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Abstract: The thermodynamics of the Kerr-AdS black hole is re-
formulated within the context of the formalism of geometrothermo-
dynamics (GTD) and the cosmological constant is considered as a
thermodynamical parameter. We conclude that the mass of the black
hole corresponds to the total enthalpy of this system. Choosing ap-
propriately the metric in the manifold of equilibrium states, we study
the phase transitions as a divergence of the thermodynamical curva-
ture scalar. This approach reproduces the Hawking-Page transition
and shows that considering the cosmological constant as a thermody-
namical parameter does not contribute new phase transitions to the
pre-existing picture.
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§1. Introduction. The thermodynamics of black holes has been
studied extensively since the work of Hawking [1]. The notion of crit-
ical behavior for black holes has arisen in several contexts from the
Hawking-Page [2] phase transition in anti-de-Sitter (AdS) background
to the pioneering work by Davies [3] on the thermodynamics of Kerr-
Newman black holes and the idea of the extremal limit of various black
hole families regarded as genuine critical points [4–6]. Recently, some
authors have considered the cosmological constant Λ as a dynamical
variable [7,8] and it has further been suggested that it is better to con-
sider Λ as a thermodynamic variable, [9–13]. Physically, Λ is interpreted
as a thermodynamic pressure in [14, 15], a fact that is consistent with
the observation in [16–18] that its conjugate thermodynamic variable is
proportional to a volume.
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The use of geometry in statistical mechanics was pioneered by Rup-
peiner [19] and Weinhold [20], who suggested that the curvature of
a metric defined on the space of parameters of a statistical mechani-
cal theory could provide information about its phase structure. When
this treatment is applied to the study of black hole thermodynamics,
some puzzling anomalies appear. A possible solution was suggested by
Quevedo’s geometrothermodynamics (GTD) whose starting point [21]
was the observation that standard thermodynamics is invariant with
respect to Legendre transformations. The formalism of GTD indicates
that phase transitions occur at those points where the thermodynamic
curvature scalar is singular.

In this paper, we apply the GTD formalism to the Kerr-AdS black
hole to investigate the behavior of the thermodynamical curvature. As
is well known, a black hole with a positive cosmological constant has
both a cosmological horizon and an event horizon. These two surfaces
have, in general, different Hawking temperatures, which complicates
any thermodynamical treatment. Therefore, we will focus on the case
of a negative cosmological constant, though many of the conclusions are
applicable to the positive Λ case. Furthermore, the negative Λ case is
of interest for studies on AdS/CFT correspondence and the subsequent
considerations of this work are likely to be relevant in those studies.

§2. Geometrothermodynamics in brief. The formulation of
GTD is based on the use of contact geometry as a framework for ther-
modynamics. The (2n+1)-dimensional thermodynamic phase space T
is coordinatized by the thermodynamic potential Φ, the extensive vari-
ables Ea, and the intensive variables Ia, with a = 1, . . . , n. We define
on T a non-degenerate metric G = G(ZA) with ZA = {Φ, Ea, Ia}, and
the Gibbs 1-form Θ = dΦ − δab I

adEb with δab = diag(1, 1, . . . , 1). If
the condition Θ∧ (dΘ)n 6= 0 is satisfied, the set (T ,Θ, G) defines a con-
tact Riemannian manifold. The Gibbs 1-form is invariant with respect
to Legendre transformations, while the metric G is Legendre invariant
if its functional dependence on ZA does not change under a Legendre
transformation. This invariance guarantees that the geometric proper-
ties of G do not depend on the thermodynamic potential used in its
construction.

Now, we define the n-dimensional subspace of equilibrium thermo-
dynamic states, E ⊂ T , by means of the smooth mapping

ϕ : E −→ T
(Ea) 7−→ (Φ, Ea, Ia)

}
, (1)
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with Φ = Φ(Ea), and the condition ϕ∗(Θ) = 0, which gives the first law
of thermodynamics

dΦ = δab I
a dEb, (2)

and the conditions for thermodynamic equilibrium (the intensive ther-
modynamic variables are dual to the extensive ones),

∂Φ

∂Ea
= δab I

b. (3)

The mapping ϕ defined above implies that we know the equation Φ=
=Φ(Ea) explicitly. It is known as the fundamental equation, and from
it can be derived all the equations of state. The second law of thermody-
namics is equivalent to the convexity condition on the thermodynamic
potential,

∂2Φ

∂Ea ∂Eb
> 0 . (4)

Since the thermodynamic potential satisfies the homogeneity condi-
tion Φ(λEa) = λβΦ(Ea) for constant parameters λ and β, it satisfies
Euler’s identity,

β Φ(Ea) = δab I
bEa, (5)

and using the first law of thermodynamics, this gives the Gibbs-Duhem
relation,

(1− β) δab I
adEb + δabE

adIb = 0 . (6)

Defining a non-degenerate metric structure g on E that is compat-
ible with a metric G on T , we state that a thermodynamic system is
described by the thermodynamical metric G [21] if it is invariant with
respect to transformations which do not modify the contact structure
of T . In particular, G must be invariant with respect to Legendre
transformations in order for GTD to be able to describe thermody-
namic properties in terms of geometric concepts independently of the
the thermodynamic potential used. A partial Legendre transformation
is written as

ZA → Z̃A =
{
Φ̃, Ẽa, Ĩa

}
, (7)

where
Φ = Φ̃− δkl Ẽ

k Ĩ l

Ei = −Ĩi

Ej = Ẽi

Ii = Ẽi

Ij = Ĩj





, (8)
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with i ∪ j any disjoint decomposition of the set of indices {1, 2, . . . , n}
and k, l = 1, . . . , i. As is shown in [21], a Legendre invariant metric G

induces a Legendre invariant metric g on E defined by the pullback ϕ∗ as
g = ϕ∗(G). There is a vast number of metrics on T that satisfy the Leg-
endre invariance condition. The results of Quevedo et al. [22–24] show
that phase transitions occur at those points where the thermodynamic
curvature is singular and that the metric structure of the phase manifold
T determines the type of systems that can be described by a specific
thermodynamic metric. For instance, a pseudo-Euclidean structure

G = Θ2 +
(
δabE

aIb
)(
ηcd dE

cdId
)

(9)

with ηcd = diag (−1, 1, 1, . . . , 1) is Legendre invariant because of the
invariance of the Gibbs 1-form and induces on E the Quevedo’s metric

g =

(
Ef ∂Φ

∂Ef

)(
ηab δ

bc ∂2Φ

∂Ec ∂Ed
dEa dEd

)
, (10)

which describes systems characterized with second-order phase transi-
tions. On the other hand, an Euclidean structure

G = Θ2 +
(
δabE

aIb
)(
δcd dE

cdId
)

(11)

is also a Legendre invariant and induces on E the metric

g =

(
Ef ∂Φ

∂Ef

)(
∂2Φ

∂Ec ∂Ed
dEcdEd

)
, (12)

which describes systems with first-order phase transitions.

§3. The Kerr-AdS black hole. The Einstein action with cosmo-
logical constant Λ is given by

A =
1

16π

∫
d4x

√−g (R− 2Λ) , (13)

and the general solution representing a black hole is given by the Kerr-
AdS solution

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Ξ
dϕ

)2
+

∆θ sin
2 θ

ρ2

(
adt− r2 + a2

Ξ
dϕ

)2
+

+ ρ2
(
dr2

∆r
+

dθ2

∆θ

)
, (14)
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where

∆r =
(
r2 + a2

)(
1− Λr2

3

)
− 2mr , (15)

∆θ = 1+
Λa2

3
cos2 θ , (16)

ρ2 = r2 + a2 cos2 θ , (17)

and

Ξ = 1 +
Λa2

3
. (18)

The physical parameters of the black hole can be obtained by means
of Komar integrals using the Killing vectors ∂t

Ξ and ∂ϕ. In this way, one
obtains the mass of the black hole

M =
m

Ξ2
(19)

and its angular momentum

J = aM = a
m

Ξ2
. (20)

The horizons are given by the roots of

∆r = 0 . (21)

In particular, the largest positive root located at r = r+ defines the
event horizon with an area

A = 4π

(
r2
+
+ a2

)

Ξ
. (22)

The Smarr formula for the Kerr-AdS black hole gives the relation

M2 = J2

(
π

S
− Λ

3

)
+

S3

4π3

(
π

S
− Λ

3

)2
(23)

that corresponds to the fundamental thermodynamical equation M =
=M (S, J,Λ) which relates the total mass M of the black hole with the
extensive variables, entropy S = A

4 , angular momentum J and cosmo-
logical constant Λ, and from which all the thermodynamical information
can be derived.

In the geometric formulation of thermodynamics, we will choose the
extensive variables as Ea = {S, J,Λ} and the corresponding intensive
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variables as Ia = {T,Ω,Ψ}, where T is the temperature, Ω is the an-
gular velocity and Ψ is the generalized variable conjugate to the state
parameter Λ. Therefore, the coordinates that we will use in the 7-
dimensional thermodynamical space T are ZA= {M,S, J,Λ, T,Ω,Ψ}.
The contact structure of T is generated by the 1-form

Θ = dM − TdS − ΩdJ −ΨdΛ . (24)

To obtain the induced metric in the space of equilibrium states E we
will introduce the smooth mapping

ϕ : {S, J,Λ} 7−→
7−→ {M(S, J,Λ), S, J,Λ, T (S, J,Λ) ,Ω (S, J,Λ) ,Ψ(S, J,Λ)} (25)

along with the condition ϕ∗(Θ) = 0, that corresponds to the first law
dM = TdS+ΩdJ+ΨdΛ. This condition also gives the relation between
the different variables with the use of the fundamental relation (23). The
Hawking temperature is evaluated as

T =
∂M

∂S
=

S2

8π3M

(
π

S
− Λ

3

)(π

S
− Λ

)
− πJ2

2MS2
, (26)

the angular velocity is

Ω =
∂M

∂J
=

J

M

(
π

S
− Λ

3

)
(27)

and the conjugate variable to Λ is

Ψ =
∂M

∂Λ
= − S3

12π3M

(
π

S
− Λ

3

)
− J2

6M
. (28)

As can be seen, Ψ has dimensions of a volume. In fact, in the limit
of a non-rotating black hole, J → 0, we have Ψ=− 4

3r
3
+
(see [25]) and

it can be interpreted as an effective volume excluded by the horizon, or
alternatively a regularized version of the difference in the total volume
of space with and without the black hole present [14–16]. Since the cos-
mological constant Λ behaves like a pressure and its conjugate variable
as a volume, the term ΨdΛ has the correct dimensions of energy and
is the analogue of V dP in the first law. This suggests that after ex-
panding the set of thermodynamic variables to include the cosmological
constant, the mass M of the AdS black hole should be interpreted as
the enthalpy rather than as the total energy of the spacetime.
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The T becomes a Riemannian manifold by defining the metric (9),

G = (dM − TdS − ΩdJ −ΨdΛ)
2
+

+ (ST +ΩJ +ΨΛ) (−dSdT + dJdΩ+ dΛdΨ) . (29)

The G has non-zero curvature and its determinant is det ‖G‖ =

=− (ST+ΩJ+ΨΛ)6

64 . Equation (10) lets us define the induced metric struc-
ture on E as

g =
(
SMS + JMJ + ΛMΛ

)



−MSS 0 0
0 MJJ MJΛ

0 MJΛ MΛΛ


 , (30)

where subscripts represent partial differentiation with respect to the
corresponding coordinate. Note that the determinant of this metric is

det ‖g‖ = MSS

(
M2

JΛ −MJJMΛΛ

)
(SMS + JMJ + ΛMΛ)

3
. (31)

We can also define an Euclidean metric (11) on T , but there are no
phase transitions associated with this metric.

§4. Phase transitions and the curvature scalar. Phase transi-
tions are an interesting subject in the study of black hole thermodynam-
ics since there is no unanimity in their definition. In ordinary thermo-
dynamics, phase transitions are defined by looking for singular points in
the behavior of thermodynamical variables. Davis [3,26] shows that the
divergences in the heat capacity indicate phase transitions. For exam-
ple, using equation (23) we have that the heat capacity for the Kerr-AdS
black hole is

C = T
∂S

∂T
=

MS

MSS
, (32)

C =
S
(
π
S − Λ

3

) (
π
S − Λ

)
− 4π4J2

S3

(
π
S − Λ

3

) (
π
S − 2Λ

)
− π

S

(
π
S − Λ

)
+ 8π3

S2

(
πJ2

S2 − ST 2
) . (33)

Thus, one can expect that phase transitions occur at the divergences
of C, i.e. at points where MSS = 0. For negative Λ the divergence of
C corresponds to the generalization of the well-known Hawking-Page
transition [2]. In GTD, the emergence of phase transitions appears to
be related with the divergences of the curvature scalar R in the space
of equilibrium states E . To understand this relation, remember that R
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ñ
a
g
a
a
n
d
S
in
d
i
M
o
jica

7
5

MSS =
144π7J4 (9π − 4ΛS) + 24π3J2S2 (3π − 2ΛS) (ΛS − 3π)2 + S4 (ΛS − 3π)3 (ΛS + π)

8π3/2S4
[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MJJ = − 2π3/2 (ΛS − 3π)
3

[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MΛΛ = − 6π9/2J4

[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MJΛ =
12π9/2J3 (ΛS − 3π)

S
[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 .
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always contains the determinant of the metric g in the denominator and,
therefore, the zeros of det ‖g‖ could lead to curvature singularities (if
those zeros are not cancelled by the zeros of the numerator).

Here we have considered the metric g given in (30) and its determi-
nant is proportional to MSS as shown in equation (31), making clear the
coincidence with the divergence of the heat capacity and the existence of
a second-order phase transition that corresponds to the generalization of
the Hawking-Page result. There is also a factor of

(
M2

JΛ −MJJMΛΛ

)
in

the determinant which codifies the information of non-constant Λ. Note
that the interesting second derivatives of the thermodynamic potential
are shown in Page 75.

As can be seen, for negative values of Λ the factor
(
M2

JΛ −MJJMΛΛ

)

is always positive. Therefore, we conclude that considering Λ as a new
thermodynamical state parameter does not produce new phase transi-
tions in the Kerr-AdS black hole.

§5. Conclusion. Quevedo’s geometrothermodynamics describes in
an invariant manner the properties of thermodynamic systems using
geometric concepts. It indicates that phase transitions would occur at
those points where the thermodynamic curvature R is singular. Follow-
ing Quevedo, the choice of the metric given in equation (10) apparently
describes second-order phase transitions.

In this work, we have applied the GTD formalism to the Kerr-AdS
black hole, considering the cosmological constant as a new thermody-
namical state variable. In this aproach, the total mass of the black
hole is interpreted as the total enthalpy of the system. Thus, we have
obtained a curvature scalar that diverges exactly at the point where
the Hawking-Page phase transition occurs. Since we have employed a
metric of the form given in (10) we conclude that this is a second-order
phase transition. It is also important to note that the consideration of
Λ as a thermodynamical variable does not include new phase transitions
in the system.

It is clear that the phase manifold in the GTD formalism contains
information about thermodynamic systems; however, it is not clear at
present where the thermodynamic information is encoded. A more de-
tailed investigation along these lines will be reported in the future.
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