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Abstract: Classical Newtonian gravitational theory does not satisfy
the causality principle because it is based on instantaneous action-at-
a-distance. A causal version of Newtonian theory for a large rotating
sphere is derived herein by time-retarding the distance between inte-
rior circulating point-mass sources and an exterior field-point. The
resulting causal theory explains exactly the Earth flyby anomalies
reported by NASA in 2008. It also explains exactly an anomalous
decrease in the Moon’s orbital speed. No other known theory has
been shown to explain both the flyby anomalies and the lunar orbit
anomaly.
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Introduction. It has long been known that electromagnetic fields
propagate at or near the vacuum speed of light. The actual speed
of light depends on whether the field is propagating in a vacuum or
in a material medium. In either case, to calculate the electromagnetic
fields of a moving point-charge, the concept of “time retardation” must
be used [1]. The causality principle indicates that the “effect” of a
“causal” physical field requires a certain amount of time to propagate
from a point-source to a distant field-point. Classical Newtonian the-
ory is “acausal” because the Newtonian gravitational field is based on
instantaneous action-at-a-distance [2].

Gravitational fields are believed to propagate in empty space with
exactly the same speed as the vacuum speed of light [3]. In 1898 the
speed of the Sun’s gravitational field was found by a high school math
teacher, P. Gerber, by calculating what it would need to be to cause
the (in 1898) “anomalous” advance of the perihelion of Mercury [4].
Gerber’s value, 3.05500×108m/s, is about 2% greater than the vacuum
speed of light. In 2002 a group of radio astronomers measured the
speed of Jupiter’s gravitational field by detecting the rate of change
in the gravitational bending of radio waves from a distant quasar as
the giant planet crossed the line-of-sight [5]. They concluded that the
speed of Jupiter’s gravitational field is 1.06± 0.21 times the vacuum
speed of light. These results suggest that the speed of propagation of
the gravitational field near a massive central object may not be exactly
the same as the vacuum speed of light.

The first terrestrial measurement that proved a connection between
gravity and light, the gravitational red-shift, was carried out by
R.V. Pound and G.A.Rebka in 1959 [6]. In 1972 J.C.Hafele and
R.E.Keating reported the results of their experiments which detected
the relativistic time dilation and the gravitational red-shift for preci-
sion clocks flown around the world using commercial jet flights [7]. This
experiment showed conclusively that clocks at a deeper gravitational
potential run slower and that moving clocks run slower. It also showed
that the Sagnac effect [8], which originally was for electromagnetic fields,
also applies to gravitational fields. To correct for these relativistic ef-
fects, the precision clocks used in the GPS system are adjusted before
they are launched into space [9].

In 2008 Anderson et al. [10] reported that anomalous orbital-energy
changes have been observed during six spacecraft flybys of the Earth.
The reported speed-changes range from +13.28mm/s for the NEAR
flyby to −4.6mm/s for the Galileo-II flyby. Anderson et al. state in
their abstract:
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“These anomalous energy changes are consistent with an empir-
ical prediction formula which is proportional to the total orbital
energy per unit mass and which involves the incoming and out-
going geocentric latitudes of the asymptotic spacecraft velocity
vectors.”

Let the calculated speed-change be designated by δvemp. The em-
pirical prediction formula found by Anderson et al. can be expressed as
follows

δvemp =
2veq
c

vin (cosλin − cosλout) =

= − 2veq
c

vin

∫ tout

tin

sin
(

λ(t)
) dλ

dt
dt , (1.1)

where veq is the Earth’s equatorial rotational surface speed, c is the
vacuum speed of light, vin is the initial asymptotic inbound speed, λin is
the asymptotic inbound geocentric latitude, and λout is the asymptotic
outbound geocentric latitude. If t is the observed coordinate time for
the spacecraft in its trajectory, then λin=λ(tin) and λout =λ(tout). If
dλ/dt = 0, then δvemp=0. An order of magnitude estimate for the
maximum possible value for δvemp is 2(5×102/3×108)vin ∼ 30mm/s.

The following is a direct quote from the conclusions of Anderson
et al. (the ODP means the Orbit Determination Program):

“Lämmerzahl et al. [11] studied and dismissed a number of pos-
sible explanations for the Earth flyby anomalies, including Earth
atmosphere, ocean tides, solid Earth tides, spacecraft charging,
magnetic moments, Earth albedo, solar wind, coupling of Earth’s
spin with rotation of the radio wave, Earth gravity, and relativis-
tic effects predicted by Einstein’s theory. All of these potential
sources of systematic error, and more, are modeled in the ODP.
None can account for the observed anomalies.”

The article by Lämmerzahl et al. [11], which is entitled “Is the physics
within the Solar system really understood?”, was published in 2006.

A direct quote from the abstract for a more recent article, one pub-
lished in 2009 by M.M.Nieto and J.D. Anderson, follows [12]:

“In a reference frame fixed to the solar system’s center of mass, a
satellite’s energy will change as it is deflected by a planet. But a
number of satellites flying by Earth have also experienced energy
changes in the Earth-centered frame — and that’s a mystery.”

Nieto and Anderson then conclude their article with the following com-
ments:
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“Several physicists have proposed explanations of the Earth flyby
anomalies. The least revolutionary invokes dark matter bound
to Earth. Others include modifications of special relativity, of
general relativity, or of the notion of inertia; a light speed anomaly;
or anisotropy in the gravitational field — all of those, of course,
deny concepts that have been well tested. And none of them have
made comprehensive, precise predictions of Earth flyby effects.
For now the anomalous energy changes observed in Earth flybys
remain a puzzle. Are they the result of imperfect understandings
of conventional physics and experimental systems, or are they the
harbingers of exciting new physics?”

When the article by Nieto and Anderson was published, “conventional”
or “mainstream” physics had not resolved the mystery of the Earth flyby
anomalies. It appears that a new and possibly unconventional theory is
needed.

The empirical prediction formula (1.1) found by Anderson et al. is
not based on any mainstream theory of physics (it was simply “picked
out of the air”). However, the empirical prediction formula is remark-
ably simple and gives calculated speed-change values that are surpris-
ingly close to the observed speed-change values. The empirical predic-
tion formula gives three clues for that which must be satisfied by any
theory that is developed to explain the flyby anomaly:

1) the theory must produce a formula for the speed-change that is
proportional to the ratio veq/c,

2) the anomalous force acting on the spacecraft must change the λ-
component of the spacecraft’s velocity, and

3) it must be proportional to vin.

The objective of this article is threefold:

1) derive a new causal version of classical acausal Newtonian theory,

2) show that this new version is able to produce exact agreement with
all six of the anomalous speed-changes reported by Anderson et

al., and

3) show that it is also able to explain exactly the “lunar orbit anom-
aly”, an anomalous change in the Moon’s orbital speed which will
be described below.

This new version for Newtonian theory uses only mainstream physics:

1) classical Newtonian theory, and

2) the causality principle which requires time-retardation of the grav-
itational force.
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It also satisfies the three requirements of the empirical prediction for-
mula.

This article proposes a simple correction that converts Newton’s
acausal theory into a causal theory. The resulting causal theory has a
new, previously overlooked, time-retarded transverse component, des-
ignated gtrt, which depends on 1/cg, where cg is the speed of gravity,
which approximately equals the speed of light. The new total gravita-
tional field for a large spinning sphere, g, has two components, the stan-
dard well-known classical acausal radial component, gr, and a new rela-
tively small previously undetected time-retarded transverse vortex com-
ponent, gtrt. The total vector field g= gr +gtrt. The zero-divergence
vortex transverse vector field gtrt is orthogonal to the irrotational radial
vector field gr.

This new vector field is consistent with Helmholtz’s theorem, which
states that any physical vector field can be expressed as the sum of
the gradient of a zero-rotational scalar potential and the curl of a zero-
divergence vector potential [13, p. 52]. This means that gr can be de-
rived in the standard way from the gradient of a scalar potential, and
gtrt can be derived from the curl of a vector potential, but gtrt cannot
be derived from the gradient of a scalar potential.

The time retarded gravitational fields for a moving point-mass can be
derived by using the slow-speed weak-field approximation for Einstein’s
general relativity theory. Let ϕ be the time-retarded scalar potential, let
e be the time-retarded “gravitoelectric” acceleration field, let a be the
time-retarded vector potential, and let h be the time-retarded “gravit-
omagnetic” induction field. It is shown in §2 that the formulas for ϕ,
e, a, and h, have been derived by W.Rindler in his popular textbook,
Essential Relativity [14]. They are as follows

ϕ = G

∫∫∫

[ ρ

r′′

]

dV, a =
G

c

∫∫∫

[ρu

r′′

]

dV

e = −∇ϕ , h = ∇× 4a











, (1.2)

where ρ is the mass-density of the central object, u is the inertial velocity
of a source-point-mass which is held solidly in the central rotating object
by nongravitational forces (inertial velocity means the velocity in an
inertial frame), r′′ is the vector distance from a source-point-mass to
the field-point, the square brackets denote that the enclosed value is
to be retarded by the light travel time from the source-point to the
field-point, and dV is an element of volume of the central body.

Let the origin for an inertial (nonrotating and nonaccelerating)
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frame-of-reference coincide with the center-of-mass of a contiguous cen-
tral object. Let r′ be the radial vector from the origin to a source-
point-mass in the central object, and let r be the radial vector from
the origin to an external field-point, so that the vector distance from
the source-point to the field-point r′′ = r− r′. The triple integrals in
(1.2) indicate that the retarded integrands [ρ/r′′] and [ρu/r′′] are to be
integrated over the volume of the central object at the retarded time.

Let m be the mass of a test-mass that occupies the field-point at
r, and let v be the inertial velocity of the test mass. The analogous
Lorentz force law, i.e., the formula for the time-retarded gravitational
force F acting on m at r, is [14]

F = −m

(

e+
1

c
(v × h)

)

= −m∇

(

G

∫∫∫

[ ρ

r′′

]

dV

)

−

–m

(

v ×
(

∇×
(

4G

c2

∫∫∫

[ρu

r′′

]

dV

)))

. (1.3)

This shows that Rindler’s time-retarded version for the slow-speed weak-
field approximation gives a complete stand-alone time-retarded solution.
The time-retarded fields were derived from general relativity theory, but
there is at this point no further need for reference to the concepts and
techniques of general relativity theory. Needed concepts and techniques
are those of classical Newtonian theory.

Furthermore, Rindler’s version satisfies the causality principle be-
cause the fields are time-retarded. It is valid as a first order approxi-
mation only if

v2 ≪ c2, u2 ≪ c2,
GM

r
= |ϕ| ≪ c2, (1.4)

where M is the total mass of the central object.
Notice in (1.3) that the acceleration caused by the gravitoelectric

field e is independent of c, but the acceleration caused by the grav-
itomagnetic induction field h is reduced by the factor 1/c2. The nu-
merical value for c is on the order of 3×108m/s. If the magnitude
for e is on the order of 10m/s2 (the Earth’s field at the surface), and
the magnitudes for u and v are on the order of 104m/s, the relative
magnitude for the acceleration caused by h would be on the order of
10×4(104/3×108)2 m/s

2 ∼ 10−8m/s2. This estimate shows that, for
most slow-speed weak-field practical applications in the real world, the
acceleration caused by h is totally negligible compared to the accelera-
tion caused by e.

The empirical prediction formula (1.1) indicates that the flyby speed-
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change is reduced by 1/c, not by 1/c2, which rules out the gravitomag-
netic induction field h as a possible cause for the flyby anomalies. The
acceleration of the gravitomagnetic field is simply too small to explain
the flyby anomalies.

Consequently, if the gravitomagnetic component is ignored for being
negligible, the practicable version for Rindler’s Lorentz force law (1.3)
becomes the same as a time-retarded version for Newton’s well-known
inverse-square law

F = −Gm∇

∫∫∫

[ ρ

r′′

]

dV, (1.5)

where F is the time-retarded gravitational force acting on m.
Let d3F be the time-retarded elemental force of an elemental point-

mass source dm′ at r′. With this notation, the time-retarded version
for Newton’s inverse-square law becomes

d3F = −Gm
dm′

r′′2
r′′

r′′
, (1.6)

where r′′/r′′ is a unit vector directed towards increasing r′′. The nota-
tion d3F indicates that the differential element of force must be inte-
grated over 3-dimensional space to get the total force.

By definition, the gravitational field of a point-source dm′ at r′ is
the gravitational force of the source that acts on a test-mass of mass m
at r per unit mass of the test-mass.

The traditional symbol for the Newtonian gravitational vector field is
g. Therefore, the formula for the time-retarded elemental gravitational
field d3g of an elemental point-mass-source dm′ at r′ for a field-point
at r occupied by a test-mass of mass m becomes

d3g =
d3F

m
= −G

dm′

r′′2
r′′

r′′
. (1.7)

The negative sign indicates that the gravitational force is attractive.
Let ρ(r′) be the mass-density of the central object at r′. Then

dm′ = ρ(r′) dV. (1.8)

The resulting formula for the elemental gravitational field d3g, which
consists of the radial component d3gr and the transverse component
d3gtrt, becomes d3g= d3gr + d3gtrt. The formula for each component
becomes

d3gr = −G
dm′

r′′2

(

r′′

r′′

)

r

, d3gtrt = −G
dm′

r′′2

(

r′′

r′′

)

trt

, (1.9)
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where (r′′/r′′)r is the radial component of the unit vector and (r′′/r′′)trt
is the transverse component of the unit vector. The total field is ob-
tained by a triple integration over the volume of the central object at
the retarded time.

The triple integral is rather easy to solve by numerical integration
(such as by using the integration algorithm provided in Mathcad15) if
the central object can be approximated by a large spinning isotropic
sphere. To get a good first approximation for this article, the Earth is
simulated by a large spinning isotropic sphere. It is shown in §3 that
the triple integration for gtrt leads to the necessary factor 1/cg, where
cg is the speed of propagation of the Earth’s gravitational field.

It is also shown in the forthcoming §3 that the formula for the mag-
nitude of gtrt is

gtrt(θ) = −G
IE
r4E

veq
cg

Ωφ(θ)− ΩE

ΩE
cos2

(

λ(θ)
)

PS
(

r(θ)
)

, (1.10)

where G is the gravity constant, IE is the Earth’s spherical moment of
inertia, rE is the Earth’s spherical radius, ΩE is the Earth’s spin an-
gular speed, veq is the Earth’s equatorial surface speed, cg is the speed
of propagation of the Earth’s gravitational field, θ is the spacecraft’s
parametric polar coordinate angle in the plane of the orbit or trajec-
tory (Ωθ = dθ/dt is the spacecraft’s orbital angular speed), Ωφ is the
azimuthal φ-component of Ωθ, λ is the spacecraft’s geocentric latitude,
r is the spacecraft’s geocentric radial distance, and PS(r) is an inverse-
cube power series representation for the triple integral over the Earth’s
volume. If the magnitude is negative, i.e., if Ωφ >ΩE (prograde), the
vector field component gtrt is directed towards the east. If Ωφ < 0 (ret-
rograde), it is directed towards the west.

The magnitude for gtrt satisfies the first requirement of the empir-
ical prediction formula. It is proportional to veq/cg ∼= veq/c. But the
empirical prediction formula also requires that the speed-change must
be in the λ-component of the spacecraft’s velocity, vλ. The magnitude
for the λ-component is defined by

vλ = rλ
dλ

dt
= rλ

dλ

dθ

dθ

dt
= rλΩθ

dλ

dθ
, (1.11)

where rλ is the λ-component of r. The velocity component, vλ, is ortho-
gonal to gtrt. Consequently, gtrt cannot directly change the magnitude
of vλ (it only changes the direction).

However, a hypothesized “induction-like” field, designated F λ, can
be directed perpendicularly to gtrt in the vλ-direction. Assume that the
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φ-component of the curl of F λ equals –kdgtrt/dt, where k is a constant∗.
This induction-like field can cause a small change in the spacecraft’s
speed. The reciprocal of the constant k, vk =1/k, called herein the
“induction speed”, becomes an adjustable parameter for each case. The
average for all cases gives an overall constant for the causal version of
Newton’s theory.

The formula for the magnitude of F λ is shown in §3 to be

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (1.12)

The acceleration caused by F λ satisfies the second requirement of the
empirical prediction formula, the one that requires that the anomalous
force must change the λ-component of the spacecraft’s velocity. It needs
to be emphasized at this point that the acceleration field F λ is a hypoth-
esis, and is subject to proof or disproof by the facts-of-observation. This
hypothesis is needed to satisfy the requirement that the speed-change
must be in the λ-component of the spacecraft’s velocity.

The anomalous time rate of change in the spacecraft’s kinetic energy
is given by the dot product, v ·F λ. It is shown in §3 that the calculated
asymptotic speed-change, δvtrt, is given by

δvtrt = δvin + δvout , (1.13)

where
δvin = δv (θmin) , δvout = δv (θmax) , (1.14)

and

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ . (1.15)

The angles θmin and θmax are the minimum and maximum values for θ.
The initial speed vin= v (θmin). The speed-change δv(θ) is proportional
to vin, which satisfies the third requirement of the empirical prediction
formula.

It is shown in §4 that this “neoclassical” causal version for acausal
Newtonian theory explains exactly the flyby anomalies. Table 1 lists, for
each of the six Earth flybys reported by Anderson et al., the observed
speed change from Appendix A, δvobs, the calculated speed change from
(1.13), δvtrt, the ratio that was used for the speed of gravity, cg/c, the
value for the induction speed ratio that gives exact agreement with the
observed speed-change, vk/veq, and the value for the eccentricity of the

∗For Maxwell’s theory, the numerical value for the constant k = 1/c [1].



Joseph C. Hafele 143

trajectory, ε.
Notice in Table 1 that the required values for vk cluster between

6veq and 17veq. Also notice that the two high-precision flybys, NEAR
and Rosetta, put very stringent limits on the speed of gravity, cg. If
the “true” value for vk had been known with high precision, the two
high-precision flybys would have provided first-ever measured values for
the speed of propagation of the Earth’s gravitational field.

In 1995, F.R. Stephenson and L.V.Morrison published a study of
records of eclipses from 700BC to 1990AD [15]. They conclude (LOD
means length-of-solar-day, ms cy−1 means milliseconds per century):
1) the LOD has been increasing on average during the past 2700 years
at the rate of +1.70±0.05 ms cy−1, i.e. (+17.0±0.5)×10−6 s per year,
2) tidal braking causes an increase in the LOD of +2.3± 0.1 ms cy−1, i.e.
(+23± 1)×10−6 s per year, and 3) there is a non-tidal decrease in the
LOD, numerically −0.6± 0.1 ms cy−1, i.e. (−6± 1)×10−6 s per year.

Stephenson and Morrison state that the non-tidal decrease in the
LOD probably is caused by “post-glacial rebound”. Post-glacial re-
bound decreases the Earth’s moment of inertia, which increases the
Earth’s spin angular speed, and thereby decreases the LOD. But post-
glacial rebound cannot change the Moon’s orbital angular momentum.

According to Stephenson and Morrison, tidal braking causes an in-
crease in the LOD of (23± 1)×10−6 seconds per year, which causes a
decrease in the Earth’s spin angular momentum, and by conservation
of angular momentum causes an increase in the Moon’s orbital angu-
lar momentum. It is shown in §5 that tidal braking alone would cause
an increase in the Moon’s orbital speed of (19± 1)×10−9 m/s per year,
which corresponds to an increase in the radius of the Moon’s orbit of
(14± 1) mm per year.

But lunar-laser-ranging experiments have shown that the radius of
the Moon’s orbit is actually increasing at the rate of (38± 1) mm per
year [16]. This rate for increase in the radius corresponds to an in-
crease in the orbital speed of (52± 2)×10−9 m/s per year. Clearly
there is an unexplained or anomalous difference in the change in the
radius of the orbit of (−24± 2) mm per year (38− 14=24), and a cor-
responding anomalous difference in the change in the orbital speed of
(−33± 3)×10−9 m/s per year (52− 19=33). This “lunar orbit anom-
aly” cannot be caused by post-glacial rebound, but it can be caused by
the proposed neoclassical causal version of Newton’s theory.

It is shown in §5 that the proposed neoclassical causal theory pro-
duces a change in the Moon’s orbital speed of (−33± 3)×10−9 m/s per
year if the value for the induction speed vk =(8± 1)veq. The eccen-
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Fig. 1: Required induction speed ratio (designated by •), vk/veq ± a rough
estimate for the uncertainty, versus eccentricity ε. The average value for all
seven ratios, v̄k =10.2 veq, is shown by the horizontal line.

tricity for the Moon’s orbit, ε=0.0554, indicates that it revolves in a
nearly circular closed orbit. Consequently, a new closed orbit case can
be added to the open orbit flybys listed in Table 1. A graph of the re-
quired induction speed ratio, vk/veq, versus eccentricity ε, Fig. 1, shows
that the required value for the induction speed for the Moon is consis-
tent with the required values for the induction speed for the six flyby
anomalies.

The average ± standard deviation for the seven induction speed
ratios in Fig. 1 is

v̄k = (10.2± 3.8)veq = 4.8± 1.8 km/s. (1.16)

It will be interesting to compare this average value with parameter
values for other theories which explain the flyby anomalies.

The neoclassical causal theory can be further tested by doing high
precision Doppler-shift research studies of the orbital motions of space-
crafts in highly eccentric and inclined near-Earth orbits. The predicted
annual speed-change δvyr (prograde) and δvryr (retrograde) for orbits
with eccentricity ε=0.5, inclination αeq =45◦, and geocentric latitude
at perigee λp =45◦, with the induction speed set equal to its maximum
probable value vk =14veq, and with the radial distance at perigee rp
ranging from 2rE to 8rE, are calculated in §6 and listed in Table 2.
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Flyby NEAR∗ GLL-I Rosetta∗ M’GER Cassini GLL-II

δvobs (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.30 ±0.03 ±0.01 ±1 ±1

δvtrt (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.30 ±0.03 ±0.01 ±1 ±1

cg/c 1.000 1 1.00 1 1 1
±0.001 ±0.02

vk/veq 6.530 12 7.1 7 17 14
±0.005 ±3 ±0.2 ±4 ±9 ±3

ε 1.8142 2.4731 1.3122 1.3596 5.8456 2.3186

Table 1: Listing of the observed speed-change, δvobs, the calculated speed-
change from (1.13), δvtrt, the ratio used for the speed of gravity, cg/c, the
required value for the induction speed ratio, vk/veq, and the eccentricity ε,
for each of the six Earth flybys reported by Anderson et al. [10]. Listed
uncertainties are rough estimates based on the uncertainty estimates of An-
derson et al. The induction speed, vk, was adjusted to make the calculated
speed change, δvtrt, be identically equal to the observed speed change, δvobs.
The two high-precision flybys are marked by an asterisk.

rp/rE 2 3 4 5 6 7 8

P 11.2 20.7 31.8 44.4 58.4 73.6 89.9

δvyr +315 +29.5 +3.93 +0.173 −0.422 −0.422 −0.362

δvryr −517 −76.8 −21.0 −7.97 −3.69 −1.95 −1.14

Table 2: Predicted period, P in hours, the speed-change for prograde orbits,
δvyr in mm/s per year, and the speed-change for retrograde orbits, δvryr in
mm/s per year, for a near-Earth orbiting spacecraft with orbital parameters
ε=0.5, αeq =45◦, and λp =45◦, with vk =14 veq, and for rp ranging from 2rE
to 8rE.
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If the proposed neoclassical causal theory is to be viable, it cannot
conflict with Einstein’s general relativity theory. The only possible con-
flict is with the excess advance in the perihelion of the planet Mercury,
+43 arc seconds per century, which is explained exactly by general rel-
ativity theory. The predicted rate for change in the angle for perihelion
for the neoclassical causal theory is shown in §7 to be less than 0.04
arc seconds per century, which is very much less than the relativistic
advance and is undetectable. Therefore, there is no conflict with general
relativity theory. Furthermore, the neoclassical causal theory does not
require any change of any kind for general relativity theory. In fact, it
is derived from general relativity theory.

There are at least two other published theories that try to provide
an explanation for the Earth flyby anomalies. These are: 1) the 3-space
flow theory of R.T.Cahill [17] and 2) the exponential radial field theory
authored by H. J. Busack [18].

In [17] Cahill reviews numerous Michelson interferometer and one-
way light-speed experiments which clearly show an anisotropy in the
velocity of light. His calculated flyby speed-changes depend on the
direction and magnitude for 3-space inflow at the spacecraft on the
date and time of the flyby. Cahill found that the average speed for 3-
space inflow is 12± 5 km/s. Cahill’s average, 12− 5=7 km/s, essentially
equals the average value for vk, see (1.16), 4.8+1.8=6.6 km/s.

In [18] Busack applies a small exponential correction for the Earth’s
radial gravitational field. If f (r,v) is Busack’s correction, the inverse-
square law becomes

gr(r,v) = − GME

r2
r

r

(

1 + f (r,v)
)

,

where f (r,v) is expressed as

f (r,v) = A exp

(

− r − rE
B –C (r · v)/(r · vSun)

)

.

The velocity v is the velocity of the field-point in the “gravitational
rest frame in the cosmic microwave background”, and vSun is the Sun’s
velocity in the gravitational rest frame. Numerical values for the ad-
justable constants are approximately A=2.2×10−4, B=2.9×105m, and
C =2.3×105m. Busack found that these values produce rather good
agreement with the observed values for the flyby speed-changes.

The maximum possible value, f (r,v)=A, occurs where r= rE. At
this point, gr =(GME/r

2
E)(1+A)∼ 10(1+2×10−4) m/s2. Compare this

estimate with an estimate for the peak value for the neoclassical causal
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transverse field for the NEAR flyby, which is g= gr
√

1+ g2trt/g
2
r ∼

∼ 10(1+8×10−12) m/s2.
Both of these alternative theories require a preferred frame-of-

reference. Neither has been tested for the lunar orbit anomaly, and
neither satisfies the causality principle because neither depends on the
speed of gravity.

In conclusion, the proposed neoclassical causal version for acausal
Newtonian theory has passed seven tests: 1) explanation of the six flyby
anomalies, and 2) explanation of the lunar orbit anomaly. It will be very
difficult if not impossible for any other rational theory to be causal and
pass all seven of these tests.

§2. Slow-speed weak-field approximation for general relativ-

ity theory. The following comment from F. Rohrlich’s article tells us
about one problem that Sir Isaac Newton could not solve [2]:

“Historians tell us that Newton was quite unhappy over the fact
that his law of gravitation implies an action-at-a-distance interac-
tion over very large distances such as that between the sun and
the earth. But he was unable to resolve this problem.”

The great author of Newtonian theory stood on the shoulders of giants,
but he was not able to see Maxwell’s theory or the slow-speed weak-field
approximation for Einstein’s theory.

The time-retarded version for the slow-speed weak-field approxima-
tion for general relativity theory provides a valid first-order approxi-
mation for the gravitational field of a moving point mass and a mov-
ing field-point. This approximation applies for “slowly” moving par-
ticles in “weak” gravitational fields. The word “slowly” means that
|u|≪ c, where |u| is the maximum magnitude for the source-particle
velocity, that |v|≪ c, where |v| is the maximum magnitude for the field-
point test-particle velocity, and the word “weak” means |ϕ|≪ c2, where
|ϕ|=GM/r is the maximum absolute magnitude for the scalar gravita-
tional potential.

The chapter entitled The Linear Approximation to GR in W. Rind-
ler’s popular textbook starts on page 188 [14]. The following is a direct
quote from pages 190 and 191:

“In the general case, Equations (8.180) can be integrated by stan-
dard methods. For example, the first yields as the physically rel-
evant solution,

γµν = − 4G

c4

∫∫∫

[Tµν ] dV

r
, (8.184)
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where [ ] denotes the value “retarded” by the light travel time to
the origin of r.

As an example, consider a system of sources in stationary
motion (e.g., a rotating mass shell). All γ’s will then be time-
independent. If we neglect stresses and products of source ve-
locities (which is not really quite legitimate14), the energy tensor
(8.128) becomes

Tµν =

(

03 −c2v

−c2v c4ρ

)

(8.185)

where 03 stands for the 3× 3 zero matrix, and so, from (8.184),

γij = 0 , i, j = 1, 2, 3. (8.186)

For slowly moving test particles, ds= cdt. If we denote differ-
entiation with respect to t by dots, the first three geodesic equa-
tions of motion become [cf. (8.15)]

ẍi = −Γi
µν ẋ

µẋν (8.187)

= −
(

γi
µ,ν−

1

2
γ i
µν, −

1

4
ηiµγ,ν−

1

4
ηiνγ,µ+

1

4
ηµνγ

i
,

)

ẋµẋν , (8.188)

where we have substituted into (8.187) from (8.168) and (8.172)
and used γ= ηµνγµν =−h. Moreover, γ= c2γ44. Now if we let
ẋµ =(ui, 1) and neglect products of the u’s, Equation (8.188) re-
duces to

ẍi = −γi
4,j u

j + γ i
j4, u

j +
1

4
γ i
44, .

This can be written vectorially in the form

r̈ = gradϕ− 1

c
(u× curla) = −

[

e+
1

c
(u× h)

]

, (8.189)

where [cf. (8.184), (8.185)]

ϕ = −1

4
γ44 = G

∫∫∫

[ρ] dV

r
,

a = − c

4
γi
4 =

1

c
G

∫∫∫

[ρu] dV

r
,

(8.190)

and
e = −gradϕ , h = curl 4a . (8.191)
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The formal similarity with Maxwell’s theory is striking. The only
differences are: the minus sign in (8.189) (because the force is
attractive); the factor G in (8.190) (due to the choice of units);
and the novel factor 4 in (8.191) (ii).”

We need to change from Rindler’s symbols to the symbols being used
in this article. For the distance from the source-point to the field-point:
r→ r′′. For the integrands: [ρ] → [ρ/r′′], and [ρu] → [ρu/r′′]. For
the gradient and the curl: grad→∇, curl→∇×.

The converted formulas for ϕ and e give the time-retarded scalar
gravitational potential and the time-retarded gravitoelectric field

ϕ = G

∫∫∫

[ ρ

r′′

]

dV, e = −∇ϕ . (2.1)

The converted formulas for a and h give the time-retarded vector
gravitational potential and the time-retarded gravitomagnetic field

a =
G

c

∫∫∫

[ρu

r′′

]

dV, h = −∇× 4a . (2.2)

Let m be the mass of a test-mass that occupies the field point. Then
the time-retarded gravitational force F that acts on the test-mass m
becomes

F = −m

(

e+
1

c
(u× h)

)

. (2.3)

§3. Derivation of the formulas for the speed-change caused

by the neoclassical causal version of Newton’s theory. Let the
Earth be simulated by a large rotating isotropic sphere of radius rE,
mass ME, angular speed ΩE, moment of inertia IE, and radial mass-
density distribution ρ(r′). The radial mass-density distribution and
values for the Earth’s parameters are shown in Appendix B.

Consider a spacecraft in an open or closed orbit around this sphere.
Let (X,Y, Z) be the rectangular coordinate axes for an inertial frame-
of-reference, let the sphere’s center coincide with the origin, and let
the (X,Y ) plane coincide with the equatorial plane, so that the Z-axis
coincides with the sphere’s rotational axis. Let r′′ be the vector distance
from r′ to r, r′′ = r− r′.

Let the elemental gravitational field of an interior circulating point-
mass dm′ at r′ be designated by d3g. As depicted in Fig. 2, d3g has two
components, a radial component designated by d3gr, and a transverse
component designated by d3gtrt. Therefore, d

3g= d3gr+ d3gtrt.
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Fig. 2: Depiction of the vector distances r, r′, and r
′′, and the components of

the gravitational field at r of an elemental mass dm′ at r′ for a spacecraft flyby
of a central spherical object of radius rE. The vector distance from dm′ at r′

to the field point at r is r
′′ = r− r

′. The curved line labeled “trajectory” is
the projection of the spacecraft’s trajectory onto the (X,Y ) equatorial plane.
The elemental gravitational field d3g has two components, a radial component
d3gr and a transverse component d3gtrt, so that d3g= d3gr + d3gtrt.

There are also two similar components of r′′, a relative radial com-
ponent designated by RC, and a relative transverse Z-axis component
designated by TCZ . These components can be found by using the vector
dot and cross products, as follows

RC =
r · r′′
r′′r

=
r · (r − r′)

r′′r
=

r

r′′
− r · r′

r′′r

TCZ =
(r × r′′)Z

r′′r
=

(r × (r − r′))Z
r′′r

=
(r′ × r)Z

r′′r















. (3.1)

Let t be the observed coordinate time for the spacecraft at r and
let t′ be the retarded-time at the interior circulating point-mass dm′ at
r′. If the interior point-mass source dm′ emits a gravitational signal at
the retarded time t′, the signal will arrive at the field-point at a slightly
later time t. Let the speed at which the gravitational signal propagates
be designated by cg. Then the formulas that connect t to t′ are

t = t′ +
r′′

cg
, t′ = t− r′′

cg

dt

dt′
= 1 +

1

cg

dr′′

dt′
,

dt′

dt
= 1− 1

cg

dr′′

dt















. (3.2)
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Obviously, t(t′) is here a function of t′, and vice versa, t′(t) is a function
of t.

By definition, the derivative dt/dt′ is the Jacobian for the transfor-
mation from t to t′. Let f (t, t′) be an implicit function of t and t′, and
let F (t) be the function that results from integration of f (t, t′) over t

F (t) =

∫ t

0

f (t, t′) dt =

∫ t′(t)

t′(0)

f (t, t′)
dt

dt′
dt′ =

=

∫ t′(t)

t′(0)

f (t, t′) (Jacobian) dt′. (3.3)

The formulas for the components d3gr and d3gtrt can be found by
substituting into the formulas of (1.9)

d3gr =

(

−G
dm′

r′′2

)

(RC)(Jacobian)

d3gtrt =

(

−G
dm′

r′′2

)

(TCZ)(Jacobian)



















. (3.4)

Because the speed of gravity cg ∼= c, it has a very large numerical
value, and the derivative of r′′ with respect to t′ approximately equals
the derivative of r′′ with respect to t

dt

dt′
= 1 +

1

cg

dr′′

dt′
= 1 +

1

cg

dr′′

dt

dt

dt′
=

= 1 +
1

cg

dr′′

dt

(

1 +
1

cg

dr′′

dt′

)

∼= 1 +
1

cg

dr′′

dt
. (3.5)

The formulas for the geocentric radial distance to the field-point and
its derivative are

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=

r (θ)2

rp

ε

1 + ε
sin θ



















, (3.6)

where θ is the parametric polar coordinate angle for the spacecraft, rp
is the geocentric radial distance at perigee, and ε is the eccentricity of
the orbit or trajectory.

Let the rectangular coordinates for r be rX , rY , rZ and those for r′

be r′X , r′Y , r
′

Z . Let the spherical coordinates for r be r, λ, φ and those
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for r′ be r′, λ′, φ′. Then

rX = r cosλ cosφ , r′X = r′ cosλ′ cosφ′

rY = r cosλ sinφ , r′Y = r′ cosλ′ sinφ′

rZ = r sinλ , r′Z = r′ sinλ′











. (3.7)

The formula for dm′ is

dm′ = ρ(r′) r′2 cosλ′ dr′ dλ′ dφ′. (3.8)

The square of the magnitude for r′′ is

r′′2 = (rX − r′X)
2
+ (rY − r′Y )

2
+ (rZ − r′Z)

2
=

= (r cosλ cosφ–r′ cosλ′ cosφ′)
2
+

+ (r cosλ sinφ–r′ cosλ′ sinφ′)
2
+

+ (r sinλ–r′ sinλ′)
2
.

Expanding the square and using the trig identity for cos (φ−φ′) gives

r′′2 = r2 (1 + x) , (3.9)

where x is defined by

x ≡ r′2

r2
– 2

r′

r

(

cosλ cosλ′ cos (φ− φ′) + sinλ sinλ′
)

. (3.10)

The derivative dr′′/dt′, which depends on the derivatives (dr/dt′,
dλ/dt′, dφ/dt′) and (dr′/dt′, dλ′/dt′, dφ′/dt′), will be needed to find
the Jacobian

dr

dt′
∼= dr

dt
= vr = Ωθ

dr

dθ
,

dr′

dt′
= 0

dλ

dt′
∼= dλ

dt
=

vλ
rλ

= Ωλ ,
dλ′

dt′
= 0

dφ

dt′
∼= dφ

dt
=

vφ
rφ

= Ωφ ,
dφ′

dt′
∼= dφ′

dt
= ΩE



































. (3.11)

We actually need the derivatives that contribute to the transverse mo-
tion of the projection of the orbit onto the equatorial plane. All but
Ωφ and ΩE can be for now disregarded, because the other derivatives
produce terms that will not survive the triple integration.

If the integrand is an odd function, e.g., f (φ′) sinφ′, where f (φ′) is
any even function, f (−φ′)= f (φ′), the integral

∫

f (φ′) sinφ′dφ′ over φ′

from −π to +π vanishes, i.e., reduces to zero.
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Consequently the derivative for the square of r′′ reduces to

dr′′2

dt′
= 2r′′

dr′′

dt′
=

= 2r′r

(

dφ

dt′
− dφ′

dt′

)

cosλ cosλ′ sin (φ− φ′) . (3.12)

The derivatives dφ/dt′ ∼= dφ/dt=Ωφ and dφ′/dt′ ∼= dφ′/dt=ΩE. The for-
mula for the Jacobian reduces to

Jacobian = 1 +
1

cg

dr′′

dt′
=

= 1 +
r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′) . (3.13)

The formulas for RC and TCZ , (2.1), reduce to

RC =
r

r′′
− 1

r′′r
(rXr′X + rY r

′

Y + rZr
′

Z) =

=
r

r′′
− r′

r′′
(

cosλ cosλ′ cos (φ− φ′) + sinλ sinλ′
)

, (3.14)

and also

TCZ =
1

r′′r
(r′XrY − rXr′Y ) =

r′

r′′
cosλ cosλ′ sin (φ− φ′) . (3.15)

Firstly consider the radial component gr. Substituting (3.8), (3.13),
and (3.14) into (3.4) gives

d3gr =

(

−G
dm′

r′′2

)

(RC) (Jacobian) =

=

(

−G
ρ(r′)

r′′2
cosλ′ dr′dλ′dφ′

)

×

× r

r′′

(

1− r′

r
sinλ sinλ′ − r′

r
cosλ cosλ′ cos (φ− φ′)

)

×

×
(

1 +
r

cg

r′

r′′
(

Ωφ − ΩE

)

cosλ cosλ′ sin (φ− φ′)

)

. (3.16)

This formula contains both time-retarded or “causal” terms and non-
time-retarded or “acausal” terms. The causal terms, those which con-
tain the factor 1/cg, contain either sin (φ−φ′) or sin (φ−φ′) cos (φ−φ′).
These terms will vanish upon integration over φ′ from −π to +π, which
means that all the effects of time-retardation cancel out for the radial
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component. The only terms that survive the integration are the acausal
terms. In other words, the radial component can be regarded as be-
ing acausal. It can be found by using the standard methods. Gauss’
theorem gives the standard well-known inverse square law [13, p. 37]

gr = −G
ME

r2
r

r
. (3.17)

The radial component, until recently the only known component, has
been studied by many researchers for more than 300 years. It is well-
known that gr obeys the conservation laws for orbital energy and orbital
angular momentum. The orbital energy is conserved for an isotropic
solid central sphere (with no tidal bulges) because the central force is
conservative, i.e., there is no mechanism (e.g., friction) by which orbital
kinetic and potential energy can be dissipated into another form of
energy. The orbital angular momentum is conserved because the central
radial force cannot exert a torque on the orbiting body.

Now consider the transverse component. Substituting (3.8), (3.13),
and (3.15) into (3.4) gives

d3gtrt

(

−G
dm′

r′′2

)

(TCZ) (Jacobian) =

=

(

−G
ρ(r′)

r′′2
cosλ′ dr′dλ′ dφ′

)

×

×
(

r′

r′′
cosλ cosλ′ sin (φ− φ′)

)

×

×
(

1 +
r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′)

)

. (3.18)

This formula contains one causal term and one acausal term. The
acausal term contains sin(φ−φ′), which vanishes upon integration over
φ′ from −π to +π. The surviving term, which contains sin2(φ− φ′),
does not vanish upon the integration. Consequently, the time-retarded
transverse field is causal, and it can be found by using (Jacobian-1).

Substituting (Jacobian-1) for (Jacobian) in (3.18) gives

d3gtrt =

(

−G
ρ(r′)

r′′2
cosλ′ dr′ dλ′dφ′

)

×

×
(

r′

r′′
cosλ cosλ′ sin (φ− φ′)

)

×

×
(

r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′)

)

. (3.19)
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Rearranging and combining factors gives

d3gtrt = −A

(

Ωφ − ΩE

ΩE

)

cos2(λ) IG
dr′

rE
dλ′ dφ′, (3.20)

where the definitions for the equatorial surface speed veq, and for the
coefficient A, are

veq ≡ rEΩE , A ≡ Gρ̄ rE
veq
cg

, (3.21)

and the integrand for the triple integration is

IG ≡
(

rE
r

)3(
ρ(r′)

ρ̄

r′4

r4E

)

(

cos3λ′
)

(

sin2(φ− φ′)

(1 + x)
2

)

, (3.22)

where ρ̄ is the mean value for ρ(r′). The formula for ρ(r′) and value
for ρ̄ can be found in Appendix B.

The solution for gtrt becomes

gtrt = −A

(

Ωφ − ΩE

ΩE

)

cos2(λ)TI , (3.23)

where the triple integral TI is defined by

TI ≡
∫ r

E

0

dr′

rE

∫ π/2

−π/2

dλ′

∫ π

−π

IGdφ′. (3.24)

Most of the integrals in this article are solved by using the numerical
integration algorithm in Mathcad15. It can be shown that the solution
for the triple integral TI is independent of λ and φ, which means that
it can be solved with λ=0 and φ=0. But solving a triple integral by
numerical integration takes a lot of computer time, particularly if r is
near the singularity at r= rE, which must be avoided.

A suitable power series approximation for the triple integral is
needed. Let PS′(r) be a four-term power series, defined as follows

PS′(r) ≡ IE
ρ̄ r5E

(

rE
r

)3
(

C0+C2

(

rE
r

)2

+C4

(

rE
r

)4

+C6

(

rE
r

)6
)

. (3.25)

Let PS(r) be the same power series without the unitless coefficient,
which for the Earth has the value 1.3856 (see Appendix B)

PS(r) ≡
(

rE
r

)3
(

C0 + C2

(

rE
r

)2

+ C4

(

rE
r

)4

+ C6

(

rE
r

)6
)

. (3.26)
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Fig. 3: Semilog graph of the triple integral TI(r) of (3.24) designated by
+, and the power series PS′(r) of (3.25) designated by the solid curve, ver-
sus r/rE, using the coefficients of (3.27). The maximum relative difference
(TI −PS′)/TI is less than 2× 10−4. Notice that there is no singularity in
the power series and it can be extrapolated all the way down to the surface
where r= rE.

By using the least-squares fitting routine in Mathcad15, the following
values for the coefficients were found to give an excellent fit of PS′(r)
to the volume integral TI (r)

C0 = 0.50889, C2 = 0.13931

C4 = 0.01013, C6 = 0.14671

}

. (3.27)

The quality of the fit using these coefficients is shown in Fig. 3. The
maximum relative difference at the values for r shown by + in Fig. 3 is
less than 2×10−4.

The solution for gtrt(θ) can now be rewritten with PS(r) as follows

gtrt(θ) = −G
IE
r4E

veq
cg

(

Ωφ(θ)− ΩE

ΩE

)

cos2
(

λ(θ)
)

PS
(

r (θ)
)

. (3.28)

The radial component gr satisfies the conservation laws, but the rela-
tively small transverse component gtrt does not satisfy the conservation
laws. Because the strength of gtrt ∼ 10−6 gr, a good first approximation
is obtained by applying the conservation laws.

Let L be the magnitude for the spacecraft’s orbital angular momen-
tum. Then

constant = L = mvprp = m (rpΩp) rp =

= mr2pΩp = mr(θ)2Ωθ(θ) .
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Here rp is the value for r at perigee, vp is the orbital speed at perigee,
and Ωp is the orbital angular speed at perigee. Therefore, by conser-
vation of orbital angular momentum, the formula for the spacecraft’s
orbital angular speed becomes

Ωθ(θ) ≡
dθ

dt
=

rpvp
r (θ)2

=
r2p

r (θ)2
Ωp . (3.29)

Let E be the spacecraft’s orbital kinetic energy plus the orbital po-
tential energy. Then

constant = E =
1

2
mv(θ)2 − GMEm

r (θ)
=

=
1

2
mv2

∞
+

1

2
mv2p −

GMEm

rp
.

Here v∞ is the spacecraft’s speed as r→∞. Therefore, by conservation
of energy, the formula for the orbital speed becomes

v (θ) =

√

v2
∞

+ v2p + 2
GME

r (θ)
− 2

GME

rp
. (3.30)

Let (x, y, z) be the rectangular coordinates for an inertial frame with
the origin at the center of the sphere and with the (x, y) plane coinciding
with the plane of the orbit. Let θp be the the angle which rotates the
(x, y) plane so that perigee occurs at θ= θp. The formulas for rx and
ry are

rx(θ) = r (θ) cos (θ − θp)

ry(θ) = r (θ) sin (θ − θp)

}

. (3.31)

The formulas for vx and vy are

vx =
drx
dt

= vr cos (θ − θp)− rΩθ sin (θ − θp)

vy =
dry
dt

= vr sin (θ − θp) + rΩθ cos (θ − θp)















. (3.32)

The radial component vr is given by (3.6) and (3.11)

vr = Ωθ
dr

dθ
= Ωθ

r (θ)2

rp

ε

1 + ε
sin θ ,

r (θ) =
rp (1 + ε)

1 + ε cos θ
.
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Let αeq be the inclination of the orbital plane to the equatorial plane,
and let λp be the geocentric latitude for perigee. If θp =0, let the x-axis
of the orbital frame coincide with the X-axis of the equatorial plane.
Then the formulas for the transformation from the (x, y, z) orbital frame
to the (X,Y, Z) equatorial frame are

rX = r (θ) cos (θ − θp)

rY = r (θ) cosαeq sin (θ − θp)

rZ = −r (θ) sinαeq sin (θ − θp)















. (3.33)

The formulas for the velocity components in the (X,Y, Z) frame are

vX=
drX
dt

=vr cos (θ−θp)− rΩθ sin (θ−θp)

vY =
drY
dt

=vr cosαeq sin (θ−θp) + rΩθ cosαeq cos (θ−θp)

vZ=
drZ
dt

=−vr sinαeq sin (θ−θp) – rΩθ sinαeq cos (θ−θp)



































. (3.34)

Let rφ(θ) be the geocentric radial distance to the projection of the
field-point onto the (X,Y ) equatorial plane, and let rλ(θ) be the geo-
centric radial distance to the projection of the field point onto a vertical
(X,Z) plane. Then

rφ(θ) =
√

rX(θ)2 + rY (θ)
2 , (3.35)

and

rλ(θ) =
√

rX(θ)2 + rZ(θ)
2 . (3.36)

Let vφ be the speed of the projection of the field-point onto the (X,Y )
equatorial plane, and let vλ be the speed of the projection of the field
point onto a vertical (X,Z) plane. Then

vφ(θ) =
√

vX(θ)2 + vY (θ)
2 , (3.37)

and

vλ(θ) =
√

vX(θ)2 + vZ(θ)
2 . (3.38)

The formula for the tangent of the azimuthal angle φ is

tanφ(θ) =
rY (θ)

√

rX(θ)2 + rZ(θ)
2

.
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Solving for φ gives

φ(θ) = tan−1





rY (θ)
√

rX(θ)2 + rZ(θ)
2



 . (3.39)

The formula for the tangent of the geocentric latitude is

tanλ(θ) =
rZ(θ)

√

rX(θ)2 + rY (θ)
2

.

Solving for λ gives

λ(θ) = tan−1





rZ(θ)
√

rX(θ)2 + rY (θ)
2



 . (3.40)

The formula for Ωφ becomes

Ωφ(θ) = Ωθ(θ)
dφ

dθ
= ± vφ(θ)

rφ(θ)
. (3.41)

Use the + sign if αeq takes numerical values in the range 0◦<αeq< 90◦,
and the − sign if 90◦<αeq < 180◦.

The value for the angle θp depends on the latitude for perigee λp,
which ranges from −90◦ to +90◦, and αeq, which ranges from 0◦ to
+180◦. If αeq=0◦ or 180◦, then θp=0◦. If αeq=90◦, then θp=λp. If
0<αeq<π radians and αeq 6= π

2 and sinλp 6 sinαeq, the formula for θp
(the angle is taken here in radians) is

θp = sin−1

(

sinλp

sinαeq

)

. (3.42)

If sinλp > sinαeq, the inverse sine function is shifted from the primary
branch and the value for θp is greater than 90◦. Of the six flybys
reported by Anderson et al. [10], only the MESSENGER flyby has a
value for θp that is greater than 90◦; (from Appendix A) αeq =133.1◦,
λp =46.95◦, which gives θp =90.0467◦.

We need a method to determine the numerical values for the mini-
mum and maximum permissible values for θ, designated θmin and θmax.
One method is to solve r (θ) (3.6) for the value for θ which causes the
denominator to be zero. Let θ∞ be that value

θ∞ = cos−1

(−1

ε

)

. (3.43)
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Consequently, to avoid integration over the singularity in r (θ), the value
for θmin must be greater than −θ∞ and the value for θmax must be less
than +θ∞.

Let tin(θin) be the (negative) time for the start of inbound data
accumulation before t = 0 at θ=0 at perigee, and let tout(θout) be the
(positive) time for the end of outbound data accumulation after t = 0
at θ=0 at perigee.

The formulas for calculating tin and tout are

tin =

∫ t(θin)

t(0)

dt =

∫ θin

0

dt

dθ
dθ =

∫ θin

0

1

Ωθ(θ)
dθ =

=

∫ θin

0

r (θ)2

vprp
dθ −→ −∞ if θin = −θ∞ ,

and

tout =

∫ t(θout)

t(0)

dt =

∫ θout

0

dt

dθ
dθ =

∫ θout

0

1

Ωθ(θ)
dθ =

=

∫ θout

0

r (θ)2

vprp
dθ −→ +∞ if θout = +θ∞ . (3.44)

Numerical values for tin and tout were included in the report of Anderson
et al. [10] only for the NEAR flyby (see Appendix A).

Let a and b be the semimajor and semiminor axes for an elliptical
(closed) orbit (06 ε< 1). Kepler’s laws give the orbital angular speed
in terms of a, b, and the period P [19]

a =
1

2
(ra + rp) (semimajor axis)

b = a
√

1− ε2 (semiminor axis)

P =
a3/2√
GME

(Kepler’s 3rd law)

Ωθ(θ) =
2π

P

ab

r (θ)2
(Kepler’s 2nd law)



















































, (3.45)

where ra is the geocentric radial distance at apogee.
The equivalent circular orbit for an elliptical orbit will be needed.

Let rco, vco and Ωco be the radius, orbital speed, and orbital angular
speed for an equivalent circular orbit which has the period P , respec-
tively. The formulas for rco, vco, and Ωco can be found by rearranging
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Kepler’s 3rd law

P =
a√
GME

√
a =

a
√

GME/a
=

rco
vco

=
1

Ωco

vco =

√

GME

a
= rcoΩco

rco = a , Ωco =
vco
a



































. (3.46)

The formulas for λ(θ) and Ωφ(θ) are greatly simplified for elliptical
orbits if αeq=λp. In this case, continue to use (3.6) for r (θ), and
use (3.45) for Ωθ(θ). Then use the following formulas for λ(θ), Ωφ(θ),
and rλ(θ)

λ(θ) = tan−1
(

tanαeq cos θ
)

Ωφ(θ) = Ωθ(θ) cosαeq

rλ(θ) = r (θ) cos θ











. (3.47)

For closed orbits, the value for θmin=−π radians and the value for
θmax=+π radians.

Let F λ be an induction-like field, and let the φ-component of the
curl of F λ equal −kdgtrt/dt, where k is a constant. The formula for
the curl operator in spherical coordinates can be found in J.D. Jackson’s
textbook [1]

∇× F λ = eφ
1

r

∂

∂r
(rFλ) = − k

dgtrt

dt
= eφk

dgtrt
dt

, (3.48)

where eφ is a unit vector directed towards the east. Solving for
∂(rFλ)/∂r and integrating both sides from t(0) to t(θ) gives

∫ t(θ)

t(0)

∂

∂r
(rFλ) dt =

∫ θ

0

∂

∂r
(rFλ)

dt

dθ
dθ =

∫ θ

0

d

dθ
(rFλ)

dθ

dr

dt

dθ
dθ =

= k

∫ t(θ)

t(0)

r
dgtrt
dt

dt = k

∫ θ

0

r
dgtrt
dθ

dθ . (3.49)

Therefore,
∫ θ

0

(

d

dθ
(rFλ)

dθ

dr

dt

dθ
− kr

dgtrt
dθ

)

dθ = 0 . (3.50)

This equation is satisfied for all values of θ, if and only if,

d

dθ
(rFλ) = kr

dr

dθ

dθ

dt

dgtrt
dθ

. (3.51)
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Integrating both sides from 0 to θ gives

Fλ(θ) =
k

r (θ)

∫ θ

0

r (θ)Ωθ(θ)
dr

dθ

dgtrt
dθ

dθ . (3.52)

Units for Fλ are the units for acceleration, m/s2. The constant k has
units of (m/s)−1. Let vk be the reciprocal of k, vk ≡ 1/k, which will be
called the “induction speed”. Regard vk as an adjustable parameter for
each case, and regard the average for all cases as a fixed parameter for
the neoclassical causal theory. The formula for Fλ can be rewritten in
terms of vk and veq

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (3.53)

Let δv/vin≪ 1 be the relative change in the magnitude of v due to
F λ, where vin is the initial speed. The dot product v ·F λ gives the time
rate at which the orbital energy is changed. Therefore,

(

1 +
δv

vin

)2

∼= 1 + 2
δv

vin
=

= 1 +
1

v2in

∫ t(θ)

t(0)

Fλ vλ dt =

= 1 +
1

v2in

∫ θ

0

rλFλ
dλ

dθ
dθ . (3.54)

Therefore,

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ . (3.55)

As previously defined, θmin and θmax are the minimum and maximum
values for θ. Let δvtrt be the speed-change for a flyby or for one revo-
lution. Then

δvin = δv (θmin) , δvout = δv (θmax) , δvtrt = δvin + δvout . (3.56)

These formulas will be used in §4 to calculate the speed-changes
listed in Table 1.

§4. Calculated speed-changes for six Earth flybys caused by

the neoclassical causal version of Newton’s theory. The trajec-
tory parameters given by Anderson et al. [10] are listed in Appendix A.
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The parameters for the NEAR spacecraft flyby will be used for the fol-
lowing example calculation. The same method will be applied to derive
the time-retarded speed-change for each of the remaining five flybys.

Numerical values for the Earth’s parameters and the Earth’s radial
mass-density distribution are given in Appendix B.

As previously defined, r (θ) is the geocentric radial distance to the
spacecraft in the plane of the trajectory. The formulas for r (θ) and its
derivative (3.6) are

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=

r (θ)2

rp

ε

1 + ε
sin θ



















, (4.1)

where θ is the parametric polar coordinate angle, ε is the eccentricity
for the hyperbolic trajectory, and rp is the geocentric radial distance to
the spacecraft at perigee (at θ=0).

The following method will be used to find ε. The asymptotic angle
αasm, Fig. 4, depends on the deflection angle,

αasm =
1

2
(180◦ −DA) =

1

2
(180◦ − 66.9◦) = 56.55◦. (4.2)

The radial distance at perigee, rp, depends on the altitude at perigee
hp, through rE, as follows

rp = rE + hp = rE + 539 km = 1.0846 rE . (4.3)

The impact parameter FP is given by conservation of angular momen-
tum,

FP v∞ = rpvp , (4.4)

where v∞ and vp are values listed in Appendix A and rp is given by
(4.3). Given numerical values for the NEAR flyby are

v∞ = 6.851 km/s, vp = 12.739 km/s.

The numerical value for FP becomes

FP = rp
vp
v∞

= 2.0167 rE . (4.5)

The ratio FP/OF = sinαasm. Therefore,

OF =
FP

sinαasm
= 2.4171 rE . (4.6)
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Fig. 4: Hyperbolic trajectory for the NEAR spacecraft flyby in the (x, y)
trajectory plane for a central sphere of radius rE (using (3.31) with θp = 0).
The geocentric radial distance to the spacecraft is r (θ) at the parametric
angle θ. The least geocentric distance rp is at perigee. The asymptote angle
αasm is defined by the deflection angle. The center of the sphere is at the focus
F . The impact parameter is the distance FP . Another trajectory parameter
is the distance OF .

The parameter a is the distance OF − rp,

a = OF − rp = 1.3325 rE . (4.7)

The parameter b depends on the asymptotic angle αasm,

b = a tanαasm = 2.0170 rE . (4.8)

The eccentricity ε depends on a and b,

ε =

√
a2 + b2

a
= 1.8142. (4.9)

This gives the numerical value for ε to be used in r (θ) (4.1), which
is the geocentric radial distance to the spacecraft in the plane of the
trajectory.

The value for θ∞, (3.43), for the NEAR flyby is

θ∞ = cos−1

(−1

ε

)

= 123.45◦. (4.10)
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Notice that 180◦−αasm also equals θ∞.
For the NEAR spacecraft flyby, αeq=108.0◦ and λp =33.0◦, which

from (3.42) gives

θp = sin−1

(

sinλp

sinαeq

)

= 34.9364◦. (4.11)

Numerical values for rp, αasm, ε, θ∞, and θp for each of the six flybys
reported by Anderson et al. are listed in Table 3.

The formula for λ(θ) is given by (3.40),

λ(θ) = tan−1





rZ(θ)
√

rX(θ)2 + rY (θ)
2



 , (4.12)

where rX , rY , and rZ are given by (3.33),

rX(θ) = r (θ) cos (θ − θp)

rY (θ) = r (θ) cosαeq sin (θ − θp)

rZ(θ) = −r (θ) sinαeq sin (θ − θp)











. (4.13)

Table 4 compares the listed inbound and outbound asymptotic lat-
itudes from Appendix A, λin and λout, with the calculated asymptotic
latitudes λ(−0.9999 θ∞) and λ(+0.9999 θ∞) using (4.12). This table
shows that some of the listed latitudes are inconsistent with the maxi-
mum and minimum permissible calculated values.

The starting and ending times for the NEAR flyby are known from
Appendix A to be −88.4 hours and +95.6 hours. The calculated values
for tin and tout are given by (3.44)

if θin = −0.9973 θ∞ = −123.1192◦

tin =

∫ θin

0

r (θ)2

vprp
dθ = −87.75 hours

if θout = +0.9975 θ∞ = +123.1437◦

tout =

∫ θout

0

r (θ)2

vprp
dθ = +94.88 hours



















































. (4.14)

This shows that known values for tin and tout can be used to calculate
precise values for θin and θout. Values for tin and tout for the other flybys
were not listed, so another method is used herein to get estimated values
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Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

rp/rE 1.0846 1.1507 1.3070 1.3684 1.1844 1.0476

αasm 56.55◦ 66.15◦ 40.35◦ 42.65◦ 80.15◦ 64.45◦

ε 1.8142 2.4731 1.3122 1.3596 5.8456 2.3186

θ∞ 123.45◦ 113.85◦ 139.65◦ 137.35◦ 99.85◦ 115.55◦

θp +34.9364◦ +44.8989◦ +36.9067◦ +90.0468◦ −68.3765◦ −57.4444◦

Table 3: Trajectory parameter values for each of the six Earth flybys reported by Anderson et al. [10]. The ratio rp/rE
is the geocentric radial distance at perigee relative to the Earth’s radius, αasm is the angle for the asymptotes (see
Fig. 4), ε is the eccentricity for the trajectory, θ∞ is the value for θ which makes r(θ∞) go to infinity, and θp is the value
for θ which rotates the (x, y) orbital plane so that the latitude for perigee equals the value for λp listed in Appendix A.

Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

λin +20.76◦? +12.52◦ +2.81◦? −31.44◦ +12.92◦ +34.26◦?

λ (−0.9999 θ∞) +20.52◦ +12.63◦ +1.99◦ −32.50◦ +12.94◦ +34.08◦

λout −71.96◦? −34.15◦ −34.29◦? −31.92◦ −4.99◦ −4.87◦?

λ (+0.9999 θ∞) −71.94◦ −34.26◦ −34.12◦ −32.45◦ −5.02◦ −4.62◦

Table 4: Comparison of the listed asymptotic inbound and outbound geocentric latitudes, λin and λout (from Ap-
pendix A) with the calculated latitudes, λ (−0.9999 θ∞) and λ (+0.9999 θ∞) by using (4.12). Cases where the listed
latitude is incompatible with the calculated latitude are marked with “?”.
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Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

θin/θ∞ −0.9973 −0.998 −0.983 −0.993 −0.999 −0.998

θout/θ∞ +0.9975 +0.998 +0.993 +0.994 +0.999 +0.998

tin (hours) −88 −87 −88 −85 −89 −81

tout (hours) +95 +87 +88 +100 +89 +81

rin/rE 346 444 206 207 808 412

rout/rE 374 444 206 241 808 412

vin/v∞ +1.416 +1.415 −1.426 +1.427 +1.414 −1.415

Table 5: The above values for θin and θout for the NEAR flyby are based on
listed values for tin =88.4 hours and tout =95.6 hours. The values for θin and
θout for the other flybys are rough estimates by using plausible values for tin
and tout. The last three rows list the corresponding ratios for rin/rE, rout/rE,
and vin/v∞. The curious required sign reversal for vin for the Rosetta and
GLL-II flybys may be a manifestation of the covariance and contravariance
of vectors [20].

for θin and θout. Table 5 lists the NEAR values and the estimated
values for θin and θout, corresponding values for tin and tout, and corre-
sponding values for rin/rE, rout/rE, and vin/v∞, where rin= r (θmin),
rout = r (θout), and vin = v (θmin) by using (3.30). The required sign
change for vin for the Rosetta and GLL-II flybys may be a manifes-
tation of the covariance and contravariance of vectors [20].

The formula for Ωθ is given by (3.29)

Ωθ(θ) =
rpvp
r (θ)2

. (4.15)

The formula for Ωφ(θ) is given by (3.41)

Ωφ(θ) = ± vφ(θ)

rφ(θ)
= ±

√

vX(θ)2 + vY (θ)
2

√

rX(θ)2 + rY (θ)
2
, (4.16)

where the X and Y components of r are given by (4.13). The X , Y ,
and Z components of v, given by (3.34), are

vX(θ)=vr cos (θ−θp)−r(θ)Ωθ(θ) sin (θ−θp)

vY (θ)=vr cosαeq sin (θ−θp)+r(θ)Ωθ(θ) cosαeq cos (θ−θp)

vZ(θ)=−vr sinαeq sin (θ−θp)−r(θ)Ωθ(θ) sinαeq cos (θ−θp)















. (4.17)
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The formula for vr, given by (3.6) and (3.11), is

vr(θ) = Ωθ(θ)
dr

dθ
= Ωθ(θ)

r (θ)2

rp

ε

1 + ε
sin θ . (4.18)

A graph of Ωφ relative to ΩE, Fig. 5, shows that this component
of the angular speed is negative (retrograde) with a minimum value of
about 50 times the Earth’s angular speed.

The formula for the time-retarded transverse gravitational field is
given by (3.28)

gtrt(θ) = −G
IE
r4E

veq
cg

(

Ωφ(θ)− ΩE

ΩE

)

cos2
(

λ(θ)
)

PS
(

r (θ)
)

. (4.19)

Numerical values for G, IE, rE, ΩE, and veq are listed in Appendix B. To
start, let’s assume that cg =1.000 c for the NEAR flyby. The formula for
Ωφ is given by (4.16). The formula for λ is given by (4.12). The form-
ula for PS(r) is given by (3.26)

PS(r) ≡
(

rE
r

)3
(

C0 + C2

(

rE
r

)2

+ C4

(

rE
r

)4

+ C6

(

rE
r

)6
)

. (4.20)

Numerical values for the coefficients are given by (3.27)

C0 = 0.50889, C2 = 0.13931

C4 = 0.01013, C6 = 0.14671

}

. (4.21)

The formula for r (θ) is given by (4.1).
A graph of gtrt(θ) versus θ with cg =1.000 c, Fig. 6, shows that

the transverse field rises from zero to a sharp peak near θ=0◦, then
decreases to zero. An expanded view near the peak, Fig. 7, shows a
significant difference in the peak values for cg =1.000 c and cg =1.060 c.

The formula for Fλ(θ) given by (3.53) is

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ , (4.22)

where vk is the induction speed (an adjustable parameter), r (θ) and
dr/dθ are given by (4.1), Ωθ(θ) is given by (4.15), and dgtrt/dθ is found
by using the numerical differentiation algorithm in Mathcad15 for the
derivative of the time-retarded transverse field gtrt given by (4.19).

A couple of trial calculations indicated that for the NEAR flyby
vk =6.530veq gives a speed-change that agrees exactly with the observed
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Fig. 5: Graph of the ratio Ωφ/ΩE versus θ for the NEAR flyby. The
relative angular speed is negative (retrograde) because the inclination
αeq =108.0◦ > 90◦. The ratio Ωθ/ΩE is shown for reference.

Fig. 6: Time-retarded transverse gravitational field gtrt(θ) versus θ for the
NEAR flyby using cg =1.000 c.
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Fig. 7: Expanded view near the peak for gtrt(θ) versus θ for the NEAR flyby
using cg =1.000 c and cg =1.060 c. There is a 6% difference in the peak values.

Fig. 8: Graph of the induction field Fλ versus θ for the NEAR flyby with
vk/veq =6.530. During the inbound there is a positive peak and during the
outbound there is a slightly stronger negative peak.
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speed-change. A graph of Fλ versus θ, Fig. 8, shows a positive peak
during the inbound and a slightly stronger negative peak during the
outbound.

The calculated speed-change is given by (3.55)

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ , (4.23)

where vin = v (θmin)= 1.416v∞ (from Table 5), rλ(θ) is given by (3.36),
Fλ(θ) is given by (4.22), and dλ/dθ is found by using the numerical
differentiation algorithm in Mathcad15 for the derivative of the latitude
λ(θ) given by (4.12).

For the NEAR flyby, θmin=−123.1192◦ and θmax=+123.1437◦,
given by (4.14). Then by (3.56),

δvin = δv (θmin) = −15.9577 mm/s

δvout = δv (θmax) = +29.4184 mm/s

δvtrt = δvin + δvout = +13.4607 mm/sec











. (4.24)

The observed speed-change for the NEAR flyby (Appendix A) is

δvobs = (+13.46± 0.01) mm/s. (4.25)

The calculated value δvtrt equals exactly the observed value δvobs if

δvk = (6.530± 0.005)veq , with cg = 1.000 c. (4.26)

Repeating the calculation with cg =1.060 c requires a slightly smaller
value for vk to make δvtrt = δvobs,

vk = (6.160± 0.005)veq , if cg = (1.060± 0.001) c. (4.27)

If the “true” value for vk were known with a precision of 1 part in a thou-
sand, 0.1%, this calculation for the NEAR flyby speed-change would
provide a first-ever measured value for the Earth’s speed of gravity!

Results for all six flybys using the parameter values of Table 3 and
Table 5 are listed in Table 1. Table 1 lists the observed anomalous
speed change, δvobs, with the reported uncertainty, the calculated time-
retarded speed change, δvtrt, with the corresponding uncertainty, the
ratio gravity-speed/light-speed that was used in the calculation, cg/c,
the required relative induction speed, vk/veq, with the corresponding
uncertainty, and the calculated value for the eccentricity for the trajec-
tory, ε.
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§5. Anomalous decrease in the Moon’s orbital speed caused

by the neoclassical causal version of Newton’s theory. Numer-
ical values for the Earth’s parameters, ME, rE, ΩE, IE, and veq, are
listed in the Appendix B. Needed numerical values for the Moon, MM,
rp, ra, ε, and αeq, are also listed in the Appendix B.

Let r (θ) be the radial distance from the center of the Earth to the
center of the Moon

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=

r (θ)2

rp

ε

1 + ε
sin θ



















. (5.1)

Let rM(θ) be the radial distance from the origin of a barycentric
frame to the Moon, and let rMa and rMp be the value for rM at apogee
and at perigee. Let aM and bM be the semimajor and semiminor axes
for the Moon’s elliptical orbit

rM(θ) =
ME

ME +MM
r (θ) = 0.9879 r (θ)

drM

dθ
=

ME

ME +MM

dr

dθ

rMa =
ME

ME +MM
ra = 62.905 rE

rMp =
ME

ME +MM
rp = 56.301 rE

aM =
1

2
(rMa + rMp) = 59.603 rE

bM = aM
√

1− ε2 = 59.511 rE























































































. (5.2)

By Kepler’s 3rd law, (3.45), the calculated lunar period PM is

PM =
2πa

3/2
M

√

G (ME +MM)
= 26.78 days. (5.3)

By Kepler’s 2nd law, (3.45), the orbital angular speed is

ΩM(θ) =
2π

PM

aMbM
rM(θ)2

. (5.4)

Let the Moon’s orbital speed at perigee be vMp and at apogee be
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vMa. Numerical values are

vMp = rMpΩM(0) = 10.90×102 m/s

vMa = rMaΩM(−π) = 9.755×102 m/s

}

. (5.5)

Let vco and Ωco be the orbital speed and orbital angular speed for an
equivalent circular orbit which has the radius aM and the period PM
(3.46). We then have, respectively,

vco =

√

G (ME +MM)

aM
= 1.031×103 m/s

Ωco =
vco
aM

= 2.715×10−6 rad/s



















. (5.6)

Let δvco ≪ vco be a small change in the orbital speed, let δaM ≪ aM
be the corresponding change in the radius of the orbit, and let
δΩco ≪Ωco be the corresponding change in the angular speed. Then

v2co =
constant

aM
(

1 +
δvco
vco

)2

∼= 1 + 2
δvco
vco

=
1

1 + δaM/aM
∼= 1− δaM

aM

2
δvco
vco

∼= δaM
aM

δΩco

Ωco

∼= δvco
vco

− δaM
aM

= −δvco
vco



























































. (5.7)

According to Stephenson and Morrison, tidal braking increases the
LOD by 23×10−6 seconds per year [15]. Let δLOD≪LOD be this
change in the LOD

LOD = 60× 60× 24 = 86400 s

δLOD = 23×10−6 s per year

}

. (5.8)

The Earth’s sidereal rotational period in seconds is

2π

ΩE
= 86164.1 s. (5.9)

Therefore,

LOD =
2π

ΩE
1.002738 = 86400 s. (5.10)
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Let δΩE be a small change in ΩE. Then

1 +
δLOD

LOD
=

1

1 + δΩE/ΩE

∼= 1− δΩE

ΩE

δΩE = −ΩE
δLOD

LOD
= −1.941×10−14 rad/s per year















. (5.11)

Let SE be the magnitude for the Earth’s spin angular momentum,
and let δSE be a small change in SE. Assume there is no change in IE.
Then we have

SE = IEΩE = 5.851×1033 kg×m2/s

δSE = SE
δΩE

ΩE
= −1.558×1024 kg×m2/s per year











. (5.12)

Let LM be the magnitude for the Moon’s orbital angular momentum,
and let δLM be a small change in LM. By conservation of the Earth’s
spin angular momentum and the Moon’s orbital angular momentum,

LM = MMvcoaM = 2.877×1034 kg×m2/s

δLM

LM
=

δvco
vco

+
δaM
aM

= 3
δvco
vco

LM + SM = constant

δLM = −δSE = +1.558×1024 kg×m2/s per year



































. (5.13)

The resulting change in the orbital speed is

δvco =
vco
3

δLM

LM
= +18.6×10−9 m/s per year. (5.14)

Equation (5.5) gives

δaM = 2aM
δvco
vco

= +13.7×10−3 m per year. (5.15)

This shows that tidal braking alone causes an increase in the radius of
14 mm per year, and a corresponding increase in the orbital speed of
19×10−9 m/s per year.

But lunar-laser-ranging experiments have shown that the radius is
actually increasing by [16]

δaM = +38 mm per year. (5.16)
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The corresponding increase in the orbital speed (5.7) takes the following
numerical value

δvco =
vco
2

δaM
aM

= +51.6×10−9 m/s per year. (5.17)

There is an obvious difference! An unexplained hidden action is caus-
ing the rate for change in the radius to decrease from 38 to 14 mm
per year (−24 mm per year). The corresponding rate for change in
the orbital speed is decreased from 52×10−9 to 19×10−9 m/s per year
(−33×10−9 m/s per year). This unexplained difference is the “lunar
orbit anomaly”.

The lunar orbit anomaly can be explained exactly by the neoclassical
causal theory. Let αeq be the average inclination of the Moon’s orbital
plane (Appendix B)

αeq = 23◦ ± 5◦. (5.18)

Let the latitude for perigee, λp, equal αeq. Then by (3.47),

λM(θ) = tan−1 (tanαeq cos θ) , (5.19)

and the φ-component of ΩM becomes

Ωφ(θ) = ΩM(θ) cosαeq . (5.20)

By (3.47), the formula for the λ-component of rM becomes

rλ(θ) = rM(θ) cos θ . (5.21)

The formula for the Earth’s transverse field at the Moon with cg = c
(3.28) is

gtrt(θ) = −G
IE
r4E

veq
c

(

Ωφ(θ)− ΩE

ΩE

)

cos2
(

λM(θ)
)

PS
(

r(θ)
)

. (5.22)

The formula for PS(r) is given by (3.26).
A trial run gave the following value for the induction speed which

gives the observed speed-change

vk = 7.94 veq . (5.23)

The formula for the transverse induction-like field (3.53) becomes

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

ΩM(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (5.24)
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Fig. 9: Induction-like field Fλ versus the parametric angle θ for the Moon
with vk =7.94 veq.

The derivative dgtrt/dθ is found by using the differentiation algorithm
in Mathcad15. A graph of Fλ versus θ for the Moon, Fig. 9, shows that
there is asymmetry about θ=0.

The formula for the speed change, (3.55), becomes

δv(θ) =
vMa

2

∫ θ

0

rλ(θ)Fλ(θ)

vM2
a

dλ

dθ
dθ . (5.25)

By numerical differentiation and integration,

δvin = −δv(−π) = −1.21×10−9 m/s

δvout = +δv(+π) = −1.21×10−9 m/s

δvtrt = δvin + δvout = −2.42×10−9 m/s per revolution











. (5.26)

Let Nrev be the number of lunar revolutions per year, let yr be the
number of seconds in a year, and let δvM be the accumulated orbital
speed-change per year. Then

Nrev = yr/PM = 13.64

δvM = Nrevδvtrt = −33.0×10−9 m/s per year

}

. (5.27)

This shows that, with vk =7.94 veq, the calculated value for the Moon’s
orbital speed-change is −33×10−9 m/s per year, which explains exactly
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the lunar orbit anomaly. The final value for vk with uncertainty reduces
to vk

veq
= 8± 1. (5.28)

§6. Predicted annual speed-change for spacecrafts in highly

eccentric and inclined near-Earth orbits. The speed-change
caused by the causal version of Newton’s theory depends on the speed of
propagation of the gravitational field, cg, the properties of the central
sphere; ME, rE, ΩE, IE, and veq, the orbital properties of the space-
craft; rp, ε, αeq, and λp, and the induction speed, vk. If ε=0, the
speed-change δvtrt =0, regardless of the value for αeq. If αeq=0, the
speed-change δvtrt =0, regardless of the value for ε. Even if both ε
and αeq are not zero, the speed-change is still zero if perigee is over
the equator or one of the poles. The maximum speed-change occurs for
spacecrafts with highly eccentric and inclined near-Earth orbits, such
as with the inclination αeq=45◦ and the latitude at perigee λp =45◦.

Suppose the orbital properties for a spacecraft are ε=0.5, αeq=45◦,
and λp =45◦. Let rp range from 2rE to 8rE. Shown below are the
numerical values for rp =2rE. The period is given by Kepler’s 3rd law
(3.45)

P =
2πa3/2√
GME

= 11.2 hours, (6.1)

where

ra = rp
1 + ε

1− ε
= 6rE

a =
1

2
(ra + rp) = 4rE

b = a
√

1− ε2 = 3.464 rE



























. (6.2)

The formula for Ωθ is given by (3.45)

Ωθ(θ) =
2π

P

ab

r (θ)2
, (6.3)

where

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=

r (θ)2

rp

ε

1 + ε
sin θ



















. (6.4)

Let Ωa be the spacecraft’s orbital angular speed at apogee and let
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va be the orbital speed at apogee. Then

Ωa = Ωθ(−π) = 0.819ΩE

va = Ωara = 4.92 veq

}

. (6.5)

If the latitude for perigee λp =αeq, and if the value for θ at perigee is
zero, then by (3.47)

λ(θ) = tan−1 (tanαeq cos θ) , (6.6)

and the φ-component of Ωθ becomes

Ωφ(θ) = Ωθ(θ) cosαeq for prograde orbits

Ωrφ(θ) = −Ωφ(θ) for retrograde orbits

}

. (6.7)

The projection of “prograde” orbits onto the equatorial plane revolves
in the same direction as the Earth’s spin, and the projection of “retro-
grade” orbits onto the equatorial plane revolves opposite to the direction
of the Earth’s spin.

The formula for the λ-component of r becomes

rλ(θ) = r (θ) cos θ . (6.8)

The formula for the Earth’s time-retarded transverse field with
cg = c, (3.28), is

gtrt(θ) = −G
IE
r4E

veq
c

(

Ωφ(θ)− ΩE

ΩE

)

cos2
(

λ(θ)
)

PS
(

r (θ)
)

, (6.9)

where PS(r) is given by (3.26).
The “true” value for vk probably lies between 10veq and 14veq (1.16).

To minimize the predicted speed-change, choose its maximum probable
value, vk =14veq. The formula for the induction-like field is given by
(3.53)

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (6.10)

A graph of Fλ for rp =2rE with vk =14veq is shown in Fig. 10.
The speed-change for one period is given by (3.56)

δv(θ) =
va
2

∫ θ

0

rλ(θ)Fλ(θ)

v2a

δvtrt = δvin + δvout = −δv(−π) + δv(+π) =

= 28.3 mm/s per revolution



















. (6.11)
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Fig. 10: Induction-like field Fλ versus the parametric angle θ for a spacecraft
in a near-Earth orbit with ε=0.5, αeq =45◦, λp =45◦, and rp =2rE with
vk =14veq. The solid curve is for a prograde orbit and the dashed curve is for
a retrograde orbit.

Let Nrev be the number of revolutions in one year, let δvyr be the to-
tal speed-change accumulated during one year, and let yr be the number
of seconds in a year (P is the period in seconds)

Nrev = yr/P = 780 revolutions per year

δvyr = Nrev δvtrt = 315 mm/s per year

}

. (6.12)

The resulting calculated periods and speed-changes for rp ranging
from 2rE to 8rE are listed in Table 2.

§7. Is there a conflict between the neoclassical causal theory

and general relativity theory? The only possible case where there
could be a conflict is the excess for the advance in the perihelion of Mer-
cury [21]. This section shows that the Sun’s time-retarded transverse
gravitational field causes a change in the angle for Mercury’s perihelion
of less than 0.04 arc seconds per century, which is negligibly less than
the relativistic advance of 43 arc seconds per century and therefore is
undetectable.

Let MS, rS, ΩS, IS, and veq be the Sun’s mass, radius, spin angu-
lar speed, moment of inertia, and equatorial surface speed. Numerical
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values for the Sun are listed in Appendix B. A 4-term power series ap-
proximation for the triple integral over the Sun’s volume also can be
found in Appendix B.

Let ra and rp be Mercury’s heliocentric radial distance at aphelion
and at perihelion, let ε be the eccentricity, let PM be the observed
sidereal orbital period, let αeq be the inclination to the Sun’s equatorial
plane, and let λp be the heliocentric latitude at perihelion. Numerical
values from Appendix B are

ra = 69816900×103 m

rp = 46001200×103 m

ε = 0.205630

PM = 87.969 days = 7.6005×106 s

αeq = 3.38◦

λp = 3.38◦











































. (7.1)

The semimajor and semiminor axes are

aM =
1

2
(ra + rp) = 5.791×1010 m

bM = aM
√

1− ε2 = 5.667×1010 m







. (7.2)

The calculated period given by Kepler’s 3rd law is

P =
2πa

3/2
M√

GMS

= 7.5998×106 s = 1.01PM . (7.3)

The formula for Ωθ, given by (2.28), is

Ωθ(θ) =
2π

P

aM bM
r (θ)2

, (7.4)

where

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=

r (θ)2

rp

ε

1 + ε
sin θ



















. (7.5)

Let Ωa be Mercury’s orbital angular speed at aphelion and let va be
the orbital speed at aphelion. Then

Ωa = Ωθ(−π) = 5.559×10−7 rad/s

va = Ωara = 3.881×104 m/s

}

. (7.6)
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Mercury’s heliocentric latitude is

λ(θ) = tan−1 (tanαeq cos θ) , (7.7)

and the φ-component of Ωθ is

Ωφ(θ) = Ωθ(θ) cosαeq . (7.8)

The λ-component of r is

rλ(θ) = r (θ) cos θ . (7.9)

The formula for the Sun’s time-retarded transverse field with cg = c
substituted is

gtrt(θ) = −G
IS
r4S

veq
c

(

Ωφ(θ)− ΩS

ΩS

)

cos2
(

λ(θ)
)

PS
(

r (θ)
)

. (7.10)

The average value for vk is 10veq. The formula for the induction-like
field becomes

Fλ(θ) =
veq
vk

rS
r (θ)

∫ θ

0

r (θ)

rS

Ωθ(θ)

ΩS

1

rS

dr

dθ

dgtrt
dθ

dθ . (7.11)

By numerical differentiation and integration, the speed-change becomes

δvtrt = −4.71×10−7 m/s per revolution. (7.12)

Numerical values for the orbital speed vco and the angular speed Ωco

for an equivalent circular orbit for Mercury, by (3.46), are

vco =

√

GMS

aM
= 4.788×104 m/s

Ωco =
vco
aM

= 8.268×10−7 rad/s



















. (7.13)

Let θp be the value for θ at perihelion, let δθp be the change in θp per
revolution, and set δvco = δvtrt. Then

δθp
2π

=
δΩco

Ωco
= 3

δvco
vco

= 3
δvtrt
vco

δθp = 6π
δvtrt
vco

= −1.86×10−10 rad per revolution















. (7.14)

Let Nrev be the number of Mercury’s revolutions in one year, let ∆θp
be the accumulated angular change of Mercury during one year, and let
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yr be the number of seconds in a year

Nrev =
yr

PM
= 4.125

∆θp = Nrevδθp = −7.71×10−9 rad per year

∆θp ×
180

π
× 60× 60× 100 = −0.016 arc sec per century



























. (7.15)

Thus we find that the absolute magnitude for the change in the angle
for perihelion is less than 0.04 arc seconds per century, which is totally
negligible compared with the relativistic change of 43 arc seconds per
century.

§8. Conclusions and recommendations. There is here within
conclusive evidence that the proposed neoclassical causal version of
Newton’s theory agrees with the facts-of-observation to the extent that
such facts are currently available. The proposed causal version is a nat-
ural rational extension of Newton’s acausal theory. It applies only for
slow-speeds and weak-fields, i.e., for v2 ≪ c2 and GM/r≪ c2. Effects of
time retardation appear at the relatively large first-order v/cg level, but
they are normally very small and are previously undetected because they
decrease inversely with the cube of the bypass distance. If the bypass
is very close, however, time retardation effects can be relatively large.
It is recommended that future research projects utilize various available
methods to detect new first-order effects of the causality principle.
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Appendix A. Parameter values for six Earth flybys

Table A1 lists needed parameter values which can be found in the report
by Anderson et al. [10]. The symbols are changed to be those used for this
article.

The start time for the incoming and the end time for the outgoing data
intervals for the NEAR flyby are stated in the caption for Fig. 3 of the report
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Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

hp (km) 539 960 1956 2347 1175 303

λp (deg) +33.0 +25.2 +20.20 +46.95 −23.5 −33.8

vp (km/s) 12.739 13.740 10.517 10.389 19.026 14.080

v∞ (km/s) 6.851 8.949 3.863 4.056 16.010 8.877

DA (deg) 66.9 47.7 99.3 94.7 19.7 51.1

αeq (deg) +108.0 +142.9 +144.9 +133.1 +25.4 +138.7

λin (deg) +20.76 +12.52 +2.81 −31.44 +12.92 +34.26

λout (deg) −71.96 −34.15 −34.29 −31.92 −4.99 −4.87

δvobs (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.3 ±0.03 ±0.01 ±1 ±1

δvemp (mm/s) +13.28 +4.12 +2.07 +0.06 −1.07 −4.67

Table A1: Earth flyby parameter values for the NEAR, Galileo-I, Rosetta,
MESSENGER (M’GER), Cassini, and Galileo-II spacecraft flybys. The al-
titude at perigee hp is referenced to the Earth geoid, λp is the geocentric
latitude at perigee, vp is the magnitude of the spacecraft’s inertial velocity at
perigee, v∞ is the magnitude for the osculating hyperbolic excess velocity, DA
is the deflection angle between the incoming and outgoing asymptotic velocity
vectors, αeq is the inclination of the orbital plane to the Earth’s equatorial
plane, λin and λout are the geocentric latitudes for the incoming and outgoing
osculating asymptotic velocity vectors, and δvobs is the measured change in
the spacecraft’s orbital speed with an estimated realistic uncertainty for the
measured value. The last row gives the calculated speed-change values from
the empirical prediction formula δvemp.

by Anderson et al.

tin = −88.4 hours, tout = +95.6 hours. (A.1)

The data time intervals for the other flybys were not given.
Anderson et al. report the asymptotic flyby “declinations” instead of

the asymptotic geocentric latitudes. From Fig. 1 of their report, there is no
doubt that the inbound asymptotic latitude λin is positive for the NEAR flyby
(+ for northern latitudes) and the outbound asymptotic latitude λout is neg-
ative (− for southern latitudes). This recognition for the correct signs is
applied in Table A1.

Notice in Table A1 that both of the flybys which have negative speed-
changes (the flybys in the case of Cassini and GLL-II) have negative values
for the latitude at perigee λp.
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Appendix B. Various numerical values and radial mass-

density distributions.

Various numerical values are needed to evaluate the formulas for the trans-
verse gravitational field. The following values were found in [22,23]:

G = 6.6732 × 10−11 m3/kg×s2 Gravity constant,

c = 2.997925 × 108 m/s Vacuum speed of light,

ΩE = 7.292115 × 10−5 rad/s Earth’s sidereal angular speed,

ME = 5.9761 × 1024 kg Earth’s total mass,

rE = 6, 371, 034 m Earth’s equivalent spherical radius,

vE = rEΩE = 464.58 m/s Earth’s equatorial surface speed,

VE = 1.08322 × 1021 m3 Earth’s volume,

ρ̄E = 5.517 × 103 kg/m3 Earth’s mean mass-density,

IE = 8.0238 × 1037 kg/m2 Earth’s spherical moment of inertia,

IE/ρ̄ r
5
E = 1.3856 Unitless ratio for the moment of inertia.

The Earth’s interior consists of four major regions: inner core, outer core,
mantle, and crust [22]. The formula for the radial mass-density distribution,
derived from seismic data, is

ρ(r′) = if
(

r′<ric, ρic, if
(

r′<roc, ρoc(r
′), if

(

r′<rman, ρman(r
′), ρcst(r

′)
))

)

,

where (radii are in meters and densities are in kg/m3)

ric = 1230× 103,

ρic = 13× 103,

roc = 3486 × 103,

ρoc(r
′) = 12×103 + 2.0×103

(

ric−r′

roc−ric

)

− 0.6×103
(

ric−r′

roc−ric

)2

,

rman = 6321×103,

ρman(r
′) = 5.75×103 + 0.4×103

(

roc−r′

rman−roc

)

− 2.05×103
(

roc−r′

rman−roc

)2

,

rcst = rE = 6378×103,

ρcst(r
′) = 3.3×103 + 0.6×103

(

rman−r′

rcst−rman

)

− 0.5×103
(

rman−r′

rcst−rman

)2

.

The following numerical values for the Moon are taken from [24]:

MM = 7.3477×1022 kg Moon’s mass,

rp = 363, 104×103 m Moon’s radial distance at perigee,

ra = 405, 696×103 m Moon’s radial distance at apogee,
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ε = 0.0554 Eccentricity,

Psid = 27.321582 days Moon’s sidereal orbital period,

Psol = 29.530589 days Moon’s solar orbital period,

αeq = 23.4◦ ± 5.2◦ Moon’s inclination (average± variation).

The following numerical values for the Sun are taken from [25]:

MS = 1.9891×1030 kg Sun’s mass,

rS = 6.955×108 m Sun’s equatorial radius,

ρ̄ = 1.408×103 kg/m3 Sun’s mean mass-density,

ρctr = 1.622×105 kg/m3 Mass-density at the center,

ρphoto = 2×10−4 kg/m3 Mass-density at the photosphere,

PS = 25.05 days = 2.158×104 s Equatorial rotational period,

ΩS = 2π/PS = 2.911×10−4 rad/s Equatorial angular speed,

veq = rSΩS = 2.025×103 m/s Equatorial rotational surface speed,

IS = 3.367×1046 kg×m2 Sun’s moment of inertia,

IS/ρ̄r
5
S = 0.147 Unitless ratio for the moment of inertia,

αS = 7.25◦ Obliquity to the ecliptic.

An exponential function provides a reasonably valid approximation for the
Sun’s radial mass-density distribution

ρ(r′) = if

(

r′ 6 rS, ρctr exp

(

−

(

r′

rcore

)2
)

, 0

)

,

where the numerical value for rcore is

rcore = 0.18707 rS .

The following four-term power series

PS(r) =

(

rS
r

)3
(

C0 + C2

(

rS
r

)2

+ C4

(

rS
r

)4

+ C6

(

rS
r

)6
)

,

provides an excellent fit to the triple integral over the Sun’s volume with the
following values for the coefficients

C0 = 0.500000, C2 = 0.017498,

C4 = 0.001376, C6 = 0.000173.

The following numerical values for the planet Mercury are taken from [21]:

rp = 46, 001, 200×103 m Radial distance at perihelion,

ra = 69, 816, 900×103 m Radial distance at aphelion,

ε = 0.205630 Eccentricity,
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PM = 87.969 days Mercury’s sidereal orbital period,

αeq = 3.38◦ Inclination to the Sun’s equator,

λp = 3.38◦ Heliocentric latitude at perihelion.
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