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Abstract: This study targets the change of mass of a mass-bearing
particle with the distance travelled in the space of the main (princi-
pal) cosmological metrics. The mass-defect is obtained due to a new
method of deduction: by solving the scalar geodesic equation (equa-
tion of energy) of the particle. This equation manifests three factors
affecting the particle’s mass: gravitation, non-holonomity, and de-
formation of space. In the space of Schwarzschild’s mass-point met-
ric, the obtained solution coincides with the well-known gravitational
mass-defect whose magnitude increases toward the gravitating body.
No mass-defect has been found in the rotating space of Gödel’s met-
ric, and in the space filled with a homogeneous distribution of ideal
liquid and physical vacuum (Einstein’s metric). The other obtained
solutions manifest a mass-defect of another sort than that in the mass-
point metric: its magnitude increases with distance from the observer,
so that manifests itself at cosmologically large distances travelled by
the particle. This effect has been found in the space of Schwarzschild’s
metric of a sphere of incompressible liquid, in the space of a sphere
filled with physical vacuum (de Sitter’s metric), and in the deforming
spaces of Friedmann’s metric (empty or filled with ideal liquid and
physical vacuum). Herein, we refer to this effect as the cosmological
mass-defect. It has never been considered prior to the present study:
it is a new effect of the General Theory of Relativity.
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§1. Problem statement. In 2008, I presented my theory of the cos-
mological Hubble redshift [1]. According to the theory, the Hubble red-
shift was explained as the energy loss of photons with distance due to
the work done against the field of global non-holonomity (rotation) of
the isotropic space, which is the home of photons∗. I arrived at this con-
clusion after solving the scalar geodesic equation (equation of energy)
of a photon travelling in a static (non-deforming) universe. The calcu-
lation matched the observed Hubble law, including its non-linearity.

My idea now is that, in analogy to photons, we could as well consider
mass-bearing particles.

Let’s compare the isotropic and non-isotropic geodesic equations,
which are the equations of motion of particles. According to the chrono-
metrically invariant formalism, which was introduced in 1944 by Abra-
ham Zelmanov [3–5], any four-dimensional quantity is observed as its
projections onto the time line and three-dimensional spatial section of
the observer†. The projected (chronometrically invariant) equations for
non-isotropic geodesics have the form [3–5]

dm

dτ
− m

c2
Fiv

i +
m

c2
Dik v

ivk = 0 , (1.1)

d(mvi)

dτ
−mF i + 2m

(

Di
k +A·i

k·
)

vk +m△i
nk v

nvk = 0 , (1.2)

while the projected equations for isotropic geodesics are

dω

dτ
− ω

c2
Fi c

i +
ω

c2
Dik c

ick = 0 , (1.3)

d(ωci)

dτ
− ωF i + 2ω

(

Di
k +A·i

k·
)

ck + ω△i
nk c

nck = 0 . (1.4)

Thus, according to the chronometrically invariant equations of mo-
tion, the factors affecting the particles are: the gravitational inertial
force Fi, the angular velocity Aik of the rotation of space due to its
non-holonomity, the deformation Dik of space, and the non-uniformity
of space (expressed by the Christoffel symbols ∆i

jk).

∗The four-dimensional pseudo-Riemannian space (space-time) consists of two
segregate regions: the non-isotropic space, which is the home of mass-bearing par-
ticles, and the isotropic space inhabited by massless light-like particles (photons).
The isotropic space rotates with the velocity of light under the conditions of both
Special Relativity and General Relativity, due to the sign-alternating property of
the space-time metric. See [2] for details.

†Chronometric invariance means that the projected (chronometrically invariant)
quantities and equations are invariant along the spatial section of the observer.
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As is seen, the non-isotropic geodesic equations have the same form
as the isotropic ones. Only the sublight velocity vi and the relativistic
mass m are used instead of the light velocity ci and the frequency ω

of a photon. Therefore, the factors of gravitation, non-holonomity, and
deformation, presented in the scalar geodesic equation, should change
the mass of a moving mass-bearing particle with distance just as they
change the frequency of a photon.

Relativistic mass change due to the field of gravitation of a massive
body (the space of Schwarzschild’s mass-point metric) is a textbook ef-
fect of General Relativity, well verified by experiments. It is regularly
deduced from the conservation of energy of a mass-bearing particle in
the stationary field of gravitation [6, §88]. However, this method of de-
duction can only be used in stationary fields [6, §88], wherein gravitation
is the sole factor affecting the particle.

In contrast, the new method of deduction of the relativistic mass
change with distance I propose herein — through integrating the scalar
geodesic equation, based on the chronometically invariant formalism,
— is universal. This is because the scalar geodesic equation contains
all three factors changing the mass of a moving mass-bearing particle
with distance (these are gravitation, non-holonomity, and deformation),
and these factors are presented in their general form, without any lim-
itations. Therefore the suggested method of deduction can equally be
applied to calculating the relativistic mass change with distance trav-
elled by the particle in any particular space metric known due to the
General Theory of Relativity.

In the next paragraphs of this paper, we will apply the suggested
method of deduction to the main (principal) cosmological metrics. As
a result, we will see how a mass-bearing particle changes its mass with
the distance travelled in most of these spaces, including “cosmologi-
cally large” distances where the relativistic mass change thus becomes
cosmological mass-defect.

§2. The chronometrically invariant formalism in brief. Before
we solve the geodesic equations in chronometrically invariant form, we
need to have a necessary amount of definitions of those quantities spec-
ifying the equations. According to the chronometrically invariant for-
malism [3–5], these are: the chr.inv.-vector of the gravitational inertial
force Fi, the chr.inv.-tensor of the angular velocity of the rotation of
space Aik due to its non-holonomity (non-orthogonality of the time lines
to the three-dimensional spatial section), the chr.inv.-tensor of the de-
formation of space Dik, and the chr.inv.-Christoffel symbols ∆i

jk (they
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manifest the non-uniformity of space)

Fi =
1√
g00
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∂xi
− ∂vi
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)

,
√
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c2
, (2.1)
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They are expressed through the chr.inv.-differential operators

∗∂

∂t
=

1√
g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
+

1

c2
vi

∗∂
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, (2.5)

as well as the gravitational potential w, the linear velocity vi of space
rotation due to the respective non-holonomity, and also the chr.inv.-
metric tensor hik, which are determined as

w = c2 (1−√
g00) , vi = − cg0i√

g00
, (2.6)

hik = −gik +
1

c2
vivk , hik = −gik, hi

k = δik , (2.7)

while the derivation parameter of the equations is the physical observ-
able time

dτ =
√
g00 dt−

1

c2
vidx

i. (2.8)

This is enough. We now have all the necessary equipment to solve
the geodesic equations in chronometrically invariant form.

§3. Local mass-defect in the space of a mass-point (Schwarz-
schild’s mass-point metric). This is an empty space∗, wherein a
spherical massive island of matter is located, thus producing a spheri-
cally symmetric field of gravitation (curvature). The massive island is

∗In the General Theory of Relativity, we say that a space is empty if it is free
of distributed matter — substance or fields, described by the right-hand side of
Einstein’s equations, — except for the field of gravitation, which is the same as the
field of the space curvature described by the left-hand side of the equations.
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approximated as a mass-point at distances much larger than its radius.
The metric of such a space was introduced in 1916 by Karl Schwarz-
schild [7]. In the spherical three-dimensional coordinates x1= r, x2=ϕ,
x3= θ, the metric has the form

ds2 =
(

1− rg

r

)

c2dt2 − dr2

1− rg
r

− r2
(

dθ2 + sin2θ dϕ2
)

, (3.1)

where r is the distance from the mass-island of the massM , rg =
2GM

c2
is

the corresponding gravitational radius of the mass, and G is the world-
constant of gravitation. As is seen from the metric, such a space is free
of rotation and deformation. Only the field of gravitation affects mass-
bearing particles therein.

Differentiating the gravitational potential w= c2(1−√
g00) with re-

spect to xi, we obtain

Fi =
1√
g00

∂w

∂xi
= − c2

2g00

∂g00

∂xi
, (3.2)

wherein, according to the metric (3.1), we should readily substitute

g00 = 1− rg

r
. (3.3)

Thus the gravitational inertial force (2.1) in the space of Schwarz-
schild’s mass-point metric has the following nonzero components

F1 = −c2rg

2r2
1

1− rg
r

, F 1 = −c2rg

2r2
(3.4)

which, if the mass-island is not a collapsar (r≫ rg), are

F1 = F 1 = −GM

r2
. (3.5)

As a result, the scalar geodesic equation for a mass-bearing particle
(1.1) takes the form

dm

dτ
− m

c2
F1v

1 = 0 , (3.6)

where v1= dr
dτ
. This equation transforms into dm

m
= 1

c2
F1dr, thus we

obtain the equation d lnm=− GM

c2
dr

r2
. It solves, obviously, as

m = m0 e

GM

c2r ≃ m0

(

1 +
GM

c2r

)

. (3.7)
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According to the solution, a spacecraft’s mass measured on the sur-
face of the Earth (M =6.0×1027 gram, r=6.4×108 cm) will be greater
than its mass measured at the distance of the Moon (r=3.0×1010 cm)
by a value of 1.5×10−11m0 due to the greater magnitude of the gravi-
tational potential near the Earth.

This mass-defect is a local phenomenon: it decreases with distance
from the source of the field, thus becoming negligible at “cosmologically
large” distances even in the case of such massive sources of gravitation
as the galaxies. This is not a cosmological effect, in other words.

It is known as the gravitational mass-defect in the Schwarzschild
mass-point field, which is just one of the basic effects of the General
Theory of Relativity. The reason why I speak of this well-known effect
herein is that this method of deduction — through integrating the scalar
geodesic equation, based on the chronometically invariant formalism, —
differs from the regular deduction [6, §88], derived from the conservation
of energy of a particle travelling in a stationary field of gravitation.

§4. Local mass-defect in the space of an electrically charged
mass-point (Reissner-Nordström’s metric). Due to the suggest-
ed new method of deduction — through integrating the scalar geodesic
equation, based on the chronometically invariant formalism, — we can
now calculate mass-defect in the space of Reissner-Nordström’s metric.
This is a space analogous to the space of the mass-point metric with
the only difference being that the spherical massive island of matter
is electrically charged: in this case, the massive island is the source
of both the gravitational field (the field of the space curvature) and
the electromagnetic field. Therefore such a space is not empty but filled
with a spherically symmetric electromagnetic field (distributed matter).
Such a space has a metric which appears as an actual extension of
Schwarzschild’s mass-point metric (3.1). The metric was first introduced
in 1916 by Hans Reissner [8] then, independently, in 1918 by Gunnar
Nordström [9]. It has the form

ds2 =

(

1− rg

r
+

r2q

r2

)

c2dt2− dr2

1− rg
r
+

r2q
r2

− r2
(

dθ2 + sin2θ dϕ2
)

, (4.1)

where r is the distance from the charged mass-island, rg =
2GM

c2
is the

corresponding gravitational radius, M is its mass, G is the constant of

gravitation, r2q =
Gq2

4πε0c4
, where q is the corresponding electric charge,

and 1

4πε0
is Coulomb’s force constant. As is seen from the metric, such

a space is free of rotation and deformation. The gravitational inertial
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force is, in this case, determined by both Newton’s force and Coulomb’s
force according the component g00 of the metric (4.1) which is

g00 = 1− rg

r
+

r2q

r2
, (4.2)

thus we obtain

F1 = − c2

2
(

1− rg
r
+

r2q
r2

)

(

rg

r2
−

2r2q
r3

)

, (4.3)

F 1 = −− c2

2

(

rg

r2
−

2r2q
r3

)

. (4.4)

If the massive island is not a collapsar (r≫ rg), and it bears a weak
electric charge (r≫ rq), we have

F1 = F 1 = −c2

2

(

rg

r2
−

2r2q
r3

)

= −GM

r2
+

Gq2

4πε0c2
1

r3
. (4.5)

Thus, the scalar geodesic equation for a mass-bearing particle (1.1)
takes the form

dm

dτ
− m

c2
F1v

1 = 0 , (4.6)

where v1= dr
dτ
. It transforms into d lnm=

(

− GM

c2r2
+ Gq2

4πε0c4
1

r3

)

dr, which

solves, obviously, as

m = m0 e

GM

c2r
− 1

2r2
Gq2

4πε0c
4

≃ m0

(

1+
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c2r
− 1

2r2
Gq2

4πε0c4

)

. (4.7)

As is seen from the solution, we should expect a mass-defect to be
observed in the space of Reissner-Nordström’s metric. Its magnitude
is that of the mass-defect of the mass-point metric (the second term in
the solution) with a second-order correction — the mass-defect due to
the electromagnetic field of the massive island (the third term). The
magnitude of the correction decreases with distance from the source of
the field (a charged spherical massive island) even faster than the mass-
defect due to the field of gravitation of the massive island. Therefore,
the mass-defect in the space of Reissner-Nordström’s metric we have
obtained here is a local phenomenon, not a cosmological effect.

Note that this is the first case, where a mass-defect is predicted due
to the presence of the electromagnetic field. Such an effect was not con-
sidered in the General Theory of Relativity prior to the present study.



144 The Abraham Zelmanov Journal — Vol. 4, 2011

A note concerning two other primary extensions of Schwarzschild’s
mass-point metric. Kerr’s metric describes the space of a rotating mass-
point. It was introduced in 1963 by Roy P. Kerr [10] then transformed
into suitable coordinates by Robert H. Boyer and Richard W. Lind-
quist [11]. The Kerr-Newman metric was introduced in 1965 by Ezra T.
Newman [12,13]. It describes the space of a rotating, electrically charged
mass-point. These metrics are deduced in the vicinity of the point-like
source of the field: they do not contain the distribution function of the
rotational velocity with distance from the source. As a result, when
taking into account the geodesic equations to be integrated in the space
of any one of the rotating mass-point metrics, we should introduce the
functions on our own behalf. This is not good at all: our choice of the
functions, based on our understanding of the space rotation, can be true
or false. We therefore omit calculation of mass-defect in the space of
a rotating mass-point (Kerr’s metric), and in the space of a rotating,
electrically charged mass-point (the Kerr-Newman metric).

§5. No mass-defect present in the rotating space with self-
closed time-like geodesics (Gödel’s metric). This space metric
was introduced in 1949 by Kurt Gödel [14], in order to find a possi-
bility of time travel (realized through self-closed time-like geodesics).
Gödel’s metric, as was shown by himself [14], satisfies Einstein’s equa-
tions where the right-hand side contains the energy-momentum tensor
of dust and also the λ-term. This means that such a space is not empty,
but filled with dust and physical vacuum (λ-field). Also, it rotates so
that time-like geodesics are self-closed therein. Gödel’s metric in its
original notation, given in his primary publication [14], is

ds2 = a2

[

(dx̃0)2+2ex̃
1

dx̃0dx̃2−(dx̃1)2+
e2x̃

1

2
(dx̃2)2−(dx̃3)2

]

, (5.1)

where a= const> 0 [cm] is a constant of the space, determined through

Einstein’s equations as λ=− 1

2a2 =− 4πGρ

c2
so that a2 =

c2

8πGρ
=− 1

2λ
,

and ρ is the dust density. Gödel’s metric in its original notation (5.1) is
expressed through the dimensionless Cartesian coordinates dx̃0= 1

a
dx0,

dx̃1= 1

a
dx1, dx̃2= 1

a
dx2, dx̃3= 1

a
dx3, which emphasize the meaning of

the world-constant a of such a space. Also, this is a constant-curvature
space wherein the curvature radius is R= 1

a2 = const> 0.

We now move to the regular Cartesian coordinates adx̃0= dx0= cdt,
adx̃1= dx1, adx̃2= dx2, adx̃3= dx3, which are more suitable for the
calculation of the components of the fundamental metric tensor, thus
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manifesting the forces acting in the space better. As a result, we obtain
Gödel’s metric in the form

ds2 = c2dt2+2e
x1

a cdtdx2−(dx1)2+
e

2x1

a

2
(dx2)2−(dx3)2. (5.2)

As is seen from this form of Gödel’s metric,

g00 = 1 , g02 = e
x1

a , g01 = g03 = 0 , (5.3)

thus implying that such a space is free of gravitation, but rotates with
a three-dimensional linear velocity vi (determined by g0i) whose only
nonzero component is v2. The velocity v2 (actually, the component g02)
manifests the cosine of the angle of inclination of the line of time x0= ct

to the spatial axis x2= y. Therefore the lines of time are non-orthogonal
to the spatial axis at each single point of a Gödel space, owing to which
local time-like geodesics are the elements of big circles (self-closing time-
like geodesics) therein. The nonzero v2 also means that the shift of the
whole three-dimensional space along the axis draws a big circle. This
velocity, according to the definition of vi (2.6) provided by the chrono-
metrically invariant formalism, is

v2 = − ce
x1

a , (5.4)

which, obviously, does not depend on time. Therefore, in the space of
Gödel’s metric, the second (inertial) term of the gravitational inertial
force Fi (2.1) is zero as well as the first (gravitational) term. The metric
is also free of deformation: the spatial components gik of the fundamen-
tal metric tensor do not depend on time therein.

As a result, we see that no one of the factors changing the mass of a
mass-bearing particle according to the scalar geodesic equation (whose
factors are gravitation, non-holonomity, and deformation of space) is
present in the space of Gödel’s metric. We therefore conclude that mass-
bearing particles do not achieve mass-defect with the distance travelled
in a Gödel universe.

§6. Cosmological mass-defect in the space of Schwarzschild’s
metric of a sphere of incompressible liquid. This is the internal
space of a sphere filled, homogeneously, with an incompressible liquid.
The preliminary form metric of such a space was introduced in 1916 by
Karl Schwarzschild [15]. He however limited himself to the assumption
that the three-dimensional components of the fundamental metric tensor
should not possess breaking (discontinuity). The general form of this
metric, which is free of this geometric limitation, was deduced in 2009
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by Larissa Borissova: see formula (3.55) in [16], or (1.1) in [17]. It is

ds2 =
1

4

(

3

√

1− κρ0a2

3
−
√

1− κρ0r2

3

)2

c2dt2 −

− dr2

1− κρ0r2

3

− r2
(

dθ2 + sin2θ dϕ2
)

, (6.1)

where κ= 8πG
c2

is Einstein’s gravitational constant, ρ0 =
M
V

= 3M
4πa3 is

the density of the liquid, a is the sphere’s radius, and r is the radial
coordinate from the central point of the sphere. The metric manifests
that such a space is free of rotation and deformation. Only gravitation
affects mass-bearing particles therein. It is determined by

g00 =
1

4

(

3

√

1− κρ0a2

3
−
√

1− κρ0r2

3

)2

. (6.2)

Respectively, the gravitational inertial force (2.1) in the space of the
generalized Schwarzschild metric of a sphere of incompressible liquid
has the following nonzero components

F1 = − c2κρ0r

3
√

1− κρ0r2

3

(

3
√

1− κρ0a2

3
−
√

1− κρ0r2

3

) , (6.3)

F 1 = −
c2κρ0r

√

1− κρ0r2

3

3

(

3
√

1− κρ0a2

3
−
√

1− κρ0r2

3

) , (6.4)

while the remaining components of the force are zero, because, as is
seen from the metric (6.1), the component g00, which determines the
force, is only dependent on the radial coordinate x1= r.

Thus the scalar geodesic equation for a mass-bearing particle (1.1)
takes the form

dm

dτ
− m

c2
F1v

1 = 0 , (6.5)

where v1= dr
dτ
, while F1 is determined by (6.3). This equation trans-

forms, obviously, into d lnm= 1

c2
F1dr, thus

d lnm = − κρ0r

3
√

1− κρ0r2

3

dr
(

3
√

1− κρ0a2

3
−
√

1− κρ0r2

3

) . (6.6)
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Meanwhile,

d

(

3

√

1− κρ0a2

3
−
√

1− κρ0r2

3

)

=
κρ0r

3

dr
√

1− κρ0r2

3

, (6.7)

therefore the initial equation transforms into

d lnm = − d ln

(

3

√

1− κρ0a2

3
−
√

1− κρ0r2

3

)

, (6.8)

which solves as

m = m0

3
√

1− κρ0a2

3
− 1

3
√

1− κρ0a2

3
−
√

1− κρ0r2

3

. (6.9)

Because the world-density is quite small, ρ0 ≈ 10−29 gram/cm3 or
even less than it, and Einstein’s gravitational constant is very small
as well, κ= 8πG

c2
=1.862×10−27 cm/gram, the obtained solution (6.9)

at distances much smaller than the radius of such a universe (r≪a),
takes the simplified form

m = m0

(

1− κρ0r
2

12

)

. (6.10)

As such, mass-defect in a spherical universe filled with incompress-
ible liquid is negative. The magnitude of the negative mass-defect in-
creases with distance from the observer, eventually taking the ultimately
high numerical value at the event horizon. Hence, this is definitely a
true instance of cosmological effects. We will therefore further refer to
this effect as the cosmological mass-defect.

In other words, the more distant an object we observe in such a
universe is, the less is its observed mass in comparison to its real rest-
mass measured near this object.

If our Universe would be a sphere of incompressible liquid, the mass-
defect would be negligible within our Galaxy “Milky Way” (because ρ0
and κ are very small). However, it would become essential at distances
of even the closest galaxies: an object located as distant as the Androm-
eda Galaxy (r≃ 780×103 pc≃ 2.4×1024 cm) would have a negative cos-
mological mass-defect equal, according to the linearized solution (6.10),

to κρ0r
2

12
≈ 10−8 of its true rest-mass m0.

At the ultimate large distance in such a universe, which is the event
horizon r= a, the obtained solution (6.9) manifests the ultimately high
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mass-defect

m = m0

3
√

1− κρ0a2

3
− 1

2
√

1− κρ0a2

3

. (6.11)

§7. Cosmological mass-defect in the space of a sphere filled
with physical vacuum (de Sitter’s metric). Such a space was first
considered in 1917 by Willem de Sitter [18,19]. It contains no substance,
but is filled with a spherically symmetric distribution of physical vacuum
(λ-field). Its curvature is constant at each point: this is a constant-
curvature space. Its metric, introduced by de Sitter, is

ds2 =

(

1− λr2

3

)

c2dt2 − dr2

1− λr2

3

− r2
(

dθ2 + sin2θ dϕ2
)

, (7.1)

which contains the λ-term of Einstein’s equations. Such a space is as well
free of rotation and deformation, while gravitation is only determined
by the λ-term

g00 = 1− λr2

3
. (7.2)

Respectively, the sole nonzero components of the gravitational iner-
tial force (2.1) in such a space are

F1 =
λc2

3

r

1− λr2

3

, F 1 =
λc2

3
r , (7.3)

while the remaining ones are zero: the component g00, which determines
gravitation, in de Sitter’s metric (7.1) is dependent only on the radial
coordinate x1= r. This is a non-Newtonian gravitational force which
is due to the λ-field (physical vacuum). Its magnitude increases with
distance: if λ< 0, this is a force of attraction, if λ> 0 this is a force of
repulsion.

Thus the scalar geodesic equation for a mass-bearing particle (1.1)
in this case has the form

dm

dτ
− m

c2
F1v

1 = 0 , (7.4)

where v1= dr
dτ
, with Fi determined by (7.3). It transforms, obviously,

into d lnm= 1

c2
F1dr, which is

d lnm =
λr

3

dr

1− λr2

3

. (7.5)
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Because

d ln

(

1− λr2

3

)

= −2λr

3

dr

1− λr2

3

, (7.6)

the initial equation takes the form

d lnm = − 1

2
d ln

(

1− λr2

3

)

, (7.7)

which solves as

m =
m0

√

1− λr2

3

. (7.8)

Because, according to astronomical estimates, the λ-term is quite
small as λ610−56 cm−2, at small distances this solution becomes

m = m0

(

1 +
λr2

6

)

. (7.9)

As is seen from the obtained solution, a positive mass-defect should
be observed in a de Sitter universe: the more distant the observed object
therein is, the greater is its observed mass in comparison to its real rest-
mass measured near the object. The magnitude of this effect increases
with distance with respect to the object under observation. In other
words, this is another cosmological mass-defect.

For instance, suppose our Universe to be a de Sitter world. Consider
an object, which is located at the distance of the Andromeda Galaxy
(r≃ 780×103 pc≃ 2.4×1024 cm). In this case, with λ610−56 cm−2 and
according to the linearized solution (7.9), the mass of this object regis-
tered in our observation should be greater than its true rest-massm0 for

a value of λr2

6
6 10−8. However, at the event horizon r≈ 1028 cm, which

is the ultimately large distance observed in our Universe according to
the newest data of observational astronomy, the magnitude of the mass-
defect, according to the obtained exact solution (7.8), is expected to be
very high, even approaching infinity.

Therefore, the one of experimenta crucis answering the question “is
our Universe a de Sitter world or not?” would be a substantially high
positive mass-defect of distant galaxies and quasars.

§8. No mass-defect present in the space of a sphere filled with
ideal liquid and physical vacuum (Einstein’s metric). This cos-
mological solution was introduced by Albert Einstein in his famous pre-
sentation [20], held on February 8, 1917, wherein he introduced relativis-
tic cosmology. This solution implies a closed spherical space, which is
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filled with homogeneous and isotropic distribution of ideal (non-viscous)
liquid and physical vacuum (λ-field). It was not the first of the exact
solutions of Einstein’s equations, found by the relativists, but the first

cosmological model — this metric was suggested (by Einstein) as the
most suitable model of the Universe as a whole, answering the data of
observational astronomy known in those years. The metric of such a
space, known also as Einstein’s metric, has the form

ds2 = c2dt2 − dr2

1− λr2
− r2

(

dθ2 + sin2θ dϕ2
)

, (8.1)

which is similar to de Sitter’s metric (7.1), with only the difference being
that Einstein’s metric has g00=1 and there is no numerical coefficient
1

3
in the denominator of g11. Herein λ= 4πGρ

c2
, i.e. the cosmological

λ-term has the opposite sign compared to that of Gödel’s metric.
As is seen, in Einstein’s metric,

g00 = 1 , g01 = g02 = g03 = 0 , (8.2)

thus implying that such a space is free of gravitation and rotation. It
is also not deforming: the three-dimensional components gik do not
depend on time therein. So, the metric contains no one of the fac-
tors changing the mass of a mass-bearing particle according to the
scalar geodesic equation. This means that mass-bearing particles do
not achieve mass-defect with the distance travelled in the space of Ein-
stein’s metric.

§9. Cosmological mass-defect in the deforming spaces of
Friedmann’s metric. This space metric was introduced in 1922 by
Alexander Friedmann as a class of non-stationary solutions to Einstein’s
equations aimed at generalizing the static homogeneous, and isotropic
cosmological model suggested in 1917 by Einstein. Spaces of Fried-
mann’s metric can be empty, or filled with a homogeneous and isotropic
distribution of ideal (non-viscous) liquid in common with physical vac-
uum (λ-field), or filled with one of the media. In a particular case, it
can be dust. This is because the energy-momentum tensor of ideal liq-
uid transforms into the energy-momentum tensor of dust by removing
the term containing pressure (in this sense, dust behaves as pressureless
ideal liquid).

Friedmann’s metric in the spherical three-dimensional coordinates
has the form

ds2 = c2dt2 −R2

[

dr2

1− κr2
+ r2

(

dθ2 + sin2θ dϕ2
)

]

, (9.1)
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where R=R(t) is the curvature radius of the space, while κ=0,±1 is
the curvature factor∗. In the case of κ=−1, the four-dimensional space
curvature is negative: this manifests an open three-dimensional space
of the hyperbolic type. The case of κ=0 yields zero curvature (flat
three-dimensional space). If κ=+1, the four-dimensional curvature is
positive, giving a closed three-dimensional space of the elliptic type.

The non-static cosmological models with κ=+1 and κ=−1 were
considered in 1922 by Friedmann in his primary publication [21] wherein
he pioneered non-stationary solutions of Einstein’s equations, then in
1924, in his second (last) paper [22]. However, the most popular among
the cosmologists is the generalized formulation of Friedmann’s metric,
which contains all three cases κ=0,±1 of the space curvature as in (9.1).
It was first considered in 1925 by Georges Lemâıtre [23,24], who did not
specify κ, then in 1929 by Howard Percy Robertson [25], and in 1937
by Arthur Geoffrey Walker [26]. Friedmann’s metric in its general-
ized form (9.1) containing κ=0,±1 is also conventionally known as the
Friedmann-Lemâıtre-Robertson-Walker metric.

A short note about the dimensionless radial coordinate r used in
Friedmann’s metric (9.1). In a deforming (expanding or compressing)
space, the regular coordinates change their scales with time. In par-
ticular, if the space deforms as any expanding or compressing spherical
space, the regular radial coordinate will change its scale. To remove this
problem, Friedmann’s metric is regularly expressed through a “homo-
geneous” radial coordinate r as in (9.1)†. It comes as the regular radial
coordinate (circumference measured on the hypersphere), which is then
divided by the curvature radius whose scale changes with time accord-
ingly. As a result, the homogeneous radial coordinate r (“reduced” cir-
cumference) does not change its scale with time during expansion or
compression of the space.

Let’s have a look at Friedmann’s metric (9.1). We see that

g00 = 1 , g0i = 0 , gik = gik (t) , (9.2)

hence, such a space is free of gravitation and rotation, while its three-
dimensional subspace deforms. Therefore, the scalar geodesic equation

∗This form of Friedmann’s metric, containing the curvature factor κ, was intro-
duced due to the independent studies conducted by Lemâıtre [23, 24] and Robert-
son [25], following Friedmann’s death in 1925.

†Sometimes, Cartesian coordinates are more reasonable for the purpose of cal-
culation. In this case, Friedmann’s metric is expressed through the “homogeneous”
Cartesian coordinates, which are derived in the same way from the regular Cartesian
coordinates, and which are also dimensionless. See Zelmanov’s book on cosmology [4]
and his paper [5], for instance.
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(1.1) for a mass-bearing particle which travels in the space of Fried-
mann’s metric (we assume that it travels along the radial coordinate r

with respect to the observer) takes the form

dm

dτ
+

m

c2
D11v

1v1 = 0 , (9.3)

where v1= dr
dτ

[sec−1], while only the space deformation along the radial
coordinate, which is D11, affects the mass of the particle during its
motion. According to Friedmann’s metric, dτ = dt due to g00 =1 and
g0i=0. Thus the scalar geodesic equation (9.3) transforms into

d lnm = − 1

c2
D11 ṙ

2dt . (9.4)

Unfortunately, this equation, (9.4), cannot be solved alone, as well
as the scalar geodesic equation in any deforming space: the deformation
term of the equation contains the velocity of the particle which is un-
known and is determined by the space metric. We find the velocity from
the vectorial geodesic equation (1.2), which for a mass-bearing particle
travelling in the radial direction r in the space of Friedmann’s metric
(9.1) takes the form

dv1

dτ
+

1

m

dm

dτ
v1 + 2D1

1 v
1 +△1

11v
1v1 = 0 . (9.5)

To remove m from the vectorial geodesic equation (9.5), we make
a substitution of the scalar equation (9.3). We obtain a second-order
differential equation with respect to r, which has the form

r̈ + 2D1
1 ṙ +∆1

11 ṙ
2 − 1

c2
D11 ṙ

3 = 0 . (9.6)

According to the definitions of Dik (2.3) and ∆i
ik (2.4), we calculate

D11, D
1
1, and ∆1

11 in the space of Friedmann’s metric. To do it, we use
the components of the chr.inv.-metric tensor hik (2.7) calculated ac-
cording to Friedmann’s metric (9.1). After some algebra, we obtain

h11 =
R2

1− κr2
, h22 = R2r2, h33 = R2r2 sin2θ , (9.7)

h = det ‖hik‖ = h11h22h33 =
R6r4 sin2θ

1− κr2
, (9.8)

h11 =
1− κr2

R2
, h22 =

1

R2r2
, h33 =

1

R2r2 sin2θ
. (9.9)
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As a result, we obtain, in the general case of an arbitrary space of
Friedmann’s metric,

D11 =
R

1− κr2
∂R

∂t
=

RṘ

1− κr2
, D1

1 =
Ṙ

R
, D =

3Ṙ

R
, (9.10)

∆1
11 =

κr

1− κr2
, (9.11)

thus our equation (9.6) takes the form

r̈ +
2Ṙ

R
ṙ +

κr

1− κr2
ṙ2 − RṘ

c2 (1− κr2)
ṙ3 = 0 . (9.12)

This equation is non-solvable being considered in the general form
as here. To solve this equation, we should simplify it by assuming part-
icular forms of the functions κ and R=R(t).

The curvature factor κ can be chosen very easily: with κ=0 we have
a deforming flat universe, κ=+1 describes a deforming closed universe,
while κ=−1 means a deforming open universe.

The curvature radius as a function of time, R=R(t), appears due to
that fact that the space deforms. This function can be found through
the tensor of the space deformation Dik, whose trace

D = hikDik =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√
h

∂t
=

1

V

∗∂V

∂t
(9.13)

yields the speed of relative deformation (expansion or compression) of
the volume of the space element [4, 5]. The volume of a space element,
which plays the key rôle in the formula, is calculated as follows. A paral-
lelepiped built on the vectors ri(1), r

i
(2), . . . , r

i
(n) in an n-dimensional Eu-

clidean space has its volume calculated as V=± det ‖ri
(n)

‖=±|ri
(n)

|. We

thus have an invariant V 2 = |ri
(n)

||r(m)i|= |ri
(n)

||hik r
k
(m)

|= |hik r
i
(n)

rk
(m)

|,
where hik ≡−gik according to Euclidean geometry. Thus, we obtain
(dV )2 = |hik dx

i
(n)

dxk
(m)

|= |hik||dxi
(n)

||dxk
(m)

|=h |dxi
(n)

||dxk
(m)

|. Finally,
we see that the volume of a differentially small element of an Euclidean
space is calculated as dV=

√
h |dxi

(n)|. Extending this method into a
Riemannian space such as the basic space (space-time) of the General
Theory of Relativity, we obtain dV=

√−g |dxα
(ν)|. In particular, the vol-

ume of a three-dimensional (spatial) differentially small element therein
is dV=

√
h |dxi

(n)
|, or, if the parallelepiped’s edges meet the (curved)

spatial coordinate axes, dV=
√
h dx1dx2dx3. The total volume of an ex-

tended space element is a result of integration of dV along all three spa-
tial coordinates. Thus, in an arbitrary three-dimensional space, which
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is a subspace of the entire space-time, we obtain

D =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√
h

∂t
=

1

V

∗∂V

∂t
= γ

1

a

∗∂a

∂t
= γ

u

a
, (9.14)

where a is the radius of the extended volume (V∼ a3), u is the linear
velocity of its deformation (positive in the case of expansion, and neg-
ative in the case of compression), and γ= const is the shape factor of
the space (γ=3 in the homogeneous isotropic models [4, 5]).

Taking this formula into account, I would like to introduce two main
types of the corresponding space deformation, and two respective types
of the function R=R(t). They are as follows.

A constant-deformation (homotachydioncotic) universe. Each
single volume V of such a universe, including its total volume and differ-
ential volumes, undergoes equal relative changes with time∗

D =
1

V

∗∂V

∂t
= γ

u

a
= const . (9.15)

If such a universe expands, the linear velocity of the expansion in-
creases with time. This is an accelerated expanding universe. In con-
trast, if such a universe compresses, the linear velocity of its compression
decreases with time: this is a decelerated compressing universe.

In spaces of Friedmann’s metric, D= 3Ṙ
R

(9.10). Once Ṙ
R
=A= const

that meansD= const, we have 1

R
dR=Adt that means d lnR=Adt. As

a result, denoting R0 = a0, we obtain that

R = a0 e
At, Ṙ = a0AeAt (9.16)

in this case. Substituting the solutions into the general formulae (9.10),
we obtain that, in a constant deformation Friedmann universe,

D =
3Ṙ

R
= 3A = const , (9.17)

D11 =
RṘ

1− κr2
=

a20Ae2At

1− κr2
, (9.18)

D1
1 =

Ṙ

R
= A = const . (9.19)

∗I refer to this kind of universe as homotachydioncotic (oµoταχυδιoγκωτικó).
This terms originates from homotachydioncosis — oµoταχυδιóγκωσης — volume
expansion with a constant speed, from óµo which is the first part of óµoιoς (omeos)
— the same, ταχύτητα — speed, διóγκωση — volume expansion, while compression
can be considered as negative expansion.
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A constant speed deforming (homotachydiastolic) universe.

Such a universe deforms with a constant linear velocity∗ u=
∗∂a

∂t
=const.

As a result, the radius of any volume element changes linearly with time
a= a0 +ut (the sign of u is positive in an expanding universe, and nega-
tive in the case of compression). Thus, relative change of such a volume
is expressed, according to the general formula (9.14), as

D = γ
u

a0 + ut
≃ γ

u

a0

(

1− ut

a0

)

. (9.20)

We see that deformation of such a universe decreases with time in
the case of expansion, and increases with time if it compresses.

With D= γu
a0+ut

(9.20), because D= 3Ṙ
R

in spaces of Friedmann’s

metric, we arrive at the simplest equation 3

R
dR= γu

a0+ut
dt. It obviously

solves, in the Friedmann case (γ=3), as R= a0+ut. Thus we obtain

R = a0 + ut , Ṙ = u . (9.21)

As a result, substituting the solutions into the general formulae
(9.10), we obtain, in a constant-speed deforming Friedmann universe,

D =
3Ṙ

R
=

3u

a0 + ut
, (9.22)

D11 =
RṘ

1− κr2
=

(a0 + ut)u

1− κr2
, (9.23)

D1
1 =

Ṙ

R
=

u

a0 + ut
. (9.24)

In reality, space expands or compresses as a whole so that its volume
undergoes equal relative changes with time. Therefore, if our Universe
really deforms — expands or compresses — it is a space of the homo-
tachydioncotic (constant deformation) kind. Therefore, we will further
consider a constant-deformation Friedmann universe as follows.

Consider the vectorial geodesic equation (9.12) in the simplest case
of Friedmann universe, wherein κ=0. This is a flat three-dimensional
space which expands or compresses due to the four-dimensional curva-
ture which, having a radius R, is nonzero. In such a Friedmann universe

∗I refer to this kind of universe as homotachydiastolic (oµoταχυδιαστoλικóς). Its
origin is homotachydiastoli — oµoταχυδιαστoλή — linear expansion with a constant
speed, from óµo which is the first part of óµoιoς — the same, ταχύτητα — speed,
and διαστoλή — linear expansion (compression is the same as negative expansion).
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(κ=0, D=3A= const), while taking into account that under the condi-
tion of constant deformation we have R= a0e

At and Ṙ= a0AeAt (9.16),
the vectorial geodesic equation (9.12) takes the most simplified form

r̈ − a20Ae2At

c2
ṙ3 + 2Aṙ = 0 . (9.25)

Let’s introduce a new variable ṙ ≡ p. Thus r̈= dr
dt

dp
dr

= pp′, where

p′= dp
dr
. Thus re-write the initially equation (9.25) with the new variable.

We obtain

pp′ − a20Ae2At

c2
p3 + 2Ap = 0 . (9.26)

Assuming that p 6=0, we reduce this equation by p. We obtain

p′ − a20Ae2At

c2
p2 + 2A = 0 . (9.27)

By introducing the denotations a=− a2
0Ae2At

c2
and b=−2A we trans-

form this equation into the form

p′ + ap2 = b . (9.28)

This is Riccati’s equation: see Kamke [27], Part III, Chapter I, §1.23.
We assume a natural condition that ab=

2a2
0A

2e2At

c2
> 0. The solution

of Riccati’s equation under ab> 0, and with the initially conditions
ξ≡ r(t0) and η≡ ṙ0 = ṙ(t0), is

ṙ = p =
ṙ0
√
ab + b tanh

√
ab (r − r0)√

ab + aṙ0 tanh
√
ab (r − r0)

, (9.29)

where we immediately assume r(t0)= 0 and ṙ0 = ṙ(t0)= 0, then extend
the variables a and b according to our denotations. We obtain

ṙ =
br tanh

√
ab√

ab
=

√
2 cr

a0 eAt
tanh

√
2 a0AeAt

c
. (9.30)

Let’s now substitute this solution into the initial scalar geodesic
equation (9.4). We obtain

d lnm = − 2Ar2 tanh2
(
√
2 a0AeAt

c

)

dt, (9.31)

thus we arrive at an integral which has the form

lnm = − 2A

∫

r2 tanh2
(
√
2 a0AeAt

c

)

dt+B , B = const. (9.32)
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This integral in non-solvable. We can only qualitatively study it.
So. . . the solution should have the following form:

m = m0 e
−2A

∫
r2 tanh

2
(
√
2 a0AeAt

c

)

dt
. (9.33)

We see that, in an expanding Friedmann universe (A> 0), the par-
ticle’s mass m decreases, exponentially, with the distance travelled by
it. In a compressing Friedmann universe (A< 0), the mass increases,
exponentially, according to the travelled distance. In any case, the mag-
nitude of the mass-defect increases with distance from the object under
observation. So, this is another instance of cosmological mass-effect.

So, we have obtained that cosmological mass-defect should clearly
manifest in the space of even the simplest Friedmann metric. Ex-
perimental verification of this theoretical conclusion should manifest
whether, after all, we live in a Friedmann universe or not.

The vectorial geodesic equation (9.12) with κ=+1 or κ=−1 is much
more complicated than the most simplified equation (9.25) we have con-
sidered in the case of κ=0. It leads to integrals which are not only
non-solvable by exact methods, but also hard-to-analyze in the gen-
eral form (without simplification). Therefore, I see two practical ways
of considering cosmological mass-defect in the closed and open Fried-
mann universes (κ=±1, respectively). First, the consideration of a very
particular case of such a universe, with many simplifications and artifi-
cially determined functions. Second, the application of computer-aided
numerical methods. Anyhow, these allusions are beyond the scope of
this principal study.

§10. Conclusions. As is well-known, mass-defect due to the field of
gravitation is regularly attributed to the generally covariant formalism,
which gives a deduction of it through the conservation of the energy of
a particle moving in a stationary field of gravitation [6, §88]. In other
words, this well-known effect is regularly considered per se.

In contrast, the chronometrically invariant formalism manifests the
gravitational mass-defect as one instance in the row of similar effects,
which can be deduced as a result of integrating the scalar geodesic
equation (equation of energy) of a mass-bearing particle. This new
method of deduction has been suggested herein. It is not limited to the
very particular case of the Schwarzschild mass-point field as is the case
of the aforementioned old method. The new method can be applied to
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a particle travelling in the space of any metric theoretically conceivable
due to the General Theory of Relativity.

Herein, we have successfully applied this new method of deduction
to the main (principal) cosmological metrics.

In the space of Schwarzschild’s mass-point metric, the obtained so-
lution coincides with the known gravitational mass-defect [6, §88] whose
magnitude increases toward the gravitating body. A similar effect has
been found in the space of an electrically charged mass-point (Reissner-
Nordström’s metric), with the difference being that there is a mass-
defect due to both the gravitational and electromagnetic fields. The
presence of an electromagnetic field in the mass of a particle was never
considered in this fashion prior to the present study.

No mass-defect has been found in the rotating space of Gödel’s met-
ric, and in the space filled with a homogeneous distribution of ideal liq-
uid and physical vacuum (Einstein’s metric). This means that a mass-
bearing particle does not achieve an add-on to its mass with the distance
travelled in a Gödel universe or in an Einstein universe.

The other obtained solutions manifest a mass-defect of another sort
than that in the case of the mass-point metric. Its magnitude increases
with the distance travelled by the particle. Thus this mass-defect man-
ifests itself at cosmologically large distances travelled by the particle.
We therefore refer to it as the cosmological mass-defect.

According to the calculations presented in this study, cosmological
mass-defect has been found in the space of Schwarzschild’s metric of
a sphere of incompressible liquid, in the space of a sphere filled with
physical vacuum (de Sitter’s metric), and in the deforming spaces of
Friedmann’s metric (empty or filled with ideal liquid and physical vac-
uum). In other words, a mass-bearing particle travelling in each of these
spaces changes its mass according to the travelled distance.

The origin of this effect is the presence of gravitation, non-holonom-
ity, and deformation of the space wherein the particle travels (if at least
one of the factors is presented in the space): these are only three factors
affecting the mass of a mass-bearing particle according to the scalar
geodesic equation. In other words, a particle which travels in the field
gains an additional mass due to the field’s work accelerating the particle,
or it loses its own mass due to the work against the field (depending on
the condition in the particular space).

All these results have been obtained only due to the chronometrically
invariant formalism, which has led us to the new method of deduction
through integrating the scalar geodesic equation (equation of energy) of
a mass-bearing particle.
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Note that cosmological mass-defect — an add-on to the mass of a
particle according to the travelled distance — has never been considered
prior to the present study. It is, therefore, a new effect predicted due
to the General Theory of Relativity.

A next step should logically be the calculation of the frequency shift
of a photon according to the distance travelled by it. At first glance,
this problem could be resolved very easily due to the similarity of the
geodesic equations for mass-bearing particles and massless (light-like)
particles (photons). However, this is not a trivial task. This is because
massless particles travel in the isotropic space (home of the trajecto-
ries of light), which is strictly non-holonomic so that the lines of time
meet the three-dimensional coordinate lines therein (hence the isotropic
space rotates as a whole in each its point with the velocity of light).
Therefore, all problems concerning massless (light-like) particles should
be considered only by taking the strict non-holonomic condition of the
isotropic space into account. I will focus on this problem, and on the
calculation of the frequency shift of a photon according to the travelled
distance, in the next paper (under preparation).
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