are real,
then they would yield the following metric

ds2 = −
1

2
sin−3 θ

[
dt2 + k2

(
dθ2 + sin2θ dφ2

)]
. (75)

The resulting metric is conformal to a 2-sphere radius
√
k2, where

g=
(
1−k42

)
1/2 is any one of the seven roots of (75). The metric resulting

from ~λ(2) is degenerate since grr=0, and also not spherically symmetric
on account of the θ-dependent conformal factor. The interpretation
is that Birkhoff theorem still holds and does not apply to (75), which
constitutes a new General Relativity solution.

§7. Third permutation of eigenvalues ~λ(3). For the third per-
mutation of eigenvalues ~λ(3) we have ~ϕ=(ϕ,ϕ, ϕ1), which leads to the
Gauss’ law constraint equations (31)

v3{lnΦ} = 3C[12] , v1{lnψ} = 3C23 , v2{lnψ} = −3C13 . (76)
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The first equation from (76) is given by

v3{lnΦ} = 3C[12] −→

(
d

dr
g−1

)
∂ lnΦ

∂φ
= 0 , (77)

which implies that Φ=Φ(r, θ) is at this stage an arbitrary function of
two variables. The second equation of (76) is given by

v1{lnψ} = 3C23 −→

−→ − sin θ

(

1−
1

g2

)
∂ lnψ

∂r
=
3

2
sin θ

∂

∂r

(

1−
1

g2

)

, (78)

which integrates to

ψ = k (θ)

(

1−
1

g2

)−3/2
. (79)

This is consistent with the results from (77), since there can be no φ
dependence. The third equation of (76) is given by

v2{lnψ} = −3C13 −→
∂

∂r

(
sin θ

g

)
∂ lnψ

∂θ
= −3

∂

∂r

(
cos θ

g

)

, (80)

which integrates to

ψ = c (r) sin−3 θ , (81)

where c is at this stage an arbitrary function. From (77) Φ=Φ(r, θ) can
be an arbitrary function of r and θ, and hence we are free to determine
this dependence entirely from ψ. Consistency of (79) with (81) implies
that

ψ = −
Λ

3
Ψ−1/3 +Ψ2/3 = sin−3 θ

(

1−
1

g2

)−3/2
. (82)

Unlike the case for ~λ(2) we are allowed to have a nonzero Λ in equation
(82), since there is no longer a constraint on the functional dependence
of Φ. Therefore we are free to solve equation (82) for Ψ, which enables
us to fix Φ=Φ(ψ). Equation (82) is a cubic polynomial equation for the
quantity Ψ1/3, which can be solved in closed form (see e.g. Appendix A
for the derivation)

Ψ = 2

√

−
ψ

3
sin

{
1

3
arcsin

[√
3Λ

2
(−ψ)−3/2

]}3

ψ = sin−3 θ

(

1−
1

g2

)−3/2






. (83)
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For the purposes of constructing a 3-metric we will be content with
the Λ=0 case which follows from (82), yielding

Ψ = Ψ(r, θ) = (sin θ)−9/2
(

1−
1

g2

)−9/4
. (84)

Using the previous configuration, equation (84) yields a 3-metric

(hij)~λ(3)=
1

2

(

1−
1

g2

)9/4
sin9/2θ









4
(
d
dr g

−1
)2

1− 1

g2

0 0

0 1− 1
g2

0

0 0
(
1− 1

g2

)
sin2θ








.

§7.1. Hodge duality condition for λ(3) for Λ=0. The initial
value constraints imply the existence of a spatial 3-metric (hij)~λ(3) . We

must enforce the Hodge duality condition as a consistency condition,
and examine the implications with respect to Birkhoff’s theorem. From
the Gauss’ law constraint we can read off from (84) that

Ψ =

(

1−
1

g2

)3/4
sin3 θ . (85)

So upon implementation of the Hodge duality condition, then the
3-metric must satisfy the condition (hij)Constraints=(hij)Hodge, given by

(hij)~λ(3) =
1

2
sin9/2 θ ×

×









(
4
d

dr
g−1
)2(
1− 1

g2

)5/4
0 0

0
(
1− 1

g2

)13/4
0

0 0
(
1− 1

g2

)13/4
sin2θ








=

= −N2









(g′/f ′)2 0 0

0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
0

0 0

(
1−

1

g2

)

(f ′/g)′ (f ′/g′)
sin2θ








.

Consistency of the conformal factor fixes the lapse function as

N2 = sin9/2θ . (86)
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The remaining consistency conditions are on grr, namely

4
g′

g2

(

1−
1

g2

)5/4
=

(
g′

f ′

)2
−→ f ′ =

1

2
g2
(

1−
1

g2

)−5/8
, (87)

as well as on gθθ
(

1−
1

g2

)13/4
=

(
1− 1

g2

)

(f ′/g)′ (f ′/g′)
−→

(
f ′

g

)′
f ′ = g′

(

1−
1

g2

)−9/4
. (88)

Putting the result of (87) into (88) leads to the condition

g′
(

1−
1

g2

)−5/8(

1−
37

8g2
+
37

8g4

)

= 0 . (89)

The solution to (89) is g′=0, which means that g is a constant given
by the roots of the quartic polynomial in brackets. The solution is

g = ±

√
37

16
±
1

8

√
185

2
. (90)

There are four roots, each of which corresponds to a 2-sphere

ds2 = −
1

2
sin9/2θ

[
dt2 + k3

(
dθ2 + sin2θ dφ2

)]
. (91)

The resulting metric is conformal to a 2-sphere of radius
√
k3, deter-

mined by any of the four roots (90). In direct analogy with the case from
~λ(2), the solutions corresponding to ~λ(3) are also degenerate and not
spherically symmetric. Hence Birkhoff’s theorem still holds and ~λ(1)
yields the unique static spherically symmetric vacuum solution.

§8. Conclusion. In this paper we have constructed some solutions
to the Einstein equations using the instanton representation method.
We have applied this method to spacetimes of Petrov Type D, pro-
ducing some known solutions. We first constructed the Schwarzschild
blackhole solution from a particular permutation ~λ(1) of the eigenvalues
of Ψae solving the initial value constraints, by implementation of the
Hodge duality condition. This was done to establish the validity of the
method for a simple well-known case. Then using the remaining eigen-
value permutations ~λ(2) and ~λ(3), we constructed additional solutions
which might be not as well-known, and perhaps even new. This would
on the surface suggest that the instanton representation method be ren-
dered inadmissible, since Birkhoff’s theorem implies that any additional
solutions besides the Schwarzschild solution must not exist. However,
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upon further analysis we have shown that the Hodge duality condi-
tion applied to the ~λ(2) and ~λ(3) metrics imposed stringent restrictions
on their form. These restrictions led to two new solutions for which
Birkhoff’s theorem does not apply. The metrics for ~λ(2) and ~λ(3) became
conformally related to 2-spheres of fixed radius determined by the roots
of certain polynomial equations. Since the conformal factor depends on
θ, then these metrics are not spherically symmetric in the usual sense.
This, combined with the observation that the metrics are degenerate,
leads us to conclude that the instanton representation method as ap-
plied in this paper is fully consistent with Birkhoff’s theorem, and also
is indeed capable of producing General Relativity solutions. Our main
results have been the validation of the instanton representation method
for the Schwarzschild case, and as well the construction of two solutions
(75) and (91) which to the present author’s knowledge appear to be new.
Having established the validity of the instanton representation method
for a special situation governing the Petrov Type D case as a testing
ground, we are now ready to apply the method to the construction of
more general solutions.

Appendix A. Roots of the cubic polynomial in trigonometric
form. We would like to solve the cubic equation

z3 + pz = q , (92)

Many techniques for solving the cubic involve complicated radicals,
which introduce complex numbers which are not needed when the roots
are real-valued. We prefer the trigonometric method, which avoids such
complications. Define a transformation

z = u sin θ . (93)

Substitution of (93) into (92) yields

sin3 θ +
p

u2
sin θ =

q

u3
. (94)

Comparison of (94) with the trigonometric identity

sin3 θ −
3

4
sin θ = −

1

4
sin
(
3θ
)

(95)

enables one to make the identifications

p

u2
= −
3

4
,

q

u3
= −
1

4
sin
(
3θ
)
. (96)
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This implies that

u =
2
√
3
(−p)1/2, sin

(
3θ
)
= −
3
√
3

2

q

(−p)3/2
. (97)

We can now solve (97) for θ

θ =
1

3
arcsin

[

−
3
√
3

2

q

(−p)3/2

]

+
2πm

3
, m = 0, 1, 2 (98)

and in turn for z using (93). The solution is

z =
1
√
3
(−p)1/2 Tm1/3

[
−3
√
3 q (−p)−3/2

]
, (99)

where we have defined

Tm1/3(t) = 2 sin

[

−
1

3
arcsin

(
t

2

)]

. (100)
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