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Abstract: In the framework of an Extended General Relativity
based on a semi-affine connection, we have postulated the existence
of a background persistent field filling the physical vacuum and af-
fecting the neighboring masses. In a holonomic scheme, the original
Weyl formulation for generalized variational fields leads to the energy-
momentum tensor of a perfect fluid in the Einstein field equation with
a massive source. Since both the Weyl and EGR connections are
shown to be equivalent in a particular way, the perfect fluid tensor
with its pressure appears as a Riemannian transcription of the EGR
massive tensor, with its surrounding active background field. This re-
sult would lend support to our assertion regarding the persistent field
within the EGR formulation.
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Introduction. In one of our earlier publications [1], we have worked
out an extended theory of general Relativity (EGR Theory) which allows
for a permanent field to exist, thus filling the physical vacuum. This
field appears as a continuity of the matter-pseudo-gravity field [2] which
is required to fulfill the conservation law for the corresponding energy-
momentum tensor in the classical GR theory. The existence of this
persistent field has been first predicted in another paper based on the
Lichnerowicz matching conditions applied to two spherically symmetric
metrics [3]. In the foregoing, we provide a strict demonstration based on
the properties of the so-called generalized variational manifolds [4, 5],
which are a general class of Finslerian spaces. This theory relies on
the symmetric Weyl connection which can be extended to the so-called
decomposable connection or semi-symmetric connection [6, p. 69–75].
The Weyl manifold is then entirely defined from a) the Riemannian
metric ds2 and b) a form dK =Kadx

a which is generally non-integrable.
In what follows, we will however restrict our study to the symmetric

part of the Weyl connection which readily relate to the EGR one in a
very simple way.

With respect to a holonomic frame (in the sense of Cartan), the form
dK becomes integrable, and we may establish a pure conformal metric
(ds2)′ whose conformal factor is e2K .

This conformal factor enables us to define 4-velocities collinear with
the unit 4-vectors of the Einstein metric and allow us to write simple
conformal geodesic equations for the flow lines of a specific type of
fluid. This differential system is nothing else but the geodesic equation
of a perfect fluid, where an equation of state links its proper density
and the pressure prescribed on it: ρ= f(p). So, by choosing a Weyl
connection that spans the generalized variational spaces and making
use of a holonomic frame, we are led to find the energy-momentum
tensor of a neutral perfect fluid Tab.

By relating the Weyl connection to the EGR connection in a very
simple way, the EGR massive tensor (Tab)EGR appears to be formally
equivalent to the form of Tab.
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This substantiates the existence of the EGR persistent field tensor
which in the Riemannian scheme is represented by a pressure term gab p,
and where the dynamical mass density ρ increases to (ρ + p), thus con-
firming our postulate that the EGR Theory describes trajectories of
dynamical entities comprising bare masses of particles and their own
gravity field [7].

Chapter 1. The Extended General Relativity (EGR)

§1.1. The Riemannian metric. In an open neighborhood of the
pseudo-Riemannian manifold V4, the metric of signature (+−−−) can
be expressed by

ds2 = gab θ
aθb, (1.1)

where θa are the Pffafian forms in the considered region a=4, 1, 2, 3.
The manifold considered here is always understood to be globally

hyperbolic [8]. We also set here c=1.

§1.2. Brief overview on the Extended General Relativity

§1.2.1. Basic properties. We first briefly recall here our previous
results. The non-metricity condition is ensured by the EGR covariant
derivative D or ′, of the metric tensor which has been found to be

Da gbc =
1

3

(

Jc gab + Jb gac − Ja gbc
)

. (1.2)

The vector Ja is related to a specific 4×4 Hermitean (γ5)EGR matrix
by

Ja = k tr (γ5)EGR , (1.3)

where k is a real positive constant [9].
One then considers the semi-affine connection (EGR connection)

(Γd
ab)EGR

= {dab}+ (Γd
ab)J (1.4)

with

(Γd
ab)J =

1

6

(

δda Jb + δdb Ja − 3 gab Jd
)

(1.5)

and the Christoffel symbols of the second kind {dab}.
If ∇a is the Riemannian derivative operator, we have thus inferred

the EGR curvature tensor:

(Ra
·bcd)EGR

= Ra
·bcd +∇dΓ

a
bc −∇cΓ

a
bd + Γf

bcΓ
a
fd − Γf

bdΓ
a
fc . (1.6)
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The contracted tensor

(Rab)EGR = Rab −
1

2

(

gab ∇e J
e +

1

3
JaJb

)

+
1

6
Jab

Jab = ∂a Jb − ∂b Ja











(1.7)

leads to the EGR Einstein tensor

(Gab)EGR = (Rab)EGR − 1

2

(

gabREGR − 2

3
Jab

)

(1.8)

with the EGR curvature scalar

REGR = R− 1

3

(

∇e J
e +

1

2
J2

)

. (1.9)

In the Riemannian regime, this tensor obviously reduces to the usual
Einstein tensor

Gab = Rab −
1

2
gabR.

§1.2.2. The EGR world-velocity. On the EGR manifold M, the
conoids, as defined in the Riemannian scheme, do not exactly coincide
with the EGR representation, because the EGR line element slightly
deviates from the standard Einstein geodesic invariant [10].

The EGR line element includes a small correction to the Riemann
invariant ds2 which we write as

(ds2)EGR = ds2 + d(ds2) , (1.10)

where
d(ds2) = (Dgab) dx

adxb (1.11)

with Dgab =
1

3
(Jc gab +Jb gac−Ja gbc)dx

c.
Hence, the EGR line element is simply expressed by

(ds2)EGR =
(

gab +Dgab
)

dxadxb, (1.12)

which naturally reduces to the Riemannian (invariant) interval ds2 when
the covariant derivative of the metric tensor gab vanishes (i.e. when we
have Ja =0).

We can thus define an EGR 4-velocity as

(ua)EGR =
dxa

(ds)EGR

. (1.13)
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This vector will always be assumed to be a unit vector according to

gab (u
aub)EGR = gab (uaub)EGR = 1 . (1.14)

§1.3. The EGR persistent field. The EGR field equation with
a massive source is written

(Gab)EGR = κ

[

ρEGR(uaub)EGR + (tab)field
]

, (1.15)

where κ is Einstein’s constant.
The persistent field tensor is here assumed to represent a vacuum

homogeneous background energy which is linked to its density by

√−g (tab)field = (F ab)field . (1.16)

Explicitly, (Fab)field is derived from the canonical equations

(Fa
b )field =

1

2κ

[

Hδab − ∂b(Γ
e
df )EGR

∂H
∂(∂aΓe

df )EGR

]

, (1.17)

where the invariant density is H=(RabRab)EGR built itself with the
second-rank tensor density

(Rab)EGR = (Rab)EGR

√−g .

Chapter 2. The Perfect Fluid Solution

§2.1. The Weyl formulation. The essential work of Lichnérowicz
on The Generalized Variational Spaces begins by defining the symmetric

Weyl connection:

W a
bc = {abc}+ gad

(

gcdFb + gbdFc − gbcFd

)

. (2.1)

From the point M in the neighborhood of the space-time manifold
V4, a congruence of differentiable lines, such that for all m ∈ V4 there
is a unique curve joining M onto m, and thus the Weyl metric

(ds2)W = e2Fds2 (2.2)

can be defined, where

F =

∫ m

M

Kadx
a. (2.3)

The form dK =Kadx
a is generally non-integrable.
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§2.2. The holonomic scheme. In a holonomic frame [11, p. 45], we
have Ka = ∂aK, and the form dK is now integrable. In this case, we
simply write (2.2) as the conformal metric

(ds2)′ = e2Kds2 (2.4)

and the Weyl connection (2.1) reduces to the conformal connection

{abc}′ = {abc}+ gad
(

gcdKb + gbdKc − gbcKd

)

. (2.5)

§2.3. The fiber bundle framework

§2.3.1. Short overview on fiber bundles. Given an n-dimension-
al manifold M, we can construct another manifold called a fiber bundle

which is locally a direct product of M and a suitable space E, called the
total space. For a thorough theory see for example [12, p. 50–55]. In
this section, we shall only consider the tangent bundles category Tp(M),
(p ∈ M) which is the fiber bundle over the manifold M obtained by
giving the set E = ∪ Tp, its natural manifold structure and its natural
projection onto M. A trivial example is the manifold M representing
the circle S1 and the real line R1 with which can be constructed the
cylinder C2, as a product bundle over S1.

In the following we shall consider:

• The differentiable manifold V4;

• The bundle fiber space W2×4 of all vectors tangent to various
points of V4;

• The bundle fiber space D8−1 of all directions tangent to various
points of V4.

§2.3.2. Variational calculation. Most of the derivations detailed
in here can be found in [13, p. 72–75]. An element ∈ W8 is defined by
the coordinates xa of the point x ∈ V4, and by the four quantities ◦xa,
contravariant components of the vector in the natural basis associated
at x to the (xa). For an element of D8−1, the

◦xa will be only defined
as directional parameters such that

◦xa = xa(u) .

The curve C is the projection on V4 of the curve U of D8−1, locus
of all directions tangent to C at its various points. This parametrized
representation defining C is described in W8 by another curve L(u),
locus of the derivate vectors at u with respect to various points x of C.
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In local coordinates for L(u), we thus have:

◦xa =
dxa

du
. (2.6)

In these coordinates, we consider a scalar-valued function f(xa, ◦xa)
defined on W8 which is homogeneous and of first degree with respect
to ◦xa. On V4 to the curve C joining the points x0 onto x1 there can
always be associated the integral expressed in L(u) as:

Φ =

∫ u1

u0

f (xa, ◦dxa) =

∫ x1

x0

f (xa, dxa) . (2.7)

Always in local coordinates, let us now evaluate the variation of Φ
with respect to the variable points of C:

δΦ = fu1 δu1 − fu0 δu0 −
∫ u1

u0

δf du. (2.8)

Classically, inspection shows that

∫ u1

u0

δf du =

(

∂f

∂ ◦xa
δxa

)u=u1

u=u0

−
∫ u1

u0

Pa δx
adu, (2.9)

where the Pa are the first members of the Euler equations associated
with the function f .

We infer the expression

δΦ =
[

ω(δ)
]

x1
−
[

ω(δ)
]

x0
−
∫ u1

u0

Pa δx
adu, (2.10)

where ω(δ) has the form

ω(δ) =

(

∂f

∂ ◦xa

)

δxa −
(

◦xa ∂f

∂ ◦xa
− f

)

δu (2.11)

and due to the homogeneity of f , it reduces to

ω(δ) =
∂f

∂ ◦xa
δxa. (2.12)

The Pa are the components of a covariant vector P which appear as
a scalar product in (2.9):

δΦ =
[

ω(δ)
]

x1
−
[

ω(δ)
]

x0
−
∫ u1

u0

〈P δx〉 du. (2.13)
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§2.3.3. Specific variational derivation. Let us apply the above
results to the function

f = eK
ds

du
= eK

√

gab ◦xa ◦xb , (2.14)

where K is always defined in V4.
Between two points x0 and x1 of V4 connected by a time-like curve,

we set the integral

s′ =

∫ x1

x0

eKds =

∫ x1

x0

eK
√

gab ◦xa ◦xb . (2.15)

Then upon differentiation, we readily infer

f
∂f

∂ ◦xa
= e2Kgab

◦xb

f
∂f

∂ xa
= eK

(

∂a e
K gbc

◦xa ◦xc +
1

2
eK∂a gbc

◦xa ◦xc

)



















. (2.16)

We now choose s as the parameter of the curve C, so the vector

◦xa =
dxa

ds
= ua (2.17)

is here regarded as the unit vector tangent to C.
Equations (2.16) then reduce to the following expressions

∂f

∂ ◦xb
= eKub

∂f

∂ xb
=

1

2
eK∂bgad u

aud + ∂b e
K

eK{abd} uaud + ∂b e
K































, (2.18)

where {abd} denotes the Christoffel symbols of the first kind.
In this parametrized formulation, the components Pb of P are writ-

ten

Pb =
d

ds

∂f

dxb
− ∂f

dxb
=

d

ds
(eKub)− eK{abd} uaud − ∂b e

K , (2.19)

i.e.

Pb = eK(ua∂aub)− {abd} uaud − ∂ae
K(δab − uaub) , (2.20)
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hence
Pb = eK(ua∇aub)− (∂aK)(δab − uaub) , (2.21)

and (2.13) becomes

δs′ =
[

ω(δ)
]

x1
−
[

ω(δ)
]

x0
−
∫ s1

s0

〈P δx〉 ds, (2.22)

where locally:
ω(δ) = eKuadx

a. (2.23)

When the curve C varies between two fixed points x0 and x1, (2.22)
obviously reduces to

δs′ = −
∫ x1

x0

〈P δx〉ds. (2.24)

In order to extremalize s′, P must be zero, and since eK 6=0, we
have

(ua∇a ub)− (∂aK)(δab − uaub) = 0 . (2.25)

Chapter 3. The Geodesic Equations

§3.1. The Riemannian situation. In V4, the unit vector satisfies

gab u
aub = gabuaub = 1 , (3.1)

and differentiating, we thus obtain

ub∇a ub = 0 . (3.2)

Let us now consider the covariant derivative

∇a (ru
aub) = r (∂bK) , (3.3)

where r is a scalar.
If we take into account (3.1) and (3.2), the equation (3.3) is equiva-

lent to
ua∇aub = (∂aK)(gab − uaub) (3.4)

after contracted multiplication by ub and division by r.
However, (3.3) is just the conservation condition applied to a tensor

Tab provided we set
r (∂bK) = ∇a (rδ

a
b ) . (3.5)
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Explicitly, the tensor Tab can be written:

Tab = r uaub − pgab . (3.6)

We note that this equation has the form of the well-known tensor
describing a perfect fluid with proper density ρ:

Tab = (ρ+ p)uaub − p gab (3.7)

with an equation of state ρ= f(p), and with r=(ρ+ p), where p is the
scalar pressure of the fluid.

Hence,

K =

∫ p

p0

dp

ρ+ p
, (3.8)

and
ua∇a ub = (∂aK)(gab − uaub) , (3.9)

i.e.
ua∇a ub = (∂aK)hab , (3.10)

where
hab = gab − uaub (3.11)

is the well-known projection tensor in the adopted signature.
The 4-vector ∂aK is regarded as the acceleration of the flow lines

given by the pressure gradient orthogonal to those lines.
We can thus draw a first conclusion: equations (2.25) and (3.9) are

formally identical. They represent the differential system which the flow
lines must satisfy, or in other words, they represent the geodesics of the
perfect fluid flow lines.

Theorem: In a holonomic frame, a perfect fluid follows time-like lines

extremalizing the integral

s′ =

∫ x1

x0

e2Kds (3.12)

for variations between two fixed points.

Therefore, these flow lines are time-like geodesics conformal to the
metric ds2:

(ds2)′ = e2Kds2 = e2Kgab dx
adxb (3.13)

with the following metric tensor components:

(gab)
′ = e2Kgab , (gab)′ = e−2Kgab. (3.14)
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One can find a similar conclusion in [14] and [15].

§3.2. The EGR geodesics for the EGR massive tensor.

§3.2.1. A conformal like 4-velocity. We now define the collinear
vectors wa with ua:

wa = eKua , wa = eKua, (3.15)

hence
(wa)

′ = eKua, (3.16)

(wa)′ = e−Kua. (3.17)

These are regarded as 4-velocities and are still unit vectors in the
conformal metric (ds2)′.

As a result, an alternative way of expressing (3.10) can be easily
shown to be

(wa)′(∇a)
′(wb)

′ = 0 , (3.18)

where (∇a)
′ is the covariant derivative in (ds2)′ which is built from the

conformal connection

{abc}′ = {abc}+ gad
(

gcdKb + gbdKc − gbcKd

)

. (3.19)

§3.2.2. Relation between the Weyl and the EGR connections.
We recall that the EGR theory is built from two types of curvature
forms in a dual basis:

The rotation curvature 2-form is:

Ωa
b = −1

2
Ra

·bcd θ
c∧ θd. (3.20)

The segmental curvature 2-form is:

Ω = −1

2
Ra

·acd θ
c∧ θd. (3.21)

This last form results from the variation of the parallely transported
vector around a closed path, a feat which necessarily induces Da gbc 6=0.

Therefore, the global symmetric connection is easily inferred as

Γa
bc = {abc}+ gad

(

Db gcd +Dc gbd −Dd gbc
)

(3.22)

and the Weyl connection

W a
bc = {abc}+ gad

(

gcdFd + gbdFc − gbcFd

)

(3.23)
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is simply obtained by setting

Da gbc = gbcFa . (3.24)

Hence, in this particular case, we can relate the EGR connection to
the Weyl counterpart by

gbcFa = Da gbc =
1

3

(

Jc gab + Jb gac − Ja gbc
)

. (3.25)

§3.2.3. The EGR geodesic equation. In a strict Weyl formula-
tion, the equation (3.4) can be derived up to

ua∇a ub = F a
(

gab − uaub ) , (3.26)

where the form dF =F adxa is not integrable.
The F can always be chosen so that we have the correspondence

eF (ua)EGR −→ (wa)
′ = eKua

e−F (ua)EGR −→ (wa)′ = e−Kua

}

. (3.27)

Therefore, the EGR geodesic equation for the neutral matter is anal-
ogously expressed by

(ua)EGRDa(ub)EGR = F a
[

gab − (uaub)EGR

]

. (3.28)

This equation is obeyed by the flow lines of the dynamical mass-
gravity field whose energy-momentum tensor is given by

(Tab)EGR =
[

ρEGR(uaub)EGR + (tab)field
]

, (3.29)

which is to be compared with the tensor

Tab =
(

ρ+ p
)

uaub − pgab . (3.30)

Consequences and conclusions. The main goal of our successives
studies is to provide a physical justification of the theory that predicts
an underlying medium which contains and unifies the particle and anti-
particle states, see [16–20].

To sustain this argument, we have asserted that the EGR Theory
must exhibit a background persistent field filling the standard physical
vacuum.
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In addition, when a neutral massive source is present, the persistent
field tensor should supersede the matter gravity pseudo-tensor neces-
sarily required by the conservation condition which is imposed by the
conserved Riemannian Einstein tensor.

Therefore, the EGR theory allows for describing the geodesic motion
of a dynamical entity that includes the bare mass slightly increased by
its own surrounding gravity field.

In this paper, we have strictly shown that this is indeed the case,
if one places himself in the frame of the generalized variational spaces
which are easily related to the EGR manifold.

Using then a holonomic frame of reference, we eventually find that
the inferred Riemannian perfect fluid tensor matches the model of the
EGR energy-momentum tensor of neutral homogeneous matter. In the
Riemannian scheme, the role of the persistent field tensor is taken up by
the fluid pressure, and the increased bare mass density is here modified
by the fluid pressure through an equation of state.
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et la théorie des antiparticules. Le Journal de Physique, 1967, t. 28, 481.

18. Marquet P. On the physical nature of the wave function: A new approach
through the EGR Theory. The Abraham Zelmanov Journal, 2009, vol. 2, 195–
207.

19. Marquet P. The matter-antimatter concept revisited. Progress in Physics, 2010,
vol. 2, 48–54.

20. Vigier J. P. and Bohm D. Model of the causal interpretation of quantum theory
in terms of a fluid with irregular fluctuations. Physical Review, 1954, vol. 96,
no. 1, 208–216.



Vol. 5, 2012 ISSN 1654-9163

THE

ABRAHAM ZELMANOV

JOURNAL
The journal for General Relativity,
gravitation and cosmology

TIDSKRIFTEN

ABRAHAM ZELMANOV
Den tidskrift för allmänna relativitetsteorin,

gravitation och kosmologi

Editor (redaktör): Dmitri Rabounski
Secretary (sekreterare): Indranu Suhendro

The Abraham Zelmanov Journal is a non-commercial, academic journal registered
with the Royal National Library of Sweden. This journal was typeset using LATEX
typesetting system.

The Abraham Zelmanov Journal är en ickekommersiell, akademisk tidskrift registr-
erat hos Kungliga biblioteket. Denna tidskrift är typsatt med typsättningssystemet
LATEX.

Copyright c© The Abraham Zelmanov Journal, 2012

All rights reserved. Electronic copying and printing of this journal for non-profit,
academic, or individual use can be made without permission or charge. Any part of
this journal being cited or used howsoever in other publications must acknowledge
this publication. No part of this journal may be reproduced in any form whatsoever
(including storage in any media) for commercial use without the prior permission
of the publisher. Requests for permission to reproduce any part of this journal for
commercial use must be addressed to the publisher.

Eftertryck förbjudet. Elektronisk kopiering och eftertryckning av denna tidskrift
i icke-kommersiellt, akademiskt, eller individuellt syfte är till̊aten utan tillst̊and
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av denna tidskrift i kommersiellt syfte ska riktas till utgivarna.


