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Abstract: A new method of calculation is applied to the frequency
of a photon according to the travelled distance. It consists in solving
the scalar geodesic equation (equation of energy) of the photon, and
manifests gravitation, non-holonomity, and deformation of space as
the intrinsic geometric factors affecting the photon’s frequency. In
the space of Schwarzschild’s mass-point metric, the well-known gravi-
tational redshift has been obtained. No frequency shift has been found
in the rotating space of Gödel’s metric, and in the space of Einstein’s
metric (a homogeneous distribution of ideal liquid and physical vac-
uum). The other obtained solutions manifest a cosmological effect:
its magnitude increases with distance. The parabolic cosmological
blueshift has been found in the space of a sphere of incompressible
liquid (Schwarzschild’s metric), and in the space of de Sitter’s metric,
which is a sphere filled with physical vacuum whose density is positive
(it is a redshift, if the vacuum density is negative). The exponential
cosmological redshift has been found in the expanding space of Fried-
mann’s metric (empty or filled with ideal liquid and physical vacuum).
This explains the accelerate expanding Universe. The redshift reaches
z = eπ − 1 = 22.14 at the event horizon. These results are obtained
in a purely geometric way, without the use of the Doppler effect.
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§1. Problem statement. This is the second part of my research,
which was started in the publication [1] where I introduced the cosmo-
logical mass-defect — a new predicted effect revealed according to the
General Theory of Relativity. The essence of this effect is that a mass-
bearing particle changes its relativistic mass according to the distance
travelled by it. The magnitude of this effect can be either positive or
negative, depending on the metric of that particular space (the kind of
universe) wherein the particle travels.

As was shown, the cosmological mass-defect is obtained after in-
tegrating the scalar geodesic equation (equation of energy) of a mass-
bearing particle. This equation determines the relativistic energy and
mass of the particle at any distance (and moment of time) of its travel.
When integrating the equation, the components of the fundamental met-
ric tensor gαβ are used according to the particular space metric (uni-
verse) under consideration. Thus the cosmological mass-defect can be
calculated in each particular universe. Following this way, I showed that
the cosmological mass-defect is present in most of the main (principal)
cosmological models, and provided detailed calculation of its magnitude
in each of these cases [1]. In the cosmological models, where this effect is
present, the relativistic mass change becomes essential only at distances
of the galaxies (“cosmologically large” distances).

This is the cosmological mass-defect in a nutshell. As was pointed
out at the end of my previous paper [1], a logical continuation of this
research would be solving the scalar geodesic equation of a massless
particle (light-like particle, e.g. a photon). As a result, we should expect
to obtain the frequency shift of the photon according to the travelled
distance in each of the cosmological models.

Naturally, consider the geodesic equations. According to Zelmanov’s
chronometrically invariant formalism [2–4], any four-dimensional (gen-
erally covariant) quantity is presented with its observable projections
onto the line of time and the spatial section of an observer∗. This is as
well true about the generally covariant geodesic equation. The time pro-
jection of it is the scalar geodesic equation (equation of energy). The
spatial projection is the three-dimensional equation of motion of the
particle. As was obtained by Zelmanov [2–4], the projected (chronomet-

∗This formalism, known also as the theory of chronometric invariants, was in-
troduced in 1944 by Abraham Zelmanov. It is originally given in his primary publi-
cations [2–4], while more details of the chronometrically invariant formalism can be
found in the books [5, 6]. Chronometric invariance means that the quantity, which
possesses this property, is invariant along the observer’s three-dimensional spatial
section (which can be curved, inhomogeneous, deforming, rotating, etc.).
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rically invariant) geodesic equations of a mass-bearing particle, whose
relativistic mass is m, are

dm

dτ
− m

c2
Fiv

i +
m

c2
Dikv

ivk = 0 , (1.1)

d(mvi)

dτ
−mF i + 2m

(
Di

k +A·i
k·
)
vk +m△i

nkv
nvk = 0 , (1.2)

while the projected geodesic equations of a massless (light-like) particle
(we denote its relativistic frequency as ω) have the form

dm

dτ
− m

c2
Fi c

i +
m

c2
Dik c

ick = 0 , (1.3)

d(ωci)

dτ
− ωF i + 2ω

(
Di

k +A·i
k·
)
ck + ω△i

nk c
nck = 0 , (1.4)

where the derivation parameter dτ =
√
g00dt− 1

c2
vidx

i is the physically
observable (proper) time, which depends on the gravitational poten-
tial w= c2

(
1−√

g00
)

and the linear velocity vi =− cg0i√
g00

of the three-
dimensional rotation of space. The factors affecting the particles are:
the gravitational inertial force Fi, the angular velocity Aik of the rota-
tion of space due to its non-holonomity, the deformation Dik of space,
and the non-uniformity of space (the Christoffel symbols △i

jk). Two
factors of these affect the energy of the particle (according to the scalar
geodesic equation, which is the equation of energy)

Fi =
1

√
g00

(
∂w

∂xi
− ∂vi

∂t

)
,

√
g00 = 1− w

c2
, (1.5)

Dik =
1

2

∗∂hik

∂t
, Dik = −1

2

∗∂hik

∂t
, D = hikDik =

∗∂ ln
√
h

∂t
, (1.6)

where
∗∂
∂t

= 1√
g00

∂
∂t

, and hik is the chr.inv.-metric tensor

hik = −gik +
1

c2
vivk , hik = −gik, hi

k = δik . (1.7)

As is seen, the geodesic equations of mass-bearing and massless par-
ticles have the same form. Only the sublight velocity vi and the rela-
tivistic mass m are used for mass-bearing particles instead of the light
velocity ci and the frequency ω of a photon.

It is natural then to suggest that we could solve the scalar geodesic
equation of massless particles, which is equation (1.3), in analogy to, as I
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solved in [1], the scalar geodesic equation of mass-bearing particles (1.1)
with the components of the fundamental metric tensor gαβ according to
the respective space metrics (cosmological models).

However, at the end of my previous publication [1], I supposed that
this is not a trivial task. My supposition was based on the fact that
mass-bearing particles travel in the so-called non-isotropic region of
space (space-time), which is the home of the sublight-speed and superlu-
minal trajectories. Massless particles travel in the isotropic space, which
is the home of the trajectories of light. The four-dimensional interval is
zero everywhere in the isotropic space, while the interval of observable
time dτ and the three-dimensional observable interval dσ2 =hik dx

idxk

are nonzero and equal to each other

ds2 = c2dτ2 − dσ2 = 0

c2dτ2 = dσ2 ̸= 0

}
. (1.8)

As a result, the isotropic space (space-time) is strict non-holonomic:
the lines of time meet the three-dimensional coordinate lines at any
point therein, and, hence, the isotropic space rotates as a whole at each
of its points with the velocity of light (see [7,8] for detail). In terms of the
language of algebra, the isotropic space condition, by equalizing the en-
tire formula of ds2 = gαβ dx

αdxβ to zero, implies an additional relation
among the particular components of gαβ which thus can be transformed
into each other in a certain way that does not violate the invariance of
the metric as a whole∗. This additional condition should be taken into
account when considering any problem in the isotropic space. As a re-
sult, the scalar equation of isotropic geodesics may have another solution
than that obtained after integrating the scalar equation of non-isotropic
geodesics. In other words, the frequency shift of photons may have an-
other formulation than the relativistic mass change (mass-defect) of
mass-bearing particles travelling in the same space (space-time).

This is why I initially split this study into two parts where, in the
first part [1], the scalar geodesic equation of mass-bearing particles is
solved, thus introducing the cosmological mass-defect.

However, after studying this problem in detail, I have arrived at
another conclusion. Namely — the light-speed rotation, which is at-

∗In particular, there should be a replacement among the components g00 and g0i.
In the case of Minkowski’s space, which is the basic space-time of Special Relativity,
this replacement means that the isotropic region of it should have the non-diagonal
metric where g00 =0, g0i =1, and g11 = g22 = g33 =−1. Such isotropic metrics were
studied in already the 1950’s, by Alexei Petrov. See his Einstein Spaces [9]. For
instance, §25 and the others therein.
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tributed to the isotropic space (even in Minkowski’s space, which is
the basic space-time of Special Relativity) can be registered only by
an observer who accompanies the isotropic space and photon. In other
words, this is a light-like observer whose home is the isotropic space. A
regular (sublight-speed) observer shall observe the isotropic space and
all events in it according to the values of the fundamental metric ten-
sor gαβ which characterize his own (non-isotropic) space — home of
“solid objects”. This is because, according to the theory of physically
observable quantities, an observer should accompany his own reference
body and coordinate grids spanned over it. As a result, the isotropic
geodesic equations should be solved for a sublight-speed observer in
the same way as the non-isotropic geodesic equations. In other words,
when solving the scalar equation of isotropic geodesics, we should use
the components of the fundamental metric tensor which are attributed
to the home space (the coordinate grids and clocks) of “solid objects”
which is the reference space of a regular observer.

I will give a complete explanation of this thesis later, in one of the
chapters of the book on the cosmological mass-defect and the cosmo-
logical redshift (now — under preparation).

In the next paragraphs of this paper, after solving the scalar equation
of isotropic geodesics in each of the main “cosmological” metrics, we will
arrive at the formula of the frequency shift of a photon according to the
travelled distance in each of the universes under consideration.

Actually, the method of integration and the solutions will have the
same form as those for the cosmological mass-defect obtained for mass-
bearing particles in my recent paper [1]. Therefore, to avoid repetition,
I will omit some obvious formalities while simply referring to [1] wherein
the calculations were explained with all necessary details.

§2. Local redshift in the space of a mass-point (Schwarz-
schild’s mass-point metric). This is the metric of an empty space
(in the sense that there is no distributed matter), wherein the field of
gravitation and curvature is due to a spherical mass approximated as a
mass-point at distances much larger than its radius. The metric, intro-
duced in 1916 by Karl Schwarzschild [10], represented in the spherical
three-dimensional coordinates x1 = r, x2 = φ, x3 = θ, has the form

ds2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg
r

− r2
(
dθ2 + sin2θdφ2

)
, (2.1)

where r is the distance from the mass M , rg = 2GM
c2

is the corresponding
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gravitational radius of the mass, and G is the world-constant of gravi-
tation.

This metric is free of rotation and deformation. The field of gravita-
tion is the only factor affecting particles in the space. It is determined by
g00 which is g00 =1− rg

r according to the metric (2.1). Differentiating
the gravitational potential w= c2

(
1−√

g00
)

according to the definition
of the gravitational inertial force (1.5), then applying r≫ rg (the field
source is outside the state of gravitational collapse), we obtain the solely
nonzero radial component of the force

F1 = −c2rg
2r2

= −GM

r2
. (2.2)

In such a space, the scalar geodesic equation for a massless (light-
like) particle (1.3), e.g. a photon, takes the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (2.3)

where c1 = dr
dτ is the observable velocity of light (massless particle). This

equation transforms into dω
ω = 1

c2
F1dr, which is d lnω=− GM

c2
dr
r2

. It has
the solution

ω = ω0 e

GM

c2r ≃ ω0

(
1 +

GM

c2 r

)
. (2.4)

This solution means that a photon emitted by a massive body, which
is the field source, gains an additional energy due to the presence of the
gravitational field. This phenomenon decreases with distance from the
field source according to the formula (2.4). As a result, the photon’s
energy and frequency should decrease with the travelled distance: the
photon’s frequency should be redshifted when registered by a observer,
who is distantly located from the field source. For instance, let a photon
have a frequency ω0 being emitted from the surface of a star, whose
mass is M and whose radius is r∗. Then its frequency registered by an
observer, who is located at a distance r from the star, is ω<ω0. We
then obtain, according to the formula (2.4), that the observed redshift
of the photon has the magnitude

z =
ω0 − ω

ω
= e

GM

c2r∗
− GM

c2r − 1 ≃ GM

c2 r∗
− GM

c2 r
. (2.5)

Note that this is a local phenomenon, not a cosmological effect: its
magnitude decreases with distance from the source of the field, very fast,
so that it becomes actually zero at “cosmologically large” distances.
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This is the gravitational redshift — the well-known effect of the
General Theory of Relativity (first registered in the spectra of white
dwarfs). I speak of this effect herein, because of the new method of
derivation. Classically, it is derived from the conservation of energy of
a photon travelling in a stationary gravitational field [11, §88]. The
same classical method of derivation was also used by Zelmanov. On
the other hand, our method of deduction, based on the integration of
the scalar equation of isotropic geodesics, allows to represent this effect
as something particular among the other similar effects which can be
calculated for any other space metric (gravitational field).

§3. Local redshift in the space of an electrically charged mass-
point (Reissner-Nordström metric). This is an extension of the
mass-point metric, where the spherical massive island of matter is elec-
trically charged. As a result, the space of the Reissner-Nordström met-
ric is not empty but filled with a spherically symmetric electromagnetic
field (distributed matter). This metric was first considered in 1916 by
Hans Reissner [12] then, in 1918, by Gunnar Nordström [13]. It is

ds2 =

(
1− rg

r
+

r2q
r2

)
c2dt2− dr2

1− rg
r +

r2q
r2

−r2
(
dθ2 + sin2θdφ2

)
, (3.1)

with the same denotations as those of the mass-point metric, while
r2q =

Gq2

4πε0c4
, where q is the corresponding electric charge, and 1

4πε0
is

Coulomb’s force constant. This metric is as well free of rotation and
deformation. The gravitational inertial force is determined, according
to g00 =1− rg

r +
r2q
r2

, by both Newton’s force and Coulomb’s force. As-
suming that the source of the field is outside the state of gravitational
collapse (r≫ rg), and that the electric field is weak (r≫ rq), we obtain

F1 = −c2

2

(
rg
r2

−
2r2q
r3

)
= −GM

r2
+

Gq2

4πε0c2
1

r3
. (3.2)

The scalar geodesic equation for a massless particle (1.3) takes the
form

dω

dτ
− ω

c2
F1 c

1 = 0 , (3.3)

which transforms into d lnω=
(
− GM

c2r2
+ Gq2

4πε0c4
1
r3

)
dr, and solves as

ω = ω0 e

GM

c2r
− 1

2r2
Gq2

4πε0c4 ≃ ω0

(
1 +

GM

c2r
− 1

2r2
Gq2

4πε0c4

)
. (3.4)
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This solution manifests that photons should also gain an additional
energy in the field of an electrically charged massive body. But this
additional energy is lesser than that gained from the gravitational field
(the first term in our formula 3.4), owing to an energy loss due to the
presence of the electric field (the negative second term in 3.4).

We observe no such an electrically charged massive body (like plan-
ets, stars, or galaxies) whose gravitational field would be weaker than
its electromagnetic field. We therefore should conclude that the pho-
ton’s frequency in the space of the Reissner-Nordström metric should be
redshifted when registered by an observer who is located at a distance
r from the field source. The redshift, according to our solution (3.4),
should be

z =
ω0 − ω

ω
= e

GM

c2r∗
− 1

2r2∗

Gq2

4πε0c4
− GM

c2r
+ 1

2r2
Gq2

4πε0c4 − 1 ≃

≃ GM

c2 r∗
− 1

2r2∗

Gq2

4πε0c4
− GM

c2 r
+

1

2r2
Gq2

4πε0c4
, (3.5)

where r∗ is the radius of the field source. This redshift shall be lesser
than the purely gravitational redshift (considered in §2).

The magnitude of the redshift decreases with distance from the field
source. Therefore, the redshift in the space of the Reissner-Nordström
metric is also a local phenomenon, not a cosmological effect.

Herein we have obtained that the frequency shift can be due to not
only the field of gravitation, but also due to the electromagnetic field.
Such an effect was not considered in the General Theory of Relativity
prior to the present study.

Following the same deduction, the frequency shift could also be cal-
culated in two other primary extensions of the mass-point metric. The
Kerr metric (introduced in 1963 by Roy P. Kerr [14, 15]) describes the
space of a rotating mass-point. The Kerr-Newman metric (introduced
in 1965 by Ezra T. Newman [16, 17]) describes the space of a rotating,
electrically charged mass-point. However, there is a problem with the
calculation. These metrics, determined in the vicinity of the mass-point
(field source), do not contain the distribution function of the rotational
velocity with distance from the source. Therefore, when integrating the
geodesic equation, we should be enforced to introduce these functions
on our own behalf (which can be true or false, depending on our under-
standing of the space rotation). We therefore omit these two cases from
consideration.
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§4. No frequency shift present in the rotating space with self-
closed time-like geodesics (Gödel’s metric). This space metric,
introduced in 1949 by Kurt Gödel [18], has the form

ds2 = a2

[
(dx̃0)2+2ex̃

1

dx̃0dx̃2−(dx̃1)2+
e2x̃

1

2
(dx̃2)2−(dx̃3)2

]
, (4.1)

where a= const> 0 [cm] is a constant determined as a2 = c2

8πGρ
=− 1

2λ
.

Such a space is not empty, but filled with dust of density ρ, and physical
vacuum (λ-field). Also, it rotates so that time-like geodesics are self-
closed therein.

Gödel’s metric was originally given in the form (4.1), through the di-
mensionless Cartesian coordinates dx̃0 = 1

a dx
0, dx̃1 = 1

a dx
1, dx̃2 = 1

a dx
2,

dx̃3 = 1
a dx

3, which emphasize the meaning of the world-constant a.
We now move to the regular Cartesian coordinates adx̃0 = dx0 = cdt,
adx̃1 = dx1, adx̃2 = dx2, adx̃3 = dx3, which are more suitable for the
calculation of the components of the fundamental metric tensor. We
obtain

ds2 = c2dt2 + 2e
x1

a cdtdx2 − (dx1)2 +
e

2x1

a

2
(dx2)2 − (dx3)2, (4.2)

where, as is seen,

g00 = 1 , g02 = e
x1

a , g01 = g03 = 0 . (4.3)

Therefore the space of Gödel’s metric is free of gravitation and defor-
mation, but rotates with a three-dimensional linear velocity vi =− cg0i√

g00

whose only nonzero component is

v2 = −ce
x1

a , (4.4)

which does not depend on time. In this case, the second (inertial) term
of the gravitational inertial force Fi (1.5) is zero as well.

All factors which could change the frequency of a photon are absent
in the space of Gödel’s metric. This means that photons should not
gain a frequency shift with the distance travelled therein.

§5. Cosmological blueshift in the space of Schwarzschild’s met-
ric of a sphere of incompressible liquid. This metric was intro-
duced in 1916 by Karl Schwarzschild [19] with a limitation imposed on
the fundamental metric tensor (he supposed that its three-dimensional
components should not possess breaking). This metric in the general
form, which is free of the said limitation, was obtained in 2009 by Larissa
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Borissova (see formula 3.55 in [20], or (1.1) in [21]). It has the form

ds2 =
1

4

(
3

√
1− κρ0a2

3
−
√
1− κρ0r2

3

)2
c2dt2 −

− dr2

1− κρ0r2

3

− r2
(
dθ2 + sin2θdφ2

)
, (5.1)

where κ= 8πG
c2

is Einstein’s gravitational constant, ρ0 =
M
V

= 3M
4πa3 is

the density of the liquid, a is the sphere’s radius, and r is the radial
coordinate within it. The metric is free of rotation and deformation.
Only gravitation affects particles due to g00 ̸=1. Differentiating g00 of
the metric (5.1), according to the definition of the gravitational inertial
force Fi (1.5), we obtain the solely nonzero component of the force

F1 = − c2κρ0r

3
√
1− κρ0r2

3

(
3
√
1− κρ0a2

3 −
√
1− κρ0r2

3

) . (5.2)

The scalar geodesic equation for a massless particle (1.3) in this case
takes the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (5.3)

which is d lnω= 1
c2
F1dr. Thus we arrive at the equation

d lnω =
κρ0r

3
√
1− κρ0r2

3

dr(
3
√

1− κρ0a2

3 −
√
1− κρ0r2

3

) (5.4)

which transforms into

d lnω = −d ln

(
3

√
1− κρ0a2

3
−
√
1− κρ0r2

3

)
(5.5)

and solves as

ω = ω0

3
√

1− κρ0a2

3 − 1

3
√
1− κρ0a2

3 −
√
1− κρ0r2

3

. (5.6)

Herein κρ0a
2

3 is a world-constant of the space. Generally speaking,
its numerical value is permitted to be within the range 0⩽ κρ0a

2

3 ⩽ 1.
This is in order to keep 1− κρ0a

2

3 ⩾ 0 (the square root from the remain-
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der should remain a real value).
To simplify and analyse the obtained solution (5.6), we use the fol-

lowing intermediate substitution. Because rg = 2GM
c2

is the gravitational
radius of a sphere with the mass M = ρ0V = 4

3 πρ0a
3 and the radius a,

we have rg =
κρ0a

3

3 and, therefore, κρa2

3 =
rg
a . With these, the obtained

solution (5.6) takes the form

ω = ω0

3
√
1− rg

a − 1

3
√
1− rg

a −
√

1− rg r2

a3

, (5.7)

which is more suitable for analysis and further approximations.
Since rg ≪ a, at distances r which are very small in comparison to

the radius of such a universe (r≪ a), the obtained solution (5.6) takes
the simplified form

ω ≃ ω0

(
1− κρ0r

2

12

)
. (5.8)

The obtained solution manifests that, in a spherical universe filled
with incompressible liquid, a photon should gain energy and frequency
with the travelled distance. This is a blueshift effect: the more distant
an object we observe in such a universe is, the more blueshifted should
be the lines of its spectrum. Hence, this is a cosmological effect. We
will therefore further refer to this effect as the cosmological blueshift.

According to our formulae (5.6) and (5.8), the cosmological blueshift
increases with the square of the distance from the object. Let the photon
have a frequency ω being emitted by a source located at a distance r
from an observer. Then, keeping in mind that ω0 is the photon’s fre-
quency registered by the observer (r=0), we obtain the cosmological
blueshift in a spherical universe filled with incompressible liquid

z =
ω − ω0

ω0
= −

1−
√

1− κρ0r2

3

3
√

1− κρ0a2

3 −
√
1− κρ0r2

3

, (5.9)

which at small distances r of the photon’s travel (r≪ a), according to
our formula (5.9), takes the simplified form

z ≃ − κρ0r
2

12
. (5.10)

For a photon emitted by a source, which is located at the event
horizon (where r= a), the energy and frequency gain are ultimately
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high in such a universe. In this case, according to our solution (5.6),
the observed frequency of the photon should be

ωmax = ω0

3
√

1− κρ0a2

3 − 1

2
√

1− κρ0a2

3

. (5.11)

while the cosmological blueshift of the photon should take its ultimately
high numerical value in such a space, which is

zmax = −
1−

√
1− κρ0a2

3

2
√

1− κρ0a2

3

. (5.12)

In my view, the main criterion for the applicability of a cosmological
model to our Universe should be the redshift law predicted at small
distances r≪ a. It is surely registered in most galaxies, which are not
so much distant as the event horizon. However, the obtained solution
(5.10) manifests a blueshift. This is a serious reason for us to conclude
that Schwarzschild’s metric of a sphere of incompressible liquid cannot
be applied to our Universe as a whole.

On the other hand, the recent study by Borissova [20] shows that
the Schwarzschild model is applicable to the Sun and the planets, by
the assumption that these objects can be approximated as spheres of
incompressible liquid.

In addition, she has obtained [20] that the space metric inside a
Schwarzschild sphere of incompressible liquid in the state of gravita-
tional collapse is equivalent to de Sitter’s space metric (see de Sitter’s
metric below). In this case, i.e., inside a collapsed Schwarzschild liquid
sphere, the gravitational force changes sign from attraction to repulsion,
and, therefore, the cosmological blueshift (deduced above) changes to
the corresponding cosmological redshift. This means that a collapsed
Schwarzschild liquid sphere (the gravitational force inside such a sphere
is a force of repulsion) can theoretically be conceivable as a model of
our Universe.

§6. Cosmological redshift and blueshift in the space of a sphere
filled with physical vacuum (de Sitter’s metric). This metric,
introduced in 1917 by Willem de Sitter [22,23], has the form

ds2 =

(
1− λr2

3

)
c2dt2 − dr2

1− λr2

3

− r2
(
dθ2 + sin2θdφ2

)
, (6.1)
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and describes a space filled with a spherically symmetric distribution
of physical vacuum (determined by the λ-term of Einstein’s equations).
Such a space is free of rotation and deformation, but contains a non-
Newtonian gravitational field determined by g00 =1− λr2

3 of the metric.
Differentiating the g00 according to the definition of the gravitational
inertial force Fi (1.5), we obtain its solely nonzero component

F1 =
λc2

3

r

1− λr2

3

, (6.2)

whose magnitude increases with distance. This is a force of repulsion
if λ> 0 (physical vacuum has a negative density), and is a force of
attraction if λ< 0 (the vacuum density is positive).∗

The scalar geodesic equation for a massless particle (1.3), which in
this case has the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (6.3)

thus transforms into d lnω= 1
c2
F1dr, which is

d lnω =
λr

3

dr

1− λr2

3

, (6.4)

or, in another form,

d lnω = −1

2
d ln

(
1− λr2

3

)
. (6.5)

This equation solves as

ω =
ω0√

1− λr2

3

, (6.6)

where λr2

3 should be in the range 0⩽ λr2

3 ⩽ 1. For yet, observational
astronomy provides only information about the upper boundary of the
numerical value of the λ-term, which is as small as λ⩽ 10−56 cm−2.
Therefore, our obtained solution (6.6) at small distances r takes the
simplified form

ω ≃ ω0

(
1 +

λr2

6

)
. (6.7)

∗See Chapter 5 of [5], especially §5.3 and §5.5 therein. It is still unclear what
sign is really attributed to the λ-term of Einstein’s equations.
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The obtained result can lead to two opposite conclusions, depending
on the sign of λ.

Einstein’s equations have the form Rαβ +
1
2 gαβR=−κ Tαβ +λgαβ .

Given a space of de Sitter’s metric, the λ-term is connected to the
density of physical vacuum ρ, the four-dimensional curvature K, and
the three-dimensional observable curvature C as ρ=− λ

κ =− 3K
κ = C

2κ
(see §5.3 of [5], for details).

Classically, we assume λ> 0 so that physical vacuum has negative
density and energy as any other potential field. In this case, the non-
Newtonian gravitational force is a force of repulsion, the space (space-
time) has a positive four-dimensional curvature K> 0, while the three-
dimensional observable curvature is negative C < 0.

Having λ> 0, the frequency shift we have obtained in formula (6.6)
and in its simplified form (6.7) implies that a photon travelling to the
observer in a de Sitter universe should loose energy and frequency due to
the deceleration of the photon by the non-Newtonian force of repulsion
(the λ-field) that is present in the space. As a result, the photon’s
frequency should be redshifted upon arrival: the more distant an object
we observe in a de Sitter universe where λ> 0 is, the more redshifted
should be the lines of its spectrum. We will therefore further refer to
this effect as the cosmological redshift. The magnitude of the redshift,
according to our solution (6.6), shall be

z =
ω − ω0

ω0
=

1√
1− λr2

3

− 1 (6.8)

where ω=ω(r) is the frequency of the photon being emitted by a source,
which is located at a distance r from the observer, while the photon’s
frequency registered by the observer is ω0 =ω(r=0). At small distances
of the photon’s travel, according to (6.7), we have the redshift

z ≃ λr2

6
. (6.9)

At the event horizon — the ultimately large distance r= a, which in
a de Sitter universe is determined by the obvious condition λr2

3 = λa2

3 =1,
— the photon’s frequency and redshift take their ultimately high nu-
merical values. According to our solutions for the photon’s frequency
(6.6) and its redshift (6.8), they are

ωmax =
ω0√

1− λa2

3

= ∞ , (6.10)
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zmax =
1√

1− λa2

3

− 1 = ∞ . (6.11)

Contrarily, one may assume that the λ-field is not a potential field
but a substance.

In this case, it should have positive density and energy, which means
that the acting non-Newtonian gravitational force is a force of attrac-
tion, the space (space-time) has a negative four-dimensional curvature
K< 0, its three-dimensional observable curvature is positive C > 0, and
also λ< 0.

In such a de Sitter universe (λ< 0), according to the solutions we
have obtained, a photon travelling to the observer should gain energy
and frequency with the distance travelled by it. This is due to the
acceleration of the photon by the non-Newtonian force of attraction
(the λ-field) that is present in the space. This means that the photon’s
frequency should be blueshifted upon arrival: the more distant an object
we observe is, the more bluehifted should be the lines of its spectrum.
In other words, the cosmological blueshift should be registered in a de
Sitter universe where λ< 0. In this case,

ω =
ω0√

1 + λr2

3

, (6.12)

z =
1√

1 + λr2

3

− 1 , (6.13)

or, at small distances (r≪ a),

ω ≃ ω0

(
1− λr2

6

)
, (6.14)

z ≃ − λr2

6
, (6.15)

while the ultimate frequency and blueshift are

ωmax =
ω0√

1 + λa2

3

=
ω√
2
≃ 0.71ω0 , (6.16)

zmax =
1√

1 + λa2

3

− 1 ≃ −0.29 . (6.17)
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In the present year, 2011, the highest redshifts registered by the
astronomers are z=10.3 (the galaxy UDFj-39546284) and z=8.55 (the
galaxy UDFy-38135539). Three dozens of other galaxies and quasars
have redshifts higher than z=1. The number of such high redshifted
cosmic objects increases with each year of such observations. Also, a
non-linearity of the observed redshift law was recently discovered by
astronomers in the spectra of distant galaxies. We therefore should
expect that our Universe is the version of de Sitter worlds that has a
non-linear redshift (see above).

§7. No frequency shift present in the space of a sphere filled
with ideal liquid and physical vacuum (Einstein’s metric). This
metric, introduced in 1917 by Albert Einstein [24], describes a sphere
filled with homogeneous and isotropic distribution of ideal (non-viscous)
liquid and physical vacuum (λ-field). It has the form

ds2 = c2dt2 − dr2

1− λr2
− r2

(
dθ2 + sin2θdφ2

)
. (7.1)

This metric is free of gravitation (g00 =1), rotation (g0i =0), and
deformation (the three-dimensional components gik of the fundamental
metric tensor do not depend on time). This means that such a space
contains no one factor which could change the frequency of a photon.
Hence, the photon’s frequency remains unchanged with the distance
travelled in the space of Einstein’s metric.

§8. Cosmological redshift and blueshift in the deforming
spaces of Friedmann’s metric. The models, introduced in 1922 by
Alexander Friedmann [25, 26], are free of gravitation and rotation, but
are deforming, which points to the presence of the functions gik = gik(t).
In other words, the three-dimensional subspace of the space-time de-
forms. It may expand, compress, or oscillate. Such a space can be
empty, or filled with a homogeneous and isotropic distribution of ideal
(non-viscous) liquid in common with physical vacuum (λ-field), or filled
with one of the media. In particular, it can be dust∗.

Friedmann’s metric has the form

ds2 = c2dt2 −R2

[
dr2

1− κr2
− r2

(
dθ2 + sin2θdφ2

)]
, (8.1)

∗The energy-momentum tensor of ideal liquid is the same as that of dust except
that the latter is marked by the absence of the term containing pressure. In other
words, dust is pressureless ideal liquid.
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where R=R(t) is the curvature radius of the space, while κ=0,±1 is
the curvature factor. If κ=−1, the three-dimensional subspace has the
hyperbolic (open) geometry. If κ=0, its geometry is flat. If κ=+1,
it has elliptic (closed) geometry. The models with κ=+1 and κ=−1
were considered in 1922 and 1924 by Friedmann [25, 26]. The general-
ized formulation of the metric containing κ=0,±1 was first examined
in 1925 by Georges Lemaître [27, 28], then in 1929 by Howard Percy
Robertson [29], and in 1937 by Arthur Geoffrey Walker [30]. Therefore,
Friedmann’s metric in its generalized form (8.1) is also known as the
Friedmann-Lemaître-Robertson-Walker metric.

Friedmann’s metric is expressed here through a “homogeneous” ra-
dial coordinate r. It comes across as the regular radial coordinate di-
vided by the curvature radius whose scales change accordingly during
expansion or compression of the space. As a result, the homogeneous
radial coordinate r does not change its scale with time.

The scalar geodesic equation (1.3) for a massless particle, which
travels in a Friedmann universe along the radial coordinate x1, takes
the form

dω

dτ
+

ω

c2
D11 c

1c1 = 0 , (8.2)

where c1 [sec−1] is the solely nonzero component of the observable “ho-
mogeneous” velocity of the massless particle. The square of the velocity
is h11 c

1c1 = c2 [cm2/sec2]. The components of the chr-inv.-metric ten-
sor hik (1.7) can be calculated according to Friedmann’s metric (8.1).
After some algebra, we obtain

h11 =
R2

1− κr2
, h22 = R2r2, h33 = R2r2 sin2θ , (8.3)

h = det ∥hik∥ = h11h22h33 =
R6r4 sin2θ

1− κr2
, (8.4)

h11 =
1− κr2

R2
, h22 =

1

R2r2
, h33 =

1

R2r2 sin2θ
. (8.5)

In the case of mass-bearing particles, the scalar geodesic equation
being in its general form cannot be solved alone. This is because mass-
bearing particles can travel at any sub-light velocity, which is unknown.
We therefore are enforced to find the velocity by solving the vectorial
geodesic equation. This problem was resolved in [1].

Another case — massless (light-like) particles. They travel along
isotropic trajectories, which are the trajectories of light. Their velocity
ci = dxi

dτ is the observable velocity of light, where dτ =√
g00dt− 1

c2 vidx
i is
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the physically observable time. The observable light velocity ci depends
on the gravitational potential w= c2(1−√

g00) and the linear velocity
vi =− cg0i√

g00
of the three-dimensional rotation of space.

In the case of a Friedmann universe, we have g00 =1 and g0i =0.
Hence, dτ = dt in this case. Thus, because h11 c

1c1 = c2, the scalar
geodesic equation of a massless particle (8.2) transforms into

h11
dω

dt
+ ωD11 = 0 , (8.6)

thus we obtain h11
dω
ω =−D11dt, and, finally, the equation

R2

1− κr2
d lnω = −D11dt . (8.7)

This equation is non-solvable being considered in the general form
as here. To solve this equation, we should simplify it by assuming par-
ticular forms of the space deformation (the function R=R(t) of Fried-
mann’s metric) and the curvature factor κ of the space∗. Further, after
the function R=R(t) is assumed, we will see that κ comes out from the
equation. So, we need to assume only R=R(t).

The curvature radius as a function of time, R=R(t), can be found
through the tensor of the space deformation Dik, whose trace

D = hikDik =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√
h

∂t
=

1

V

∗∂V

∂t
(8.8)

is the speed of relative deformation (expansion or compression) of the
volume [3,4]. In an arbitrary metric space, we have

D =
1

V

∗∂V

∂t
= γ

1

a

∗∂a

∂t
= γ

u

a
, (8.9)

where a is the radius of the volume (V ∼ a3), u is the linear velocity of
its deformation (positive if the space expands, and negative in the case
of compression), and γ= const is the shape factor of the space (γ=3 in
the homogeneous isotropic models [3, 4]).

Two main types of the space deformation, and two respective types of
the function R=R(t) were introduced and then examined in [1]. They
are as follows.

∗The curvature factor κ is included in the spatial component g11 of the funda-
mental metric tensor of Friedmann’s metric (8.1). As a result, and because the space
deformation Dik is determined as the time derivative of the three-dimensional com-
ponents of the observable metric tensor hik =−gik + 1

c2
vivk, the curvature factor

κ is included in the formula of the space deformation.
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1. A constant-speed deforming (homotachydiastolic) universe∗ de-
forms with a constant linear velocity u=

∗∂a
∂t = const. Its radius under-

goes linear changes with time as a= a0 +ut. Thus

D = γ
u

a0 + ut
≃ γ

u

a0

(
1− ut

a0

)
, (8.10)

where D= 3Ṙ
R

as in any Friedmann universe (γ=3). Thus we arrive
at the equation dR

R
= udt

a0 +ut =
d(a0 +ut)
a0 +ut , which is d lnR= d ln (a0 +ut).

It solves as lnR= ln |a0 +ut|+ lnB, i.e., R
B
= a0 +ut. The integration

constant is found from the condition R= a0 at the initial moment of
time t= t0 =0. It is B=1. Therefore, R= a0 +ut. As a result, we
obtain, that in a constant-speed deforming Friedmann universe,

R = a0 + ut , Ṙ = u , (8.11)

D =
3Ṙ

R
=

3u

a0 + ut
, (8.12)

D11 =
RṘ

1− κr2
=

(a0 + ut)u

1− κr2
, (8.13)

D1
1 =

Ṙ

R
=

u

a0 + ut
. (8.14)

2. In a constant-deformation (homotachydiastolic) universe†, each
single volume V (including the total volume of the space), undergoes
equal relative changes with time

D =
1

V

∗∂V

∂t
= γ

u

a
= const , (8.15)

while the linear velocity of the deformation increases with time in the
case of expansion, and decreases if the space compresses. In other words,
this is an accelerate expanding universe or a decelerate compressing
universe, respectively.

∗I refer to this kind of universe as homotachydiastolic (ομοταχυδιαστολικός). Its
origin is homotachydiastoli — ομοταχυδιαστολή — linear expansion with a constant
speed, from όμο which is the first part of όμοιος — the same, ταχύτητα — speed,
and διαστολή — linear expansion (compression is the same as negative expansion).

†I refer to this kind of universe as homotachydioncotic (ομοταχυδιογκωτικό).
This terms originates from homotachydioncosis — ομοταχυδιόγκωσης — volume ex-
pansion with a constant speed, from όμο which is the first part of όμοιος (omeos)
— the same, ταχύτητα — speed, διόγκωση — volume expansion, while compression
can be considered as negative expansion.
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Generally speaking, a volume element, which is not affected by ex-
ternal factors, expands or compresses so that its volume undergoes
equal relative changes with time. We therefore will further consider
a constant-deformation (homotachydioncotic) Friedmann universe.

Because D= 3Ṙ
R

in a Friedmann universe, we assume Ṙ
R
=A= const

for the constant-deformation (homotachydioncotic) case. We obtain the
equation 1

R
dR=Adt, which is d lnR=Adt. As a result, in a constant-

deformation Friedmann universe whose curvature radius at the present
moment of time t= t0 is a0, we obtain

R = a0 e
At, Ṙ = a0AeAt, (8.16)

D =
3Ṙ

R
= 3A = const , (8.17)

D11 =
RṘ

1− κr2
=

a20Ae2At

1− κr2
, (8.18)

D1
1 =

Ṙ

R
= A = const . (8.19)

Thus, substituting D11 =
RṘ

1−κr2
=

a2
0Ae2At

1−κr2
(8.18) into the scalar geo-

desic equation (8.7), we obtain the equation in the form

d lnω = −Adt , (8.20)

where A= Ṙ
R

is a const of the space.
As is seen, this equation is independent of the curvature factor κ of

the particular Friedmann space under consideration. In other words,
by solving this equation we will arrive at a solution which will be com-
mon for all three types of the constant-deformation (homotachydias-
tolic) Friedmann universe which have hyperbolic (κ=−1), flat (κ=0),
or elliptic (κ=+1) geometry, respectively.

This equation solves, obviously, as lnω=−At+ lnB, where B is an
integration constant. So forth, we obtain ln ω

B
=−At, then, trivially,

ω=Be−At. We calculate the integration constant B from the initial
condition ω=ω0 at the moment of time t= t0 =0. We have B=ω0. As
a result, the final solution of the scalar geodesic equation (8.20) is

ω = ω0 e
−At. (8.21)

At small distances (and duration) of the photon’s travel, the ob-
tained solution takes the simplified form

ω ≃ ω0 (1−At) . (8.22)
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The obtained solution manifests that, in a constant-deformation (ho-
motachydiastolic) Friedmann universe which expands (A> 0), photons
should lose energy and frequency according to the travelled distance.
The energy and frequency loss law is exponential (8.21) at large dis-
tances of the photon’s travel, and is linear (8.22) at small distances.

Accordingly, the photon’s frequency should be redshifted. The mag-
nitude of the redshift increases with the travelled distance. This is a
cosmological redshift, in other words.

Let a photon have an initial frequency ω0 being emitted by a source
(t= t0 =0), and its frequency being registered by an observer to whom
the photon has travelled during the time interval t is ω. Then we obtain
the magnitude of the cosmological redshift in an expanding constant-
deformation (homotachydiastolic) Friedmann universe. It is

z =
ω0 − ω

ω
= eAt − 1 , (8.23)

which is an exponential redshift law. At small distances of the photon
travel, it takes the linearized form

z ≃ At , (8.24)

which manifests a linear redshift law. Expanding the world-constant
A= Ṙ

R
and the duration of the photon’s travel t= d

c , we have

z = e
Ṙ
R

d
c − 1 , (8.25)

where d= ct [cm] is the distance to the source that emitted the photon.
At small distances, we have, respectively, the linear approximation

z ≃ Ṙ

R

d

c
. (8.26)

In the case where such a universe compresses (A< 0), this effect
changes its sign thus, becoming a cosmological blueshift.

Our linearized redshift formula (8.26) is the same as z= Ṙ
R

d
c

obtained
by Lemaître, the “father” of the theory of an expanding universe who in
1925–1927 discovered the linear redshift law∗ [28]. He followed, however,
another way of deduction which limited him only to the linear formula.
He did not arrive at a non-linear generalization of it. Lemaître’s beliefs,
therefore, remained within the range of the linear redshift law.

∗The linear redshift law is now known as Hubble’s law due to Edwin Hubble’s
publication of 1929 [32]. See more details about the dramatic history of this discovery
in the newest notes [33–35] published in 2011 by the historians of science.
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Suppose our world to be an expanding Friedmann universe of the
constant-deformation type. Then galaxies should scatter, being carried
out with the expanding space. Their spectra should therefore manifest
a redshift according to the exponential redshift law (8.25) or, at small
distances, according to the linear redshift law (8.26).

The world-constant A= Ṙ
R

can be found on the basis of astronomi-
cal observations of the objects whose redshift is within the linear range
(the galaxies and quasars which are located not at cosmologically large
distances). For instance, consider the brightest quasar 3C 273. Its ob-
served redshift is z=0.16. Such a redshift means that this object is lo-
cated at a cosmologically small distance (we know distant galaxies and
quasars whose redshift is much higher than z=1). Therefore, when
calculating the redshift for this object, we use the linearized formula
(8.26) of our theory. The observed luminosity distance∗ to the quasar
3C 273 is dL =749Mpc≃ 2.3×1027 cm. According to our formula (8.26),
we obtain that the world-constant A= Ṙ

R
has the numerical value

A =
Ṙ

R
= z

c

dL
= 2.1×10−18 sec−1, (8.27)

which matches the Hubble constant, which is H0 =72± 8 km/sec×Mpc
=(2.3± 0.3)×10−18 sec−1 according to the newest data of the Hubble
Space Telescope [31]. The Hubble constant was initially obtained as the
coefficient of the observed linear law for scattering galaxies: this law
says that galaxies and quasars scatter with the radial velocity u=H0d
increasing with the distance d to the object as 72 km/sec per each Mega-
parsec.

The ultimately high redshift zmax, which could be registered in our
Universe, is calculated by substituting the ultimately large distance into
the redshift law. If following Lemaître’s theory [28], zmax should follow
from the linear redshift law z= Ṙ

R
d
c
=A d

c
. Because A= Ṙ

R
is the world-

constant of the Friedmann space, the ultimately large curvature radius
Rmax is determined by the ultimately high velocity of the space expan-
sion which is the velocity of light Ṙmax = c. Hence, Rmax =

c
A

. The
ultimately large distance dmax (the event horizon) is determined by the
astronomers from the linear law for scattering galaxies u=H0d. This
linear law is known, however, due to the observation of non-extremely
distant objects. They thus interpolate the empirical linear law u=H0d

∗In observational astronomy, the luminosity distance dL to a cosmic object is
determined through the absolute stellar magnitude M of the object, and its appar-
ent stellar magnitude m according to the formula M=m− 5(lg dL − 1), where dL is
measured in parsecs. 1 parsec=3.0857×1018 cm≃ 3.1×1018 cm.
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upto the event horizon. Since the scattering velocity u should reach the
velocity of light (u= c) at the event horizon (d= dmax), they then ob-
tain dmax =

c
H0

=(1.3± 0.2)×1028 cm. Finally, they identify the linear
coefficient H0 of the empirical law for scattering galaxies as the world-
constant A= Ṙ

R
, which follows from the space geometry. Thus they may

obtain dmax =Rmax and, from the linear redshift law, the ultimately
high redshift zmax =H0

dmax

c =1. How, then, to explain the very distant
objects, whose redshift is much higher than z=1?

On the other hand, it is obvious that the ultimately high redshift
zmax, ensuing from the space (space-time) geometry, should be a result
of relativistic physics. In other words, z= zmax should follow not from a
straight line z= Ṙ

R
d
c
=H0

d
c =

u
c , which digs in the vertical “wall” u= c,

but from a non-linear relativistic function.
In this case, the Hubble constant H0 remains a linear coefficient in

only the pseudo-linear beginning of the real redshift law arc, wherein
the velocities of scattering u are small in comparison with the velocity of
light. At velocities of scattering close to the velocity of light (close to the
event horizon), the Hubble constant H0 loses the meaning of the linear
coefficient and the world-constant A due to the increasing non-linearity
of the real redshift law.

Such a non-linear formula has been found in the framework of our
theory presented here. This is the exponential redshift law (8.25), which
then gives the Lemaître linear redshift law (8.26) as an approximation
at small distances.

We now use the exponential redshift law (8.25). We calculate the ul-
timately high redshift zmax, which could be conceivable in an expanding
Friedmann space of the constant-deformation type. The event horizon
d= dmax is determined by the world-constant A= Ṙ

R
of such a space.

Thus, the ultimately large curvature radius is Rmax =
c
A

, while the dis-
tance corresponding to Rmax on the hypersurface is dmax =πRmax

πc
A

.
Suppose now that a photon has arrived from a source, which is located
at the event horizon. According to the obtained exponential solution
(8.21), the photon’s frequency at the arrival should be

ωmax = e
− Ṙ

R

dmax

c = ω0 e
−π ≃ 0.043ω0 , (8.28)

while the exponential redshift law (8.25) gives the photon’s redshift

zmax = e
Ṙ

R

dmax

c − 1 = eπ − 1 = 22.14 , (8.29)

which is the ultimately high redshift in such a universe.
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So, the redshift law for scattering galaxies, including its non-linear
increase at “cosmologically large” distances, has been explained in the
expanding constant-deformation (homotachydioncotic) space, which is
an accelerate expanding Friedmann universe.

The deduced exponential law points out the ultimately high redshift
zmax =22.14 for the objects located at the event horizon. The highest
redshifted objects, registered by the astronomers, are now the galaxies
UDFj-39546284 (z=10.3) and UDFy-38135539 (z=8.55). According
to the theory, they are still distantly located from the “world end”. We
therefore shall expect, with years of further astronomical observation,
more “high redshifted surprises” which will approach the upper limit
zmax =22.14 predicted by our theory.

§9. A note on the cosmological mass-defect in a Friedmann
universe. In §9 of the previous publication [1], I suggested solving
the scalar geodesic equation of mass-bearing particles in a Friedmann
universe. This equation being in its general form

dm

dτ
+

m

c2
D11v

1v1 = 0 , (9.1)

is non-resolvable. This is because mass-bearing particles can travel at
any sub-light velocity, which is therefore an unknown term of the equa-
tion∗. I then looked for the velocity by solving the vectorial geodesic
equation of mass-bearing particles. As a result, I arrived at a non-
resolvable integral equation. Even qualitative analysis of the integral
did not give a definite conclusion.

I now understand my mistake in that way of deduction. I targeted
that problem in its general form. However, now I see that the problem
can easily be removed in a constant-deformation Friedmann universe,
where massive bodies (mass-bearing particles) travel not arbitrarily, but
are only carried out with the expanding (or compressing) Friedmann
space itself. In this particular case, the linear velocity of a mass-bearing
particle is the same as the speed Ṙ at which the curvature radius R of the
space changes with time, v= Ṙ. In other words, because v2 =hik v

ivk,
we have hik v

ivk = Ṙ2. In this particular case (and with dτ = dt accord-
ing to Friedmann’s metric), the scalar geodesic equation of mass-bearing
particles (9.1) takes the form

h11
dm

dt
+

m

c2
D11 Ṙ

2 = 0 , (9.2)

∗Massless particles travel at the velocity of light vi = ci, so we have not this
problem when considering the geodesic equations of massless particles.
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which is h11
dm
m =− Ṙ2

c2
D11dt, and, finally,

R2

1− κr2
d lnm = − Ṙ2

c2
D11dt . (9.3)

Then, substituting R= a0e
At and Ṙ= a0AeAt (8.16), and also D11 =

= RṘ
1−κr2

=
a2
0Ae2At

1−κr2
(8.18) as for a constant-deformation space, we ob-

tain the scalar geodesic equation in the form

d lnm = − a20A
3e2At

c2
dt , (9.4)

or d lnm=− a2
0A

2

2c2
de2At, where A= Ṙ

R
is a constant of the space.

Note that the curvature factor κ comes out from the obtained equa-
tion. Therefore, the further solution of the equation will be common
for all three types of the constant-deformation (homotachydiastolic)
Friedmann universe: the hyperbolic (κ=−1), flat (κ=0), and elliptic
(κ=+1) space.

This equation solves, obviously, as lnm=− a2
0A

2

2c2
e2At + lnB, where

the integration constant B can be found from the condition m=m0 at
the initial moment of time t= t0 =0. Thus, after some trivial algebra,
we obtain the final solution of the scalar geodesic equation (9.4). It is
the double-exponent

m = m0 e
− a2

0A2

2c2
(e2At − 1)

, (9.5)

where t is the duration of the expansion (if A> 0) or compression (A< 0)
of the Friedmann universe. At small distances (and durations of time),
this solution takes the linearized form

m ≃ m0

(
1− a20A

3t

c2

)
. (9.6)

The obtained exact solution (9.5) and its linearized form (9.6) mani-
fest the cosmological mass-defect in a constant-deformation (homotachy-
diastolic) Friedmann universe: the more distant an object we observe
in an expanding Friedmann universe is, the less should be its observed
mass m to its real mass m0. Contrarily, the more distant an object we
observe in a compressing Friedmann universe is, the heavier should be
this object according to the observation.

Our Universe seems to be expanding. This is due to the cosmological
redshift registered in the distant galaxies and quasars. Therefore, ac-
cording to the cosmological mass-defect deduced here, we should expect
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distantly located cosmic objects to be much heavier than we estimate on
the basis of astronomical observations. The magnitude of the expected
mass-defect should be, according to the obtained solutions, in the order
of the redshift of the objects.

The cosmological mass-defect complies with the respective solution
obtained for the frequency of a photon. Both effects are deduced in the
same way, by solving the scalar geodesic equation for mass-bearing and
massless particles, respectively. One effect cannot be in the absence of
the other, because the geodesic equations have the same form. This is
a basis of the space (space-time) geometry, in other words. Therefore,
once the astronomers register the linear redshift law and its non-linearity
in the very distant galaxies and quasars, they should also find the corre-
sponding cosmological mass-defect according to the solutions outlined
here. Once the cosmological mass-defect is discovered, we will be able
to say, surely, that our Universe as a whole is an expanding Friedmann
universe of the constant-deformation (homotachydiastolic) type.

Submitted on December 24, 2011
Corrected on January 24, 2024

P.S. A thesis of this presentation has been posted on the desk of the April Meeting
2012 of the APS, planned for March 31 – April 03, 2012, in Atlanta, Georgia. More
detailed explanation of the cosmological redshift and the cosmological mass defect,
surveyed briefly in my recent papers, will be considered in my forthcoming book
(under preparation).
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