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Abstract: We calculate the Komar energy E for a charged black
hole inspired by noncommutative geometry and identify the total mass
(M0) by considering the asymptotic limit. We also found the general-
ized Smarr formula, which shows a deformation from the well known
relation M0 −Q2

0
/r+ = 2ST depending on the noncommutative scale

length ℓ.
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§1. Introduction. There is a deep connection between gravity and
thermodynamics that has been known for a long time, from the works of
Bekenstein and Hawking [1–3] to the recent research of Padmanabhan
[4, 5]. In a thermodynamical system like Schwarzschild black hole, the
entropy S, the Hawking temperature T and energy E are related by the
first law of thermodynamics

dE = T dS , (1)

where E is identified with the Komar energy [6,7] and specifically for a
Schwarzschild black hole it equals the total mass of the black hole, M .
There is also an integral version of this equation

E = M = 2T S . (2)

known as the Smarr formula [8] and it can be verified by using the
expressions for temperature and entropy,

T =
1

8πM
, (3)

S =
A

4
= 4πM2. (4)
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Eq. (2) has been obtained in different ways [5, 9] and the Komar
energy is identified with the conserved charge associated with the Killing
vector defined at the event horizon (see for example [10]). Recently,
some generalized expressions for Smarr formula in different spacetimes
have been studied [9–11] and in particular, the Kerr-Newman black hole
with electric charge Q and angular momentum J satisfies the Smarr
relation [12]

M = 2TS + ΦHQ+ 2ΩHJ , (5)

where ΦH and ΩH are the electric potential and angular velocity at the
horizon, respectively.

As a continuation of the research in black holes inspired by non-
commutative geometry started in [13], in this paper we investigate the
specific case of a 4-dimensional spherically symmetric charged black hole
studied in [14–21]. This solution is obtained by introducing the non-
commutativity effect through a coherent state formalism [22–24], which
implies the replacement of the point distributions by smeared structures
throughout a region of linear size ℓ. We perform the analysis by obtain-
ing the Komar energy by direct integration and found the generalized
Smarr formula, which shows a deformation from the usual relation de-
pending on the noncommutative parameter ℓ.

§2. Komar energy of the charged noncommutative black hole.

Many formulations of noncommutative field theory are based on the
Weyl-Wigner-Moyal ∗-product [25–27] that lead to some important
problems such as Lorentz invariance breaking, loss of unitarity or UV
divergences of the quantum field theory. However, Smailagic and Spal-
lucci [14–18, 20] explained recently a model of noncommutativity that
can be free from the problems mentioned above. They assume that a
point-like mass M and charge Q, instead of being quite localized at a
point, must be described by a smeared structure throughout a region of
linear size ℓ. The metric for this distribution is given by [21]

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2dΩ2, (6)

where

f(r) = 1− 2M (r)

r
+

Q2 (r)

r2
, (7)

Q (r) =
Q0√
π

√

γ2

(

1

2
,
r2

4ℓ2

)

− r√
2ℓ

γ

(

1

2
,
r2

2ℓ2

)

+

√
2r

ℓ
γ

(

3

2
,
r2

4ℓ2

)

, (8)
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M (r) =
2M0√

π
γ

(

3

2
,
r2

4ℓ2

)

, (9)

and

γ
(a

b
, x
)

=

∫ x

0

du u
a

b
−1e−u (10)

is the lower incomplete gamma function. Considering a spatial 2-sphere
V with boundary ∂V , the Komar integral for the energy is

E (V ) =
a

16π

∮

∂V

∇µξνdΣµν , (11)

where the killing vector is ξ= ∂
∂t , dΣµν is the surface element at the

boundary and the value of constant a will be found by comparison with
the noncommutative Schwarzschild case. This is

E =
2a

16π

∮

∂V

∇µξtdΣµt , (12)

where the factor 2 appears because of the symmetry of the integrand.
The covariant derivative involved is

∇µ ξ
t = ∂µξ

t + Γt
µσξ

σ = Γt
µt , (13)

and for the noncommutative charged solution the nonvanishing connec-
tions are

Γt
rt =

− dM
dr r2 + rM + r

2

dQ2

dr −Q2

r (r2 − 2Mr +Q2)
, (14)

Γt
tt = Γt

θt = Γt
ϕt = 0 , (15)

giving

E =
a

8π

∮

∂V

− dM
dr r2 + rM + r

2

dQ2

dr −Q2

r3
dΣrt . (16)

The surface element corresponds to

dΣrt = −dΣtr = −r2 sin2θ dθdϕ (17)

and therefore

E = − a

8π

− dM
dr r2 + rM + r

2

dQ2

dr −Q2

r

∮

∂V

sin2θ dθdϕ , (18)

E =
a

2

[

dM

dr
r −M − 1

2

dQ2

dr
+

Q2

r

]

. (19)
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By comparison with the Komar energy of the Schwarzschild black
hole, we shall identify a = −2. Hence, the energy of the noncommutative
charged black hole is finally given by

E = M − dM

dr
r − Q2

r
+Q

dQ

dr
. (20)

The horizons of the metric (6) can be found by setting f(r±) = 0,
i.e.

r2
±
− 2r±M (r±) +Q2 (r±) = 0 , (21)

which can be solved as

r± = M (r±)±
√

M2 (r±)−Q2 (r±) . (22)

The Hawking temperature is defined in terms of the surface gravity
at the event horizon by

T =
κ

2π
=

1

4π
∂rf (r)|r=r+

, (23)

which gives in this case

T =
1

2πr2
+

[

M (r+)−
Q2 (r+)

r+

− r+

dM

dr

∣

∣

∣

∣

r=r+

+Q (r+)
dQ

dr

∣

∣

∣

∣

r=r+

]

. (24)

The entropy in terms of the area of the horizon is given by the well
known relation

S =
A

4
= πr2

+
(25)

and therefore, the Komar energy (20) at the event horizon becomes

E = 2πr2
+
T = 2ST. (26)

Using the Reissner-Nordström values r±=M0±
√

M2
0 −Q2

0 as a first
approximation of the horizons (22) and putting them into the incom-
plete gamma functions of Eqs. (8) and (9) one obtains

r± = M± ±
√

M2
±
−Q2

±
(27)

where we have defined M± and Q± in Page 112.
For a large value of its argument (i.e. large masses), function ε tends

to unity while the exponential term goes to zero, giving the classical
Reissner-Nordström horizons r± → rRN± = M0 ±

√

M2
0 −Q2

0.
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√
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,

Q± = Q0

√

√

√

√

√

√

ε2

(

M0 ±
√

M2
0 −Q2

0

2ℓ

)

−

(

M0 ±
√
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0 −Q2

0

)2

√
2π ℓ2

exp






−
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,

and ε (x) is the Gauss error function,

ε (x) =
2√
π

∫ x

0

e−u2

du .
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Using the same first approximation for the event horizon r+ in the
Hawking temperature (23) one obtains [29]

T ≈ 1

4π

r+ − r−

r2
+

. (28)

This approximation permits us to write the Komar energy at the
horizon, using Eqs. (26), (28) and (27), as

E = 2πr2
+
T =

r+ − r−

2
, (29)

E =
1

2

[

M+ +M− +
√

M2
+
−Q2

+
−
√

M2
−
−Q2

−

]

. (30)

By considering the behavior of the functions M± and Q±, it is easy
to see that the limit of large masses of (30), as well as taking the limit
ℓ → 0, recover the Reissner-Nordström energy while for Q0 = 0, it gives
the result of Banerjee and Gangopadhyay [28] for the noncommutative
Schwarzschild black hole with the usual E = M0. These results let us
identify the quantity M0 as the total mass of the black hole and Q0 as
its total electric charge.

With a similar procedure, the entropy can be approximated by

S = πr2
+
≈ π

(

M+ +
√

M2
+
−Q2

+

)2

, (31)

which give in the limit of large masses, or in the limit ℓ → 0, the usual
result for the Reissner-Nordström black hole,

S → SRN = π

(

M0 +
√

M2
0 −Q2

0

)2

. (32)

Using Eqs. (8) and (9) and the property of the gamma function

∂

∂u
γ
(a

b
, u
)

= e−uu−1+ a

b (33)

to perform the derivatives, the Komar energy (20) for this spacetime
yields

E = M(r)− Q2 (r)

r
− M0

2
√
π

r3

ℓ3
e−

r
2

4ℓ2 +

+
Q2

0

2π

[

2

ℓ
e−

r
2

4ℓ2 γ
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2
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+

+

√
2
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3
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Using the long distance approximations for the gamma functions

γ

(

3

2
,
r2

4ℓ2

)

≃
√
π

2
− r

2ℓ
e−r2/4ℓ2 , (35)

γ

(

1

2
,
r2

2ℓ2

)

≃
√
π −

√
2 ℓ

e−r2/2ℓ2

r
, (36)

γ

(

1

2
,
r2

4ℓ2

)

≃
√
π − 2ℓ

e−r2/4ℓ2

r
, (37)

we obtain finally

M0 −
Q2

0

r+

= 2TS +
M0√
π

r+

ℓ
e−

r
2
+

4 ℓ2

(

1 +
r2
+

2ℓ2

)

+
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Q2

0
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2
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+

2ℓ2
+
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)

−

− e−
r
2
+

4 ℓ2

(

4
√
π

ℓ

r+

+
√
π
r+

ℓ
+

√
2

4

r2
+

ℓ2
+

√
2

8

r4
+

ℓ4

)]

. (38)

Since M0 and Q0 have been identified as the mass and charge of
the black hole, Eq. (38) corresponds to the generalization of the Smarr

formula for the noncommutative charged black hole. Note that this re-
lation deviates from the usual one (5) by the two last terms in the
right hand side, but it is clear that in the limit ℓ → 0 these terms disap-
pear. In the case Q0 =0 we recover the relation for the noncommutative
Schwarzschild black hole presented in [28, 30, 31].

§3. Conclusion. We have computed the Komar energy for a charged
black hole inspired in noncommutative geometry and its asymptotic
limit that let us identify the constant M0 as its total mass and Q0 as
its electric charge. With these results, we obtained the noncommuta-
tive version of the Smarr formula (38) which show a deformation from
the usual relation and the new terms depend on the noncommutative
parameter ℓ.
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