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— by Zoltán Szabó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Biography of Karl Schwarzschild (1873–1916)
— by Indranu Suhendro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv

Biography of Abraham Zelmanov (1913–1987)
— by Dmitri Rabounski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Biography of Alexei Petrov (1910–1972)
— by Dmitri Rabounski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii



A Presentation Concerning
the Propagation of Light Determined

by Monsieur Rømer
of the Royal Academy of Sciences

Ole Rømer

December 7, 1676

Abstract: This is a translation of the paper, where the Danish as-
tronomer Ole Rømer presents his original method for measuring the
velocity of light. Rømer was the first person to determine a finite ve-
locity for the propagation of light, and determined the velocity with an
appropriate precision. This paper was originally published in French:
Demonstration touchant le mouvement de la lumiere trouvé par mon-
sieur Römer de l’Academie Royale des Sciences. Journal des Sçavans,
du lundy, 7 Decembre 1676, pages 233–236. Herein the original Dan-
ish transcription of the name of the author is used instead the French,
Römer, printed in Journal des Sçavans. In this paper an anonymous
reporter of Journal des Sçavans, who actually wrote the text from
Rømer’s words, referred Rømer in the third person, according to the
academic tone and traditions usual in the 17th century. Translated
into English in 2008 by Dmitri Rabounski.

For a long time philosophers were troubled to find an experiment re-
solving the following problem: is the action of light transferred in an
instant at any distance, or does it require some time? Monsieur Rømer
of the Royal Academy of Science∗ found such a method, based on ob-
servations of the first satellite of Jupiter. Using this method, he showed
that light travels a distance of about 3,000 leagues†, i.e. approximately
the diameter of the Earth, in less than one second.

Let A be the Sun, B — Jupiter, C — the first satellite, which moves
into the shadow of Jupiter, then appears again from the shadow at the
point D, while E, F , G, H , L, K denote the locations of the Earth at
different distances from Jupiter (see Figure).

Suppose someone of the Earth, which is located at the point L (near
the second quadrature of Jupiter), observes the first satellite of Jupiter
at the moment when it appears from the shadow at the point D. Then,

∗This is l’Academie Royale des Sciences, established in 1666 in Paris by Jean-
Baptiste Colbert. The Academy was closed due to the French Revolution of 1789,
as well were all the Royal institutions in France. — Editor’s comment. D.R.

†Rømer means la lieue de Paris (3,898m) known also as la nouvelle lieue. It was
introduced in 1674 instead of l’ancienne lieue (3,248m), and remained a standard
for distances until 1793. — Editor’s comment. D.R.
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approximately 42 1
2

hours later, after one
full orbital revolution of the satellite, the
Earth arrives at the point K, he observes
the satellite coming back at the point D.
Obviously, if light travels along the path
LK during a finite time, the satellite should
be observed coming back at the point D
with a delay relative to the Earth at the
point L. Thus the orbital revolutions of the
satellite, recorded according to its appear-
ance from the shadow, should be delayed
by the time that light travels from L to K.
In the reverse case, in the quadrature FG
where the Earth moves towards the light,
the orbital revolutions recorded according
the penetration into shadow should seem
shorter as the revolutions recorded accord-
ing to the appearance from the shadow are
longer. In a duration of 42 1

2
hours, in which

this satellite undergoes approximately one
full revolution, the distance from the Earth to Jupiter changes, in both
quadratures, by at least 210 diameters of the Earth. Hence, if light
would travel the diameter of the Earth in one second, it would travel
each interval FG and KL in 3 1

2
minutes. This should lead to a de-

viation of about half an hour between two revolutions of this satellite
observed in FG and KL respectively. On the other hand, nothing of
such a substantial difference has been found.

This fact however does not mean that light requires no time for
travel: in his precise study of this subject monsieur Rømer determined
that such a deviation, inaccessible to recordings on two revolutions,
becomes very substantial for many revolutions taken altogether. For
instance, 40 revolutions observed from the side F should be substantially
shorter that 40 other revolutions, observed from the opposite side (this
effect is independent of any position in the Zodiac where Jupiter would
be located), and this is in a ratio of 22 to the interval HE, which is
twice the distance from us to the Sun.

The necessity of the new equation of delayed light was established by
all the observations obtained at the Royal Academy and the Observa-
tory during the past 8 years. This was verified later, by the appearance
of the first satellite from the shadow of Jupiter, observed in the evening
5h35m45s on November 9 of this year, in Paris, that occurred 10 minutes



Ole Rømer 5

later than it was expected on the basis of the observations produced in
August, when the Earth was much closer to Jupiter; this was predicted
by monsieur Rømer, at the Academy in the beginning of September∗.

To remove all doubts that this inequality originates in the delay of
light, he shows that this effect cannot appear due to any eccentricity
or any other source which are usually employed for explanation of the
irregularities in the motion of the Moon and the other planets: through
all these he is sure that the first satellite of Jupiter is eccentric, and also
that the satellite is orbiting faster or slower while Jupiter approaches
the Sun or moves away from it, hence revolutions of this machine are
unequal; so he is sure that the last three causes of inequality do not
affect the first cause which is obvious.

∗Rømer means the Observatory of Paris where he was employed, commencing in
1672, as Giovanni Cassini’s assistant, observing eclipses of the satellites of Jupiter.
Before that, in 1671, working at the Uraniborg Observatory in Denmark, Rømer,
with another astronomer, Jean Picard, recorded the periods of about 140 eclipses
of Io, the first satellite of Jupiter. Cassini also recorded the periods of eclipses of
the satellites of Jupiter at the Observatory of Paris in the years 1666–1668. In his
calculation of 1976 Rømer used his own observations of 1672–1676, the Danish ob-
servations of 1671, and also Cassini’s data of 1666–1668. — Editor’s comment. D.R.



On the Gravitation Produced by the Earth
on Different Substances

Loránd Eötvös

The presentation held at the Hungarian Academy of Sciences
on January 20, 1889

Abstract: This is a translation of the celebrated presentation held
by Loránd Eötvös at the Hungarian Academy of Sciences on January
20, 1889. Here Eötvös discusses the historical foundations of his claim
about the universal equality of inertial and passive-gravitational mass,
and gives a survey of his own many-year experimental geophysical
studies verifying the equivalence principle with high precision. The
famous Eötvös experiment verifying the equivalence principle, first
given in this short presentation, was cited many times by Albert Ein-
stein as one of the basics to his General Theory of Relativity. Later
the Eötvös experiment became a key point for all following experimen-
tal research verifying the equivalence principle, which are still contin-
uing till now, with much increased measuerement precision. This
short presentation was originally published in 1890, in the Mathemat-

ical and Natural Science Proceedings of Hungary, which were issued
in German (the official language of the Austro-Hungarian Empire):
Roland von Eötvös. Über die Anziehung der Erde auf verschiedene
Substanzen. Mathematische und Naturwissenschaftliche Berichte aus

Ungarn, 1890, Bd. 8, S. 65–68. In this translation we use the original
Hungarian transcription of the name of the author instead the Ger-
man version, Roland von Eötvös, printed in that journal. Translated
from the German in 2008 by Larissa Borissova and Dmitri Rabounski.
The translators thank Péter Király and Istvánné (Kati) Szalay of the
Research Institute for Particle and Nuclear Physics, the Hungarian
Academy of Sciences, for assistance with the original Eötvös paper.

Of the suppositions used by Newton as the foundations of his theory of
gravitation, the most important is the one which claims that the gravi-
tation produced by the Earth on an Earth-bound body is proportional
to the mass of the body, and is independent of the structure of the
substance composing it.

Newton has already verified this supposition of him by experiment.
He was unsatisfied with the scholarly experiments, well-known to him,
which revealed the fact that a feather and a coin fell equally fast in
emptiness. Targeting this purpose, he used motions of a pendulum
which could be registered with much precision. Once he made a pen-
dulum, where the same-weight-bodies consisting of different substances
such as gold, silver, lead, glass, sand, table salt, water, corn, and wood,
were moving along the arcs of circle, each of which possessing the same
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radius, and where he registered the duration of the oscillation, he was
able to conclude that there was no difference between them.

No doubt, those experiments produced by Newton were much more
precise than the aforementioned scholarly experiments; on the other
hand, the measurement precision of those experiments was only 1/1,000,
so they, strictly speaking, proved only the fact that the difference be-
tween the accelerations did not exceed 1/1,000 of their numerical value.
This measurement precision which he used in such an important prob-
lem could not be deemed satisfactory. Bessel therefore concluded that
repetitions of such a classical experiment on a pendulum were necessary.

Proceeding from his measurements produced from the oscillation
losses in gold, silver, lead, iron, zinc, brass, marble, clay, quartz, and
meteorite substance, he had unambiguously proved that the gravita-
tional accelerations of these bodies did not possess deviations larger than
1/50,000 from each other. This however was insufficient as well. Bessel
pointed out very well that it would always be very interesting to check
the validity of this assumption with increasing precision provided by the
permanently developing instruments of each of the future generations.

Such a research is desirable due to two reasons. First, this is due to
the fact that Newton’s supposition led to such a foundation, according
to which we can find the mass of a body through its weight measured by
a balance. It is required by the logic that the truth of this supposition
should be proven upto at least such a precision, which can be reached in
the weight, and this is much higher than 1/50,000 part, even more than
than 1/1,000,000 part. Second, this is due to the fact that the research
produced by Newton and Bessel covered only bodies whose material
structure was similar to each other, and manifested a small difference,
while this problem is still remaining open for many liquid and gaseous
bodies. Proceeding from Bessel’s experiments, we can conclude at most
that the gravity of the air differs from that of a solid body no greater
than 1/50 part.∗

Since in the process of my research of the gravity of mass my atten-
tion was turned towards this problem, and since I resolved it in an ab-
solutely different way than Newton and Bessel did, and since I reached

∗In the original manuscript in German here is a typing mistake “Tein fünfzig-
tausendstelt”, i.e. 1/50,000, while it should obvious be “Tein fünfzigstelt”, i.e. 1/50.
It is doubtful that, on the most lightweight body of those in this research, the clay
ground, the mass of the ousted air is more than almost 1/2,000 part. Thus, we obtain
the measurement precision for the air much lesser than the mentioned due to the
typing mistake, namely: 2,000×1/50,000= 1/25. — Comment due to Pál Selényi,
the corresponding member of the Hungarian Academy of Sciences, Budapest, who
studied the original Eötvös papers in 1953.
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much higher measurement precision than they had, I found the way of
my considerations and the results of my experiment to be worthy of
presentation to the respected Academy.

The force due to which the bodies located in the empty space fall
onto the Earth, and which is known as gravity, is a sum of two compo-
nents, namely — the gravitation of the Earth and the centrifugal force,
which is due to the rotation of the Earth. These two components, in
general, are neither equal to each other nor oppositely directed at each
other; they create an angle with respect to each other, which is approxi-
mately the same as the angle of the geographical latitude. The direction
of the resulting sum depends on these components; it is also clear that,
at the same point on the Earth, since the centrifugal force of the same-
mass-bodies is the same, the gravity of these bodies should be different
if the force of gravitation attracting each of these bodies is different.

At Budapest the centrifugal force results in a deviation towards the
South for approximately 5′56′′, i.e. 356′′ from the direction of the attrac-
tion of the Earth. We obtain by calculation that, if the attraction from
the side of the Earth on two bodies of the same mass, but consisting of
different substances, would differ as 1/1,000 part, these two gravities were
directed at an angle of 0.365′′ (that is approximately 1/3′′) with respect
to each other, while if the difference in the force of gravity would be
1/20,000,000 part, the angle was 356′′/20,000,000 that results a little more
than 1/60,000′′.

The lead lot and the libelle∗ of the torsion balance are not enough
sensitive to the very small deviation in the direction of the force of
gravity, which is expected in this observation. However this torsion
balance as a whole is applicable to such an observation very well, because
I already registered small deviations in the direction of the force of
gravity in other observations with it.

I fixed a body, the weight of which was approximately 30 g, at the end
of the shoulder of the balance. The shoulder, the length of which varied
from 25 to 50 cm, was suspended through a platinum thread. Once the
shoulder was directed orthogonally towards the meridian, I registered its
position relative to the box of the whole instrument precisely by a system

∗Consider a mirror fixed to the torsion thread. The light beam falling onto it,
then reflected, may swivel around the zero point of the scale. Specialists call this
die Libelle, in German, that means a dragon-fly in English, because such two light
beams, being swivelling, seems like the large wings of a dragon fly in flight. Relative
to technics in general, die Libelle is the decisive part of a water-level. It is a small
glass container filled with liquid and a gas bubble. The gas bubble indicates whether
the water-level is exactly horizontal or not. — Editor’s comment. D.R. (The editor
is thankful to Ulrich Neumann, Germany, for discussion.)
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of two mirrors, one of which was moved in common with the shoulder,
while another one was fixed on the box. Then I turned out the whole
instrument, in common with the box, at 180◦ in such a way that the
body, located initially at the Eastern end of the shoulder, arrived at the
Western end of it. Then I registered this new position of the shoulder
relative to the instrument. If the gravity of the body at both sides was
differently directed, a twist of the suspending thread appeared. At the
same time, such an effect was not registered in the case where a brass ball
was fixed at one end of the shoulder, while the other end was equipped
with a glass, corkwood, or antimonite crystal; meanwhile the deviation
of 1/60,000′′ in the direction of the force of gravity should yield a twist
of 1′, which is surely accessed.

Later I also studied, especially, this situation in the case of the air.
A body moving in the air was acted by the force, caused by the ousted
air. The force was equal to the gravity of the ousted air, but directed
oppositely towards it. If the gravity of the air was directed similarly to
that produced on the other bodies, this circumstance manifested itself
as a twist of the thread in the aforementioned experiments. Of course,
this twist was proportional to the weight of the ousted air, not the
weight of the body in the air. In order to increase the aforementioned
twist as much as possible, I fixed, at one end of the shoulder, an empty
glass ball, whose volume was 120 cm3 volume, while its weight was 30 g,
so the drift of the air was approximately 1/200 of the last one. All these
had required much accuracy: the deviating effect of the air stream on
the body of so large volume should be removed so that the shoulder
was in the state of sure equilibrium. This task was realized only in the
resting underground floor of the Institute of Physics of the Budapest
University, at night and only due to the fact that I had registered the
state of equilibrium by a photo camera.

I was unable to also consider the twisting in the fall. So my exper-
iments, which are still 400 times more precise than those produced by
Bessel, showed no difference from Newton’s supposition.

I therefore have to claim by right that, in general, the difference
between the gravity of the bodies, which have equal masses but consist of
different substances, is lesser than 1/20,000,000 in the case of brass, glass,
antimonite, and corkwood, but it is undoubtedly less than 1/100,000 in
the case of air.



On the Gravitational Field of a Point-Mass,
According to Einstein’s Theory

Karl Schwarzschild

Submitted on January 13, 1916

Abstract: This is a translation of the paper Über das Gravitations-

feld eines Massenpunktes nach der Einsteinschen Theorie by Karl
Schwarzschild, where he obtained the metric of a space due to the
gravitational field of a point-mass. The paper was originally published
in 1916, in Sitzungsberichte der Königlich Preussischen Akademie der

Wissenschaften, S. 189–196. Translated from the German in 2008 by
Larissa Borissova and Dmitri Rabounski.

§1. In his study on the motion of the perihelion of Mercury (see his
presentation given on November 18, 1915∗) Einstein set up the following
problem: a point moves according to the requirement

δ
∫
ds = 0,

where

ds =
√
Σ gµν dxµdxν , µ, ν = 1, 2, 3, 4




, (1)

where gµν are functions of the variables x, and, in the framework of this
variation, these variables are fixed in the start and the end of the path
of integration. Hence, in short, this point moves along a geodesic line,
where the manifold is characterized by the line-element ds.

Taking this variation gives the equations of this point

d2xα

ds2
=
∑

µ,ν

Γα
µν

dxµ

ds

dxν

ds
, α, β = 1, 2, 3, 4, (2)

where

Γα
µν = −1

2

∑

β

gαβ
(
∂gµβ
∂xν

+
∂gνβ
∂xµ

− ∂gµν
∂xβ

)
, (3)

while gαβ , which are introduced and normed with respect to gαβ, mean
the reciprocal determinant† to the determinant |gµν |.

∗Schwarzschild means the article: Einstein A. Erklärung der Perihelbewegung
der Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich

Preussischen Akademie der Wissenschaften, 1915, S. 831–839. — Editor’s com-
ment. D.R.

†This is the determinant of the reciprocal matrix, i.e. a matrix whose indices
are raised to the given matrix. One referred to the reciprocal matrix as the sub-

determinant, in those years. — Editor’s comment. D.R.
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Commencing now and so forth, according to Einstein’s theory, a test-
particle moves in the gravitational field of the mass located at the point
x1 =x2 = x3 =0, if the “components of the gravitational field” Γ satisfy
the “field equations”

∑

α

∂Γα
µν

∂xα
+
∑

αβ

Γα
µβΓ

β
να = 0 (4)

everywhere except the point x1 = x2 = x3 =0 itself, and also if the deter-
minant equation

|gµν | = −1 (5)
is satisfied.

These field equations in common with the determinant equation pos-
sess the fundamental property, according to which their form remains
unchanged in the framework of substitution of any other variables in-
stead of x1, x2, x3, x4, if the substitution of the determinant equals 1.

Assume the curvilinear coordinates x1, x2, x3, while x4 is time. We
assume that the mass located at the origin of the coordinates remains
unchanged with time, and also the motion is uniform and linear up to
infinity. In such a case, according to the calculation by Einstein (see
page 833∗) the following requirements should be satisfied:

1. All the components should be independent of the time coord-
inate x4;

2. The equalities gρ4 = g4ρ=0 are satisfied exactly for ρ=1, 2, 3;

3. The solution is spatially symmetric at the origin of the coordinate
frame in that sense that it comes to the same solution after the
orthogonal transformation (rotation) of x1, x2, x3;

4. These gµν vanish at infinity, except the next four boundary con-
ditions, which are nonzero

g44 = 1 , g11 = g22 = g33 = −1 .

The task is to find such a line-element, possessing such coefficients,
that the field equations, the determinant equation, and these four re-
quirements would be satisfied.

§2. Einstein showed that this problem in the framework of the first
order approximation leads to Newton’s law, and also that the second
order approximation covers the anomaly in the motion of the perihelion

∗Schwarzschild means page 833 in the aforementioned Einstein paper of 1915
published in Sitzungsberichte der Königlich Preussischen Akademie der Wissen-

schaften. — Editor’s comment. D.R.
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of Mercury. The following calculation provides an exact solution of
this problem. As supposed, in any case, an exact solution should have
a simple form. It is important that the resulting calculation shows the
uniqueness of this solution, while Einstein’s approach gives ambiguity,
and also that the method shown below gives (with some difficulty) the
same good approximation. The following text leads to the representa-
tion of Einstein’s result with increasing precision.

§3. We denote time t, while the rectangular coordinates∗ are denoted
x, y, z. Thus the well-known line-element, satisfying the requirements
1–3, has the obvious form

ds2 = Fdt2 −G
(
dx2 + dy2 + dz2

)
−H (xdx+ ydy + zdz)

2
,

where F , G, H are functions of r=
√
x2 + y2 + x2 .

The condition (4) requires, at r=∞: F =G=1, H =0.
Moving to the spherical coordinates† x=r sinϑ cosϕ, y=r sinϑ sinϕ,

z= r cosϑ, the same line-element is

ds2 = Fdt2 −G
(
dr2 + r2dϑ2 + r2 sin2ϑdϕ2

)
−Hr2dr2 =

= Fdt2 −
(
G+Hr2

)
dr2 −Gr2

(
dϑ2 + sin2ϑdϕ2

)
. (6)

In the spherical coordinates the volume element is r2 sinϑdr dϑdϕ,
the determinant of transformation from the old coordinates to the new
ones r2 sinϑ differs from 1; the field equations are still to be unchanged
and, with use the spherical coordinates, we need to process complicated
transformations. However the following simple method allows us to
avoid this difficulty. Assume

x1 =
r3

3
, x2 = − cosϑ , x3 = ϕ , (7)

then the equality r2dr sinϑdϑdϕ= dx1dx2dx3 is true in the whole vol-
ume element. These new variables also represent spherical coordinates
in the framework of this unit determinant. They have obvious advan-
tages to the old spherical coordinates in this problem, and, at the same
time, they still remain valid in the framework of the considerations. In
addition to these, assuming t= x4, the field equations and the deter-
minant equation remain unchanged in form.

∗The Cartesian coordinates. — Editor’s comment. D.R.
†In the original — “polar coordinates”. However it is obvious that Schwarzschild

means the three-dimensional spherical coordinates. — Editor’s comment. D.R.
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In these new spherical coordinates the line-element has the form

ds2 = F (dx4)2 −
(
G

r4
+
H

r2

)
(dx1)2 −

−Gr2
[

(dx2)2

1− (x2)2
+ (dx3)2

[
1− (x2)2

]]
, (8)

on the basis of which we write

ds2 = f4 (dx
4)2 − f1 (dx

1)2 − f2
(dx2)2

1− (x2)2
− f3 (dx

3)2
[
1− (x2)2

]
. (9)

In such a case f1, f2 = f3, f4 are three functions of x1, which satisfy
the following conditions

1. At x1 =∞: f1 =
1

r4
=
(
3x1
)− 4

3 , f2 = f3 = r2 =
(
3x1
) 2

3 , f4 =1;

2. The determinant equation f1 ·f2 ·f3 ·f4=1;

3. The field equations;

4. The function f is continuous everywhere except x1 =0.

§4. To obtain the field equations we need first to construct the compo-
nents of the gravitational field according to the line-element (9). The
simplest way to do this is by directly taking the variation, which gives
the differential equations of the geodesic line, then the components will
be seen from the equations. The differential equations of the geodesic
line along the line-element (9) are obtained by directly taking this vari-
ation in the form

f1
d2x1

ds2
+

1

2

∂f4
∂x1

(
dx4

ds

)2
+

1

2

∂f1
∂x1

(
dx1

ds

)2
−

− 1

2

∂f2
∂x1

[
1

1− (x2)2

(
dx2

ds

)2
+
[
1− (x2)2

](dx3
ds

)2 ]
= 0 ,

f2
1− (x2)2

d2x2

ds2
+
∂f2
∂x1

1

1− (x2)2
dx1

ds

dx2

ds
+

+
f2 x

2

[1− (x2)2]2

(
dx2

ds

)2
+ f2 x

2

(
dx3

ds

)2
= 0 ,

f2
[
1− (x2)2

] d2x3

ds2
+
∂f2
∂x1

[
1− (x2)2

] dx1
ds

dx3

ds
− 2f2 x2

dx2

ds

dx3

ds
= 0 ,

f4
d2x4

ds2
+
∂f4
∂x1

dx1

ds

dx4

ds
= 0 .
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Comparing these equations to (2) gives the components of the grav-
itational field

Γ1
11 = − 1

2

1

f1

∂f1
∂x1

, Γ1
22 = +

1

2

1

f1

∂f2
∂x1

1

1− (x2)2
,

Γ1
33 = +

1

2

1

f1

∂f2
∂x1

[
1− (x2)2

]
,

Γ1
44 = − 1

2

1

f1

∂f4
∂x1

,

Γ2
21 = − 1

2

1

f2

∂f2
∂x1

, Γ2
22 = − x2

1− (x2)2
, Γ2

33 = − x2
[
1− (x2)2

]
,

Γ3
31 = − 1

2

1

f2

∂f2
∂x1

, Γ3
32 = +

x2

1− (x2)2
,

Γ4
41 = − 1

2

1

f4

∂f4
∂x1

,

while the rest of the components of it are zero.
Due to the symmetry of rotation around the origin of the coordin-

ates, it is sufficient to construct the field equations at only the equator
(x2 =0): once they are differentiated, we can substitute 1 instead of
1− (x2)2 everywhere into the above obtained formulae. Thus, after this
algebra, we obtain the field equations

a)
∂

∂x1

(
1

f1

∂f1
∂x1

)
=

1

2

(
1

f1

∂f1
∂x1

)2
+

(
1

f2

∂f2
∂x1

)2
+

1

2

(
1

f4

∂f4
∂x1

)2
,

b)
∂

∂x1

(
1

f1

∂f2
∂x1

)
= 2 +

1

f1f2

(
∂f2
∂x1

)2
,

c)
∂

∂x1

(
1

f1

∂f4
∂x1

)
=

1

f1f4

(
∂f4
∂x1

)2
.

Besides these three equations, the functions f1, f2, f3 should satisfy
the determinant equation

d) f1(f2)
2f4 = 1 or

1

f1

∂f1
∂x1

+
2

f2

∂f2
∂x1

+
1

f4

∂f4
∂f1

= 0 .

First of all I remove b). So three functions f1, f2, f4 of a), c), and
d) still remain. The equation c) takes the form

c ′)
∂

∂x1

(
1

f4

∂f4
∂x1

)
=

1

f1f4

∂f1
∂x1

∂f4
∂x1

.
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Integration of it gives

c ′′)
1

f4

∂f4
∂x1

= αf1 ,

where α is the constant of integration. Summation of a) and c ′) gives

∂

∂x1

(
1

f1

∂f1
∂x1

+
1

f4

∂f4
∂x1

)
=

(
1

f2

∂f2
∂x1

)2
+

1

2

(
1

f1

∂f1
∂x1

+
1

f4

∂f4
∂x1

)2
.

With taking d) into account, it follows that

− 2
∂

∂x1

(
1

f2

∂f2
∂x1

)
= 3

(
1

f2

∂f2
∂x1

)2
.

After integration, we obtain

1
1

f2

∂f2
∂x1

=
3

2
x1 +

ρ

2
,

where ρ is the constant of integration. Or

1

f2

∂f2
∂x1

=
2

3x1 + ρ
.

We integrate it once again:

f2 = λ
(
3x1 + ρ

) 2
3 ,

where λ is the constant of integration. The condition at infinity requires:
λ=1. Hence

f2 = (3x1 + ρ)
2
3 . (10)

Next, it follows from c ′′) and d) that

∂f4
∂x1

= αf1f4 =
α

(f2)2
=

α

(3x1 + ρ)
4
3

.

We integrate it, taking the condition at infinity into account:

f4 = 1− α
(
3x1 + ρ

)− 1
3 . (11)

Finally, it follows from d) that

f1 =

(
3x1 + ρ

)− 4
3

1− α (3x1 + ρ)
− 1

3

. (12)
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As easy to check, the equation b) corresponds to the found formulae
for f1 and f2.

This satisfies all the requirements up to the continuity condition.
The function f1 remains continuous, if

1 = α
(
3x1 + ρ

)− 1
3 , 3x1 = α3 − ρ .

In order to break the continuity at the origin of the coordinates,
there should be

ρ = α3. (13)

The continuity condition connects, by the the same method, both
constants of integration ρ and α.

Now, the complete solution of our problem has the form

f1 =
1

R4

1

1− α
R

, f2 = f3 = R2, f4 = 1− α

R
,

where the auxiliary quantity R has been introduced

R =
(
3x1 + ρ

) 1
3 =

(
r3 + α3

) 1
3 .

If substituting the formulae of these functions f into the formula of
the line-element (9), and coming back to the regular spherical coordi-
nates, we arrive at such a formula for the line-element

ds2 =
(
1− α

R

)
dt2 − dR2

1− α
R

−R2
(
dϑ2 + sin2ϑdϕ2

)

R =
(
r3 + α3

) 1
3




, (14)

which is the exact solution of the Einstein problem.
This formula contains the sole constant of integration α, which is

dependent on the numerical value of the mass located at the origin of
the coordinates.

§5. The uniqueness of this solution follows from the aforementioned
calculations. For one who is troubled with the uniqueness of Einstein’s
method, followed from this, we consider the following example. There
above, from the continuity condition, the formula

f1 =

(
3x1 + ρ

)− 4
3

1− α (3x1 + ρ)
− 1

3

=

(
r3 + ρ

)− 4
3

1− α (r3 + ρ)
− 1

3
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was obtained. In the case where α and ρ are small values, the second
order term and the higher order terms vanish from the series so that

f1 =
1

r4

[
1 +

α

r
− 4

3

ρ

r3

]
.

This exception, in common with the respective exceptions for f1, f2,
f4 taken to within the same precision, satisfies all the requirements of
this problem. The continuity requirement added nothing in the frame-
work of this approximation, but only a break at the point of the origin of
the coordinates. Both constants α and ρ are arbitrarily determined, so
the physical side of this problem in not determined. The exact solution
of this problem manifests that in a real case, with the approximations, a
break appears not at the point of the origin of the coordinates, but in the

region r=
(
α3 − ρ

) 1
3 , and we should suppose ρ=α3 in order to move

the break to the origin of the coordinates. In the framework of such
an approximation through the exponents of α and ρ, we need to know
very well the law which rules these coefficients, and also be masters in
the whole situation, in order to understand the necessity of connexion
between α and ρ.

§6. In the end, we are looking for the equation of a point moving along
the geodesic line in the gravitational field related to the line-element
(14). Proceeding from the three circumstances according to which the
line-element is homogeneous, differentiable, and its coefficients are inde-
pendent of t and ρ, we take the variation so we obtain three intermediate
integrals. Because the motion is limited to the equatorial plane (ϑ=90◦,
dϑ=0), these intermediate integrals have the form

(
1− α

R

)( dt
ds

)2
− 1

1− α
R

(
dR

ds

)2
−R2

(
dϕ

ds

)2
= const = h , (15)

R2 dϕ

ds
= const = c , (16)

(
1− α

R

) dt
ds

= const = 1 , (17)

where the third integral means definition of the unit of time.
From here it follows that

(
dR

dϕ

)2
+R2

(
1− α

R

)
=
R4

c2

[
1− h

(
1− α

R

)]
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or, for 1
R
=x,

(
dx

dϕ

)2
=

1− h

c2
+
hα

c2
x− x2 + αx3. (18)

We denote c2

h
=B, 1−h

h
=2A that is identical to Einstein’s equations

(11) in the cited presentation∗, and gives the observed anomaly of the
perihelion of Mercury.

In a general case Einstein’s approximation for a curved trajectory
meets the exact solution, only if we introduce

R =
(
r3 + α3

) 1
3 = r

(
1 +

α3

r3

)1
3

(19)

instead of r. Because α
r is close to twice the square of the velocity of the

planet (the velocity of light is 1), the expression within the brackets, in
the case of Mercury, is different from 1 by a value of the order 10−12. The
quantities R and r are actually identical, so Einstein’s approximation
satisfies the practical requirements of even very distant future.

In the end it is required to obtain the exact form of Kepler’s third law
for circular trajectories. Given an angular velocity n= dϕ

dt
, according to

(16) and (17), and introducing x= 1
R
, we have

n = cx2 (1− αx) .

In a circle both dx
dϕ

and d2x
dϕ2

should be zero. This gives, according to

(18), that

1− h

c2
+
hα

c2
x− x2 + αx3 = 0 ,

hα

c2
− 2x+ 3αx2 = 0 .

Removing h from both circles gives

α = 2c2x (1− αx)
2
.

From here it follows that

n2 =
α

2
x3 =

α

2R3
=

α

2(r3 + α3)
.

Deviation of this formula from Kepler’s third law is absolutely invis-
ible up to the surface of the Sun. However given an ideal point-mass, the

∗Einstein A. Erklärung der Perihelbewegung der Merkur aus der allgemeinen
Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1915, S. 831–839. — Editor’s comment. D.R.
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angular velocity does not experience unbounded increase with lowering
of the orbital radius (such an unbounded increase should be experienced
according to Newton’s law), but approximates to a finite limit

n0 =
1

α
√
2
.

(For a mass which is in the order of the mass of the Sun, this boundary
frequency should be about 104 per second.) This circumstance should
be interesting in the case where a similar law rules the molecular forces.



On the Gravitational Field of a Sphere
of Incompressible Liquid,

According to Einstein’s Theory

Karl Schwarzschild

Submitted on February 24, 1916

Abstract: This is a translation of the paper Über das Gravitations-

feld einer Kugel aus incompressiebler Flüssigkeit nach der Einsteins-

chen Theorie published by Karl Schwarzschild, in Sitzungsberichte der

Königlich Preussischen Akademie der Wissenschaften, 1916, S. 424–
435. Here Schwarzschild expounds his previously obtained metric for
the spherically symmetric gravitational field produced by a point-
mass, to the case where the source of the field is represented by
a sphere of incompressible fluid. Schwarzschild formulates the phys-
ical condition of degeneration of such a field. Translated from the
German in 2008 by Larissa Borissova and Dmitri Rabounski.

§1. As the next step of my study concerning Einstein’s theory of grav-
itation, I calculated the gravitational field of a homogeneous sphere of
a finite radius, consisting of incompressible fluid. This clarification,
“consisting of incompressible fluid”, is necessary to be added, due to
the fact that gravitation, in the framework of the relativistic theory,
depends on not only the quantity of the matter, but also on its energy.
For instance, a solid body having a specific state of internal stress would
produce a gravitation other than that of a liquid.

This calculation is a direct continuation of my presentation concern-
ing the gravitational field of a point-mass (see Sitzungsberichte, 1916,
S. 189∗), to which I will refer here in short†.

§2. Einstein’s equations of gravitation (see Sitzungsberichte, 1915,
S. 845‡) in the general form manifest that

∑

α

∂Γα
µν

∂xα
+
∑

αβ

Γα
µβ Γ

β
να = Gµν . (1)

∗Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Ein-
steinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
†Schwarzschild means that, somewhere in this paper, he will refer to his formulae

deduced in his first publication of 1916. — Editor’s comment. D.R.
‡Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der König-

lich Preussischen Akademie der Wissenschaften, 1915, S. 844–847. — Editor’s com-
ment. D.R.
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The quantities Gµν vanish where is no matter. Inside an incompres-
sible liquid they are determined in the following way: the “mixed tensor
of the energy” of an incompressible liquid, according to Einstein (see
Sitzungsberichte, 1914, S. 1062∗) is equal to

T 1
1 = T 2

2 = T 3
3 = − p , T 4

4 = ρ0 , (2)

while the rest of the T ν
µ are zero. Here p is the pressure, ρ is the constant

density of the liquid.
The “covariant tensor of the energy” will be

Tµν =
∑

τ

T τ
µ gντ . (3)

Besides

T =
∑

τ

T τ
τ = ρ0 − 3p (4)

and also
κ = 8πk2,

where κ is Gauss’ gravitational constant. Then, according to Einstein
(see Sitzungsberichte, 1915, S. 845, Gleichung 2a†), the right sides of the
equations have the form

Gµν = −κ

(
Tµν −

1

2
gµν T

)
. (5)

To be in the state of equilibrium, such a liquid should satisfy the
conditions (see equation 7a ibidem†)

∑

α

∂T α
τ

∂xα
+
∑

µν

Γµ
τν T

ν
µ = 0 . (6)

§3. In the case of such a sphere, as well as in the case of a point-
mass, these general equations should be normalized for the symmetrical
rotation around the origin of the coordinates. As in the case of a point-
mass, it is recommended to move to the spherical coordinates chosen

∗Einstein A. Die formale Grundlage der allgemeinen Relativitätstheorie. Sit-

zungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1914,
S. 1030–1085. This is a bulky paper concerning the formal basics of the General
Theory of Relativity, wherein Einstein considered his equations of gravitation. —
Editor’s comment. D.R.

†Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der König-

lich Preussischen Akademie der Wissenschaften, 1915, S. 844–847. — Editor’s com-
ment. D.R.
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so that the determinant equals 1∗

x1 =
r3

2
, x2 = − cosϑ , x3 = ϕ , x4 = t . (7)

The line-element should have the same form

ds2 = f4 (dx
4)2 − f1 (dx

1)2 − f2
(dx2)2

1− (x2)2
− f3 (dx

3)2
[
1− (x2)2

]
, (8)

so that we have

g11 = − f1 , g22 = − f2
1− (x2)2

, g33 = − f2
[
1− (x2)2

]
, g44 = f4 ,

while the other gµν are zero. These f are functions dependent only
on x1.

In the space outside this sphere, the solutions (10), (11), (12) were
found†

f4 = 1− α
(
3x1 + ρ

)− 1
3 , f2 =

(
3x1 + ρ

) 2
3 , f1(f2)

2f4 = 1 , (9)

where α and ρ are two arbitrary constants, which should be determined
on the basis of the mass and the radius of the sphere.

We are going to construct the field equations for the internal space
of this sphere with use of the formula (8) for the line-element, then solve
these equations. Concerning the right sides, we obtain

T11 = T 1
1 g11 = − pf1 , T22 = T 2

2 g22 = − pf2
1− (x2)2

,

T33 = T 3
3 g33 = − pf2

[
1− (x2)2

]
, T44 = T 4

4 g44 = ρ0 f4 ,

G11 =
κf1
2

(p− ρ0) , G22 =
κf2
2

1

1− (x2)2
(p− ρ0) ,

G33 =
κf2
2

[
1− (x2)2

]
(p− ρ0), G44 = − κf4

2
(ρ0 + 3p) .

∗In the original — “polar coordinates”. The same formulation was used in his
first paper of 1916. Obviously Schwarzschild means the three-dimensional spherical
coordinates, whose origin meets the centre of the sphere of incompressible liquid. —
Editor’s comment. D.R.

†Here Schwarzschild refers to the formulae (10), (11), and (12) obtained in
his first paper: Über das Gravitationsfeld eines Massenpunktes nach der Einstein-
schen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
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We can assume that the components Γα
µν of the gravitational field

expressed through these functions f , and also the left sides of the field
equations are independent of the point-mass (see §4). Limiting our
task again by considering the equator (x2 =0), we obtain the following
system of equations.

First, these are three field equations

a) − 1

2

∂

∂x1

(
1

f1

∂f1
∂x1

)
+

1

4

1

(f1)2

(
∂f1
∂x1

)2
+

1

2

1

(f2)2

(
∂f2
∂x1

)2
+

+
1

4

1

(f4)2

(
∂f4
∂x1

)2
= − κ

2
f1 (ρ0 − p) ,

b) +
1

2

∂

∂x1

(
1

f1

∂f2
∂x1

)
− 1

2

1

f1f2

(
∂f2
∂x1

)2
= − κ

2
f2 (ρ0 − p) ,

c) − 1

2

∂

∂x1

(
1

f1

∂f4
∂x1

)
+

1

2

1

f1f4

(
∂f4
∂x1

)2
= − κ

2
f4 (ρ0 + 3p) .

We should add to these the determinant equation

d) f1(f2)
2f4 = 1 .

The equilibrium conditions provide just one equation

e) − ∂p

∂x1
= − p

2

[
1

f1

∂f1
∂x1

+
2

f2

∂f2
∂x1

]
+
ρ0
2

1

f4

∂f4
∂x1

.

Proceeding from the common consideration of Einstein’s equations,
it follows that the aforementioned 5 equations with respect to 4 variables
f1, f2, f4, p are consistent with each other.

We should find solutions of these 5 equations, which would be free of
singularity inside the sphere. There on the surface of the sphere p = 0
should be true, the functions f in the neighbourhood of their derivatives
should be continuous, and be transferred into the quantities (9) which
are true outside the sphere.

We will omit the index 1 in x1, for simplicity.

§4. The equation e), due to the determinant equation, transforms into

− ∂p

∂x
=
ρ0 + p

2

1

f4

∂f4
∂x

.

It can be easy integrated, and gives

(ρ0 + p)
√
f4 = const = γ . (10)
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The field equations a), b), c), after multiplication by the factors −2,
+2 f1

f2
, −2 f1

f4
, transform into

a ′)
∂

∂x

(
1

f1

∂f1
∂x

)
=

1

2(f1)2

(
∂f1
∂x

)2
+

1

(f2)2

(
∂f2
∂x

)2
+

+
1

2(f4)2

(
∂f4
∂x

)2
+ κf1 (ρ0 − p) ,

b ′)
∂

∂x

(
1

f2

∂f2
∂x

)
= 2

f1
f2

+
1

f1f2

∂f1
∂x

∂f2
∂x

− κf1 (ρ0 − p) ,

c ′)
∂

∂x

(
1

f4

∂f4
∂x

)
=

1

f1f4

∂f1
∂x

∂f4
∂x

+ κf1 (ρ0 + 3p) .

Forming the combinations a′ +2b′+ c′ and a′ + c′, and using the
determinant equation, we obtain, finally,

0 = 4
f1
f2

− 1

(f2)2

(
∂f2
∂x

)2
− 2

f2f4

∂f2
∂x

∂f4
∂x

+ 4κf1p , (11)

0 = 2
∂

∂x

(
1

f2

∂f2
∂x

)
+

3

(f2)2

(
∂f2
∂x

)2
+ 2κf1 (ρ0 + p) . (12)

Now we introduce new variables, which are desirable due to the fact
that, according to the results obtained for the point-mass, such variables
behave simply outside the sphere as they are independent of the terms
of these equations which contain ρ and p. So the equations, being
expressed with the new variables, should have a simple form as well.

The new variables are

f2 = η
2
3 , f4 = ζ η−

1
3 , f1 =

1

ζ η
. (13)

Then, according to (9) outside the sphere,

η = 3x+ ρ , ζ = η
1
3 − α , (14)

∂η

∂x
= 3 ,

∂ζ

∂x
= η−

2
3 . (15)

We introduce these new variables and, at the same time, remove
ρ0 + p with γf4

− 1
2 according to (10). As a result the equations (11) and

(12) transform into

∂η

∂x

∂ζ

∂x
= 3η−

2
3 + 3κγ ζ−

1
2 η

1
6 − 3κρ0 , (16)
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2ζ
∂2η

∂x2
= − 3κγ ζ−

1
2 η

1
6 . (17)

Summation of these two equations gives

2ζ
∂2η

∂x2
+
∂η

∂x

∂ζ

∂x
= 3η−

2
3 − 3κρ0 .

The integrating multiplier of this equation is ∂η
∂x

. We obtain, after
integration,

ζ

(
∂η

∂x

)2
= 9η

1
3 − 3κρ0η + 9λ , (18)

where λ is the constant of integration.
Raising it to a power of 3

2
gives

ζ
3
2

(
∂η

∂x

)3
=
(
9η

1
3 − 3κρ0η + 9λ

)3
2

.

Dividing (17) by this equation, we obtain that ζ vanishes so that the
following differential equations with respect to η is obtained

2 ∂2η

∂x2

(
∂η
∂x

)3 = − 3κγ η
1
6

(
9η

1
3 − 3κρ0η + λ

) 3
2

.

Again, ∂η

∂x
is the integrating multiplier here. We obtain, after inte-

gration,

2
(
∂η

∂x

) = 3κγ

∫
η

1
6 dη

(
9η

1
3 − 3κρ0η + λ

) 3
2

(19)

and, because
2
δη

δx

=
2δx

δη
,

iterated integration gives

x =
κγ

18

∫
dη

∫
η

1
6 dη

(
η

1
3 − κρ0

3
η + λ

) 3
2

. (20)

It follows from here that x is a function of η and, vice versa, that
η is a function of x. Besides, ζ, due to (18), (19), and also (13), is a
function of f . Thus our problem has came back to quadratures.
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§5. Now we should find the constants of integration so that the internal
region of the sphere would be free of singularity, and also the continuous
transfer from the values of the functions f and their derivatives inside
the sphere to the respective values outside it would be allowed in the
surface.

There in the surface of the sphere r= ra, x= xa, η= ηa, etc. The
continuity of η and ζ can be satisfied in any case through the respective
choice of the constants α and ρ. If also, according to it, the derivatives
remain continuous, and, due to (15),

(
dη

dx

)
a
=3 and

(
dζ

dx

)
a
= ηa

− 2
3 , the

equations (16) and (18) should be

γ = ρ0 ζ
1
2
a η

− 1
6

a , ζa = η
1
3
a − κρ0

3
ηa + λ . (21)

It follows from here that

ζa η
− 1

3
a = (f4)a = 1− κρ0

3
η

2
3
a + λη

− 1
3

a .

Thus we have
γ = ρ0

√
(f4)a . (22)

Comparing it to (10), we see that it satisfies the condition p=0 in the
surface. The requirement

(
dη

dx

)
a
=3 leads to the following determination

of the limits of integration in (19)

3dx

dη
= 1− κγ

6

ηa∫

η

η
1
6 dη

(
η

1
3 − κ ρ0

3
η + λ

) 3
2

(23)

so that, with taking (20) into account, we arrive at the determination
of the limits of integration

3 (x− xa) = η − ηa +
κγ

6

ηa∫

η

dη

ηa∫

η

η
1
6 dη

(
η

1
3 − κρ0

3
η + λ

) 3
2

. (24)

The surface conditions are satisfied completely. The constants ηa
and λ are still undetermined; we will determine the constants through
the continuity conditions at the origin of the coordinates.

First, we should require that η=0 at x=0. If this condition were
wrong, f2 would take a finite numerical value at the origin of the coor-
dinates, so the change of the angle dϕ= dx3 at the origin of the coordi-
nates (that does not mean a real motion) would give a meaning to the
line-element. Thus, as follows from (24), the following condition con-
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nects xa and ηa

3xa = ηa −
κγ

6

ηa∫

0

dη

ηa∫

η

η
1
6 dη

(
η

1
3 − κ ρ0

3
η + λ

) 3
2

. (25)

Finally, λ is determined by the condition, according to which the
pressure inside the sphere should be finite and positive, as follows from
(10), and also f4 should be finite and nonzero. Proceeding from (13),
(18) and (23), we have

f4 = ζ η−
1
3 =

(
1− κρ0

3
η

2
3 + λη−

1
3

)
×

×


1− κγ

6

η0∫

η

η
1
6 dη

(
η

1
3 − κ ρ0

3
η + λ

) 3
2



2

. (26)

First, it is supposed here that λ ≷ 0. Then, for very small numerical
values of η we obtain

f4 =
λ

η
1
3

[
K +

κγ

7

η
7
6

λ
3
2

]2
,

where

K = 1− κγ

6

η0∫

0

η
1
6 dη

(
η

1
3 − κ ρ0

3
η + λ

) 3
2

. (27)

At the middle point (η=0) f4 is also infinite, with an exception
under the condition K =0 where f4 vanishes at η=0. There is no such
case where there could be a finite and nonzero value of f4 at η=0. We
see from here that the assumption λ ≷ 0 does not lead to physically
useful solutions. Hence, we should assume λ=0.

§6. Now the condition λ=0 constitutes all the constants of integration.
If we introduce a new variable χ instead η as follows

sinχ =

√
κρ0
3

η
1
3 , where sinχa =

√
κρ0
3

η
1
3
a , (28)

the equations (13), (26), (10), (24), (25) after elementary algebra take
the following form

f2 =
3

κρ0
sin2χ , f4 =

(
3 cosχa − cosχ

2

)2
, f1(f2)

2f4 = 1 , (29)
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ρ0 + p = ρ0
2 cosχa

3 cosχa − cosχ
, (30)

3x = r3 =
(
κρ0
3

)− 3
2

[
9

4
cosχa

(
χ− 1

2
sin 2χ

)
− 1

2
sin3χ

]
. (31)

The constant χa is determined, through the density ρ0 and the radius
ra of the sphere, by the ratio

(
κρ0
3

)3
2

r3a =
9

4
cosχa

(
χa −

1

2
sin 2χa

)
− 1

2
sin3χa . (32)

The constants α and ρ, in the case of the solution attributed to the
external region, follow from (14) as

ρ = ηa − 3xa , α = η
1
3 − ζa

and take the form

ρ =
(
κρ0
3

)− 3
2

[
3

2
sin3χa −

9

4
cosχa

(
χa −

1

2
sin 2χa

)]
, (33)

α =
(
κρ0
3

)− 1
2

sin3χa . (34)

If using the variables χ, ϑ, ϕ instead of x1, x2, x3, the line-element
in the region inside the sphere takes the simple form

ds2 =

(
3 cosχa − cosχ

2

)2
dt2 −

− 3

κρ0

[
dχ2 + sin2χdϑ2 + sin2χ sin2ϑ dϕ2

]
. (35)

Outside the sphere the line-element is still has the same form as that
for a point-mass

ds2 =
(
1− α

R

)
dt2 − dR2

1− α
R

−R2
(
dϑ2 + sin2ϑ dϕ2

)

where
R3 = r3 + ρ




. (36)

Here ρ is determined according to (33), while it was ρ=α3 in the
case of a point-mass.
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§7. A few following notes should be given on the complete solution of
our problem, presented in the previous Paragraph.

1. The spatial element (dt=0) inside the sphere is

− ds2 =
3

κρ0

[
dχ2 + sin2χdϑ2 + sin2χ sin2ϑ dϕ2

]
.

This is the line-element of the so-called non-Euclidean geometry of
a spherical space. The spherical space geometry holds also in the inter-
nal region of our sphere. The curvature radius of such a spherical space

is
√

3
κρ0

. Our sphere has formed not all of the spherical space, but only

a region in it; this is because χ cannot grow up to π
2
, but grows up only

to the boundary limit χa. Concerning the Sun the curvature radius
of the spherical space, which determine the geometry of the interior of
the Sun, would be equal to about 500 radii of the Sun (see equations
39 and 42).

This is a very interesting sequel to Einstein’s theory, which manifests
the fact that this theory is demanded for the geometry of a spherical
space as the reality inside a gravitating sphere (this geometry had the
power of a purely theoretical consideration before that).

Inside the sphere the “naturally measurable” quantities of length are
√

3
κρ0

dχ ,

√
3

κρ0
sinχdϑ ,

√
3

κρ0
sinχ sinϑ dϕ . (37)

The radius of the sphere, “measured from within” to the surface, is

Pi =

√
3

κρ0
χa . (38)

The circumference of the sphere, measured along the meridian (or
any other great circle) then divided by 2π, should be referred as the
“measured-from-outside” radius Pa. It is

∗

Pa =

√
3

κρ0
sinχa . (39)

According to the formula (36) describing the line-element outside

the sphere, this formula for Pa is obviously identical to Ra =
(
r3a + ρ

) 1
3

the variable R takes in the surface of the sphere.

∗Schwarzschild denoted by i (“innen gemessene”) the radius “measured from
within”, while a (that means “außen gemessene”) was used for the radius “measured
from outside” due to the original pronunciation of these terms in German. — Editor’s
comment. D.R.
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The following simple relations were obtained for α from (34) through
the radius Pa

α

Pα
= sin2χa , α =

κρ0
3

P 3
a . (40)

Then the volume of our sphere is

V =

(√
3

κρ0

)3 χa∫

0

dχ sin2χ

π∫

0

dϑ sinϑ

2π∫

0

dϕ =

= 2π

(√
3

κρ0

)3 (
χa −

1

2
sin 2χa

)
.

Proceeding from here, the mass M of our sphere is

M = ρ0V =
3

4k2

√
3

κρ0

(
χa −

1

2
sin 2χa

)
, (41)

where κ=8πk2.
2. The following notes are related to the equations of motion of

a point of infinitely small mass, located outside our sphere. These equa-
tions have the same form as those for a point-mass (see equations 15–17
for that∗).

At large distances the point moves according to Newton’s law, where
α

2k2
plays a rôle of the attracting mass. Therefore we can refer to α

2k2

as the “gravitational mass” of our sphere.
If such a point moves from the rest state at infinity up to the surface

of the sphere, the “naturally measurable” velocity of fall of this point
we obtain is

va =
1√

1− α
R

dR

ds
=

√
α

Ra
.

Then, according to (40),

va = sinχa . (42)

Concerning the Sun, the velocity of the fall is about 1
500

of the veloc-
ity of light. As easy to see in the case of the small numerical values of χa

and χ (which is χ < χa) following from this velocity, all our equations

∗Here Schwarzschild refers to the equations obtained by him in his first pa-
per: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen The-
orie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften,
1916, S. 189–196. — Editor’s comment. D.R.
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(up to the Einsteinian effects of the second order) transform into to the
effects of Newton’s theory.

3. For the ratio of the gravitational mass α
2k2

to the mass of matter
M we obtain

α

2k2M
=

2

3

sin3χa

χa − 1
2
sin 2χa

. (43)

With the growing velocity of the fall va =(sinχa) the growing con-
centration of the mass lowers the ratio of the gravitational mass to the
mass of matter. This fact explains that, for instance, at a constant
mass and growing density the body approaches the lesser radius than
earlier due to the drainage of energy (the lowering of temperature due
to radiation).

4. The velocity of light inside our sphere becomes

v =
2

3 cosχa − cosχ
, (44)

and it grows up from the value 1
cosχa

in the surface to the value 2
3 cosχa−1

at the central point. The value of the density ρ0 + p grows, according
to (10) and (30), proportional to the velocity of light.

At the centre of the sphere (χ=0) the velocity of light and the
density become infinity. Once cosχa =

1
3
the velocity of fall reaches√

8
9
of the (naturally measurable) velocity of light. This value sets

the upper limit of the concentration; a sphere of incompressible liquid
cannot be denser than this. If we like to apply our equations to the
values cosχ< 1

3
, we obtain the break just out of the centre of the sphere.

At the same time it is possible to find solutions of this problem on the
greater values of χa continuous at least out of the centre of the sphere,
if we move to the case where λ ≷ 0 and the condition K = 0 (see
equation 27) is true. On the path to these solutions, which are however
nonsense in physics due to that fact that they give infinite density at
the centre of the sphere, we can move to the boundary case where a
mass is concentrated in a point, then find, again, the relation ρ=α3

which, according to the earlier study∗, is true for a point-mass. We also
note that it is possible to talk about only one point-mass in so far as
we use the variable r, which in the opposite case (amazingly) does not
play a rôle for the geometry and motion in the gravitational field. For

∗Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Ein-
steinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften, 1916, S. 189–196. — Editor’s comment. D.R.
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an external observer, as follows from (40), a sphere of the gravitational
mass α

2k2
cannot have a radius measured from outside whose numerical

value is less than
Pa = α .

Concerning a sphere of incompressible liquid such a border should
be 9

8
α. (In the case of the Sun it should be 3 km, while for a mass of

1 gramme it should be 1.5×10−28 cm.)



On the Relativistic Theory of
an Anisotropic Inhomogeneous Universe

Abraham Zelmanov

Abstract: Here the General Theory of Relativity is expounded from
the point of view of space-time as a continuous medium, and the
mathematical apparatus for calculation of physically observable quan-
tities (the theory of chronometric invariants) is constructed. Then this
mathematical apparatus is applied to set up the basics of the theory
of an inhomogeneous anisotropic universe, which profitably contrasts
the self-limited theories of a homogeneous universe (most commonly
used in modern relativistic cosmology). Owing to such an extension
of the relativistic cosmology, we determine the whole range of cosmo-
logical models (scenarios of evolution) which could be theoretically
conceivable in the space-time of the General Theory of Relativity.
Translated from the original Russian manuscript of 1957, in 2008 by
Dmitri Rabounski.

§1. The question “is the Universe homogeneous and isotropic, or not”
is connected with the question about the scale of the Universe. Let l
be a length which is in the order of the upper limit of the space regions
meant, by us, to be infinite small. Then L≫ l is a length, which is
in the order of the size of the whole region of space we observe. As
obvious, in connexion to the question about the scale, two different
understandings about homogeneity and isotropy are possible. In other
words, two questions can be asked: 1) are the conditions of homogeneity
and isotropy satisfied at the numerical values of l and L, assumed by
us; 2) is there a large enough l that, under any L≫ l, the conditions of
homogeneity and isotropy are satisfied.

In comparing the theory to observations, the first of the above un-
derstandings of homogeneity and isotropy plays a rôle. In such a case
the numerical values of l and L should be determined at least in the
order of these values. In consideration of questions such as those re-
lated to the infinity of space, the second understanding of homogeneity
and isotropy is important. Observational data give no direct answer
to the question about homogeneity and isotropy of the Universe with
respect to the second meaning. I don’t provide the references to the
observational data here. On the other hand, much information about
the distribution of masses, provided for instance by Ambarzumian in his
presentation [1], allows us to be sure in the fact that, at any l≪L, the
Universe is inhomogeneous, in the first meaning of this term. Ambarzu-
mian was absolutely right in his note that the Metagalactic redshift
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should be interpret as the Doppler effect, and, when considering the
scale of the Metagalaxy, we should take into account the effects of the
General Theory of Relativity. Thus a relativistic theory of an inhomo-
geneous anisotropic universe — a theory, the results of which would be
able to be compared to the observational data, and which, generally
speaking, gives a model of the whole Universe — should be our task.

As will be shown in §10, inhomogeneity leads to anisotropy.∗ On
the other hand, at least some factors of anisotropy bear a tendency
to decrease with the expansion of the Metagalaxy (see §13). So the
anisotropy, being weak in the current epoch, was probable a valuable
factor which played an important rôle billions of years ago.

So a relativistic theory of an inhomogeneous anisotropic universe is
our actual task. The necessity of such a theory was pointed out, aside
for the special studies on this theme, in [6, 7] and also in [8]. Below,
only a few problems related to the formal mathematical basics of this
theory will be considered. It should be noted that the basic equations
and the deduced equations of our theory do not depend on homogeneity
and isotropy of the Universe in the second meaning: the equations are
independent of the numerical values of l and L.

Assume that matter on the scale we are considering is a continuous
medium, which moves laminarely in common with a continuous field of
sub-luminal velocities. So there are coordinate frames which everywhere
accompany the medium. On the other hand, all that will be said in §3–§8
does not depend on these assumptions. Of course, in the modern epoch
of observation, the most interesting case is such a scale of consideration
where the “molecules” of this medium are galactic clusters. Suppose
also that, in the scale we are considering, the thermodynamical terms
are meaningful, and the laws of relativistic thermodynamics hold. We
also assume that Einstein’s equations

Gµν = −κ

(
Tµν −

1

2
gµν T

)
+ Λ gµν (1)

are true everywhere in the four-dimensional region we are considering.
Here in the equations Gµν is the contracted world-tensor of the curva-
ture, gµν is the metric world-tensor, Tµν is the energy-momentum ten-
sor, T =Tα

α , κ is Einstein’s constant of gravitation (κ=8πγ/c2, where
γ is Newton’s constant of gravitation and c is the fundamental velocity),
while Λ is the cosmological constant. We keep the cosmological constant

∗In addition to it, there are observational data about anisotropy of the redshift
in a small region of the Metagalaxy near us [2–4]. Of course, this information should
be checked on the basis of the newest observational data [5].
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in the equations, because we like to have a possibility to compare our
results to those known in the literature.

§2. We always mean spatial (three-dimensional) homogeneity and iso-
tropy, not four-dimensional world-quantities. The presence or the ab-
sence of spatial homogeneity and spatial isotropy depends on the frame
of reference. For instance, as obvious, the isotropy can be attributed to
only those reference frames, which accompany continuous matter and
masses, because both the flow of matter and moving masses break the
isotropy. On the one hand, the question about the presence of homo-
geneity and isotropy can be set up as the question about the possibility
of such reference frames, where the said homogeneity and isotropy take
a place. We all know the homogeneous isotropic relativistic models. In
such a model, a frame consisting of the four coordinates can be chosen,
wherein

ds2 = c2dt2 −R2 dξ2 + dη2 + dζ2
[
1 + k

4 (ξ
2 + η2 + ζ2)

]2

R = R(t), k = 0,±1




. (2)

Such a reference frame can be the necessary and sufficient indication
of homogeneity and isotropy in cosmology. On the other hand, the
question about the presence of homogeneity and isotropy can be set up
in a frame of the accompanying coordinates. Such a statement of this
problem will be realized in the next Paragraphs.

The theory of an inhomogeneous anisotropic universe has two main
directions, which are characterized as follows: a) the search for exact
particular solutions of the equations of gravitation, and the considera-
tion of such models which bear the properties of symmetry; b) as com-
mon as possible, the qualitative study of the behaviour (evolution) of
matter and the metric under different physical assumptions.

The models, which are spherically symmetric under the vanishing of
the pressure, viscosity, and the flow of energy, the models with a spher-
ically symmetric distribution of matter concentrated in a centre (core),
and the models filled with a limited spherical distribution of matter were
studied by McVittie [9], Tolman [10, 12], Datt [11], Oppenheimer and
Volkoff [13], Oppenheimer and Snyder [14], Järnefelt [15, 16], Einstein
and Strauss [17], Bondi [18], Omer [19], Just [20]. The models, which
are axially symmetric and rotating, were considered in the studies of
Kobushkin [21] and Gödel [22]. There are main studies produced in the
research direction a), or connected to it.
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Among the studies produced in the research direction b), McCrea’s
study [23] remains aloof, where the problem of the observable prop-
erties of an inhomogeneous anisotropic universe was considered. The
behaviour (evolution) of matter and the metric in such a universe was
qualitatively considered in studies of mine [24, 26], Raychaudhury [25]
and Komar [27]. In the study [24] I introduced chronometrically invari-
ant quantities (using another terminology), and considered applications
of them in the General Theory of Relativity to the problem we are
now interested in, in the framework of the particular conditions, where
the flow of energy, viscosity, pressure, and, hence, the power field were
neglected. A few years later, Raychaudhury [25] considered particular
aspects of the same problem in the case where Λ=0, with the neglection
of the same factors. The quantities and equations derived by him, and
also his conclusions [25] are the same as that which was found by me
earlier [24]. Raychaudhury however did not introduce chronometrically
invariant quantities, and used the incorrect definition (12) of the observ-
able spatial metric instead of the correct formula (7) given below. As a
result, his equations, generally speaking, don’t possess a direct physical
interpretation in the framework of the considered problem. Meanwhile,
using [24, 26] one can show that his results concerning the effects pro-
duced by, in our terminology, the absolute rotation and the anisotropy
of the deformations in a) the behaviour of the changes of a space volume
and b) the scale of time are correct in the considered case. His results in
the research direction a) repeated some results obtained earlier by me
in [24]. The research direction b) was not considered in my study [24].
My newest paper [26] constituted supplement and generalization of the
results, which were obtained earlier in [24] under lower assumptions.
Komar [27] showed that special states are inevitable in the case of Λ=0
under the absence of, in our terminology, the power field, absolute rota-
tion, pressure, viscosity and the flow of energy. This conclusion repeats
one of the results obtained earlier in [24] and [25].

In the next Paragraphs I give the further generalization and devel-
opment of some results initially obtained by me in [24, 26].

This is Gödel’s solution [22], which will be required in our research:

ds2 = a2

[
(dx0)2+2ex

1

dx0dx2−(dx1)2+
e2x

1

2
(dx2)2−(dx3)2

]

0 < a = const




. (3)

In cosmology, accompanying coordinates are commonly used. The
necessary and sufficient condition for such coordinates requires that the
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numerical value of the three-dimensional velocity should be lower than
the velocity of light, while the components of the velocity should be
finite, simple and continuous functions of the four coordinates.

§3. We denote space-time indices 0, 1, 2, 3 in Greek (where 0 corre-
sponds to the time dimension), while spatial indices 1, 2, 3 are denoted
in Roman. We assume that summation takes a place on two same in-
dices met in the same term. We assume that

x0 = ct, ds2 = gµν dx
µdxν ,

and, in a locally Galilean reference frame, we have

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

We assume also that the components of the metric world-tensor gµν
are continuous along the coordinates xα in common with their first
derivatives and second derivatives. In common, we assume that all
quantities used here satisfy, in this part and in the rest parts, the require-
ments of the General Theory of Relativity.∗ Besides, while talking about
three-dimensional (spatial) tensors and the other three-dimensional ge-
ometrical quantities (e.g. Christoffel’s symbols), we will omit the notion
about the number of the dimensions.

Four-dimensional coordinate systems resting with respect to the
same reference body (which is deforming, in a general case) are con-
nected to each other by the transformations

x̃0 = x̃0(x0, x1, x2, x3) , (4a)

x̃i = x̃i(x1, x2, x3) ,
∂ x̃i

∂x0
= 0 . (4b)

The choice of a body of reference is equivalent to the choice of the
congruence of the time lines xi = const. Suppose that a reference body
has been chosen. Then, of all the quantities non-covariant to the general
transformations

x̃α = x̃α(x0, x1, x2, x3) , (5)

those quantities are physically preferred which are covariant with re-
spect to the transformations (4a) and (4b). Hence, such physically pre-
ferred quantities are invariant with respect to the transformations (4a),
and are covariant to the transformations (4b). We therefore call such
physically preferred quantities chronometric invariants. Such chrono-

∗The formulae (1), (2) and (3) satisfy all these requirements as well.
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metrically invariant quantities can be considered as three-dimensional
tensors in any of the given spatial sections x0 = const. They can be
also considered as tensors in a space, all elements of which (i.e. three-
dimensional local spaces) are definitely orthogonal to the time lines
under any given coordinate of time. We mean, by a three-dimensional
space of a given body of reference (a reference space), a space deter-
mined in this way. Such a space is, generally speaking, non-holonomic.
This means that, with a body of reference given in a general case, it is
impossible to find such a spatial section which could be everywhere or-
thogonal to the time lines: in such a general case it is impossible to find,
by the transformation (4a), such a coordinate of time x0 that g0i=0
would be everywhere true in the spatial section.

With chronometrically invariant quantities and chronometrically in-
variant operators, we remove a difficulty proceeding from the fact that
many non-chronometrically invariant quantities and relations (the con-
ditions of homogeneity and isotropy, for instance) depend on the arbi-
trarity of our choice of the time coordinate. In a general case (in Gödel
model, for instance), this difficulty can neither be avoided by the choice
of a preferred coordinate of time satisfying the conditions g00=1 and
g0i=0 (as for the homogeneous isotropic models) nor the substantial
easing of this situation due to the choice of a preferred coordinate of
time such that the weak condition g0i=0 satisfies everywhere.

Let Qik...p
00...0 be the components of a world-tensor of the rank n, all

upper indices of which are nonzero, while all m lower indices are zero.
For such a tensor, the quantities

T ik...p = (g00)
−m

2 Qik...p
00...0

are the components of a chronometrically invariant contravariant (three-
dimensional) tensor of the rank n−m. Using this rule, we can easily
find the chronometrically invariant form for quantities and operators, if
we know the formulae of them under a specially chosen coordinate of
time according to the transformations (4a), for instance, if g00 =1 and
g0i=0 at the given world-point.

§4. Targeting the chronometrically invariant formulae for the elemen-
tary length dσ, the metric tensors hik and hik, and the fundamental
determinant h= |hik|, we obtain

dσ2 = hik dx
idxk, (6)

hik = − gik +
g0i g0k
g00

, hik = − gik, h = − g

g00
, (7)
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where g= |gµν |. The spatial metric determined in such a way coincides
with that assumed by Landau and Lifshitz, see (82.5) and (82.6) in [28],
and that assumed by Fock, see (55.20) in [29]. For the elementary
chronometrically invariant interval of time dτ and the elementary world-
interval ds, we obtain

cdτ =
g0αdx

α

√
g00

, ds2 = c2dτ2 − dσ2. (8)

For the chronometrically invariant velocity vi of the motion of a test-
particle, we have

vi =
dxi

dτ
, hik v

ivk =

(
dσ

dτ

)2
.

If ds=0, hik v
ivk = c2: the chronometrically invariant velocity of

light in vacuum is always equal the fundamental velocity.
We mark the chronometrically invariant differential operators by the

asterisk. For such operators (they coincide with d/dt, ∂/∂t and ∂/∂xi

under the conditions g00=1 and g0i =0) we obtain

∗d

dt
=

d

dτ
,

∗∂

∂t
=

c√
g00

∂

∂x0
,

∗∂

∂xi
=

∂

∂xi
− g0i
g00

∂

∂x0
. (9)

For the chronometrically invariant generalizations of Christoffel’s
symbols and the operator of general covariant differentiation, we have∗

∆ij,k =
1

2

(
∗∂hjk
∂xi

+
∗∂hik
∂xj

−
∗∂hij
∂xk

)
, ∆k

ij = hkl∆ij,l , (10)

∗∇iQ
...k
j... =

∗∂Q...k
j...

∂xi
−∆l

ijQ
...k
l... − · · ·+∆k

ilQ
...l
j... . (11)

As can be easily seen,

∗∇i hjk = 0 , ∗∇i h
k
j = 0 , ∗∇i h

jk = 0 .

The metric of a spatial section x0=const is determined by the tensor

yik = − gik , yik = − gik +
g0ig0k

g00
, y = − gg00, (12)

where y= |yik| is the determinant of the tensor.
The metric (7) is chronometrically invariant, space-like everywhere,

and the length of an “unchangeable” elementary rest-scale in this metric
equals the “proper” length. On the other hand, the metric (12) does not

∗See also formula (17).
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bear these properties: see, for instance, Gödel’s model (3). In particular,
in contrast to h, y may become negative (in general, y6 h) that leads to
the negative numerical value of the volume of the region of the spatial
section where this happens. Therefore, even with a given coordinate
of time, and fixation of the numerical value of the coordinate, a true
physical meaning is attributed to not the metric (12) of a spatial section
x0 = const, but to the metric (7) of the space (space-time) where the
value x0 = const is fixed.

§5. We assume that all differentiable quantities bear the properties
which allow them to change the order in the usual (not chronometrically
invariant or generally covariant) differentiation. In such a case,

∗∂2

∂xi ∂t
−

∗∂2

∂t ∂xi
=
Fi

c2

∗∂

∂t
,

∗∂2

∂xi ∂xk
−

∗∂2

∂xk ∂xi
=

2Aik

c2

∗∂

∂t
. (13)

These chronometrically invariant vector Fi and chronometrically in-
variant antisymmetric tensor Aik, determined by the equalities (9) and
(13), satisfy the identities

∗∂Ajk

∂xi
+

∗∂Aki

∂xj
+

∗∂Aij

∂xk
+

1

c2
(FiAjk + FjAki + FkAij) = 0 , (14)

∗∂Aik

∂t
+

1

2

(
∗∂Fk

∂xi
−

∗∂Fi

∂xk

)
= 0 , (15)

and also to the identities (17).
The identity satisfying the three equalities Aik =0 in a given four-

dimensional region is the necessary and sufficient condition for the re-
ducing of all g0i to zero everywhere in this region by the transformation
(4a): in such a case dτ has an integration multiplier, i.e. time is allowed
to be integrated along a path in this region (time is integrable). In other
words, the identity satisfying the equalities Aik =0 is the necessary and
sufficient condition of holonomity of the given space of reference. Thus
Aik is the chronometrically invariant tensor of the space non-holonomity.
The identity satisfying all six equalities Fi =0 and Aik =0 in a given
four-dimensional region is the necessary and sufficient condition for the
reducing of all g00 to 1 and of all g0i to zero by the transformation
(4a). In other words, this is necessary and sufficient for dτ to be a total
differential.

At any world-point O, one can set up a four-dimensional locally
geodesic frame of reference Σ̃0, which satisfies the following condition:
at this point, the chronometrically invariant velocity of a given refer-
ence frame Σ with respect to the locally geodesic reference frame Σ̃0
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is zero (ṽj)0 =0. Considering the reference frame Σ̃0, we introduce in
it the chronometrically invariant quantities which characterize the mo-
tion of our reference frame Σ with respect to Σ̃0 in a four-dimensional
neighbourhood of the point O: we take the generally covariant charac-
teristics of the motion such as the acceleration vector (w̃j)0, the tensor
of angular velocity of the rotation (ãjl)0 and the tensor of the rate of

the deformation (d̃jl)0, then express them through the chronometrically
invariant velocity by the removing of regular derivatives with chrono-
metrically invariant derivatives. Using the general transformations (5),
we obtain that the equalities

Fi = −∂x̃
j

∂xi
(w̃j)0 , Aik =

∂x̃j

∂xi
∂x̃l

∂xk
(ãjl)0

are true at any world-point O.
We introduce also a chronometrically invariant tensor Dik, which

satisfies the equality

Dik =
∂x̃j

∂xi
∂x̃l

∂xk
(d̃jl)0

at any world-point O.
In this context, Fi is the vector of acceleration of our reference space

Σ with respect to the locally geodesic reference space Σ̃0, taken with
the opposite sign, Aik is the tensor of angular velocity of the rotation
of our reference space Σ with respect to Σ̃0, while Dik is the tensor of
the rate of deformation of our reference space Σ with respect to Σ̃0. It
is possible to prove that

Dik =
1

2

∗∂hik
∂t

, Dik = −1

2

∗∂hik

∂t
, D =

∗∂ ln
√
h

∂t
, (16)

where D=D j
j has the meaning of the speed of the relative expansion

of the volume element of the space.∗

Denote by Γσ
µν the four-dimensional Christoffel symbols of the 2nd

kind. Then we have the identities

Γi
00

g00
= −F

i

c2
,

giαΓk
α0√

g00
= −1

c

(
Aik +Dik

)

giαgjβΓk
αβ = hilhjm∆k

lm




, (17)

∗The volume of an element of the space we are considering can be represented
as an integral from

√
hdx1dx2dx3, where dxi and also the region of the change of

x1 along which the integration is processed are independent of x0.
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which allow us to find Fi, Aik, Dik and ∆k
lm through Γσ

µν .
The study of the equations of motion of a particle, presented in

[26], manifested that F k can be interpreted as the sum of the force of
gravity and the force of inertia (the latter is derived from the carrying
acceleration), both calculated for the unit of mass, while Aik is the
angular velocity of the absolute rotation of our reference frame derived
from Coriolis’ effect.

§6. For a covariant vector Ql, with the note on the properties of the
differentiable quantities we made in the beginning of §5, we obtain

(
∗∇ik − ∗∇ki

)
Ql =

2Aik

c2

∗∂Ql

∂t
+H ...j

lki·Qj , (18)

H ...j
lki· =

∗∂∆j
il

∂xk
−

∗∂∆j
kl

∂xi
+∆m

il ∆
j
km −∆m

kl∆
j
im . (19)

The chronometrically invariant tensor (19), which is analogous to
Schouten’s tensor, is different in its properties in a general case from
the Riemann-Christoffel tensor. We introduce the chronometrically in-
variant tensor

Clkij =
1

4

(
Hlkij −Hjkil +Hklji −Hiljk

)
, (20)

which possesses all the algebraical properties of the Riemann-Christoffel
tensor. There are identity correlations between the quantities Hlkij ,
from one side, and also the quantities Clkij , Dmn and Amn from the
other side. As easy to see,

Hlkij = Clkij+
1

c2
(
2AkiDjl+AijDkl+AjkDil+AklDij+AliDjk

)
. (21)

As obvious, if Amn =0 or Dmn=0, we have Hlkij =Clkij . We intro-
duce also Hlk =H ...i

lki·, H =Hk
k and Clk =C...i

lki·, C =Ck
k . Then

Hlk = Clk +
1

c2
(
AkjD

j
l +AljD

j
k +AklD

)
, H = C . (22)

The metric of any spatial section is determined by (12). The cur-
vature of a spatial section is characterized by the regular Riemann-
Christoffel tensor Klkij corresponding to the metric (12). Pave such
spatial sections x0 = const through a world-point O, but at different
coordinates of time, that they satisfy (at this point O) the conditions

g0i = 0 ,
∂g0i
∂xk

+
∂g0k
∂xi

= 0 . (23)
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We call such spatial sections maximally orthogonal to the time line
in a neighbourhood of the given world-point. Each of the spatial sec-
tions possesses its own Riemann-Christoffel tensor Klkij . These tensors
coincide with each other at this point O, and satisfy the equality

Clkij = Klkij +
2

c2
(
AijAkl +AjkAil + 2AikAjl

)
. (24)

In each of these maximally orthogonal spatial sections, which cross
the space at the point O, we introduce the regular Riemann-Christoffel
tensor corresponding to the metric (7), not to (12).∗ This tensor can
be considered as the Riemann-Christoffel tensor of a space, wherein the
coordinate of time is fixed at a numerical value x0 = const, satisfying the
conditions (23). At the world-point O, the tensors coincide with each
other in all the spatial sections, and are equal to Clkij . Let xmn be a
chronometrically invariant unit bivector, which fixes a two-dimensional
direction in a given spatial section. In such a case, for the Riemannian
curvature in this two-dimensional direction, we have Klkij x

ikxlj in the
metric (12) and Clkij x

ikxlj in the metric (7). Due to (21) and (24),

Hlkij x
ikxlj = Clkij x

ikxlj = Klkij x
ikxlj − 12

c2
(
Aijx

ij
)2
. (25)

We introduce also Klk =K ...i
lki· and K =Kk

k . In such a case,

Clk = Klk +
6

c2
AliA

·i
k· , C = K +

6

c2
AkiA

ki. (26)

For the Gaussian curvatures, we have, respectively: − 1
6 C and − 1

6K.
As obvious,

Clkij x
ikxlj 6 Klkij x

ikxlj , −1

6
C 6 −1

6
K .

Thus, with a fixed Amn, the space curvature is characterized by
the quantities Clkij , Clk and C, which are connected to the metric (7),
and also by the quantities Klkij , Klk and K, connected to the metric
(12). Because the metric (7) is physically preferred, we will use those
quantities, which are connected to it.

§7. Here we introduce auxiliary quantities and relations.
Let εijk and εijk be such antisymmetric unit chronometrically in-

variant tensors that ε123 =
√
h and ε123 =1/

√
h. As easy to see,

∗∇l εijk = 0 , ∗∇l ε
ijk = 0 ,

∗∂εijk
∂t

= εijkD,
∗∂εijk

∂t
= − εijkD.

∗Generally speaking, the metrics (7) and (12) coincide only at the point O.
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We introduce the chronometrically invariant vector of angular veloc-
ity of the space rotation

Ωi =
1

2
εijkAjk , Ωi =

1

2
εijkA

jk. (27)

The identities (14) and (15) can be represented, respectively, as

∗∇j Ω
j +

1

c2
FjΩ

j = 0 , (28)

2√
h

∗∂

∂t

(√
hΩi

)
+ εijk ∗∇j Fk = 0 . (29)

As obvious, any axial vector field is anisotropic. The field of a tensor
Zik is isotropic, if Zik =

1
3 Zhik, where Z =Zj

j . We characterize the
anisotropy of the space deformation and the anisotropy of the space
curvature by the quantities, respectively,

Πik = Dik − 1

3
Dhik , Πk

iΠ
i
k = Dk

iD
i
k −

1

3
D2 > 0 , (30)

Σik = Cik − 1

3
Chik . (31)

The condition of homogeneity of the field of any tensor Z ...k
i... can be

written in the form: ∗∇jZ
...k
i... =0.

We assume the notations

Ż =
∂Z

∂t
, ∗Ż =

∗∂Z

∂t
. (32)

As obvious, having any chosen coordinate of time, the conditions
∗Ż =0 and ∗Z̈ > 0 are equivalent to the conditions Ż =0 and Z̈ > 0, the
conditions ∗Ż =0 and ∗Z̈ =0 are equivalent to the conditions Ż =0 and
Z̈ =0, while the conditions ∗Ż =0 and ∗Z̈ < 0 are equivalent to the con-
ditions Ż =0 and Z̈ < 0. Thus, marking the time derivatives by the
asterisk, we can write the conditions of the extrema in the chronomet-
rically invariant form.

§8. We denote by ρ the density of mass, by J i the vector of the density
of the flow of mass (this quantity is the same that the vector of the
density of momentum), by U ik the tensor of the density of the flow
of momentum, and U =U j

j . As obvious, ρc2 is the density of energy,

while J ic2 is the vector of the density of the flow of energy. Let these
notations be attributed to chronometrically invariant quantities.
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In such a case,

T00
g00

= ρ ,
c T i

0√
g00

= J i, c2T ik = U ik, T = ρ− U

c2
.

The equations of the conservation of energy and momentum can be
written as follows

∗∂ρ

∂t
+Dρ +

1

c2
DijU

ij +

[(
∗∇j −

1

c2
Fj

)
Jj

]
− 1

c2
FjJ

j = 0 , (33)

∗∂Jk

∂t
+DJk +2

(
Dk

i +A·k
i·

)
J i +

[(
∗∇i−

1

c2
Fi

)
U ik

]
− ρF k = 0 . (34)

All the terms contained on the left side of the equations (33) and
(34) have obvious physical meanings. The third term and the fifth (last)
term in (33) are the relativistic terms, proceeding from the connexion
between mass and energy. These terms take into account the change
of the density of mass, which is due to the surface forces working while
the volume element of space deforms (the third term on the left side),
and the change of the flowing energy due to the acting gravitational and
inertial forces (the fifth term). The fourth terms of (33) and (34) (they
are taken into square brackets) constitute the “physical divergence” of
J i and U ik respectively. The fact that physical divergence differs from
mathematical divergence originates in the circumstance that, with the
same dt, the intervals dτ are different at different coordinate points on
the boundary of the elementary volume. As is obvious, (33) and (34)
are the actual equations for mass and momentum. Multiplying (33) and
(34) term-by-term by c2, we are able to obtain the actual equations for
energy and the flow of energy.

With all the above, Einstein’s equations (1) take the form

∗∂D

∂t
+DjlD

lj +AjlA
lj + ∗∇jF

j − 1

c2
FjF

j =

= −κ

2

(
ρc2 + U

)
+ Λc2, (35)

∗∇j

(
hijD −Dij −Aij

)
+

2

c2
FjA

ij = κJ i, (36)

∗∂Dik

∂t
−
(
Dij +Aij

)(
Dj

k +A·j
k·

)
+DDik −DijD

j
k +

+ 3AijA
·j
k· +

1

2

(
∗∇iFk + ∗∇kFi

)
− 1

c2
FiFk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ Λc2hik . (37)



46 The Abraham Zelmanov Journal — Vol. 1, 2008

As obvious, all these ten equations (35), (36) and (37) are connected
by four relations (33) and (34).

In a coordinate frame accompanying a medium, this medium plays a
rôle of the body of reference, while the world-lines of the elements of this
medium are the lines of time. In such a reference frame, the tensors Dik

and Aik characterize the rate of deformation and the velocity of rotation
of the medium. The equations (35), (36) and (37) in such accompanying
coordinates can be considered as the equations of motion of a continuous
medium. These equations, in common with the equations (33) and (34)
and also the identities (14) and (15), allow a far-reaching analogy with
the non-relativistic equations of motion of a continuous medium which
satisfy the unitary interpretation [30]. This analogy permits the non-
relativistic equations to be used for the quasi-Newtonian approximation
to the relativistic theory (see §18).

§9. So forth, we use a coordinate frame, which accompanies a medium.
We assume also that there are no other forces produced by masses, aside
for the gravitational and inertial forces. We characterize the following
chronometrically invariant quantities: the equilibrium pressure p0 (it is
determined by the equation of state), the true pressure p, the tensor of
the viscous tension αik, the anisotropic part βik =αik − 1

3 αhik of the

viscosity tensor αik, and also α=αj
j . With these notations,

p = p0 −
1

3
α , Uik = p0hik − αik = phik − βik .

Using (33) and thermodynamical considerations, we obtain

βjlD
jl = βjlΠ

jl > 0 , αD > 0 . (38)

In the coordinates, accompanying the medium, c2J i = qi, where qi is
the vector of density of the flow of any form of energy (radiation or heat)
with respect to this medium. The viscosity, characterized by the tensor
βik, and the viscosity, characterized by the scalar α, can be considered
as the viscosity of the 1st kind and that of the 2nd kind, respectively.
Thus the conservation equations (33) and (34) take the form

∗∂ρ

∂t
+D

(
ρ +

p

c2

)
=

1

c2

[
βjlΠ

jl −
(
∗∇j q

j − 2

c2
Fj q

j
)]
, (39)

1

c2

(
∗∂qi
∂t

+Dqi − 2A·j
i· qj

)
−
(
∗∇j −

1

c2
Fj

)
βj
i +

+

(
∗∂p

∂xi
− 1

c2
Fi p

)
− ρFi = 0 , (40)
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while the system of Einstein’s equations (35), (36) and (37) is equivalent
to the system

∗∂D

∂t
+

1

3
D2 +ΠjlΠ

jl −AjlA
jl +

+ ∗∇jF
j − 1

c2
FjF

j = −κ

2

(
ρc2 + 3p

)
+ Λc2, (41)

4

3

∗∂D

∂xi
− ∗∇j

(
Πj

i +A·j
i·

)
+

2

c2
FjA

·j
i· =

κ

c2
qi , (42)

1

3
D3 − 1

2
ΠjlΠ

jl +
3

2
AjlA

jl − 1

2
c2C =

(
κρ+ Λ

)
c2, (43)

∗∂Πk
i

∂t
+DΠk

i +ΠijA
kj +ΠkjAij + 2

(
AijA

kj − 1

3
AjlA

jlhki

)
+

+

[
1

2

(
∗∇iF

k + ∗∇kFi

)
− 1

3

(
∗∇j F

j
)
hki

]
−

− 1

c2

(
FiF

k − 1

3
FjF

jhki

)
− c2Σk

i + κβk
i = 0 . (44)

The equations (41) and (42) are the actual equations (35) and (36)
transformed with (30). The equations (43) and (44) were obtained from
(35) and (37) with the use of (30) and (31). The left side of (44) is a
tensor, whose trace is identically equal to zero. Thus all six equations,
which constitute (44), are connected by the same algebraic relation.

§10. The equations (41) and (44) set up a connexion between the fields
Fi, Aik, Dik and Cik, from the one side, and the fields ρ, p, βik and qi,
from the other side. It is natural to determine the homogeneity of the
Universe, in a given local region of it, by the conditions

∗∇jFi = 0 , ∗∇jAik = 0 , ∗∇jDik = 0 , ∗∇jCik = 0

∗∂ρ

∂xi
= 0 ,

∗∂p

∂xi
= 0 , ∗∇j βik = 0 , ∗∇j qi = 0




, (45)

while the isotropy of the Universe, in a given local region, can be deter-
mined by the conditions

Fi = 0 , Aik = 0 , Πik = 0 , Σik = 0 , βik = 0 , qi = 0 . (46)

As obvious, if we remove Cik with Kik in (45), the new conditions
of the homogeneity will be equivalent to the initial conditions. Thus, if
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we remove the fourth condition of (46) with the requirement

Kik −
1

3
Khik = 0 ,

the new conditions of the isotropy will be equivalent to the initial con-
ditions. As easy to see, there are six factors of the anisotropy: the
power field, the absolute rotation, the anisotropy of the deformation,
the anisotropy of the curvature, the viscosity and the 1st kind, and the
flow of the energy. The first five factors are connected among themselves
by the relations (44).

Let the conditions (46) be true everywhere in a finite or infinite four-
dimensional region. In such a case, in the same region, the equations
(44) are satisfied identically, while the equations (39–43) take the form

∗∂ρ

∂t
+D

(
ρ +

p

c2

)
, (47)

∗∂p

∂xi
= 0 , (48)

∗∂D

∂t
+

1

3
D2 = −κ

2

(
ρc2 + 3p

)
+ Λc2, (49)

∗∂D

∂xi
= 0 , (50)

1

3
D2 − 1

2
c2C =

(
κρ + Λ

)
c2. (51)

It follows, from (48), (49) and (50), that

∗∂ρ

∂xi
= 0 ,

∗∂C

∂xi
= 0 , (52)

where the last equality can be obtained also in a direct way, on the
basis of Schur’s theorem, due to the holonomity of this space, and the
isotropy of its curvature.

The equations (48), (50), (52) and (46) lead immediately to the
conditions of the homogeneity (45). On the basis of (47) and also (49),
(50) and (51), while taking the third equality of (16) into account, we
obtain

∗∂
(
C 3
√
h
)

∂t
= 0 . (53)

If the condition (53), the first four conditions of the isotropy (46),
and the second condition of (52) satisfy, there among the accompanying
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coordinate frames is such a frame, wherein the homogeneous isotropic
metric (2) is true and also

D = 3
Ṙ

R
, C = − 6k

R2
. (54)

For Gödel’s model (3), we obtain

h11 = a2, h22 =
a2

2
e2x

1

, h33 = a2, hik = 0 (i 6= k)

Fi = 0 , A12 = −ac
2
ex

1

, A23 = 0 , A31 = 0 , Dik = 0

C11 = 1 , C22 =
1

2
e2x

1

, C33 = 0 , Cik = 0 (i 6= k)

κρ =
1

a2
= −2Λ , p = 0 , βik = 0 , qi = 0





. (55)

As can be seen, here the second and fourth conditions of the con-
ditions of the anisotropy (46) do not satisfy, while all the conditions of
the homogeneity (45) are satisfied.

So, in a general case, we formulate the following conclusions about a
four-dimension region of space: 1) the isotropy leads to the homogeneity,
hence 2) the inhomogeneity leads to the anisotropy; 3) the anisotropy
does not require inhomogeneity; 4) as aforementioned in this Paragraph,
in the understanding of the homogeneity and isotropy, only the models
(2) are homogeneous and isotropic, while the model (3) is homogeneous,
but anisotropic.

§11. The vectorial equation of conservation (40) expresses the law of
the change of the flow of energy with time. In the absence of such a flow,
this equation expresses the equilibrium condition between the surface
forces and the gravitational inertial force (it is originated in masses).
The chronometrically invariant rotor of the vector of the gravitational
inertial force, i.e. the tensor

∗∇iFk − ∗∇kFi =
∗∂Fk

∂xi
−

∗∂Fi

∂xk

or the vector εijk ∗∇j Fk is nonzero in a general case.
A local centre of gravitational attraction can be determined by the

conditions ∗∇j F
j < 0 and Fi =0. As obvious, at such a point and also

in a neighbourhood surrounding it, the following condition is true

∗∇jF
j − 1

c2
FjF

j < 0 . (56)
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A local centre of radiation can be determined by the conditions
∗∇j q

j < 0 and qi =0. Hence, at such a point and also in a neighbour-
hood surrounding it, the following condition is true

∗∇j q
j − 2

c2
Fj q

j > 0 . (57)

The scalar equation of conservation (39) expresses the law of the
change of the mass or, equivalently, the energy of the volume element
of the medium with time. We introduce the volume V and the energy
E=Vρc2 of such an element. Taking into account that D= ∗∂ lnV/∂t,
we reduce (39) to the form

dE + pdV =

[
βjlΠ

jl −
(
∗∇j q

j − 2

c2
Fj q

j
)]
V dτ , (58)

where pdV = p0dV −αDVdτ . As the inequalities (38) and (57) satisfy,
and the sign of dτ is definitely given, the right side of (58) may reach,
generally speaking, any sign. At the moment of an extremum of the
volume of the element, obviouslyD=0. At the moment of an extremum
of the density of the volume, ∗∂ρ/∂t=0. As easy to see, from the scalar
equation of conservation (39), these moments of time do not coincide in
a general case.

In the absence of the viscosity of the 1st kind and also the flow of
the energy, the equations (40) and (58) take the form, respectively,

∗∂p

∂xi
=
(
ρ +

p

c2

)
Fi , dE + pdV = 0 . (59)

As well-known, the second of these equations was obtained earlier
in the case of the metric (2), i.e. in the framework of the theory of
a homogeneous isotropic universe.

§12. Consider the identities (14) and (15), and also the identities (28)
and (29) which are equivalent to the previous. We see in (28) that,
in a general case, neither the mathematical chronometrically invariant
divergence nor the physical chronometrically invariant divergence of the
vector of angular velocity of the absolute rotation of the space are non-
equal to zero. In a particular case, in the absence of the power field,
both divergences coincide, and are equal to zero. The identities (15)
and (29), in the framework of the accompanying coordinates, represent
the equations of the change of a vortex. In the case of a non-viscous
barotropic medium free of the flow of energy, these identities give

∗∂

∂t

[
Ajk (E + pV )

]
= 0 ,

∗∂

∂t

[
Ωi

√
h (E + pV )

]
= 0 . (60)
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These equalities are equivalent to each other. The second of them
manifests the conservation of the vortical lines. The stress of the vortical
tube is expressed by a surface integral from the quantity

εijk Ω
idxjδxk =

1

2
Ajk

(
dxjδxk − dxkδxj

)
,

where the components of the vectors dxk and δxj are independent of
time. Having the vortical lines conserved, the region of the change of
the space coordinates, with respect to which we perform integration,
does not depend on time. Therefore each of two tensor equalities (60) is
the necessary and sufficient condition for the synchronous conservation
of a) the vortical lines and b) the product of the multiplication of the
stress of the vortical tubes by the relativistic heat function E+ pV . In
the absence of the power field, the identities (15) and (29) give

∗∂Aik

∂t
= 0 ,

∗∂

∂t

(
Ωi

√
h
)
= 0 . (61)

In both cases (60) and (61), the conditions of the holonomity or the
non-holonomity of the accompanying space remain unchanged: these
conditions are free to be realized in both cases. If we suppose that
the space is holonomic and the holonomity remains unchanged, this
supposition leads to the other limitations, most artificial of which are
the requirements for the non-viscous and barotropic properties of the
medium in the absence of the flow of energy. These requirements satisfy,
with high precision, the observed values of the density, the pressure
and the parameters of expansion of that part of the Metagalaxy, which
is accessible to our observation in the present epoch. On the other
hand, these requirements satisfy the worse; the more earlier stage of
the expansion is under our consideration. This is because, with the
expansion of the Metagalaxy, the pressure decreases faster than the
density. Hence, considering the ancient age of the Metagalaxy, we should
mean the accompanying space of the Metagalaxy to be non-holonomic,
that is equivalent to the supposition that the Metagalaxy rotates.

§13. Instead of the change of the volume V of an element of the
medium, we will consider the change of the quantity R= f 3

√
V , where

f > 0 and ∂f/∂t=0. In such a case, D=3∗Ṙ/R. It is obvious that this
quantity R, in contrast to the same named quantity of the formulae (2)
and (54), considered under the condition k 6=0, is determined at every
point of the space to within a constant positive multiplier.

Our task is a general bound of the evolution of some characteristics
of the space in the process of the expansion of the medium. We therefore
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consider this problem under some simplifications. We consider evolution
of the factors of the anisotropy in the case where the rest factors of the
anisotropy are neglected. Preliminary, we consider the change of the
curvature scalar and the density under simplest assumptions.

In the case where the space is completely isotropic, as can be seen
from (53) and (54), we have

C ∼ R−2. (62)

If p=0, βik =0 and qi =0, as seen from (39), we have

ρ ∼ R−3. (63)

If Fi=0 and Πik =0, with use of (61) we obtain

ΩjΩ
j ∼ R−4. (64)

If Fi=0, Aik =0, Σik =0 and βik =0, it follows from (44) that

Πk
i Π

i
k ∼ R−6. (65)

As easy to see from (44), in the case where Fi =0, Aik =0, Σik =0
and βik 6=0, the quantity Πk

i Π
i
k changes faster with the increasing R

and slower with the decreasing R than according to the law (65). At
βik =2ηΠik, where η is the viscosity coefficient of the 1st kind, the
quantity βk

i β
i
k changes faster than Πk

i Π
i
k. If Fi=0, p=0 and βik =0,

we obtain from (40) that

qj q
j ∼ R−8. (66)

Thus, according to our bound, the expansion of the Metagalaxy
should be accompanied by a so fast decrease of the factors of the aniso-
tropy such that the fact of the invisibility of the factors in the modern
epoch does not allow us to ignore the presence of the factors in the past.

§14. We introduce the quantities

Q =
2

3
R

(
Πk

i Π
i
k − 2ΩjΩ

j + ∗∇jF
j − 1

c2
FjF

j

)
, (67)

S =
1

3
R2

(
3ΩjΩ

j − 1

2
Πk

i Π
i
k −

c2

2
C

)
. (68)

With these, the equations (39), (41) and (43) can be represented in
the form, respectively,

∗ρ̇+ 3
∗Ṙ

R

(
ρ +

p

c2

)
=

1

c2

[
βjlΠ

jl −
(
∗∇j q

j − 2

c2
Fj q

j
)]
, (69)
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3
∗R̈

c2R
+

3

2

Q

c2R
= −κ

2

(
ρ + 3

p

c2

)
+ Λ , (70)

3
∗Ṙ2

c2R2
+ 3

S

c2R2
= κρ + Λ . (71)

The equation (69), which connects the equations (70) and (71), can
be transformed into the form

∗Ṡ = ∗ṘQ+
κ

3
R2

[
βjlΠ

jl −
(
∗∇j q

j − 2

c2
Fj q

j
)]
. (72)

As obvious, having any initially chosen moment of time, we can set
up such an initial value of R such that the initial value of S is equal to
kc2=0,±c2. In the case where the space is completely isotropic, the
right side of (69) and the second term on the left side of (70) are zero,
while S still retains its initial numerical value. In such a case, we, omit-
ting the asterisk, obtain the well-known equations for the homogeneous
isotropic models (2). With the metric (2) the equations (40), (42) and
(44) become identities. In such a case, two equations (70) and (71) of
the whole scope of ten equations are sufficient, under some additional
physical assumptions, for the investigation about the possible evolution
of R with time. In a general case, we can also find the kinds of evolution
of R permitted by the equations (70) and (71). We however should take
into account the fact that, in the consideration of the whole system of
ten equations of gravitation, we can find some of the kinds of the evolu-
tion to be impossible. Following in this way, we, obviously, narrow the
circle of the conceivable possibilities step-by-step.

From cosmological and cosmogonical points of view, most interesting
are the principal possibility and the physical conditions in a) the models
of the kind O2 that points to an oscillation between two regular extrema
of R at finite numerical values of the density (the so-called “oscillation
of the 2nd kind”), or at least the principal possibility and the physical
conditions of b) a regular minimum of R at a finite numerical value of
the density. There is also an important question about the principal
possibility and the physical conditions of c) the accelerating increase of
R, because such a growth at the current velocity of the expansion of
the Metagalaxy leads to the prolongation of the past part of the epoch
of the expansion, i.e. to the prolongation of the whole scale of time.
As known, for the homogeneous isotropic models (2) considered in the
framework of the suppositions

0 < ρc2 > 3p > 0 ,
∂p

∂R
6 0 , (73)
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the case a) is impossible, while the cases b) and c) are permitted with
only a positive numerical value of the cosmological constant.

Let the cosmological constant be zero. In such a case, on the basis
of (67–71), we obtain that in the absence of the absolute rotation and
the inequality (56)∗ the cases b) and c) are impossible and, hence, the
case a) is impossible as well. The numerical value of R increases either
monotonically and, at τ→∞, becomes unbounded, or it increases till a
regular maximum, and then decreases. If in addition to it, the medium
is free of viscosity and the flow of energy, the beginning of the increase
and the end of the decrease of R is so-called a “special state”, where
the density and the speed of the change of R are infinite. In such a
case, we obtain the same two kinds of evolution as those known in the
models (2): M1 that means the “monotonic change of the 1st kind”,
and also O1, i.e. the “oscillation of the 1st kind”. In this process, the
anisotropy of the deformation leads to more braking of the expansion
and, hence, to the shortening the whole scale of time. Thus, in concern
of the accelerating expansion, the regular minima and the oscillation of
the 2nd kind, the most important is the taking of the power field and
the absolute rotation into account. Concerning the irregular minima
free of the special states, most important is the taking of the viscosity
and the flow of energy into account.

§15. In this Paragraph we consider the kinds of evolution of R in com-
plete as permitted by the equations (70) and (71) in the framework of
the suppositions (73). We consider the case of a barotropic non-viscous
medium, which is free of the flows of energy. In such a case, the den-
sity and the pressure at each point can be considered as functions of R.
From (69), we obtain

∂ρ

∂R
+

3

R

(
ρ +

p

c2

)
= 0 ,

∂

∂R

(
ρR3

)
= − 3R2 p

c2
. (74)

In the absence of the pressure, the density changes according to (69),
i.e. this process goes faster under the positive pressure. It is obvious
that, if R→∞, ρRn→ 0 and pRn→ 0 (here 06n6 3). We define R∞

as R→R∞ under ρ →∞. With this definition we see that R∞ > 0. As
obvious, at the value R→R∞ we have ρRn→∞ (06n6 3).

Given the plane RS, we consider the area of the real changes of the
volume of the space element, i.e. such an area wherein R>R∞ and
∗Ṙ2 > 0. This area is bounded by the ultimate lines: the straight line

∗This can be if, for instance, in addition to the absence of the absolute rotation,
there is no the power field.
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R=R∞ and the ultimate curve ∗Ṙ2=0. Denoting by S0 the ordinate of
a point on this ultimate curve ∗Ṙ2=0, we express the equation of this
curve through (71) as follows

S0 =
c2

3

(
κρ + Λ

)
R2, R > 0 . (75)

While taking (74) into account, we obtain

∂S0

∂R
=
c2

3

[
−κ

(
ρ + 3

p

c2

)
+ 2Λ

]
R , (76)

∂2S0

∂R2
=
c2

3

[
κ

(
2ρ − 3

c2
∂p

∂R
R

)
+ 2Λ

]
= 2

S0

R2
− κR

∂p

∂R
, (77)

where, due to the second of the suppositions (73),

2ρ − 3

c2
∂p

∂R
R > 0 . (78)

At any value of Λ we obtain S0 →+∞, while ∂S0/∂R→−∞ at
R→R∞: the ultimate straight line is the asymptote of the ultimate
curve. If Λ> 0, with the increasing of R to the value R∞ the value of
S0 decreases up to its minimal value κ

2

(
ρc2 + p

)
R2 then monotonically

increases: S0 →+∞ and ∂S0/∂R→+∞ at the value R→∞. In such
a case the ultimate curve lies above the axis of abscisses, and is convex
everywhere to the axis. If Λ=0, with the increasing of R to the value
R∞ the value of S0 monotonically decreases: S0 → 0 and ∂S0/∂R→ 0 at
the value R→∞. In such a case, the axis of abscisses is the asymptote:
the ultimate curve lies above this axis, and is convex everywhere to
it. If Λ< 0, with the increasing of R to the value R∞ the value of
S0 monotonically decreases: S0 →−∞ and ∂S0/∂R→−∞ at the value
R→∞. In such a case, in the area higher than the axis of abscisses
the ultimate curve is everywhere convex to it, while in the area lower
than the axis of abscisses the ultimate curve has a point of inflection
(in a general case, there is an odd number of such points).

For the curves, which sketch the permitted changes of R in the plane
RS, we write down, according to (72),

∂S

∂R
= Q . (79)

For those points of these curves, which coincide with the points of
the ultimate curve, we obtain, from (71) and (75), (70), (76) and (79),

∗Ṙ2 = S0 − S , ∗R̈ =
1

2

(
∂S0

∂R
− ∂S

∂R

)
. (80)
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§16. Split the considered interval of time into the minimal number of
the intervals of monotonic change of R. There on the opposite bound-
aries of each interval (such an interval can be finite or infinite) the
quantity R has the minimal and the maximal numerical values along all
the values attributed to R in it. We recognize four kinds of states con-
ceivable for such a volume element at the minimal value of R: the kind
m means the states of finite density at a regular minimum of R; the kind
a means the states of finite density at an asymptotic value of R; the kind
c means the states of infinitely high density at zero or finite speed of
the change of R (in particular, this happens at the minimal or asymp-
totic value of R coinciding with R∞); the kind s means the states of
infinitely high density at the infinitely high speed of the change of R
(these are so-called “special states”). We recognize also three kinds of
states conceivable for such a volume element at the maximal value of R:
the kind M means the states of finite density at a regular maximum of
R; the kind A means the states of finite density at an asymptotic value
of R; the kind D means the asymptotic states of zero density at R→∞.

The statesm, a,M , A are attributed to all the points of the ultimate
curve. The states D are attributed to all the points of an infinitely
distant straight line R=+∞, which lie not higher than the ultimate
curve. As obvious, this is the whole straight line R=+∞ in the case
where Λ> 0, this is the half-line R=+∞, S6 0 in the case where Λ=0,
and this is just a single point R=+∞, S=−∞ in the case where Λ< 0.
The states c constitute just a point R=R∞, S=+∞. The states c are
attributed to all the points of the ultimate curve.

We denote each kind of evolution of R by a row of characters, which
mean the states transited by a volume element with time along the time
interval of the monotonic change of R. According to the notions, the
kinds of evolution of a volume element, which are met in the theory
of a homogeneous isotropic universe, should be recognized as follows:
the kind A1 as sA (expansion) or As (contraction); the kind A2 as aD
(expansion) or Da (contraction); the kind M1 as sD (expansion) or Ds
(contraction); the kind M2 as DmD; the kind O1 as sMs.

The conceivable kinds of evolution of a volume element in the in-
tervals of the monotonic increase of R, permitted under different con-
ditions, are given in the Table below.

Aside for the trivial case of the homogeneous isotropic models (2),
the condition Q=0 satisfies, for instance, at the centre of spherical sym-
metry in the absence of the power field. The condition Q> 0 satisfies,
for instance, outside this centre and, in a general case, at all points
where there is no power field, as well as no the absolute rotation, while
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Q=0 Q> 0 Q T 0

sD, aD, mD sD, aD, mD sD, cD, aD, mD
Λ> 0 sA sA, aA, mA sA, cA, aA, mA

sM sM , aM , mM sM , cM , aM , mM

sD sD sD, cD, aD, mD
Λ=0 sA, cA, aA, mA

sM sM sM , cM , aM , mM

sD, cD, aD, mD
Λ< 0 sA, cA, aA, mA

sM sM sM , cM , aM , mM

the space deformation is anisotropic. The condition Q< 0 satisfies, for
instance, at the centre of spherical symmetry, which is the local centre
of gravitational attraction in the sense of §11; and Q< 0 satisfies also
in the neighbourhood of such a centre of attraction.

§17. Here we provide some additional notes and comments to the pre-
vious results.

The solutions can have a physical meaning only outside the states of
infinitely high density. It is meaningful to continue the solutions up to
the states of infinitely high density. The formal conclusion about such
states, obtained through the known equations of gravitation, should be
considered, following Einstein, as a note on the inapplicability of these
equations to the states of extremely high density such as the density
inside atomic nuclei.

In the case of the homogeneous isotropic models, all the kinds shown
in the Table are permitted. In the other cases, because we took into
account not all of the equations of gravitation, we conclude that those
kinds which are absent in this Table are impossible.

In the case of the homogeneous isotropic models, all that has been
concluded about the evolution of any single volume element is also true
for all elements of the considered three-dimensional region (which can
be both finite and infinite). In a general case, these conclusions give
a possibility to judge about the evolution of the rest volume elements,
because of the continuity of space.

Along each interval of the monotonic change of R, all the rest quan-
tities can be considered as functions of R in any case, not only in the
case considered in §15. All the equations of §15 are true in the case of
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a barocline medium, which bear the viscosity of the 2nd kind, but is
free of the 1st kind viscosity and the flows of energy. This allows us
to distribute all the results of our Table onto this case, which is the
most common for which this Table works.∗ In this Table we give only
the permitted kinds of expansion. There are also the respective kinds
of contraction corresponding to each of the kinds of expansion provided
by this Table: the kind Ds corresponds to the kind sD, the kind Da
corresponds to the kind aD, the kind Dm corresponds to the kind mD,
and so forth. We consider the kinds of evolution of R in two adjacent
intervals of the monotonic change, which are connected through a regu-
lar extremum of finite density. As is obvious, both kinds (expansion and
contraction) should be in the row of the permitted kinds in all cases.
However, in the case of a barotropic non-viscous medium, which is free
of the flow of energy, and only in this case, we can assert that these two
kinds are inverse to each other.

The behaviour of a homogeneous, isotropic model with time is valu-
able dependent on the Gaussian curvature of the space. In such a space,
the numerical value of the Gaussian curvature is the same numerical
value at all points, while the sign of the curvature remains unchanged
with time, and is directly connected with the conditions of infiniteness
of the space. In a general case, the correlation between the behaviour
of a volume element and the Gaussian curvature is set up by the rela-
tions (68), (71) and (72). However there in the case of a homogeneous
isotropic universe: 1) the Gaussian curvature changes from point to
point, 2) it is impossible to assert that the sign of the Gaussian curva-
ture remains unchanged at any point, 3) even if the space is holonomic,
there is no direct connexion between the sign of the Gaussian curvature
and the infiniteness of the space. In a general case, we should take into
account the totality of the Riemannian curvatures at all points of the
space, and along all two-dimensional directions in it (there in the ho-
mogeneous isotropic models they are everywhere equal to the Gaussian
curvature). Using these curvatures, we are able to obtain the sufficient
conditions of the infiniteness of a space, for instance

∣∣∣∣∣∣

B11 B12 B13

B21 B22 B23

B31 B32 B33

∣∣∣∣∣∣
6 0 ,

∣∣∣∣
B11 B12

B21 B22

∣∣∣∣ > 0 , B11 6 0 , (81)

where

Bik = Cik − 1

2
Chik . (82)

∗This is because that fact that the viscosity of the 1st kind and the flow of energy
multiply the number of the allowed kinds of evolution.
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It is possible to say that the simple statement of the problem about
the infiniteness or the finiteness of space, which is specific to the theory
of a homogeneous isotropic universe, is insufficient in the theory of such
an inhomogeneous anisotropic universe whose space is holonomic, and
is impossible in that case where the space is non-holonomic.

§18. In this Paragraph we consider a quasi-Newtonian approximation
in cosmology, in the accompanying coordinates. In the framework of
such an approximation, we use the equations of Newtonian mechan-
ics (in Euclidean space) and Poisson’s equation (or the generalization
∇j
j Φ=−4πγρ+Λc2 of it, where Φ is the gravitational potential), with-

out any universal ultimate conditions for the infiniteness of space. The
reference frame accompanying the medium refines this approximation,
because the velocity of macroscopic motions and some relativistic ef-
fects connected to it are zero in such coordinates. Therefore, the non-
relativistic equations, constructed in the framework of the unitary in-
terpretation of motion of a continuous medium [30], together with Pois-
son’s equation (or its generalization given above) in the accompanying
coordinates are both reasonable to be used as the quasi-Newtonian ap-
proximation to the chronometrically invariant relativistic equations.

Use the accompanying coordinates xi and Newtonian mechanics in
the pseudo-Euclidean space. Let t be Newtonian time. Let hik, h, Dik,
D, Aik be the chronometrically invariant quantities which characterize
the space of the accompanying frame of reference: the metric tensor,
the fundamental determinant, the tensor of the rate of the space de-
formation, the speed of the relative volume expansion of the space, the
tensor of angular velocity of the absolute rotation of the space. In such
a quasi-Newtonian case,

Dik =
1

2

∂hik
∂t

, Dik = −1

2

∂hik

∂t
, D =

∂ ln
√
h

∂t
, (83)

∇i

(
Djk +Ajk

)
−∇j

(
Dik +Aik

)
= 0 , (84)

∂Ajk

∂xi
+
∂Aki

∂xj
+
∂Aij

∂xk
= 0 . (85)

Let F k be the gravitational inertial force, acting per unit mass, which
puts the surface forces into equilibrium. Let U ik be the tensor of the
density of the flow of momentum, while ρ is the density of mass. In
such a case,

∇iU
ik − ρF k = 0 , (86)
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∂ρ

∂t
+Dρ = 0 ,

∂

∂t

(
ρ
√
h
)
= 0 , (87)

∂Aik

∂t
+

1

2

(
∂Fk

∂xi
− ∂Fi

∂xk

)
= 0 , (88)

∂Dik

∂t
−
(
Dij +Aij

)(
Dj

k +A·j
k·

)
+

1

2

(
∇iFk +∇kFi

)
= ∇ikΦ . (89)

Contracting (84) term-by-term, we obtain

∇j

(
hijD −Dij −Aij

)
= 0 . (90)

Contracting (89) term-by-term, while taking the equation of the po-
tential into account, we obtain

∂D

∂t
+DjlD

lj +AjlA
lj +∇jF

j = − 4πγρ + Λc2. (91)

It is obvious that the relativistic relations (14), (15), (16), the rel-
ativistic law of energy and momentum (33), (34), and the relativistic
equations of gravitation (35), (36), (37) have the non-relativistic anal-
ogy in, respectively, the relations (85), (88), the equations (83) and
(87), and the equations (86), (91), (90), (89). According to their physi-
cal meanings, (85) and (90) are identities like (84), (86) constitutes the
equations of equilibrium, (87) is the continuity equation, (88) and (89)
are the equations of motion of the medium, while (91), while taking (89)
into account, substitutes instead the equation of the potential. These
equations allow us to find the desired quasi-Newtonian approximation
for the curvature. Comparing (37) and (89), we obtain

c2Cik = DDik −DijD
j
k + 3AijA

·j
k· +∇ikΦ−

(
4πγρ + Λc2

)
hik (92)

that leads to

c2C = D2 −DjlD
jl + 3AjlA

jl − 16πγρ− 2Λc2. (93)

As seen, in the framework of the quasi-Newtonian (non-relativistic)
approximation, the equality (92) should be considered as the definition
of the curvature tensor Cik. At the same time, emphasizing the ex-
pansion of this formula by which comes the relativistic theory, we can
calculate, through the equality (92) and its sequel (93), the Riemannian
curvature and the Gaussian curvature of the accompanying space.

§19. Numerous researchers considered (and used) the similarity and
analogy between the relativistic equations, obtained in the framework



Abraham Zelmanov 61

of different cosmological models, and the non-relativistic equations, ob-
tained for the respective distribution and motion of masses. The first
persons who did it were Milne and McCrea [31–33], who used this anal-
ogy for the homogeneous isotropic models, Bondi [18], who applied this
analogy for the spherically symmetric models, and also Heckmann and
Schücking [37], in the case of the axially symmetric homogeneous mod-
els (see also Heckmann [7], for this case). They all considered the cases
with no pressure, viscosity and, flow of energy.∗ They removed Newto-
nian law of gravitation with a generalization of it, where the cosmo-
logical constant has been included. Such an application of Newtonian
mechanics and Newtonian law of gravitation, based on the aforemen-
tioned analogy, is known as Newtonian cosmology. In such a cosmology,
the uncertainty of the field of gravitation (the non-relativistic gravi-
tational paradox) was either ignored or removed, in a hidden form, by
some additional requirements, which are not usual in Newtonian theory.
Neither the chronometric invariants in the relativistic equations nor the
accompanying coordinates in the non-relativistic equations were applied
by the aforementioned researchers. Almost all of them (see [34, 36, 37])
and also Layzer [35] discussed the question about the legitimacy of such
a Newtonian cosmology. For instance, Heckmann and Schücking [38]
supposed some changes on the ultimate conditions on the Newtonian
potential at spatial infinity.

In contrast to the aforementioned authors, our method, which shows
how to use this analogy (we proposed this method in §18), works in the
framework of the following requirements:

1) Cancel any universal ultimate conditions on the potential at spa-
tial infinity. (Considering every particular problem, such ultimate
conditions or limitations used in the non-relativistic theory should
meet analogous conditions or limitations assumed in the same
problem considered in the relativistic theory);

2) Interpret the non-relativistic solutions as an approximation to the
relativistic solutions. The use of the non-relativistic equations as
the quasi-Newtonian approximation to the relativistic equations,
includes the calculation for the space curvature;

3) Use of the chronometrically invariant quantities and operators in
the relativistic equations. Such a use makes the relativistic equa-
tions look very similar to the non-relativistic equations;

4) Apply the accompanying coordinates in the non-relativistic equa-
tions. This makes the equations not only look similar to the rel-

∗The presence of the factors leads to the lowering of the aforementioned analogy.
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ativistic equations, but is also profitable to the quasi-Newtonian
approximation itself;

5) Consideration of not only particular models, but also, and mainly,
the general cases of relativistic cosmology.
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On the Permissible Numerical Value
of the Curvature of Space

Karl Schwarzschild

The presentation held at the German Astronomical Society
Annual Meeting in Heidelberg, July 8–11, 1900

Abstract: This is a translation of Schwarzschild’s pioneering pre-
sentation where he pondered upon the possible non-Euclidean struc-
ture of space and gave a lower limit for the measurable radius of cur-
vature of space as 4,000,000 astronomical units (supposing the space
to be hyperbolic) or 100,000,000 astronomical units (elliptic space).
The paper was originally published as: Schwarzschild K. Über das
zulässige Krümmungsmaaß des Raumes. Vierteljahrsschrift der As-

tronomische Gesellschaft, 1900, Bd. 35, S. 337–347. Translated into
English in 2008 by Dmitri Rabounski. The translator thanks Ulrich
Neumann, Germany, for a copy of the Schwarzschild manuscript in
German, and also Stephen J. Crothers, Australia, for assistance.

Permitting myself to call your attention for this presentation, which
has neither practical purpose nor mathematical meaning, I should be
excused due to the theme of the presentation itself. This theme is obvi-
ously very attractive to most of you due to the fact that it is related to
the expansion of our views to boundaries far away from our everyday
experience, and opens beautiful horizons for possible experiments in the
future. The fact that all these lead us to the failure of numerous tra-
ditional views which are most hard rooted in the heads of astronomers,
is just an advantage of this new theme from the view of everyone who
believes in the relativity of our knowledge.

This talk is on the permissibility of curved space. You all know
that in the 19th century along with the Euclidean geometry numerous
other non-Euclidean geometrical systems were developed, which were
headed by the geometrical systems of so-called spherical space and of
so-called pseudo-spherical space (we will deal mainly with these two
systems here). It is possible to develop in detail a picture of what
would be observed in a spherically curved space or a pseudo-spherically
curved space. I however limit myself by only a reference to Helmholtz’
paper The Origin and Meaning of the Geometrical Axioms∗. Here we

∗Hermann von Helmholtz. Über den Ursprung und die Bedeutung der geometri-
schen Axiome. Vortrag gehalten im Docentenverein zu Heidelberg, 1870, Universi-
tätsbibliothek Heidelberg. Published in English as: Hermann Helmholtz. The origin
and meaning of geometrical axioms. Mind, July 1876, vol. 1, no. 3, pages 301–321.
— Editor’s comment. D.R.
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are come into a fairyland of geometry, which is especially beautiful due
to the fact that it may relate to our real world, and finally we are unsure
in the impossibility of it. Here we consider how wide the boundaries
of this fairyland can be expanded, what is the largest numerical value
of the permissible curvature of space, what is the smallest radius of the
space curvature.

One usually answers this question unsatisfactorily, at least unsatis-
factorily from the viewpoint of an astronomer. In Euclidean geometry
the sum of the angles in a triangle is 2d; while in the case of the non-
Euclidean geometry the larger the triangle we are considering, the more
this sum differs from 2d. One may point out that even in the case of
the largest of the measured triangles (the apex of such a triangle is a
star, while the base is drawn by the diameter of the Earth’s orbit) the
sum of the angles in each of them wasn’t found to be different from 2d.
Hence the curvature of space should be negligible. In such an answer
people overlook just one circumstance. They don’t take into account
the circumstance that the angle at the star isn’t a subject of measure-
ment, but is obtained as a calculation resulting from the theorems of
Euclidean geometry, the correctness of which will be the subject of our
consideration here. Besides, an astronomer shouldn’t be satisfied by
the note, according to which he should neglect the curvature of space in
the scale of the nearest stars, whose parallax is accessible to measure-
ment; to obtain a picture of the interior of the world of stars, he should
take into account the distances to even the weakest stars, which are far
relative to us.

I begin consideration of this problem from the point of view which
gives the possibility of talking about the theoretical meaning of non-
Euclidean geometry. In order to measure the positions of three vertices
of a triangle, we will employ the light beams coming from one of the
vertices. The lengths of the sides a, b, c of this triangle will be measured
according to the duration of time required for the light beam to travel
along the lengths, while the angles α, β, γ will be measured by a regular
astronomical instrument. Our everyday experience manifests in plane
trigonometry, true on all triangles within the precision of measurement.
Suppose that the regular trigonometry is not absolutely precise and
that in reality the sides and the angles of triangles are connected by the
following relations

sinα : sinβ : sin γ = sin
a

R
: sin

b

R
: sin

c

R
, (a)

cos
c

R
= cos

a

R
· cos b

R
+ sin

a

R
· sin b

R
· cos γ . (b)
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Here R is a very large interval we will refer to as the curvature radius
of space, by which we mean no close analogy to the curvature radius
known in the geometry of two dimensions. The aforementioned formulae
coincide with the main formulae of spherical trigonometry which, as well
known, transform into the regular trigonometric formulae in the case
where the sides of the triangle are small relative to the radius R of the
sphere. However taking R sufficiently large, the sides of any triangle we
are measuring become small relative to R. Therefore, by increasing R
we can always arrive at a case where the formulae (a) and (b) meet the
regular trigonometric formulae within the measurement precision. In
order words, it is enough to increase R to reduce the formulae (a) and
(b) into coincidence with our everyday experience.

Here we don’t consider a purely mathematical problem on the
grounds of acceptance of formulae (a) and (b) for any triangle, without
internal contradiction. As we know this question has been answered
positively. Besides, as shown by research, the requirement that spher-
ical trigonometry be applicable to all triangles in a space provides no
exact information about coherence of the space. Among the possible
forms of space which permit spherical trigonometry, the simplest and
most well-known are the so-called spherical space and the elliptic space.
The following common properties are attributed to a spherical space
and an elliptic space: such a space is finite, the volume of it is finite
as well and is dependent on the curvature radius. By following a path
in such a space, we arrive at the initial point. Relations given in a
plane of such a space are absolutely the same as those on the surface
of a sphere according to usual views. Besides that, a plane located in
a curved space is determined, as usual and everywhere, by all straight
lines — all beams of light which pass through two crossed light beams.
Any straight line in a plane of a such curved space is similar to a great
circle on the surface of a sphere. For two parallel straight lines, i.e. two
straight lines crossing a third straight line at equal angles (two right
angles, for instance), these straight lines are similar to two meridians
crossing the equator at right angles. Similarly for the crossing merid-
ians at the point of the pole, the straight lines cross each other in a
curved space at the distance π

2
R in a curved space. One may say that,

concerning a plane of a curved space, two parallel straight lines should
cross each other twice like two great circles on a sphere. This hypothe-
sis lies at the foundation of spherical space. However it is possible that
two parallel straight lines cross each other only once; this assumption
leads us to “elliptic” space. It is possible to map a plane in a curved
space onto a usual spherical surface in such a way that each point of
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the plane conjugated, not only with the radius, but also the diameter
and, hence, two diametrically opposite points of the spherical surface.
Therefore, if taking great circles passing through a point of a spherical
surface, and crossing each other at the diametrically opposite point, the
incoming point and the point diametrically opposite to it are similar to
a single point of a plane in a curved space, where the respective straight
lines cross each other. From this we conclude that we, travelling by
way of the length πR (not 2πR), arrive at the initial point and, at the
same time, the maximum distance between two points in such a space is
π
2
R. Similarly we study elliptic space, which is the simplest of spherical

trigonometry spaces. (In talking above about spherical space instead
elliptic space, we merely used the more common and usual term.)

But first we should mention another very simple generalization of
non-Euclidean geometry. If in (a) and (b) we replace R with an imagi-
nary quantity iR, we obtain

sinα : sinβ : sin γ = Sin
a

R
: Sin

b

R
: Sin

c

R
, (a′)

Cos
c

R
= Cos

a

R
· Cos b

R
+ Sin

a

R
· Sin b

R
· cos γ , (b′)

where capital letters denote hyperbolic functions. These equalities
transform into the equalities of plane trigonometry with the increase
of R. There are various spatial forms wherein the special trigonometry
based on formulae (a′) and (b′) are true. The simplest of these spatial
forms is the so-called “pseudo-Riemannian” or “hyperbolic” space. Such
a space is infinite: therein each point is crossed by a couple of straight
lines without intersecting another given straight line. The geometry on
any of the planes of such a space is analogous to the geometry on a
so-called pseudo-sphere, which is constant negative curvature surface.

Now we turn our attention to the problem of how to determine the
parallax in the cases of both elliptic and hyperbolic spaces. Any of
the definitions of parallax can be reduced to the following: given two
times of observation separated by a half year duration, we measure the
angle created at the Earth by two straight lines which connect it with
two stars we observe. Assume, for simplicity, that one of these two
stars, S1, is positioned exactly in the continuation of the diameter of
the Earth’s orbit, while the other star, S2, is positioned in the line
which is approximately orthogonal to this direction. Denoting E1 and
E2 as the positions of the Earth at the times of observation (E1E2 = r
is the diameter of the Earth’s orbit), the observations give both angles
S1E1S2 =α and S1E2S2 =β. The quantity p= α−β

2
is known as the
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parallax of the star S2. The problem is as follows: having the elements
α, β, 2r, how to calculate the distances E1S2 = a and E2S2 = b from
the star S2 to both locations of the Earth in the cases of spherical
trigonometry and pseudo-spherical trigonometry. Because the straight
line directed at S2 should be approximately orthogonal to E2E1S1, we
can assume a= b= d where d is the distance from the star. We take
into account that fact that the parallax p is a very small angle, and
the curvature radius of the space should be undoubtedly much larger
than the diameter of the Earth’s orbit. With these we easily obtain the
following formulae for the distance in the case of an elliptic space

cotg
d

R
=
R

r
p or sin

d

R
=

1√
p2R2 + r2

, (c)

and that in a hyperbolic space

Cotg
d

R
=
R

r
p or Sin

d

R
=

1√
p2R2 − r2

. (c′)

The last of these formulae leads to a conclusion concerning hyperbolic
space. Naturally, given each real distance d, the inequality pR>r should
hold. Therefore there is a minimum parallax, which is p= r

R
, that should

be observed for even very distant stars. On the other hand we know
of many stars which don’t have a parallax of even 0.05′′. Hence the
numerical value of the minimal parallax should be lesser than 0.05′′. We
obtain the lower limit of the curvature radius of the hyperbolic space

R >
r

arc .050′′
that is R > 4, 000, 000 radii of the Earth’s orbit.

According to this the curvature of the hyperbolic space is so small
that it doesn’t manifest in any measurements on the scale of the plan-
etary system. Besides, because any hyperbolic space is infinite, as is
any Euclidean space, it is impossible to find unusual phenomena by
observation of stars in the sky.

Before consideration of elliptic space, I remark that it was recently
shown by Prof. Seeliger that the most accurate representation of our
stellar system, on the basis of the observational data, concludes that all
stars we observe (the number of the stars is no greater than 40 million)
are located inside the space, the diameter of which is a few hundred mil-
lion times larger than the radius of the Earth’s orbit, beyond which a
large and approximately empty space begins. This concept bears some-
what comfortably upon our minds, because according to it the complete
study of the limited stellar system is an special stage in the evolution of
our knowledge about the world. But this comfort and satisfaction would
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be much more effective if we imagined the space enclosed in itself, in
a finite and complete manner, or approximately filled with this stellar
system. Naturally, if so, we could reach a stage when the space has
been studied completely, like the surface of the Earth has been studied,
so that any macroscopic studies of the space have ceased being subordi-
nate to microscopic studies. These very advanced studies may explain,
in my view, that strong interest that attracts us to the hypothesis of
elliptic space.

Now we look at the results of calculation of the parallax in the elliptic
space. Employing the aforementioned formula

cotg
d

R
=
R

r
p ,

we can obtain, concerning any measured parallax p of a star, a specific
real numerical value of the distance d to the star at any numerical value
of the curvature radius R. Thus we see that it would be erroneous to
think that the limit of R was found proceeding from only our measure-
ments of the stellar parallaxes. According to these measurements, it
would be possible that the space was so strongly curved that, travelling
along a path equal to approximately 1,000 distances from the Earth to
the Sun (i.e. the distance travelled by light during a few days), we would
arrived at the initial point of our journey. Therefore, not purely metric
reasons but physical reasons lead us to a conclude that the curvature
radius is much larger than that suggested.

A very small curvature radius would lead to the metric inconsisten-
cies in the planetary system. Because we further find a greater upper
limit of it, it is enough to say that, in the case of the curvature radius
equal to 30,000 radii of the Earth’s orbit, it produces an impercepti-
ble effect even in triangles which are as large as the distance to the
orbit of Neptune. This radius of the space curvature corresponds to
the length which is no larger than 1/10 part of the distance to the near-
est stars.

So, assume R=30, 000 radii of the Earth’s orbit. According to for-
mula (c), we calculate the distance to the stars at different numerical
values of the parallax. We obtain

for p = 1.0′′ 0.908
R · π
2

= 42, 800 radii of the Earth’s orbit,

for p = 0.1′′ 0.991
R · π
2

= 46, 700 radii of the Earth’s orbit,

for p = 0.0′′ 1.000
R · π
2

= 47, 100 radii of the Earth’s orbit.
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It is easy to see that we have arrived at quite ridiculous results.
There are maybe a hundred stars whose parallax is p> 0.1′′. Thus these
hundred stars should be scattered at distances between one another no
larger than 46,700 radii of the Earth’s orbit, while the rest of the space at
only 400 radii of the Earth’s orbit is reserved for the remaining millions
of stars. In such a case the Sun would be located in a space of excep-
tionally small stellar density, while everywhere beyond a certain distance
from it there is an exceptionally large density of stars. To show this den-
sity of stars, I calculated the volume of the space limited by 46,700 radii
of the Earth’s orbit, and also the volume of the remaining part of the
space, then I calculated the average distance between two stars assuming
that there is exactly 100 million stars in total. I found that in the ap-
proximately empty space near the Sun the average distance between two
stars is about 15,000 radii of the Earth’s orbit, while in the high density
inhabited rest of the space the average distance is only 40 radii of the
Earth’s orbit. Of course, it is impossible to accept such a calculation re-
sult that stars are so close to each other; otherwise it would be found in
the physical interactions among the stars. It follows that the supposed
curvature radius of 30,000 radii of the Earth’s orbit is too small.

It is clear that by increasing R we may overcome all these difficulties,
because they all vanish at R=∞ (this is an obvious assumption). It is
enough to take R so large that those 100 million stars with parallaxes
less than 01′′ we assumed inhabit the space, which is a million times
larger than the space inhabited by 100 million stars with parallaxes
bigger than 01′′. Simple algebra shows that this takes place for

R = 160, 000, 000 radii of the Earth’s orbit.

In the case of a similar radius of the space curvature, light would
travel around the whole space, along the path πR, in 8,000 years. How-
ever the size of the respective elliptic space is approximate the same
as that suggested by Seeliger for the finite system of resting stars, not
yet so large a size as that of the stellar system known according to the
usual bounds. One could suggest R to be two or three times less than
the above, but even such a reduction of R doesn’t lead to the suggested
abnormal emptiness of stars in the neighbourhood of the Sun and their
high density at large distances from it.

Thus we arrive at the conclusion that the assumption, according
to which R is equal to approximately 100,000,000 radii of the Earth’s
orbit, doesn’t contradict the observational data. In the case of such a
numerical value of R the whole finite space is homogeneous, filled with
the observable stars.
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One more fact should also be noted here. Given an elliptic space,
any light beam arrives back at its initial point after travelling across
the whole space. So light beams emitted into such a space from the
opposite (invisible to us) side of the Sun should travel across the space
then also meet the Earth, then create an anti-image of the Sun from
the opposite side of the real image of it. This anti-image shouldn’t
fade with respect to the real image of the Sun, because light beams
compress upon returning to the initial point of travel, becoming such
ones as they travel in the least direct way from the source of light. But
due to that fact that such an anti-image of the Sun was never observed
we are enforced to suppose that light, travelling across the whole space,
experiences absorption which is so strong that the anti-image is invisible.
This supposition is true if supposing the absorption to be approximately
40 stellar magnitudes. There is no facts against the supposition of such
a numerical value of the absorption, which seems small compared to the
scale of the Earth.

In conclusion: it is possible to imagine, with no contradiction of the
experimental data, that the world is closed within a hyperbolic (pseudo-
spherical) space, the curvature radius of which is larger than 4,000,000
radii of the Earth’s orbit, or, alternatively — within an elliptic space,
the curvature radius of which is larger than 100,000,000 radii of the
Earth’s orbit. In addition, in the second case, it should be supposed
an absorption of light equal to 40 stellar magnitudes per around space
travel.

Now we should limit ourselves by these. At least, I see no other way
to make a principal step in this direction with use of the contemporary
methods of research, i.e. how to prove that the volume of the space is
so large with respect to the volume of the stellar system we observe,
or that the space has a really positive or negative curvature. On the
other hand, I can provide some considerations which, despite providing
no definite solution, may bring us to a specific preferential numerical
value of R within the aforementioned scale of the values.

It is well known that astronomers, in their study of the distribution
of stars in space, proceed from the simplest possible rational hypotheses
about the average luminosities of stars, then they distribute the stars
at different distances from the Sun by such methods that arrive at the
numbers of stars of each stellar magnitude obtained in astronomical ob-
servations. Such research — the main result of which was mentioned
above — was already produced by Prof. Seeliger. It could be produced
in the same way in the cases of a pseudo-spherical space or of an elliptic
space. I have calculated, in the cases of both spatial forms, the depen-
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dence of the number of stars from their stellar magnitude in the approx-
imation that the luminosities of all stars are the same, and also that the
density of the stellar population in all regions of the space is uniform.
I have found, using the same physical assumptions, that the number of
stars increases with the increase of their luminosity more slowly in the
pseudo-spherical space in contrast to that in the Euclidean space, while
in an elliptic space it increases faster than in the Euclidean space. In
the real situation, as is well known, the number of stars increases with
their luminosity slower than expected on the basis of the simple hy-
potheses about the Euclidean space. Proceeding from this fact, it could
be concluded that the pseudo-spherical space is real. But, of course,
no serious meaning can be attributed to these speculations, because the
hypotheses of the equal luminosities and the equal density of stars take,
as probable, no place in the real situation. However, as I have already
said, this theory could be developed in the case of a curved space on
the same bases used by Prof. Seeliger, who developed the theory in Eu-
clidean space. Comparing the conclusion with the observational data,
one could say then that the simplest picture of the distribution of stars
is obtained on the assumption that space has a non-zero curvature. Of
course, it is impossible to expect that a definite and final answer will
be obtained here. We therefore have to accept that sad fact that there
is little hope for a solid proof to the finitude of space.

Appendix. In the above, of all the spatial forms where “free motion
of solid bodies” is possible, only the main types were considered (as
has been noted by F. Klein). In order to finalize this theme, the other
spaces which have this property should be compared to the astronomical
data. I would exclude from consideration “spherical space” and other
so-called “double-spaces”, where all light emitted from a point travels
to another point, collecting all the light anew. This is because we have
no reason for introduction of such a complicated hypothesis. Therefore
we have to settle for the so-called “simple Clifford-Klein spatial forms”.

Of all these spatial forms, special is the one which amplifies the fact
that the acceptance of Euclidean geometry is not equivalent, as one
usually thinks, to the indefiniteness of the space. Imagine that we, after
greatly enhanced astronomical data, found that our universe consists
of countless copies of our Milky Way, that the infinite space can be
split into many cubes, each of which contains a stellar system that is
absolutely equivalent to the system of our Milky Way. Do we really stop
at the assumption of an infinite number of identical copies of the same
world-entity? To understand the absurdity of this, think about just one
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sequel: in such a case we ourselves, the observing objects, should exist
in an infinite number of manifestations. We would better go to the
assumption that these copies are only imaginary images, while the real
space permits such coherences due to which we, being left the cube from
one side and travelling always along a straight path, arrive at the cube
from its opposite side. Such a space as we have supposed is nothing
but the simplest of the Clifford-Klein spatial forms: a finite space of
Euclidean geometry. It is easy to see the sole condition which should
be attributed to such a Clifford-Klein space: because as yet nothing
has been found concerning the (imaginary) copies of the system of the
Milky Way, the volume of the space should be bigger than the volume
we attribute to the Milky Way on the basis of the theorems of Euclidean
geometry.

About the other simple Clifford-Klein spatial forms, we limit our-
selves by only a few words, due to that fact that these spaces aren’t
sufficiently studied as yet. All these forms are obtained in analogous
way by the identical imaginary copying of the same world-entity in a
Euclidean space, in an elliptic space, or in a hyperbolic space. Exper-
imental data lead us, again, to the condition according to which the
volume of any such spaces should be bigger than the volume of the
stellar system we observe.



The Luminiferous Ether is Detected
as a Wind Effect Relative to the Ether

Using a Uniformly Rotating Interferometer

Georges Sagnac

Abstract: This is English translation of Georges Sagnac’s paper,
where he gives a presentation for his “rotating interferometer exper-
iment” which manifested the phenomenon called later the Sagnac

effect. This paper was originally published, in French, as: L’éther
lumineux démontré par l’effet du vent relatif d’éther dans un in-
terféromètre en rotation uniforme. Note de G. Sagnac, présentée par
E. Bouty. Comptes rendus, tome 157, 1913, pages 708–710. Trans-
lated from the French in 2008 by William Lonc, Canada. The Editor
of The Abraham Zelmanov Journal thanks William Lonc for this ef-
fort, and also Ioannis Haranas, Canada, for assistance. Special thank
go to the National Library of France and Nadège Danet in person for
the permission to reproduce the originally Sagnac paper in English.

§1. The Method. — I uniformly rotated, at a speed of one or two
turns per second around a vertical axis, a horizontal plate (50 cm in
diameter) on which the various components of an interferometer were
firmly anchored, analogous to the one I used in previous research and
described in 1910 (Comptes rendus, tome 150, page 1676). The two
interfering beams, after reflection from 4 mirrors placed at the edges
of the rotating platform, were superimposed and travelled in opposite
directions around exactly the same horizontal circuit circumscribing the
area S. The rotating system also contained the light source: a small
electric lamp, and the detector L, a fine-grained photographic plate that
registered the interference fringes at the focal point of a lens.

In the images d and s, obtained successively during a right-hand
rotation of the platform and then a left-hand rotation, both at the
same rotation frequency, the central fringe was observed to occur at
two different positions. I measure the difference between the centres of
the fringes.

First method. — I mark on image d, and then on image s, the
position of the central fringe relative to the image of a micrometer’s
vertical graduations placed in the focal plane of a collimator.

Second method. — I measure directly the distance from the vertical
central fringe of the image d to the central fringe in image s precisely
contiguous to the first but below a thin horizontal line separating the
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two. I obtain these two contiguous images without touching the pho-
tographic plate-holder, by opening-prior to obtaining the images d and
s — the two contiguous positions corresponding to the illuminated slit
on the edges of the horizontal edges (razor blades) in the collimator’s
focal plane.

§2. Optical rotation effect. — Measured from the fring-spacing,
the displacement z from the interference centre that I observed with the
preceding method is a particular case of the optical rotation effect that I
have defined earlier (Congrès de Bruxelles de septembre, 1910, tome 1,
page 217; Comptes rendus, tome 152, 1911, page 310; Le Radium,
tome VIII, 1911, page 1), and which, in the context of current ideas,
should be construed as a direct observation of the luminiferous ether.

In a system moving as a whole relative to the ether, the propaga-
tion time between any two points of the system should change in a way
similar to a stationary system subjected to an ether wind, the relative
speed of which at each point of the system will be the same and di-
rectly opposite to the speed of any point, and would contain light waves
in a manner similar to atmospheric wind carrying sound waves. The
observation of the optical effect of such an ether wind relative to the
[stationary] ether will constitute a proof of the ether’s existence, just
as the observation of a wind relative to the atmosphere on the speed
of sound in a moving system would constitute — everything else being
equal — a proof of the existence of a stationary atmosphere enveloping
the moving system.

The need to bring to one common luminous point oscillations that
are combined at another point and to thereby produce interference,
reduces to zero the first-order interference effect of the linear translation
of the entire optical system, if the matter constituting the ether does
not produce a circular motion C of the ether within the optical circuit
of area S; that is to say, a rotation or circulation bS in the ether
(Comptes rendus, tome 141, 1905, page 1220; 1910 and 1911, loc. cit.).
I have shown interferometrically (1910 and 1911, loc. cit.) with an
optical path enclosing 20m2 in vertical projection, that ether drag in
the Sun’s neighbourhood does not produce a rotational density b of more
than 1/1000 rad. per second in the ether.

In a horizontally mounted optical circuit, at Latitude a, the diurnal
rotation of Earth should, if the ether is stationary, produce a rotation
relative to the ether with a density of 4π sinα

T
or 4π sinα

86164
rad. per sec,

where T is the duration of the sidereal day; a very small quantity com-
pared with 1/1000, the upper limit that I established for a vertically
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mounted optical circuit. I hope to be able to determine whether a cor-
responding small optical rotation exists or not.

It was easier for me to first find a proof for the ether’s existence by
rotating a small optical circuit. A rotational frequency N of two turns
per second gave me a rotational density of 4πN relative to the ether
for a rotation of 25 rad. per second. A uniform left-hand rotation of
the interferometer produces a left-handed ether wind ; and delays by x
the phase of the beam (T ) whose motion around the area S is right-
handed, and advances by the other beam R by the same amount, thus
displacing the fringes by 2x units. The displacement z that I observe
between images s and d should be twice that of the former∗. On the
basis of the value of x observed earlier (loc. cit., 1910 and 1911), we
have

z = 4x = 4
bS

λV0
=

16πNS

λV0
;

where V0 is the speed of light in vacuum, and λ is the operating wave-
length.

For a rotational frequency of N =2 per sec., and the path area S
being 860 cm2, the observed value of z is 0.07 when using indigo light,
and is easily visible in the photographs I attach to this Note and where
the fringe-spacing is between 0.5 and 1.0mm.

The interference displacement z, a constant fringe-spacing for the
same value of rotation frequency N , disappears on the photographs
when the fringes were made sufficiently narrow; this shows that the
observed effect is very much due to a phase difference related to the ro-
tational motion of the system and that (thanks to counter-screws that
prevent movement of the mounting screws of the optical components)
the displacement of the interferogram, observed in the comparison of
image s with image d, does not arise from accidental relative displace-
ments or elastic effects in the optical components during rotation.

Turbulent air produced above the interferometer by a fan rotating
about a vertical axis and blowing downwards does not produce any dis-
placement of the interferogram’s centre, given a careful superposition of
the two opposite beams. Any turbulent air, analogous and less intense,
produced during rotation of the system does not affect the experiment.

The observed interference effect is very much the effect of optical
rotation due to the motion of the system relative to the ether, and
directly shows the existence of the ether, a necessary condition for the
luminiferous waves proposed by Huygens and Fresnel.

∗That is, twice that of 2x. — Translator’s comment. W.L.



Regarding the Proof for the Existence
of a Luminiferous Ether Using a Rotating

Inteferometer Experiment

Georges Sagnac

Abstract: This is English translation of Georges Sagnac’s second
paper, which presents his “rotating interferometer experiment” where
the phenomenon known as the Sagnac effect manifests itself. This
paper was originally published, in French, as: Sur la preuve de la
réalité de l’éther lumineux par l’expérience de l’interférographe tour-
nant. Note de G. Sagnac, présentée par E. Bouty. Comptes rendus,
1913, tome 157, pages 1410–1413. Translated from the French in
2008 by William Lonc, Canada. The Editor of The Abraham Zel-

manov Journal thanks William Lonc for this effort, and also Ioannis
Haranas, Canada, for assistance. Special thank go to the National

Library of France and Nadège Danet in person for the permission to
reproduce the originally Sagnac paper in English.

In Comptes rendus of October 27 last (page 708 of this Volume 157),
I showed that an interferometer using a closed optical path enclosing
a given area and rotating in the plane of the path, detects the movement
of the system relative to the ether in space.

§1. The interferometer, described elsewhere in detail, is sketched
in the diagram below: a plate revolving horizontally (50 cm diameter)
carries with it, solidly attached (mounting screws fitted with counter-
screws) all the optical components and the luminous source O: a small
electric lamp with a horizontal metallic filament. The microscope objec-
tive Co projects the image of the filament, through the Nicol prism N ,
onto the horizontal slit F in the focal plane of the collimator objective C;
m is a mirror. The parallel polarized beam, with vertical Fresnel vibra-
tions, is split at the thin layer b of air J, as in most of the interferometers
in my research (Comptes rendus, tome 150, 1910, page 1676) that I used
for an optical study of the Earth’s motion (Congrès de Bruxelles, Sept.,
1910, tome 1, page 207; Comptes rendus, tome 152, 1911, page 310;
Le Radium, tome VIII, 1911, page 1). Beam T , propagated through
the air layer J, reflects successively from 4 mirrors and travels around
the path J – a1– a2 – a3 – a4 –J with an area S. Beam R, reflected at
the same air-layer J , goes around the same path but in the opposite
sense. When the two beams return to J, T is propagated again, and
R is reflected again. They now travel in the same direction as T 2 and
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R2, and interfere at the principal focus of lens L on the fine-grained
photographic plate pp′.

§2. Procedure. — I remind the reader that the perfect superposition
of the two opposing beams T and R results in an extinction in the lens’s
field of view for the lamp’s indigo radiation, close in wavelength to the
radiation from a mercury-arc lamp. In addition, a small rotation ε of
the beam-splitter J about a vertical axis in a right-handed sense (D)
or left-handed (S) changes the dark field into a vertical central fringe
accompanied by parallel fringes on both sides.

Once the fringes are suitably adjusted, and the photographic plate
pp′ installed in the holder in red light, I slowly activate an electric
motor, the vertical axis of which has a horizontal disk D attached to
it. The disk has a leather rim that is in contact with the rim of the
circular plate. Once the desired rotational frequency N is reached, I
take a photograph by sending a current to the small lamp O via slip
rings on the axle of the circular plate.

§3. Direction and magnitude of the optical rotation effect.

— In Fresnel’s hypothesis of the ether, the luminous waves T and R
propagate in the ether with a speed V0 independent of the motion of
the interferometer. The phase of the waves T in the right-handed sense
(see the diagram) is changed along the closed path, as if the luminiferous
ether had a left-handed rotation when the system rotates in the sense d
[right-handed] and magnitude 4πNS of this rotation, or relative circular
motion C of the ether within the closed optical path gives, according
to the expression C

λV0
, a lag x in the phase of the waves in beam T ,

and advances by the same amount the phase of the waves in beam R
propagating in the reverse direction. The fringes should then move
by 2x divisions. The absolute direction of this displacement y of the
fringes should be pp′, that is, d, like the rotation of the interferometer
(the effect is in the positive direction) if the drive wheel rotates in the
D direction [right-handed]. The displacement z equal to 2y or 4x,
measured by comparing image s with image d, should therefore be in
the sense d. If the drive-wheel is rotating in the S direction [left-handed],
then displacements y and z should change sense.

After many runs, I have always observed the sense to change as
expected. The fact that the effect z reverses when I rotate the beam-
splitter J by even a fraction of a degree when reversing the rotation
direction of D, identifies the effect as a phase-difference associated with
the circular motion of the interferometer, and allows for isolation from
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the effect of deformation in the optical component s.
I now offer examples of the measurement of z compared with values

calculated from the expression 16πNS
λV0

; I determined the wavelength λ

corresponding to the fringe-spacing obtained with the small lamp O
and compared it with the fringe-spacing for the 436nµ radiation from a
mercury arc-lamp; there was little difference. The measurements were
made by one of the two methods described in my Note of October 27th
last. The central fringe c, well-defined in the negative image that I
studied, and the weak lateral fringes f , are outlined only by a narrow
half-light, conducive to a precise measurement of the points obtained
by a slight enlargement while positioning the sharp fringe between the
two parallel wires of an ocular micrometer.

Sense N z from c z from f z calc.

Method 1
(S = 863 cm2)

{

S [left]

D [right]

0.86

1.88

−0.026

+0.070

≫
≫

−0.029

+0.065

Method 2
(S = 866 cm2)

{

S [left]

S [left]

2.21

2.35

−0.072

−0.077

−0.078

−0.080

−0.075

−0.079

The interferometer produces and records, from the expression 1
2
z,

the rotation effect in first order, of the assembly’s movement as a whole
without importing any external reference marks.
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The outcome of these measurements shows that in ambient space,
light propagates with speed V0 independent of the motion of the ap-
paratus, the light source O and the optical system. This property of
space describes the luminiferous ether experimentally. The interfer-
ometer measures, according to the expression 1

4
zλV0, the relative cir-

cular motion of the luminiferous ether within the closed optical path
J – a1– a2 – a3 – a4 – J.



The Classification of Spaces Defining
Gravitational Fields

Alexei Petrov

Abstract: In this paper written in 1954 Alexei Petrov describes his
famous classification of spaces according to the algebraical structure
of the curvature tensor, that determines the classes of the gravita-
tional fields permitted therein. Now this classification of spaces (and,
respectively, of the gravitational fields) is known as Petrov’s classi-

fication. This paper was originally published, in Russian, in Scien-
tific Transactions of Kazan State University: Petrov A. Z. Klassifikaz-
ija prostranstv, opredelajuschikh polja tjagotenia. Uchenye Zapiski

Kazanskogo Gosudarstvennogo Universiteta, 1954, vol. 114, book 8,
pages 55–69. Translated from Russian in 2008 by Vladimir Yershov,
England–Pulkovo.

In this paper, the detailed proof of results obtained and published by
the author earlier in 1951 [1]. Namely, it is shown that by examining
the algebraic structure of the curvature tensor V4 one can establish a
classification of the gravitational fields defined by this tensor and given
in the form

ds2 = gij dx
idxj , (1)

with the fundamental tensor satisfying the field equations

Rij = κ gij (2)

(we shall refer to the corresponding manifolds as T4).

§1. Bivector space. Let us consider a point P of the manifold T4,
and associate it with a local center-affine geometry E4. In this E4 let us
select those tensors that satisfy the following conditions: 1) the number
of both covariant and contravariant indices must be even; and 2) the co-
variant and contravariant indices can be grouped in separate antisym-
metric pairs. We shall regard each of these pairs as a single collective
index, denoting it with a Greek letter in order to distinguish it from
the indices corresponding to T4 and E4, for which we shall continue
using Latin letters. Thus, according to the number of possible val-

ues for these collective indices, we shall get an N = n(n−1)

2
- dimensional

manifold (6 dimensions for n=4), the tensors E4 with these properties
defining on this manifold tensors with one-half rank.
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One can say that each point of T4 is assigned to a local 6-dimensional
centre-affine geometry with the group

ηα
′

= Aα′

α ηα, ηα = Aα
α′ ηα

′

|Aα′

α | 6= 0 , Aα
βA

β
γ = δαγ



 . (3)

Indeed, by ordering the collective indices (while selecting a single
pair from the two possible, ij and ji), we shall get six possible collective
indices. Let us take, for example, the following indexing:

1− 14, 2− 24, 3− 34, 4− 23, 5− 31, 6− 12.

Let us now consider the transformation of the components T ij of,
generally speaking, a nonsimple bivector

T i′j′ = Ai′j′

ij T ij ,

assuming

Aα′

α = 2A
[i′j′]
ij , where Ai′

i =

(
∂xi

′

∂xi

)

P

.

In terms of collective indices, this gives

Tα′

= Aα′

α Tα;

i.e., the set of bivectors Tn determines a set of contravariant vectors in
EN (in this case the dimensionality does not matter), assuming that the
relations (3) are satisfied. The validity of these relations can be checked
directly by passing to the Latin indices.

Let us call the manifold obtained a bivector space. Of a special
interest for our further consideration will be the curvature tensor T4. In
the bivector space this tensor corresponds to a symmetric tensor of the
second rank

Rijkl −→ Rαβ = Rβα .

In any local E6 one can define a metric by using for this purpose
any tensor in T4 with the properties

Mklij =Mjikl = −Mijkl = −Mijlk ,

given that the corresponding second-rank tensor in E6 is nonsingular.
Let the tensor

gikjl = gijgkl − gilgkj −→ gαβ = gβα (4)
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be such a fundamental tensor in E6. It is plain to see that gαβ gives a
nondegenerate metrization because |gij | 6= 0, and

|gαβ | = p |gij |2n, p 6= 0 .

For a definite gij the tensor gαβ will be definite; and for an indefi-
nite gij the tensor gαβ will also, in general, be indefinite. Let us note,
that here we shall consider only those fields of gravity that correspond
to a real distribution of matter in space, which would require [2] the
fundamental tensor gij be reducible to the form

(gij) =




−1
−1

−1
1


 (5)

in the real coordinate system in any given point of T4, that is, we have
arrived at the so-called Minkowski space. Then it follows from (4) that
for the frame corresponding to the matrix (5) the fundamental tensor
R6 will be of the following form:

(gαβ) =




−1
−1

−1
1

1
1



, |gαβ | = −1, (6)

i.e., the tensor gαβ is, in fact, indefinite.

§2. Classification of T4. A series of the most interesting problems
arising in the study of the Riemannian manifolds is related to the cur-
vature tensor Vn. As is known, this tensor is used for introducing the
notion of curvature of Vn at a given point along a given two-dimensional
direction or, which is the same, of the Gaussian curvature of a two-
dimensional geodesic surface at a given point:

K =
RijklV

ijV kl

gpqrsV pqV rs
; (7)

where gpqrs has the form (4), and the two-dimensional direction, which
is defined by the vectors V i

1
and V

2

i, is characterized by the simple bivec-

tor V ij = V iV j

[1 2]
. Let us introduce the notion of generalized curvature
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of Vn, which could be obtained from (7) by dropping the requirement
of simplicity of the bivector V ij . At some point of Vn this generalized
invariant K will be a homogeneous zero-degree function of the com-
ponents of the (generally, not simple) bivector V ij . And, of course,
this invariant will be meaningful in the bivector space, where it can be
written as

K =
Rαβ V

αV β

gαβ V αV β
. (8)

Let us find the critical values of K that will be equivalent to find-
ing those vectors V α in RN , for which K takes critical values. Let
us call these critical values of K stationary curvatures of Vn, and the
corresponding bivectors V α — the stationary directions in Vn. Thus,
our task consists in finding the unconditionally stationary vectors V α

in the bivector space using the necessary and sufficient conditions for
stationarity:

∂K

∂V α
= 0 . (9)

We have to take into account that for an indefinite gij the tensor gαβ
is also indefinite and, hence, it is possible to have isotropic stationary
directions

gαβ V
αV β = 0 . (10)

Let us first exclude this case, returning to it below.
If (10) does not hold then the conditions (9) result in

(Rαβ −Kgαβ)V
β = 0 , (11)

i.e., the stationary directions of Vn will be the principal axes of the
tensor Rαβ in the bivector space, while the stationary curvatures of Vn
will be the characteristic values of the secular equation

|Rαβ −Kgαβ | = 0 . (12)

Let (10) holds now for the stationary V α. Since we are interested
only in the K satisfying the conditions (9), this K is a continuous func-
tion of V α and, hence, it is necessary that the condition

Rαβ V
αV β = 0

were satisfied. Then one can calculate the value of K for the stationary
isotropic direction of V α:

K (V α) = lim
dV α→0

K (V α + dV α) ,
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assuming the continuity of K as a function of V α. If, for a given V α,
we denote

ϕ = gαβ V
αV β , ψ = Rαβ V

αV β , (13)

then for a stationary isotropic V α

K(V α) = lim
dV α→0

ψ (V α+ dV α)−ψ (V α)

ϕ(V α+ dV α)−ϕ(V α)
= lim

Σσ
∂

∂V σ ψdV
σ + . . .

Σσ
∂

∂V σ ϕdV
σ + . . .

.

As this limit cannot depend on the ways of changing dV α, then

K(V α) =
∂

∂V σ ψ

∂
∂V σ ϕ

=
Rσβ V

β

gσβ V β
,

so that again we obtain (11).
The determination of stationary curvatures and directions in RN

leads to the study of the pair of the quadratic forms (13). Therefore,
the reduction of this pair to canonical form in real space results in a
classification for the curvature tensor of Vn at a given point of Vn, as well
as in a neighboring plane containing this point, where the characteristic
of the K-matrix

‖Rαβ −Kgαβ ‖ (14)

remains constant. For each type of the characteristic (14) there is a
corresponding field of gravity of a specific type. It is this that determines
the sought classification of T4.

Using real transformations, one can always reduce the matrix ‖gαβ‖
to the form (6), and it remains to simplify the matrix ‖Rαβ‖ by using
real orthogonal transformations.

Theorem 1. The matrix ‖Rαβ‖ will be symmetrically-double for the
orthogonal frame (5).

For the basic (5) the field equations will take the form
∑

k

ekRikjk = κgij , ek = ±1 ,

that is, for i = j ∑

k

ekRikik = κ ei ,

and for i 6= j

ekRikjk + elRiljl = 0 (i, j, k, l 6=) .

Writing these relations with the use of collective indices of the bivec-
tor space and taking into account the indexing introduced in § 1, we shall
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get the following expression for our matrix:

‖Rαβ ‖ =

∥∥∥∥
M N

N −M

∥∥∥∥

M =

∥∥∥∥∥∥

m11 m12 m13

m21 m22 m23

m31 m32 m33

∥∥∥∥∥∥
, mαβ = mβα

N =

∥∥∥∥∥∥

n11 n12 n13

n21 n22 n23

n31 n32 n33

∥∥∥∥∥∥
, nαβ = nβα

(α, β = 1, 2, 3)





, (15)

where
∑3

i=1mii =κ and
∑3

i=1 nii =0, due to the Ricci identity, which
proves the theorem. Let us note that similar matrices were obtained by
V. F.Kagan [3], when studying the group of Lorentz transformations,
although he used a condition of orthogonality of these matrices. Under
the same assumption of orthogonality, similar matrices were also studied
by Ya. S.Dubnov [4] and A.M. Lopshitz [5]. The fact established by
the previous theorem takes place for any orthogonal frame and, hence,
taking into account that the orthogonal frame has 6 degrees of freedom
for n=4, one can expect the possibility of further simplification of the
matrix by choosing 6 appropriate rotations.

First let us prove a theorem that would essentially narrow down
the number of possible (at first sight) types of the characteristic of the
matrix (14).

Theorem 2. The characteristic of the matrix (14) always consists of
two identical parts.

Let us reduce the matrix (14) to a simpler form by using the so-
called elementary transformations, which, as is known, do not change
the elementary divisors of a matrix and, therefore, its characteristic.
Let us represent this matrix in the following way:

∥∥∥∥
mαβ +Kδαβ nαβ

nαβ −mαβ −Kδαβ

∥∥∥∥ ,

where δαβ is the Kronecker delta. By multiplying the last column by i
and adding it to the corresponding first column we shall get the equiv-
alent matrix

∥∥∥∥
mαβ + inαβ +Kδαβ nαβ

− i(mαβ + inαβ +Kδαβ) −mαβ −Kδαβ

∥∥∥∥ .
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By multiplying the first row of the previous matrix by i and adding
it to the last row we shall convert the matrix to the form

∥∥∥∥
mαβ + inαβ +Kδαβ nαβ

0 −mαβ + inαβ −Kδαβ

∥∥∥∥ .

Finally, by multiplying the first column by i
2
and adding it to the

corresponding last column and making the same operation with the last
row, we shall obtain the matrix
∥∥∥∥
mαβ + inαβ+Kδαβ 0

0 mαβ−inαβ+Kδαβ

∥∥∥∥≡
∥∥∥∥
P (K) 0

0 P (K)

∥∥∥∥ , (16)

which is equivalent to the K-matrix (14). The task has been reduced to

the studying of two three-dimensional matrices P (K) and P (K), whose
corresponding elements are complex-conjugate. It follows then that the
elementary divisors of these two matrices are also complex-conjugate
and, hence, their characteristics have the same form. Therefore, the
characteristic of ourK-matrix consists of two parts repeating each other,
so that the theorem holds.

Let us note that the principal directions and invariant bundles of
the K-matrix should also be pairwisely complex-conjugate.

Now we can accomplish the classification of the fields of gravity. This
classification can be expressed through the following theorem.

Theorem 3. There exist three and only three types of the fields of
gravity.

The three-dimensional matrix P (K) can have only one of three pos-
sible types of characteristic: [ 1 1 1 ], [ 2 1 ], [ 3 ], if we neglect the cases
when some of the elementary divisors have the same basis and, thus,
some of the numbers in the square brackets should be enclosed in paren-
theses, e.g., [(1 1) 1 ], [(2 1)], etc.

The characteristic of P (K) will have the same form. Then the char-
acteristics of the K-matrix will be written as following:

1) [ 11, 11, 11 ]; 2) [ 22, 11 ]; 3) [ 3 3 ],

where the overlined numbers correspond to the power index of the el-
ementary divisor with the basis being complex-conjugate to the basis
whose power index is expressed by the previous number.

Each of these types of the gravity fields has to be considered sepa-
rately; and of a prime importance here is to get the canonical forms of
the matrix ‖Rαβ ‖ for each of these types.
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§3. The canonical form of the matrix ‖Rαβ ‖. Let us consider

the first type with the characteristic [ 1 1, 11, 11 ]. As in this case the
characteristic is of simple type, the tensor Rαβ has 6 non-isotropic,
pairwisely orthogonal principal directions [6]. One can show that at
a given point of T4 these directions of the bivector space will give the
bivectors of specific structure.

Let us denote the vector components of the real orthogonal frame at
a point of T4 by

k
ξi (k, i=1, . . . , 4), denoting for brevity by ξijkl the simple

bivectors
[k l]
ξiξj (k 6= l) that determine the two-dimensional plane corre-

sponding to the vectors of the frame. In the bivector space, these simple
bivectors define 6 non-isotropic, mutually independent and orthogonal
coordinate vectors

σ
ξα = δασ , so that any vector in R6 (in particular, the

vectors of the principal directions in Rαβ) can be represented in terms
of these vectors.

Let us show that we can take the vectors

Wα = λ(
1

ξα ± i
4

ξα) + µ(
2

ξα ± i
5

ξα) + ν (
3

ξα ± i
6

ξα) (17)

as the vectors of principal directions, which are uniquely defined only
in the case when the roots of the secular equation (12) are all distinct.

Indeed, the condition of Wα to define the principal direction of the
tensor Rαβ is written as

(Rαβ −Kgαβ)W
β = 0 . (18)

But due to the symmetric twoness of the K-matrix this system of
six equations can be reduced to three equations

(ms1 ± ins1 + k)λ+ (ms2 ± ins2)µ+(ms3 ± ins3)ν = 0 , s = 1, 2, 3 .

For λ, µ, ν to be the non-zero solutions of this system it is necessary
and sufficient that K were the root of one of the equations

|P (K)| = 0 , |P (K)| = 0 , (19)

i.e., a root of the secular equation (12), which proves the theorem.
At a given point of T4 the vector Wα (17) of the manifold R6 corre-

sponds to the bivector of completed rank:

W ij = λ(
14
ξij ± i

23

ξij) + µ(
24

ξij ± i
31

ξij) + ν (
34

ξij ± i
12

ξij) . (20)

One can easily check that, under any (real) orthogonal transforma-

tion,W ij grades into a bivector of the same type, with λ, µ, ν −→
∗

λ,
∗
µ,

∗
ν,
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so that the norm of the bivector remains invariant:

λ2 + µ2 + ν2 =
∗

λ2 +
∗
µ2 +

∗
ν2.

Let the roots of (12) K (s = 1, 2, 3) correspond to the vectors of the
principal direction W

s

α; then, according to the above reasoning, the

roots K
s+3

should correspond to W
s

α, provided the appropriate indexing

of the roots.
The root K

1
corresponds to the bivector

W
1

pq = λ
1

(
14

ξpq + i
23

ξpq) +
1

µ(
24

ξpq + i
31

ξpq) + ν
1

(
34

ξpq + i
12

ξpq) ,

and the root K
4
corresponds to the bivector

W
4

pq = λ
1

(
14

ξpq − i
23

ξpq) +
1

µ(
24

ξpq − i
31

ξpq) + ν
1

(
34

ξpq − i
12

ξpq) .

Let us represent the bivector W pq as a sum of two real bivectors

V
1

pq + i
∗

V
1

pq. Then

W
4

pq = V
1

pq − i
∗

V
1

pq.

Let
λ = a

1
+ ib

1
, µ = a

2
+ ib

2
, ν = a

3
+ ib

3
,

where a
s
, b

s
are real numbers (s = 1, 2, 3); hence

V
1

pq = a
1 14

ξpq + a
2 24

ξpq + a
3 34

ξpq − b
1 23

ξpq − b
2 31

ξpq − b
3 12

ξpq,

∗

V
1

pq = b
1 14

ξpq + b
2 24

ξpq + b
3 34

ξpq − a
1 23

ξpq − a
2 31

ξpq − a
3 12

ξpq.

Since W
1

α is not an isotropic vector of R6, then it can always be

regarded as a unit vector

gαβW
1

αW
1

β = 1 ,

which leads us to the conclusion that

3∑

s=1

a
s
b
s
= 0 , (21)

3∑

s=1

b
s

2 − a
s

2 > 0 . (22)

Now we can assert the following.
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1. The real bivectors V
1

pq and
∗

V
1

pq are single-foliated. Indeed, by

writing down the simplicity condition we shall arrive at (21).

2. They are 0-parallel. They cannot be be 2
2
-parallel, which would

be possible only when the coefficients were proportional at equal

ij
ξpq; then they would have to be equal to zero. For example,

a
1

b
1

= −
b
1

a
1

, a
1

2 + b
1

2 = 0 .

They cannot be 1
2
-parallel either, as in this case W

1

α would be a

single-foliated complex bivector; but then by writing the simplicity
condition we would arrive at a contradiction with (21) and (22).
Therefore, we are left only with the above possibility.

3. These bivectors are 2
2
-perpendicular. For this to be true, it is

necessary and sufficient to satisfy the equalities

V
1
is

∗

V
1

sj = 0

for any i, j. It is plain to see that these equalities are reduced to
(21), so that they are, indeed, satisfied.

Let us consider a simple bivector V
1

pq. Its norm, according to (22), is

gαβV
1

αV
1

β =
∑

b
s

2 − a
s

2 > 0 .

In the plain of this real bivector, one can always chose two real, or-
thogonal and non-isotropic vectors ηp, νp. Then the norm of our bivector
can also be expressed in the form

2ηpη
p νq ν

q ,

and, hence, these two vectors are both either space-like or time-like.
Their norms cannot be > 0, because if we took these two real orthogonal
vectors as coordinate vectors, we would arrive at a contradiction with
the law of inertia of quadratic forms. Therefore, these two vectors have
negative norms. Due to this, by re-normalizing them, we can take them

as the vectors
2

∗

ξi,
3

∗

ξi of a new real orthogonal frame.

In a similar way, let us define in the plane
∗

V
1

pq two orthogonal (mu-

tually and with respect to
2

∗

ξi,
3

∗

ξi) vectors, which will be real and non-

isotropic but already having the norms of opposite signs, since

gαβ
∗
ν
1

α∗
ν
1

β < 0 .
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Let us denote these vectors as
1

∗

ξi and
4

∗

ξi. In this coordinate system

∗

W
1

pq =
14

ξpq + i
23

ξpq ,

∗

W
4

pq =
14

ξpq − i
23

ξpq .

Let us note that the frame {
∗

ξ} has been chosen up to a rotation in

the plane {
2

∗

ξ
3

∗

ξ} and a Lorentz rotation in the plane {
1

∗

ξ
4

∗

ξ}. Of course, we

are interested in the bivectors W
σ

pq only up to a scalar factor.

Now, writing the orthogonality condition for
∗

W
1

pq and
∗

W
2

pq, we find,

of course, that the bivector of the second principal direction should have
the form

∗

W
2

pq =
2

∗
µ(

24

∗

ξpq + i
31

∗

ξpq) +
2

∗
ν (

34

∗

ξpq + i
12

∗

ξpq) .

Let us make use of the above indicated arbitrariness in the choice of
the frame and perform the following rotations:

1

ξp = chϕ
1

∗

ξp + shϕ
4

∗

ξp ,

4

ξp = shϕ
1

∗

ξp + chϕ
4

∗

ξp ,

2

ξp = cosψ
2

∗

ξp + sinψ
3

∗

ξp ,

3

ξp = − sinψ
2

∗

ξp + cosψ
3

∗

ξp .

After these transformations W
1

will have the same form; hence W
2

will also be expressed as

W̃
2

pq =
2

µ̃(
24

ξ̃ pq + i
31

ξ̃ pq) +
2

ν̃ (
34

ξ̃ pq + i
12

ξ̃ pq) ,

where

ν̃
2
= sinψ chϕ+ p cosψ chϕ+ q sinψ shϕ+

+ i (cosψ shϕ+ q cosψ chϕ− p sinψ shϕ) ,

p+ iq =

∗
ν
2

2

∗
µ
,

and
2

∗
µ can be considered not being equal to zero, otherwise we would be

satisfied with the values ϕ = ψ = 0. One can find real ϕ and ψ for any
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ν̃
2
= 0. Now the frame is defined uniquely, and, if the orthogonality of

W
1
, W

2
, W

3
is taken into account, the bivectors will have the following

form in this frame (up to a scalar factor):

W
1

pq =
14

ξpq + i
23

ξpq ,

W
2

pq =
24

ξpq + i
31

ξpq ,

W
3

pq =
34

ξpq + i
12

ξpq ,

and, due to the mentioned above complex conjugacy,

W
4

pq =W
1

pq , W
5

pq =W
2

pq , W
6

pq =W
3

pq .

Now, by writing the condition (18) for each of these bivectors and,
taking into account that

α

ξσ = δσα ,

we can easily find

mii = −α
i
, mij = 0 , nii = −

i

β , nij = 0 , (i = 1, 2, 3; i 6= j);

and, therefore, for the first type of T4 we obtain the following canonical
form of the matrix :

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−α
1

−
1

β
− α

2
−

2

β
− α

3
−

3

β

−
1

β α
1−

2

β α
2−

3

β α
3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (23)

the real parts of the stationary curvatures being related to each other in
the following way :

3∑

1
s
α = κ , (24)

whereas the imaginary parts obey the condition

3∑

1
s
β = 0 (25)

due to the Ricci identity

R1423 + R1234 +R1342 = 0 .
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Let us now consider a T4 with the characteristic of the second type:
[ 21, 21 ]. As we have already seen (§ 2), one can use the principal di-

rections and and invariant bundles of the matrices P (K) and P (K) for
choosing the principal directions and invariant bundles of the K-matrix.
It follows that it is sufficient to consider, for example, the matrix P (K)
having the characteristic [ 21 ].

With this characteristic, the tensor Pαβ =−mαβ + inαβ of the three-
dimensional space has [6] one non-isotropic principal direction

(Pαβ −K
1
gαβ)W

1

β = 0 (26)

and one isotropic principal direction

(Pαβ −K
2
gαβ)W

2

β = 0 , (27)

the latter (W
2
) being orthogonal toW

1
. Additionally, there exists an iso-

tropic vector W
3

β , orthogonal to W
1

β and not to W
2

β , which, together

with these latter vectors, form an invariant plane {W
2
,W

3
} of the tensor

Pαβ . This is expressed by

(Pαβ −K
2
gαβ)W

3

β = σW
2

α , (28)

where σ is an arbitrary nonzero scalar, whose choice is up to us. This
arbitrariness is the result of the fact that W

2
, W

3
, being isotropic, can

be multiplied by any number without changing their norms.

Any principal direction or bundle of Pαβ will define the correspond-
ing principal directions and bundles of the tensor Rαβ ; all of them being
defined by the bivectors of the type (17).

Let the root K
1
corresponds to a simple elementary divisor (K −K

1
)

of the fields of the K-matrix and to a principal direction defined by the

bivector W
1

α. As this bivector is non-isotropic, we can apply to it all

the above operations used in the previous case for W
1

α. Therefore, we

can find a real frame, with respect to which

W
1

pq =
14

ξpq + i
23

ξpq .

This frame is defined up to a rotation in the plane {
2

ξ
3

ξ } and to

a Lorentz rotation in the plane {
1

ξ
4

ξ }. As the bivectors W
2

pq and W
3

pq
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must be orthogonal to W
1

pq, they have the following form:

W
2

pq =
2

µ(
24

ξpq + i
31

ξpq) +
2

ν (
34

ξpq + i
12

ξpq) ,

W
3

pq =
3

µ(
24

ξpq + i
31

ξpq) +
3

ν (
34

ξpq + i
12

ξpq) .

The isotropy condition for these two bivectors results in

2

µ2 +
2

ν2 = 0 ,
3

µ2 +
3

ν2 = 0 ,

that is,

2

ν = e1 i
2

µ ,
3

ν = e2 i
3

µ ,

where e1 and e2 are equal to ±1. Finally, using the fact that they
cannot be orthogonal, we find that e1=− e2. Therefore, we can put,
for example,

W
2

pq =
24

ξpq + i
31

ξpq + i(
34

ξpq + i
12

ξpq),

W
3

pq = λ{
24

ξpq + i
31

ξpq − i(
34

ξpq + i
12

ξpq)},

where λ is an arbitrary scalar factor 6= 0.
Now we have only to write the conditions similar to (26), (27) and

(28) for the tensor Rαβ , again, as in the previous case, taking into
account that

ν
ξα = δαν . These conditions will have the form

(Rαβ −K
1
gαβ)W

1

β = 0 ,

(Rαβ −K
2
gαβ)W

2

β = 0 ,

(Rαβ −K
2
gαβ)W

3

β = σgαβW
2

β .

The tensor gαβ is defined by the matrix (6). Assuming here α=
=1, 2, . . . , 6, we can readily find that the matrix (Rαβ) (11) will be

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−α
1

0 0 −
1

β 0 0

0 −α
2
+σ 0 0 −

2

β σ

0 0 −α
2
−σ 0 σ −

2

β

−
1

β 0 0 α
1

0 0

0 −
2

β σ 0 α
2
−σ 0

0 σ −
2

β 0 0 α
2
+σ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, σ 6= 0 . (29)
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Here σ can be arbitrary but 6= 0. As in the first case, α
s
and

s
β are

related to each other through

α
1
+ 2α

2
= κ ,

1
β + 2

2
β = 0 . (30)

The frame is determined up to a rotation in the plane {
2
ξ

3
ξ } and

a Lorentz rotation in the plane {
1
ξ

4
ξ }.

We have to consider now the third type with the charcteristic [ 3, 3 ].
For this characteristic [6], the tensor Rαβ will have only one principal

isotropic directionW
1

β and, additionally, two more vectorsW
2

β and W
3

β

with the properties

(Rαβ −K
1
δαβ)W

1

β = 0

(Rαβ −K
1
δαβ)W

2

β = σδαβW
1

β

(Rαβ −K
1
δαβ)W

3

β = τ δαβW
2

β




, (31)

where σ and τ are arbitrary numbers 6= 0. The vector W
2

α is non-

isotropic, whereas W
3

α is isotropic. Besides that, W
1

α is orthogonal to

W
2

α and not orthogonal to W
3

α; while the vector W
2

α being orthogonal

to W
3

α.

SinceW
2

pq is not an isotropic bivector, then, similarly to the previous

two cases, we can write this vector as

W
2

pq =
24

ξpq + i
31

ξpq

by choosing an appropriate frame (with two degrees of freedom). Then,
by taking into account the above conditions for orthogonality and isotro-
py, we shall get the following expressions for the bivectors W

1
and W

2
:

W
1

pq =
14

ξpq + i
23

ξpq + i(
34

ξpq + i
12

ξpq) ,

W
2

pq = λ{
14

ξpq + i
23

ξpq − i(
34

ξpq + i
12

ξpq)} ,

where λ is an arbitrary number 6= 0. The further study is made following
the same scheme as for the previous characteristic types: we should write
the conditions (30) for Rαβ , fixing the facts that W

1

α is the vector of

the principal direction (in the bivector space) and that the vectorsW
1

α,

W
2

α, W
3

α determine the invariant bundle of the tensor Rαβ .
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These conditions are as follows:

(Rαβ −Kgαβ)W
1

β = 0

(Rαβ −Kgαβ)W
2

β = σgαβW
1

β

(Rαβ −Kgαβ)W
3

β = τ gαβW
2

β




, (32)

where σ and τ are non-zero numbers.
Considering that at any given point of T4 the bivector W

σ

pq corre-

sponds to the vector W
nt

pq −→W
σ

α in a local bivector metric space and

taking into account that for the coordinate frame

nt
ξpq −→

σ
ξα = δασ ,

it is not difficult to check that the system of equations (32) is reduced
to the following nine independent equations:

m11 + in11 + im13 − n13 = −K ,

m12 + in12 + im23 − n23 = 0 ,

m13 + in13 + im33 − n33 = − iK ,

m12 + in12 = − σ ,

m22 + in22 = −K ,

m23 + in23 = − iσ ,

m11 + in11 − im13 + n13 = −K ,

m12 + in12 − im23 + n23 = − τ ,

m13 + in13 − im33 + n33 = iK ,

where K = α+ iβ is one of the two 3-fold roots of the secular equation

|Rαβ −Kgαβ | = 0 ,

and the numbers σ and τ are arbitrary but not equal to zero. This
arbitrariness ensues from the arbitrariness of λ and is due to the isotropy
of the vectors W

1

α, W
3

α. For instance, one can assume that σ and τ are

real numbers.
By solving this system and also taking into account the conditions

3∑

s=1

esmss = κ ,

3∑

s=1

esnss = 0 ,
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one can check that τ = 2σ, β = 0, α = κ

3
, and the matrix ‖Rαβ‖ takes

the following form:

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

− κ

3
− σ 0 0 0 0

− σ − κ

3
0 0 0 − σ

0 0 − κ

3
0 −σ 0

0 0 0 κ

3
σ 0

0 0 − σ σ κ

3
0

0 − σ 0 0 0 κ

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (33)

where σ is an arbitrary non-zero number; the frame is determined up
to a rotation in the two-dimensional plane {

1

ξ
3

ξ } and a Lorentz rotation

in the plane {
2

ξ
4

ξ }.
As the final result, we have the following theorem.

Theorem. There exist three fundamentally distinct types of gravita-
tional fields:

The 1st type, with the characteristic of the K-matrix of the simple
type [ 1 1 1 , 11 1 ], for which a real orthogonal frame is uniquely defined
at any point of T4, and with respect to which the matrix ‖Rαβ ‖ has the
form (23) under the conditions (24) and (25).

The 2nd type, with the characteristic of a non-simple type [ 2 1 , 2 1 ],
for which the frame is defined having two degrees of freedom, and the
matrix ‖Rαβ ‖ has the form (29) under the conditions (30).

The 3rd type has also the characteristic of a non-simple type [ 3, 3 ];
its frame has two degrees of freedom, and its matrix ‖Rαβ ‖ has the
form (33).

Here the overlined numbers in the characteristics denote the power
indices of those elementary divisors, whose bases are complex-conjugate
to the bases corresponding to the numbers without overlining.

The three indicated types obviously admit some further more de-
tailed classification. For example, one can distinguish the cases of mul-
tiple or real roots, as had been already done by the author earlier. This
result, which I have obtained in 1950, was first published in 1951 in [1].
There is an ambiguity in the formulation given in that paper. The
proof of the theorem from § 2 was also provided by A.P. Norden in 1952
(which was not published), whose starting point was from his study of
bi-affine spaces. The proof given here is the third one and it is probably
the simplest one.
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As for the study carried out in § 3 (i.e., the determination of the
canonical form of the matrix (Rαβ) for the orthogonal non-holonomic
frame), we have to make the following note. At first thought, one might
expect to approach this task in the following way: since the character-
istic of the matrix ‖Rαβ −Kgαβ ‖ is known, it seems to be possible to
write directly the canonical form of this matrix base on the general alge-
braic theory [6]. However, this cannot be done because the coefficients
of admissible linear real transformations can be taken only in the form

Aα′

α = 2A
[j′j′ ]
ij ,

where Ai′

i =
(

∂xi′

∂xi

)
P

are the coefficients of some real orthogonal trans-

formation at a given point P of the manifold T4. That is, we can only
use the transformations belonging to a subgroup of the group of all real
orthogonal transformations in a 6-dimensional space.

This fact, which requires the arguments of § 3, is in our case obvi-
ous; it is a specific application of a more general theorem proved by
G.B.Gurevich [7].
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On the Problem of the Existence of Stable
Particles in the Metagalaxy

Kyril Stanyukovich

Abstract: In this paper, originally written in 1965, Kyril P. Stanyu-
kovich introduces planckeons — fundamental particles, whose char-
acteristics are based on the fundamental mass, length, and time in-
troduced earlier by Max Planck (the Planck mass, the Planck length,
and the Planck time). Moses A. Markov defined such particles in 1965
independently from Stanyukovich, and called them maximons. Orig-
inally published in Russian as: Stanyukovich K.P. K voprosy o su-
schetvovanii ustoychivykh chastiz v metagalaktike. Problemy Teorii

Gravitazii i Elementarnykh Chastiz, vol. 1, Atomizdat, Moscow, 1966,
267–279. Translated from the Russian manuscript of 1965 by Dmitri
Rabounski, 2008. The translator thanks Andrew K. Stanyukovich,
Russia, for permission to reproduce the original version of this paper,
and also William C. Daywitt, USA, for assistance.

In our Metagalaxy the following physically reasonable condition, which
is obvious and well-verified by observations, is true: the radius of the
Metagalaxy, r

M
, corresponds to its gravitational radius r

Mg
and its cur-

vature radius a, i.e.

r
M

= r
Mg

=
GM0

c2
=

(
Gδ

M

c2

)−1/2

, (1)

where M0 ≈ δ
M
r3
M

is the mass of the Metagalaxy.
The relations in (1) can be compared to the contracted Einstein

equation

R =
const

a2
= −κ T =

8πGδ
M

c2
, (2)

where R is the scalar curvature, T =−δM c2 is the trace of the energy-
momentum tensor, and δ

M
≈M0/r

3
M

is the density of the Metagalaxy.
From here it follows that

GM0

c2
=
c2r2

M

GM0
. (3)

This formula is an identity. In other words, the radius of the internal
curvature of an object, which equals its gravitational radius, always
equals the size L of the object.

Let us try to answer the following question: can the Metagalaxy
contain objects which are analogous, in the sense of self-closure or self-
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containment, to the Metagalaxy itself, i.e. objects whose characterist-
ics are

L = rg = a , (4)

where L is the size of such an object?
J. Oppenheimer and G. Volkoff [1], and also L. D. Landau [2] working

independently, showed that, given a star whose mass is larger than
100M⊙ =1035 g, such a star experiences rapid compression (collapse) so
that its radius shrinks to its gravitational radius, or even smaller. It
is likely that a reverse process, an anti-collapse process, is also possible
that may explain many of the “enigmatic” bulky explosions of star-like
objects in the universe.

As M. Planck has shown, the quantities ~, G, and c (here ~ is
Planck’s constant, G is the gravitational constant, c is the velocity of
light) provide a base for the construction of the following quantities

L =

√
~G

c3
= 1.6×10−33 cm

mL =
1

2

√
c~

G
=

~

2cL
= 1.1×10−5 g

τ
L
=
L

c
= 10−43 sec





. (5)

Note that in such a case, according to [3],

L =
2Gm

L

c2
= rg , (6)

where rg is the gravitational radius specific to the mass m
L
.

The density of a “particle” whose mass is mL is [5, Part II]

δL =
3mL

4πL3
=

3

4π

c5

2~G2
≈ 1095 g/cm

3
. (7)

As a matter of fact, the curvature radius of the internal gravitational
field of such a “particle”, a

L
, is L. The scalar curvature is then

R = const× 6

a2
L

= −κ T =
8πGδ

L

c2
=

8π × 3c3

2× 4π~G
=

3

L2
, (8)

from which we obtain a
L
=L (here the const=1/2).

It should be noted that, inside such a particle, we have an “Ein-
stein universe” with variable curvature, or, more precisely, an internal
Schwarzschild field [6]. Thus the size of such a quasi-particle is the same
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as its gravitational radius and its internal curvature radius, and, at the
same time, its size satisfies the uncertainty principle.

Being born as a result of random fluctuations of energy, or in the
initial stage of expansion of the Friedmann universe, such particles
should be stable and neutral to any external radiation (both electromag-
netic and gravitational). Such particles, in contrast to unstable geons
assumed by Wheeler, should be stable, self-contained Einstein micro-
universes. The charge of such a particle is of the order of e

L
=
√
~c=

=
√
137 e, the internal field stress being E≃H ≃ eL

L2
≈ 1057Oersteds,

while the total energy of such particle corresponds to a rest-mass 10−5 g.
The “Bohr radius” for such a particle is

r
B
=

~
2

e2
L
m

L

=
~
2

137e2m
L

≈ L .

Because the quantities L and m
L
are connected to fluctuations of

gravitational fields (gravitons), we are allowed to assume the number of
such particles to be NL =N 1/2

g =N 3/4

p , where Ng =10120 and Np =1080

are the numbers of gravitons and nucleons in the Metagalaxy.
Thus, NL=1060. In such a case the total mass of these particles is

M
L
=m

L
N

L
=1055 g which is the same as the mass of the Metagalaxy.

In other words, the energy of these particles is of the same order as the
energy of other kinds of matter, as it should be in a homogeneous model
of the universe. The number of collisions among these quasi-particles
(we will refer to such particles as planckeons, in memory of Planck) is
determined, within an order of magnitude, by the following formula per
unit time per unit of volume

ncol = πr20 c nL
np ≈ r20 cN

7/4

p a−6, (9)

where nL=NLa
−3 and np =Npa

−3 are the density of planckeons and the
density of nucleons respectively, where a is the radius of the Metagalaxy
and r0 is the nucleon radius.

Calculations show that ncol≈ 10−40 cm−3 sec−1. The energy radi-
ated in these collisions corresponds to a rest-mass 10−45 g cm−3 sec−1

that is the mass necessary for the generation of new nucleons according
to the Dirac-Hoyle theory that the law Np =T 2

m hold (here Tm=ω0 tm
is the dimensionless age, ω0 is the frequency of strong interactions, tm
is the age of our universe — the Metagalaxy).

Naturally,

△m =
△Npmp

△t a3 ≃ Tmω0mp

a3
≈ 10−45 g cm−3 sec−1. (10)
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Formula (9) gives

△m = nmmL
= N

7/4

p r20 c a
−6

√
c~

G
, (11)

because √
c~

G
= mp T

1/2

m = mpN
1/4

p .

Then, comparing (10) and (11), we obtain

N2
p r

2
0 c a

−3 = N 1/2

p ω0 .

Therefore, because r0ω0/c≈ 1, we have

N
3/2

p =
a3

r30
,

a

r0
= N

1/2

p ,

that is found in nature and so proves the aforementioned claim. Thus
we can easily show that △m=αM0/a

3, where M0 =Npmp is the mass
of the Metagalaxy. Naturally, α∼ t−1 ∼ω0 T

−1
m ; therefore

△m =
ω0Npmp

a3
= ω0N

1/2

p mpa
−3 = ω0mpTma

−3

that gives equation (10) as a result.
In Hoyle’s theory [7] matter is produced from “nothing”, a strange

assumption at best. In contrast to that assumption, I suggested the
hypothesis that the replenishment of the number of particles has its ori-
gin in the gravitational background from gravitational transmutations∗

of “heavy gravitons” [5, Part II]. Now we see that the aforementioned
views come together in part. The Hoyle “nothing” is our particles-
planckeons (“heavy gravitons”), whose energy is self-contained until the
moment when the planckeon, due to interaction with another particle
(an elementary particle e.g.), relinquishes its energy, realizing a multiple
birth of ≈ 1020 nucleons. This I assert. Hoyle, however, contradicts the
law of conservation of energy, because at a given

G ∼ T −1
m

m
L
becomes

m
L
∼ T

1/2

m ,

so m
L
is growing with time.

At present, from studies of V. A. Ambarzumian [8] and other mod-
ern astronomical observations, it is almost obvious that galaxies have an

∗The term “gravitational transmutations” here is intended in the sense according
to D. D. Ivanenko.
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explosive origin similar to the origin of superstars, quasars, and several
other objects in the Metagalaxy. My view on the origin of these objects
is [5, Part II] that different kinds of super-dense particles of very small
size, which were born and are still being born in interactions within the
evolving Metagalaxy, can give birth to superstars and galaxies (mean-
ing that superstars are galaxies in the process of being born). In this
process, not only is matter evolving, but also the so-called universal-
constants (such as ~, G, mp, e) specific to the “universes” where the
matter evolves. And now I will justify this view on more solid ground.

Having assumed that

G ≃ Tm , ~ ∼ mp ∼ e2 ∼ T −2
m ,

c = const, r0 = const, ω0 = const,

all conservation laws will be true, and also the relations

a = ctm ∼ Tm ,
Gm2

p

e2
≃ T −1

m , Np = T 2
m.

In such a case, m
L
is large for small Tm. Naturally,

mL =

√
c~

G
=

√
c~0

G0
T

−3/2

m =M0 T
−3/2

m . (12)

For instance, given Tm =108 we obtainmL=1044 g as the mass of the
Metagalaxy. Several of these particles still remain non-interacting, so
they replenish the galaxy “reserve”. Interactions of these particles with
nucleons of that epoch (mp =1040 g), in large groups, are able to give
birth to galaxies. As these particles age, galaxies of smaller size, constel-
lations, and stars of some classes are born. According to the hypothesis
suggested by I. D. Novikov [9], super-stars represent the late explosion
of a part of the “Friedmann super-dense substance”, which was delayed
while the main mass of the Metagalaxy evolved. My views [5, Part II],
independent of his, are close to his nevertheless, but the mechanism
delaying the evolution of the Friedmann substance, as I suggested (the
density of this substance coincides with the initial density of the Meta-
galaxy, δ=1095 g/cm3= const), is more specifically developed and rea-
sonable. With this mechanism new developments in the theory of the
explosive origin of galaxies and stars are possible [5, Part II].

The likely existence of planckeons suggests that the Metagalaxy itself
may be only a “particle” in a complicated structure of a countably-
dimensional hierarchy of “particles” in an infinite universe. In other
systems similar to our Metagalaxy, other energy stores, light velocities,
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and particle sizes (on a relative scale of values) are possible. Such sys-
tems can be born as a result of interactions (collisions) among “parti-
cles”, or as a result of fluctuations of other structural systems larger than
our Metagalaxy. The “death” of such structural systems can be found
in their expansion or compression, or absorption by external sources.

Aside from planckeons, other “self-contained” particles can exist in
the Metagalaxy. The main parameters of several classes of such particles
are given in the Table.

A few classes of “self-contained” particles can exist between the
classes n=4 and n=5.

In the Table: N is the total number of “elementary” particles whose
fluctuations give birth to NF =

√
N stable fundamental particles; m, L,

and δ are the mass, size, and density of fundamental particles; ~n/~4
is the effective magnitude of the “Planck constants” for these particles
(the Table also shows the evolution of ~n/~4 with time for particles of
each class); and ν/a3 is the relative volume “lost” in the self-contained
particles.

It is interesting to note from the Table that the probability of large
objects (such as galactic clusters and galaxies) emerging from particles
whose N is large decreases. In other words, the probabilities of stellar-
like objects emerging from particles whose N is small increases. At
n=4 we have planckeons (~4 = ~).

Such stable particles can be called fundamental particles and, as a
result of interactions (for the most part between particles of neighboring
classes), can give birth to different “elementary” quasi-stable particles
of stars, i.e. nucleons and leptons. In this process, 10−45 g cm−3 sec−1

of “new” substance is born, on the average, in the Metagalaxy.
M. A. Markov [10] suggests that planckeons (n=4 in our Table),

referred by him as maximons, are quarks. I think however that quarks
are particles with n=5. I suggest the following scheme of interaction
between elementary particles and fundamental particles: fundamental
particles can be born due to fluctuations of the fields of elementary
particles; then the fundamental particles, in their interaction with the
elementary particles and with each other, give birth to other elementary
particles.

Because we assume that particles “age” (including the so-called el-
ementary particles), i.e. their energy decreases with time, we should
clearly determine how this happens. For particles which are in the
quantum ground state, quantum mechanics prohibits both electromag-
netic wave radiation and “corpuscular radiation”. Quantum mechanics
and the quantum field theory assume that such stationary states exist
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n N NF =
√
N m, g L, cm δ, g/cm3

~n/~4 ν/a3

1 1 1 1055 1028∼Tm 10−28∼T−3
m 10120∼T 3

m 1

2 1040∼Tm 1020∼T
1/2
m 1035∼T

−1/2
m 107∼T

1/2
m 1014∼T−2

m 1080∼T 2
m 10−40∼T−1

m

3 1080∼T 2
m 1040∼Tm 1015∼T −1

m 10−13 10−54∼T −1
m 1040∼Tm 10−80∼T−2

m

4 10120∼T 3
m 1060∼T

3/2
m 10−5∼T

−3/2
m 10−33∼T

−1/2
m 1095 1 10−120∼T−3

m

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

5 10160∼T 4
m 1080∼T 2

m 10−24∼T −2
m 10−52∼T−1

m 10135∼Tm 10−40∼T−1
m 10−160∼T−4

m

Table: The classes of “self-contained” particles, which are possible in the Metagalaxy.
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for a particle in its minimum energy state. This assumption follows from
the supposition that a particle can be absolutely isolated (or “shielded”)
from other particles and fields. Because this is true except for gravita-
tional fields, the modern theories of quantum mechanics and the quan-
tum field theory are theories working in a flat space-time (Minkowski’s
space), so they don’t take into account interactions with the universal
gravitational field which, according to the General Theory of Relativity,
cannot be “shielded”. Experiments of the last decades show that this is
true to a measurement precision of at least 10−12. Thus isolating par-
ticles from gravitational fields contradicts not only the General Theory
of Relativity, but also the experimental evidence.

As an example, a single proton, shielded from all other fields, is a
stationary superposition (in the quantum mechanics sense) of the states
of a so-called “naked” proton (neutron + meson, etc.; such a proton
is also known as “physical proton”). The stationary superposition is
spherically symmetric (as it should be for a particle whose spin is 1/2)
and, hence, such particles cannot produce radiation; so they remain in
their stationary ground states.

If a proton is in the presence of another proton somewhere else in the
universe, the impossibility of shielding their gravitational fields destroys
the spherically symmetric superpositions of their virtual states due to
the tidal forces which perturb their spherical meson shells.

The periodic order of the proton states during the deformation of
their spherically symmetric forms results in the braking of the strong
stationary states, and leads to the periodic processes of radiation and
absorption of the gravitational field energy.

In the case of the gravitational interaction among many moving par-
ticles, the perturbation of the surface of each particle is depending on
the perturbation or fluctuation of the space metric. The magnitude of
such a metric perturbation is known from [1, 2], and is

L =

√
G~

c3
= r0 T

−1/2

m = 10−33 cm. (13)

Elementary particles are oscillators whose frequency is of the order
of ω0 = c/r0 =1023 sec−1. We therefore should consider the probabil-
ity of various possible quantum transitions of these oscillators, which
are due to the action of the fluctuating gravitational fields. Because
the perturbations of the fields are small in magnitude, the respective
solution of Schrödinger’s equation leads to the formula

W0k =
ξ2k0
2kk!

e
−ξ20/2, (14)
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whereW0k is the transition probability from the stationary ground state
to an excited state of level k, and where

ξ0 = χ0

√
mω

~
, (15)

where χ0 =L, ω=ω0, m=mp.
Because

ξ0 = 10−33

√
10−24 1023

10−27
= 10−20,

we obtain

W0k =
10−40k

2kk!
e
− 1

2
10−4

=
10−40k

2kk!
. (16)

In the transition to a minimally excited state (k = 1), we have

W0k =
1

2
10−40 .

The average numerical value k̄=
ξ20
2
= 1

2
10−40≈ 10−40. Therefore the

radiation of energy is characterized by the value k̄=10−40, which cor-
responds, for a nucleon, to the gravitational field energy relative to the
energy of the strong interactions. We can also arrive at the same value
from the following formula [11]

W = k̄
△E
E0

=

(
Eg

E0

)2
. (17)

Assuming the “naked” nucleon is not a point-mass, but a continuous
particle whose size is r=L=10−33 cm [12], we have

Eg =
Gm2

p

L
= 10−20mpL

2 = 10−20E cm, (18)

with the same result W ≃ 10−40 obtained above.
The probability of radiation due to the action of an external field

is always larger than the probability of absorption. The remainder of
these probabilities, i.e. the probability of excess radiation, is of the order
of these probabilities, and is proportional to them.

Because the energy density of such an external gravitational field
decreases with time, the relative density of the field energy decreases
with time for the time △εg/εg =10−40∼T−1

m during a single fluctuation
or pulsation of the nucleon. Thus the probability of radiation exceeds
the probability of absorption, and leads to a change in the relative
energy of the particle.
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The method of adiabatic invariants, applied to slow transitions due
to adiabatic perturbations, leads naturally to the formula

W12 = e
−2Tm

t∫

t0

ω21(t) dt , (19)

where ω21 =
E2−E1

~
, t= t1 is the current time, t0 is the initial time, W12

is the probability of the particle (system) being in the state characterized
by the wave function ψ2 when t→∞ under the condition that this
particle (system) was in the state ψ1 as t→−∞. For the problem at
hand, we will assume that E1 =E2 =E0 at time t= t0 and that E1 =E
at t= t1.

Let ω21=α= 1
2t
, and the imaginary part of the complex “time” be

t1 = t0 = t=1017 sec. In such a case, E0 −E1 =10−44 ergs corresponding
to a mass mg =

E0−E1

c2
=10−65 g, which is the actual mass of a graviton.

We approximate W12 by the equation

W12 = e2
t0∫

t1

αdt = e

t0∫
t1

dt
t

=
t0
t1
. (20)

For t1 = t0 +△t we have

W12 = 1− △t
t0

= 1− 10−17△t .

While a single pulsation of a nucleon takes △t=10−23 sec, we have
W12 =1− 10−40. Thus the change of the probability of the nucleon state
in a single pulsation is

W = 1−W12 = 1− t0
t
≃ △t

t
= 10−40

which corresponds to the above conclusion arrived at in a different way.
These quantum transitions take place only if the frequency of the

particle (oscillator) equals the frequency of the external field.
Because the displacement of such an oscillator is x0 =F/mω2, where

F is an external force perturbing the oscillator, we arrive at

F = mpω
2
0L = mpω

2
0 r0

L

r0
=
L

r0
× 10−10 = 1010. (21)

On the other hand, the force of the gravitational field acting on the
nucleon (oscillator) is

F = m∗
g c ω = mg c ω

m∗
g

mg
= 10−30

m∗
g

mg
, (22)
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where the mass of a quantum of the gravitational field at a distance L
from the center of the nucleon is

m∗
g =

Gm2
p

c2L
, mg =

Gm2
p

c2 r0
, (23)

wherefrom we obtain

m∗
g

mg
=
r0
L

= 1020, F = 1010,

that coincides with the magnitude of F found in equation (21).
Comparing (21) and (22) in their general form, we obtain

L2 =
Gmp

c ω0
=
Gmp r0
c2

= r0 rg , (24)

which is true in general as borne out by experiment.
So, our speculations and calculations show that a particle in a gravi-

tational field (ignoring that field is unrealistic) cannot be in a stationary
ground state. The term “stationary state” itself contradicts the covari-
ant laws of the General Theory of Relativity which treats gravitation
as a universal disturbance leading to changes in the space metric, i.e.
to changes in the geometry of space and any sources located therein.
Because a system of bodies interacting through the gravitation field can-
not be at rest, the space metric changes with time and forces the bodies
to radiate. This radiation is electromagnetic dipole, four-gravitational
quadruple radiation.

An opposing view to that taken above would appear to contradict the
principles of General Relativity which are well-verified by experiment.
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On Increasing Entropy in an Infinite
Universe

Kyril Stanyukovich

Abstract: In this 1948 presentation Kyril P. Stanyukovich con-
cludes that increasing the entropy of an infinite universe does not lead
to a state of equilibrium, but only to a non-cyclic evolution of matter.
A very truncated Russian version of this presentation was published
in 1949 as: Stanyukovich K.P. O vozrastanii entropii v beskonechnoy
vselennoy. Doklady Akademii Nauk USSR, 1949, vol. LXIX, no. 6,
793–796. Translated from the Russian manuscript of 1948 by Dmitri
Rabounski, 2008. The translator thanks Andrew K. Stanyukovich,
Russia, for permission to reproduce the original version of this paper,
and also William C. Daywitt, USA, for assistance.

Relativistic thermodynamics shows that a universe does not approach
equilibrium by increasing the universe’s entropy [1]. In contrast, classi-
cal mechanics, statistical mechanics, and thermodynamics come to the
opposite conclusion, or they leave the question unanswered.

One often assumes [2] either that unknown physical conditions in
the universe lead to a decreasing entropy, or that fluctuations in the
infinitude of regions of the universe lead to decreasing entropy as well,
that compensate the thermodynamical processes of increasing entropy.

Modern statistical mechanics, which was developed after J. W. Gibbs
through the studies of G. D. Birkhoff and A. J. Khinchin [3], considers
very large (but finite) sets of particles. As a result, modern statistical
mechanics gives no direct answer to the important principal question:
is a universe with increasing entropy approaching a state of equilibrium
in all its finite regions, or not?

Authors of numerous other studies naturally recognize that entropy
increases in most cases of closed and finite systems, while statistical
methods are often assumed to apply to an unbounded universe. Nev-
ertheless, even though the infinite universe may be closed as a whole,
statistical calculations do not apply to its entirety. In particular, it is
wrong to claim that, given an increasing entropy, the universe will au-
tomatically approach a state of equilibrium [4]. J. I. Frenkel [5] noted
that the entropy of a system, which interacts only minimally with the
rest of the universe, increases with time due to the perturbing action of
this interaction on the motion of particles in this system. According to
Liouville’s theorem, a completely isolated system has the property that
a given volume △Γ of phase space remains unchanged with time. This
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result follows because the entropy s ∼ ln△Γ.
Let me now develop my own view on the impossibility of an infinite

universe reaching a state of equilibrium.
Split such an infinite universe into a countable (countably infinite)

set of finite regions. Clearly, such a splitting is possible.
Obviously each finite region contains a finite number of elementary

particles of matter. Because we want to take into account the interac-
tion between these particles and any fields (electromagnetic and gravi-
tational) that may be present, we assume with the quantum theory that
a finite region of the universe contains a finite number of quanta. We
also assume that the elementary quanta are infinitely small, not in the
sense of “energetic points”, but in the sense that the countable set of
such quanta occupies a finite volume and contains a finite energy.

Therefore, a finite volume of space can contain not only a finite
number of elementary particles (including quanta), but also a countable
set of them.

In such a case, a countable set of elementary particles inhabits the
entire space.

Clearly the set of interactions per a finite interval of time between
the particles located in each finite volume of space forms a countable
set of interactions if the particles in that set are countable, and forms
a finite set if the number of particles is finite. Thus in both cases a
countable set of interactions will be realized within the entire infinite
space during a finite interval of time. The term “interaction” here means
any process in which two particles exchange energy.

Because any infinite interval of time can be split into a countable
set of finite intervals, a countable set of interactions can be realized in
the entire universe during an infinite interval of time.

Classical statistics, when applied to an infinite universe, has the
drawback that it assumes such a universe contains particles of only a
single class (an unlikely situation in our Universe). It should also be
noted that not all of the theorems of classical statistics are applicable to
infinite sets of particles because those theorems only operate on finite
sets. So applying these theorems to an infinite set of particles is not
correct and can lead to untrustworthy results.

I suggest that, if an infinite universe were inhabited by a countable
set of particles of the same class (e.g., like molecules), even in the case
where each particle is in the same k energy level allowed to that parti-
cle, the universe would evolve to a state of equilibrium after a countable
number of interactions between the particles (any and all types of par-
ticles are envisioned).
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The above is obvious in the case of a finite number of energy levels,
because the set of independent distributions of the particles in these
levels is of the order of ωk−1 (here ω is the number of the particles). In
the case of a countable set of levels, the corresponding set of independent
distributions of the particles is also a countable set.

Thus we can suppose that, during a finite or infinite interval of
time t6∞, an infinite universe consisting of particles of the same class
(excluding their gravitation fields) will arrive at a state of equilibrium.
In the case of a countable set of energy levels, the state of equilibrium
will also be reached at t6∞ (this is due in part to the fact that each
particle’s energy is finite).

Let us introduce, as a postulate, the assumption that a countable
set (Ω→∞) of classes of different “particles” inhabit an infinite uni-
verse, where particles of a class Ωi can consist of particles of “lower”
classes Ωi−1, Ωi−2, . . . We can envision such a “particle” as any au-
tonomous structure such as a photon, a molecule, a star, or a stellar
system, etc. We can also assume that such an infinite variety of classes
of different particles is the result of an interaction between the struc-
ture and its fields. Any number of each type of particle can be present
in the universe (clearly the number of each type can be infinite). Due
to interactions within the countable set of particles of different classes,
particles of the same classes and, perhaps, particles of new classes can
be born. Given the aforementioned postulate, relations between par-
ticles of different classes are inexhaustible as are the results produced
by those interactions. Of course, in the interactions of these particles,
processes of “association” and “destruction” of other particle types can
result. The assumption of strongly one-way processes, however, is not
allowed as such an assumption would contradict the experimental evi-
dence. It is enough that a countable set of particles of different classes
be present, and that we assume for the particles of each class that the
countable set of processes in the class is accompanied by at least one
process of the opposite direction.

Considering particles of the same class, the equilibrium state of a
system of these particles excludes all other states. The inevitable fluc-
tuations in such a system, however, always lead the system to numerous
“states of equilibrium” which differ from each other by a small value. I
call such an equilibrium absolute equilibrium.

In the case of a countable set of classes of different particles, the
term “absolute equilibrium” has no meaning. Naturally, according to
the postulate, an infinite universe always contains several non-empty
sets of particles of each class (we assume that these are countable sets
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of particles), and that the entire universe — the set of particles of all
classes — is already in a state of equilibrium. We therefore consider the
set of particles of a class Ωi, for instance. Because particles of the lower
classes Ωi−1, Ωi−2, . . . are elements consisting of particles of the class
Ωi, interactions between particles of the class Ωi can perturb particles
of the lower classes. Therefore interactions between these particles will
act on particles of the lower class Ωi−1 and also on particles of all other
lower classes is such a way that systems of the lower-class particles will
never be in an equilibrium state.

Because the order of a class i is unbounded, any structures in the
universe can never be in a state of equilibrium. Thus the universe cannot
approach a state of equilibrium. So a claim about a state of equilibrium
for the entire universe should be looked upon with skepticism.

Clearly, absolute equilibrium can be reached in an infinite universe
only if “particles” of different classes, which inhabit this universe, de-
generate into “particles” of a single class. As shown above, however,
this is not possible. Thus real interactions lead to such states, where
substance of the universe experiences permanent evolution.

As interactions between particles of a class Ωi cause particles of a
lower classes to be in a non-equilibrium state, and as the number of
particles in each class is variable, the clear result of these interactions
will be a set of particles that approaches an equilibrium state. This
follows because, as the set of particles reach new states again and again,
these states are (more often than not) at a higher level of entropy than
the previous states.

Because the order of a class i is unbounded, the result of these
interactions leads to a “non-cyclic” evolution of matter that persists
indefinitely.

It is interesting to note that the set of all formally imaginable dis-
tributions of particles of different classes among their respective energy
levels acts as a continuum; so the number of possible sets is effectively
inexhaustible.

So finally we arrive at the conclusion that an increasing entropy in
the visible part of our Universe is not a factor in causing the Universe
to approach its equilibrium state, but is a result of a permanent, non-
cyclic, evolution of matter.

Discussion. When I suggested this theory (in the beginning of 1948),
the core of which is my thesis that a countable set of molecules of the
same class among other classes is always in a state of non-equilibrium,
I met with some criticism from I. R. Plotkin. He told me that my con-
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clusion proceeded from the erroneous belief that, given a countable set
of particles, the set of independent distributions of the particles among
their different states is also a countable set.∗ Here I would like to answer
this criticism in detail.

1. Any infinite universe can be split into a countable set of regions.
2. Each finite region contains a finite number of particles, which is

a countable set as well.
3. Thus, the entire space of an infinite universe contains a countable

set of particles.
4. Thus, a countable set of interactions between the particles takes

place in the entire space during a finite interval of time.
5. Any infinite interval of time can be split into a countable set of

finite intervals. So, a countable set of interactions takes place in an
infinite universe during infinite interval of time.

6. The set of all possible interactions in a countable set of particles
is the set of all sub-sets of the countable set. This set has the power of
continuum.

7. A countable set of interactions taking place during even an infinite
interval of time cannot exhaust that continuum of interactions which are
possible in the set.

8. Suppose an infinite universe is filled with particles of a single
class. In such a case the set of all states the particles occupy is Nn= kn

which is a continuum, where k represents a finite number of the energy
levels, while n→∞ is the number of the particles. In the general case,
the set of independent distributions of n particles among the energy

levels is Nk =
(n+k−1)!

n!(k−1)!
. Having n→∞ (our case) gives Nk =

nk−1

(k−1)!
, i.e.

Nk is a countable infinity in our case. Points which characterize the
non-equilibrium states in the phase space are distantly separated from
the point of “absolute equilibrium” therein. The set of these points is
only countable because the set of distributions of the particles among

their energy levels is nk−1

(k−1)!
. Thus, if an infinite universe consists of

a single class of particles, such a universe can reach a state of equi-
librium only after a countable set of interactions among the particles
has taken place, i.e. during an infinite amount of time, while all the
rest “bank” of the continuum of the possible interactions was remained
unused.

Consider the set M̄ of all possible states for the infinite universe.
Select the sub-set n̄6 M̄ of these states where the universe is in a state

∗Later Plotkin has published his criticism in a valuable Soviet journal of physics:
Plotkin I. R. JETP-USSR, 1950, vol. 20, no. 11, 1051. — Editor’s comment. D.R.
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of equilibrium. Transitions inside of each “factor-set” M̄
n̄
6= n̄ are due

to increasing entropy, and are still evolving toward a state of equi-
librium. Extract an element αn̄∈ M̄

n̄
different from n̄, i.e. αn̄≺ n̄ (here

≺ means “much less than”). Assume that, at the moment of time
t= t0, the universe is in one of the states of the class αn̄. As such the
universe will experience the transitions αn̄→β n̄→ γ n̄→ . . . for which
αn̄≺ β n̄≺ γ n̄≺ . . . We denote Ā as the power of the set of all the
transitions experienced by the universe from t= t0 until t→∞, while
B̄ denotes the power of the set of all transitions which are necessary
for the universe to be in the states of the class n̄ (i.e. to be in the
state of equilibrium). The universe consisting of particles of the same
class is always in a state of non-equilibrium if and only if Ā< B̄. How-
ever, the opposite condition B̄ <Ā is true for the two obvious reasons:
1) given a countable set of particles of the same class, the set of their
independent distributions among their energy levels is a countable set;
2) considering heat-conduction or diffusion of a gas in an unbounded
space, we conclude that, even if an extremely lopsided distribution of
heat exists in the space (where all heat has been condensed into a small
region in which the energy density is infinite e.g.), heat eventially be-
comes equally distributed in the space after an infinite amount of time,
so the state of the gas becomes with time only infinitesimally different
from the equilibrium state.

9. Imagine an infinite universe filled with a countable set Ω→∞ of
classes of particles, where each particle of a class Ωi can contain particles
of all lower classes (Ωi−1, Ωi−2, . . . ). As the assumption of only one-
way processes is unacceptable, there are processes of both association
and dissociation of the particles. Once a single process appears among
a set of exclusively opposite processes in the same class of particles,
a countable set of both classes of particles will be generated from the
original set some time later.

10. In such a case, not only the set of all possible states, but also
the set of all independent dispositions of the different particles among
their energy levels, will exist; leading to

Nkm =

j=m→∞∏

j=1

(nj + k − 1)!

nj(k − 1)!
−→

(
nk−1

(k − 1)!

)m
∼ 2m,

where m→∞ is the number of particle classes.
11. Thus, despite increasing entropy in each finite region of the

infinite universe, the entire universe containing the countable set of
different particle classes is always in a state of non-equilibrium and is
unable to reach equilibrium.
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12. So, a countable set of particles of the same class reaches the
state of equilibrium only through regular infinity (i.e. actual infinity)
after a countable set of interactions among the particles has taken place
(see Thesis 8). Therefore Plotkin was wrong when criticized my thesis
that a countable set of molecules of the same class among other classes
is always in a state of non-equilibrium. He was wrong as well when
claiming that a permanent strong non-equilibrium state is specific to a
countable set of particles of the same class, if this is the single class of
particles in the universe. On the contrary, the universe is able to be in
a non-equilibrium state due to the many-level internal structure of the
particles which inhabit it.

In conclusion I would thank S. I. Vavilov∗ for valuable discussions
and comments that have made this short paper a better paper. I would
also like to thank N. N. Bogoliubov† and O. J. Schmidt‡ who supported
me in this discussion. Again, special thank go to S. I. Vavilov, who
ordered to publish a truncated version of this presentation in the near
issue of the journal of the USSR Academy of Sciences§.
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On the Evolution of the Fundamental
Physical Constants

Kyril Stanyukovich

Abstract: This is a presentation held, by Kyril P. Stanyukovich,
on May 12, 1971, in Kiev, at the Institute of Theoretical Physics at
the seminar on General Relativity maintained by Alexei Z. Petrov.
Here Stanyukovich proposes his original theory of evolution of the
fundamental physical constants with cosmological time, based on re-
lations between the cosmological and quantum constants. He shows
that, given only three experimentally measured fundamental physi-
cal quantities G, c, and ~, and also the scalar curvature R of space,
which is changing with time, it is possible to express all rest-frame
fundamental constants in terms of the aforementioned four basic pa-
rameters. Translated from the Russian manuscript of 1971 by Dmitri
Rabounski, 2008. The translator thanks Andrew K. Stanyukovich,
Russia, for permission to publish this paper, and also William C.
Daywitt, USA, for assistance.

First we introduce the following definition of the gravitational mass,mg,
proceeding from the “linear quantum theory” authored by M. P. Bron-
stein [1]

mg =
~

ca
, (1)

where a is the radius of the Metagalaxy. On the other hand, as one
assumes,

mg

mp
=

2Gm2
g

~c
, (2)

where mp is the mass of a nucleon. Because

mp =
~

λc
, (3)

where λ is the Compton wavelength of the nucleon (the “size” of the
nucleon), we obtain, on the basis of the formulae (1), (2), and (3), that

mg

mp
=
λ

a
=

2G~

c3λ2
=
L2

λ2
,

where L=
√
2G~/c3 is the Planck length. Thus we obtain the funda-

mental relaton

λ3 = L2a =
2G~a

c3
=

2G~

c2H
, (4)

where H = c
a is Hubble’s constant.

Let us check the validity of the resulting fundamental relation (4),
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and how this relation works. Substituting

G = 6.7×10−8 cm3/g×sec2 , ~ = 6.6×10−27 erg×sec ,

c = 3×1010 cm/sec , H = 10−17 sec−1,

into (4), we obtain λ3 ≃ 10−38 cm3 and λ≃ 10−13 cm that meets the real
numerical values of these quantities.

We introduce one relation more, namely

2GM0mg

~c
= 1 , (5)

where M0 is the mass of the Metagalaxy. Proceeding from (1) and (3),
we have

2GM0

c2
= a = rgM , (6)

where rgM
is the gravitational radius calculated for the entire Metaga-

laxy (the gravitational radius of the Metagalaxy). In actuality, at the
present epoch the size of the Metagalaxy equals its gravitational radius.
Therefore the relation (6) is wide used in cosmology.

Thus we verified again the fundamental relation (5). We are going
to check it numerically. Because, according to the modern bounds, M0

in the order of 1056 g, and mg is in the order of 10−66 g, we obtain

8
3

×10−7 1056 10−66

3×1010 10−27
=

8

9

10−17

10−17
≈ 1 ,

so the relation (5) has been completely verified. Since, according to the
main cosmological assumption, space-time as a whole is homogeneous
and isotropic (the assumption of homogeneous time is equivalent to the
law of conservation of energy), the relations (5) and (6) should be true
not only now, but for all time.

Assume M0, c, and λ to be constants which remain unchanged with
time. This supposition permits the possibility for introducing the main
scales of length, time, and mass. In such a case, from (6) and (4), we
have

G ∼ a , G~ ∼ a−1,

thus we obtain
~ ∼ a−2.

Because R= 12
a2

in a homogeneous 4-space, we have

G ∼ R
−1/2

, ~ ∼ R .
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Thus we verified, again, our views according to which several funda-
mental “constants” are functions of the scalar curvature R in a space-
time of variable curvature. In such a case,

H ∼ R
1/2
.

So, we have already reached a very good result according to which:
given three experimentally measured physical quantities G, c, and ~,
and also the scalar curvature of space, R, which changes with time,
all rest-frame functions of the fundamental physical quantities can be
expressed in terms of these 4 main parameters.

We have already calculated λ=2×10−13 cm. Thus proceeding from
(6) we obtain M0. Since

a =
c

H
= 1028 cm ,

we obtain

M0 =
ac2

2G
= 1056 g

which is exactly the known numerical value 1056 g mentioned above.
Proceeding from these, we obtain the matter density of the Metagalaxy

ρ =
3

4

M0

πa3
≃ 10−29 g/cm3,

then we calculate the mass of a nucleon

mp =
~

λc
≈ 10−24 g ,

and also the mass of a gravition

mg =
~

ca
≈ 10−64 g .

Accordingly we calculate the number of nucleons in the Metagalaxy

Np =
M0

mp
=
a2

λ2
= T 2

m ≈ 1080

and the number of gravitons in the Metagalaxy

Ng =
M0

mg
=
a3

λ3
= T 3

m ≈ 10120

where Tm=
a

λ
=

c

λH
=

ω

H
is the Dirac dimensionless time.

Now we are going to determine the fine structure constant

α =
e2

~c
≃ 1

137
.
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As L. D. Landau has already shown [2], the electron’s charge hidden
from observation can be 137 times larger than its observed charge e.
This results from the polarization of the vacuum. In [3], assuming the
density of dipole charges to be δ= 3

4πr3
, we obtained that the total

charge as

e∗ = 4πe

r2∫

r1

δr2 dr = 3e ln
r2
r1
, (7)

where r1 is the “minimal radius” of the particle, while r2 is its “external
size”. The size r1 should be understood as the Planck length L, and
also the planckeon model of elementary particles should be taken into
account.

According to the planckeon model, there in the centre of each par-
ticle a planckeon is located — an Einstein micro-universe whose size
is L=

√
2G~/c3 =10−33 cm. A planckeon, due to its own fluctuations,

ejects a part of its substance into outer space: this “atmosphere” sur-
rounding planckeons is observed as elementary particles.

Thus we are lead to

e∗ = 3e ln
λ

L
= e ln

(
λ

L

)3
= e ln

a

L
= e ln1060 ≃ 138 e . (8)

The efficiency of the charge — the quantity which characteres the
interaction between e and e∗ — is ee∗= ~c. Thus

1

α
=

~c

e2
= 1 + ln

(
λ

L

)3
, (9)

where const=1 has been introduced for an ultimate case where λ=L
and α=1. So we obtain

ee∗ = 137e2 = ~c =
e2

α
.

From Y. Nambu’s empirical formula which characterizes the whole
“spectrum” of elementary particles, along the “spectrum” the ratio be-
tween the massm of any elementary particle and the mass of an electron,
me, is given by the law

m

me
=

2n

α
, (10)

where n is an integer specific to the particle. Thus we suggest that
the “relative particle mass” changes according to logarithm of the space
curvature.
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Since (
λ

L

)3
=
a

L
=

(
a

λ

)3/2
,

we obtain

e∗ = 3e ln
λ

L
=

3

2
e ln

a

λ
= e ln

a

L
,

which allows us the opportunity to interpret 1/α as either the logarithm
of the probability for any particle of the Metagalaxy to be inside the
volume, equal to the volume of this particle, or the entropy of a nucleon,
calculated per one particle

s = − k lnW = k ln
(a
λ

)3
=

2k

α
= 274k ,

where k is Boltzmann’s constant.
Because we have derived above how G and ~ change with the cur-

vature R, we easily calculate

mp =
~

λc
∼ R , mg =

~

ca
∼ R

3/2
, L =

√
2G~

c3
∼ R

−1/4
,

a

L
∼ R

−3/4
, e2 ∼ R

lnR
, ω =

c

λ
= const,

where ω is the frequency of strong interactions. The frequency of elec-
tromagnetic radiation and the radii of the “Bohr orbits” (the first “Bohr
orbit”, for example) are

ωδ =
me c

2

~

(
e2

~c

)2
, rδ =

~
2

me e2
,

where me≃ 10−27 g is the mass of the electron which changes logarith-
mically with time. Thus we obtain (here ct= a)

ωδ =
me c

2

~

1
(
1 + 3 ln

λ

L

)2 =
me c

2

~

1
(
1 +

3

2
ln

c t

λ

)2 . (11)

Let a source of light move away from us with a velocity v= r
tn
, and

be currently located at a distance r from us. In such a case the observed
frequence of the source is determied by the relation

ω = ω0

√√√√1− r

c tn

1 + r

c tn

(
α0

αn

)2
,
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where ω0 and α0 are the numerical values of ω and α at the moment of
time t0, while αn is the numerical value of α at the moment tn when
the light beam was radiated. Here ct0 + r= ctn, where r is the distance
between us and the source of the light as mentioned above.

Since

α0

αn
=

1 +
3

2
ln

c t0

λ

(
1 +

r

c t0

)

1 +
3

2
ln

c t0

λ

,

we finally obtain

ω = ω0

√√√√1− r

c t0

1 + r

c t0



1 +

3

2
ln

c t0

λ

(
1 +

r

c t0

)

1 +
3

2
ln

c t0

λ



2

, (12)

ω = ω0

√√√√1− r

c tn−r

1 + r

c tn−r




1 +
3

2
ln

c tn

λ

1 +
3

2
ln

c tn

λ

(
1− r

c tn

)




2

. (13)

Let r=αct0. Then (12) takes the form

ω = ω0

√
1− α

1 + α


1 +

ln (1 + α)

2

3
+ ln

c t0

λ



2

. (14)

Because c t0
λ

≫ 1 at the present epoch, the correction to the Doppler
effect is infinitesimal; so it can be neglected in the calculation.

On the other hand, at the initial moment of time, when c t0
λ

≃ 1, the
“ageing effect” was able to have a strong effect on the violet shift in
the spectral lines. Most probably, the formulae (12) and (13) should
be corrected “logarithmically”, because me

mp
∼α1.5. In such a case, the

exponent in the formula will not be 2, but approximately 3.5 that does
not no change the essence of the problem.

Now we calculate the primordial temperature. The initial tempera-
ture of the electromagnetic radiation is

T0 =
mp c

2

k

ē2

~c
, (15)

where ē2

~c
should be in order of 1

100
(this is because, given at least

t=1 sec, we have Tm=1023 and ē2

~c
= 1

80
).

Let us calculate the change of the temperature of electromagnetic
radiation with time according to the theory of evolution of the funda-
mental constants we have suggested here.
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Because the total energy radiated by a blackbody per one cm3 is

ε= 4σ
c , where σ= π2k4

60~3c2
is the Stefan–Boltzmann constant, the pressure

of the blackbody radiation p= 1
3
ε is

p =
4σ

3c
T 4 =

π2

45

(
k

~c

)3
k
(
T 0
EM

)4
. (16)

Because k T 0
0 = ~ω, where T 0

0 = const (an isotermic process) is the
temperature of a nucleon, we obtain

k ∼ ~ ∼ T 2
m ,

k

~
= const , p ∼ k

(
T 0
0

)4
.

Initially the pressure is p0 ≃ k
(
T 0
0

)4
, so we obtain

p

p0
=

k

k0

(
T 0
EM

T 0
0

)4
=

1

T 2
m

(
T 0
EM

T 0
0

)4
. (17)

So far,
p
p0

=T −3
m in the isotermic expansion of the Metagalaxy.

Therefore, as we showed in [4, Part II, §7],

1

T 2
m

(
T 0
EM

T 0
0

)4
=

1

T 3
m

,

hence we obtain
T 0
EM

T 0
0

=
1

T 1/4

m

. (18)

Finally, proceeding from (15) and (18), we obtain

T 0
EM

=
T 0
0

T 1/4

m

=
mp c

2

k T 1/4

m

ē2

~c
≃ 10−24 1021

3×1010 10−16 102
≃ 3◦ K ,

that equals the measured temperature of primordial photons. Because
p and the number of primordial photons in one cm3, nEM , is connected
through the obvious relation

p = 2c ~Npn
4/3

EM
∼ T−3

m ,
hence we have

nEM ∼ T
−3/4

m

and, because the initial number of primordial photons is

nEM0
=

(
1095 1021

2×3×1010 7×10−27 1080

)3/4
= 1039 cm−3,

where we used p0 = ρ0c
2, ρ0 =

3

4

M0

πL3
, M0 =

Lc2

2G
which are valid at the

initially moment of time (a=L), allowing us to use the numerical value
p0 = ρ0c

2 =1095 1021=10116.
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Given the present epoch, we obtain

nEM = 109 cm−3.

It is obvious, proceeding from the theory of evolution of the funda-
mental constants suggested here, that the density of primordial photons
should equal the number of gravitons per unit volume.

Naturally, because

k0 T
0
0 = mg0 c

2 = E0 =M0 c
2,

where E0 is the total initial energy, and, on the other hand,

E0 = k0 T
0
0 nEM0

V0 = k T 0
EM
n

EM
V ,

we obtain nEM0
V0 =1. From here, as Ng =T 3

m and V ∼T 3
m, we obtain

n
EM0

=
1

V0
= ng =

Ng

V
= const .

Thus it is easy to see that

k T 0
EM
n

EM
=
E0

V
= pg ,

where

pg =
E0

V
=

2GM2
0

V 4/3
≃ 10−7 dynes/cm2 = erg/cm3.

The pressure produced by the intergalactic field equals, within the
order of the numerical estimates, the density of the energy of the grav-
itational fields. Thus the energy of the primordial radiation is found to
be related directly to the energy of gravitational fields.

The energy of a primordial particle is

EPM = k T 0
EM

= 10−15 erg,

corresponding to a rest-mass m
EM

=10−36 g.
The ratio

EPM

Ep
=

10−15

10−3
= 10−12

corresponds to the ratio specific to forces the weak interactions. This
fact cannot be an accident.

It is interesting to note that the relation

q2c1
e2

=
1

T 1/4

m

= 10−10,
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where q2c1 =10−30 characterizes the weak interactions, can also not be
an accident. However the reason for this relation is not clear yet.

That fact that the frequency ≈ 1012 sec−1, which is specific to the
Lamb shift, corresponds to the energy of the order 10−15 erg can also
not bound to be an accident.
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Biography of Ole Rømer
(1644–1710)

Ole Rømer. Courtesy Rundet̊arn, the observatory

and museum in Copenhagen.

Ole Christensen Rømer was a Danish astronomer who in 1676 made
the first quantitative measurements of the velocity of light. In scien-
tific literature alternative spellings, such as “Roemer”, “Römer”, and
“Romer”, are common.

Ole Rømer was born 25 September 1644 in Århus to a merchant and
skipper Christen Pedersen and Anna Olufsdatter Storm, daughter of an
alderman. Christen Pedersen had taken to using the name Rømer, which
means that he was from Rømø, to disambiguate himself from a couple
of other people named Christen Pedersen [1]. There are few sources
on Ole Rømer until his immatriculation in 1662 at the University of
Copenhagen, at which his mentor was Rasmus Bartholin who published
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his discovery of the double refraction of a light ray by Iceland spar
(calcite) in 1668 while Rømer was living in his home. Rømer was given
every opportunity to learn mathematics and astronomy using Tycho
Brahe’s astronomical observations, as Bartholin had been given the task
of preparing them for publication [2].

Rømer was employed by the French government: Louis XIV made
him teacher for the Dauphin, and he also took part in the construction
of the magnificent fountains at Versailles.

In 1681, Rømer returned to Denmark and was appointed professor
of astronomy at the University of Copenhagen, and the same year he
married Anne Marie Bartholin, the daughter of Rasmus Bartholin. He
was active also as an observer, both at the University Observatory at
Rundet̊arn and in his home, using improved instruments of his own
construction. Unfortunately, his observations have not survived: they
were lost in the great Copenhagen Fire of 1728. However, a former
assistant (and later an astronomer in his own right), Peder Horrebow,
loyally described and wrote about Rømer’s observations.

In Rømer’s position as royal mathematician, he introduced the first
national system for weights and measures in Denmark in May 01, 1683.
Initially based on the Rhine foot, a more accurate national standard
was adopted in 1698. Later measurements of the standards fabricated
for length and volume show an excellent degree of accuracy. His goal
was to achieve a definition based on astronomical constants, using a
pendulum. This would happen after his death, practicalities making it
too inaccurate at the time. Notable is also his definition of the new
Danish mile. It was 24,000 Danish feet, which corresponds to 4 minutes
of arc latitude, thus making navigation easier. In Norway and Sweden,
this 4 minute geographical mile was mainly used at sea (sjømil), up to
the beginning of the 20th century.

In 1700, Rømer managed to get the king to introduce the Gregorian
calendar in Denmark-Norway — something Tycho Brahe had argued
for in vain a hundred years earlier.

Rømer also developed one of the first temperature scales. Fahrenheit
visited him in 1708 and improved on the Rømer scale, the result being
the familiar Fahrenheit temperature scale still in use today in a few
countries.

Rømer also established several schools for marine navigation in many
Danish cities.

In 1705, Rømer was made the second Chief of the Copenhagen Po-
lice, a position he kept until his death in 1710. As one of his first acts,
he fired the entire force, being convinced that the morale was alarm-
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The second of two portraits of Rømer painted during

his lifetime. Courtesy Rundet̊arn, Copenhagen.

ingly low. He was the inventor of the first street lights (oil lamps) in
Copenhagen, and worked hard to try to control the beggars, poor peo-
ple, unemployed, and prostitutes of Copenhagen. This was the start of
a social reform.

In Copenhagen, Rømer made rules for building new houses, got the
city’s water supply and sewers back in order, ensured that the city’s fire
department got new and better equipment, and was the moving force
behind the planning and making of new pavement in the streets and on
the city squares.

The determination of longitude is a significant practical problem in
cartography and navigation. Philip III of Spain offered a prize for a
method to determine the longitude of a ship out of sight of land, and
Galileo proposed a method of establishing the time of day, and thus
longitude, based on the times of the eclipses of the moons of Jupiter,
in essence using the Jovian system as a cosmic clock; this method was
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not significantly improved until accurate mechanical clocks were devel-
oped in the eighteenth century. Galileo proposed this method to the
Spanish crown (1616–1617) but it proved to be impractical, because of
the inaccuracies of Galileo’s timetables and the difficulty of observing
the eclipses on a ship. However, with refinements the method could be
made to work on land.

After studies in Copenhagen, Rømer travelled to the observatory
of Uraniborg, then in ruins, on the island of Hven, near Copenhagen,
in 1671. Over a period of several months, Jean Picard and Rømer
observed about 140 eclipses of Jupiter’s moon Io, while in Paris Giovanni
Domenico Cassini observed the same eclipses. By comparing the times
of the eclipses, the difference in longitude of Paris to Uranienborg was
calculated.

Cassini had observed the moons of Jupiter between 1666 and 1668,
and discovered discrepancies in his measurements that, at first, he at-
tributed to light having a finite velocity. In 1672 Rømer went to Paris
and continued observing the satellites of Jupiter as Cassini’s assistant.
Rømer added his own observations to Cassini’s and observed that times
between eclipses (particularly those of Io) got shorter as Earth ap-
proached Jupiter, and longer as Earth moved farther away. Cassini
published a short paper in August 1675 where he states [3]:

“This second inequality appears to be due to light taking some
time to reach us from the satellite; light seems to take about ten
to eleven minutes to cross a distance equal to the half-diameter of
the terrestrial orbit.”

Oddly, Cassini seems to have abandoned this reasoning, which
Rømer adopted and set about buttressing in an irrefutable manner,
using a selected number of observations performed by Picard and him-
self between 1671 and 1677. Rømer presented his results to the French
Academy of Sciences, and it was summarized soon after by an anony-
mous reporter in a short paper, Démonstration touchant le mouvement
de la lumière trouvé par M. Roemer de l’Académie des Sciences, pub-
lished on December 7, 1676, in Journal des Sçavans. Unfortunately the
paper bears the stamp of the reporter failing to understand Rømer’s
presentation, and as the reporter resorted to cryptic phrasings to hide
his lack of understanding, he obfuscated Rømer’s reasoning in the pro-
cess [4]. However only interpretation of the presented numbers makes
sense: As forty orbits of Io — each of 42.5 hours — observed as the
Earth moves towards Jupiter are in total 22 minutes shorter than forty
orbits of Io observed as the Earth moves away from Jupiter, and Rømer
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The first Meridian Circle constructed by Rømer in 1704 at his Countryside

Observatory near Copenhagen. Courtesy Rundet̊arn, Copenhagen.

concluded from this that light will travel the distance, which the Earth
travels during eighty orbits of Io, in 22 minutes [4]. This makes it pos-
sible to calculate the strict result of Rømer’s observations: The ratio
between the velocity of light of the velocity with which the Earth or-
bits the Sun, which becomes 80×42.5 hours / 22 minutes ≈ 9,300. In
comparison to the result of Rømer’s calculation, the modern numerical
value is circa 299,792 km× sec−1/ 29.8 km× sec−1 ≈ 10,100 [5].

Rømer neither calculated this ratio, nor did he give a value for the ve-
locity of light. However, many others calculated a velocity from his data,
the first being Christiaan Huygens; after corresponding with Rømer and
eliciting more data, Huygens deduced that light travelled 16 2

3
Earth di-

ameters per second, misinterpreting Rømer’s value of 22 minutes as the
time in which light traverses the diameter of the Earth’s orbit [6].

Rømer’s view that the velocity of light was finite was not fully ac-
cepted until measurements of the so-called aberration of light were made
by James Bradley in 1727.

In 1809, again making use of observations of Io, but this time with
the benefit of more than a century of increasingly precise observations,
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the astronomer Jean Baptiste Joseph Delambre reported the time for
light to travel from the Sun to the Earth as 8 minutes and 12 sec-
onds. Depending on the value assumed for the astronomical unit, this
yields the velocity of light as just a little more than 300,000 kilometres
per second.

A plaque at the Observatory of Paris, where the Danish astronomer
happened to be working, commemorates what was, in effect, the first
measurement of a universal quantity made on this planet.

In addition to inventing the first street lights in Copenhagen, Rømer
also invented the Meridian circle, the Altazimuth and the Passage In-
strument.

The Ole Rømer Museum is located in the municipality of Høje-
Taastrup, Denmark, at the excavated site of Rømer’s observatory Ob-
servatorium Tusculanum at Vridsløsemagle. The observatory operated
until about 1716 when the remaining instruments were moved to Run-
det̊arn in Copenhagen. There is a large collection of ancient and more
recent astronomical instruments on display at the museum. Since 2002
this exhibition is a part of the museum Kroppedal at the same location.

Rundet̊arn (spelled as Rundetaarn), or the Round Tower, is the ob-
servatory and museum for astronomical artifacts at the historical centre
of Copenhagen, built in 1637–1642. The currently working observa-
tory there was equipped in the 20th century. The author is thankful
to Rundet̊arn, where he maintains the Rømer memorial exhibition and
the artifacts, for the permission to use the portraits of Rømer and the
lithograph showing his Meridian Circle, in this publication.
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Biography of Loránd Eötvös
(1848–1919)

Loránd Eötvös, 1900. Courtesy the Loránd Eötvös

Geophysical Institute of Hungary.

Loránd Eötvös (better known in foreign countries as Roland von Eötvös)
is one of the greatest figures of natural sciences in Hungary. He was
born in Buda, in Hungary, on July 27th 1848 into an impoverished
aristocratic family. His father, Baron József Eötvös, was a novelist,
essayist, educator and statesman, whose life and writings were devoted
to the creation of modern Hungarian literature and to the establishment
of a democratic Hungary. He was a friend of Franz Liszt, the famous
pianist and composer. Loránd’s mother was Ágnes Rosty, an educated
daughter of a well-to-do landowner.

In his younger years, Loránd was educated by private tutors, later
he attended the monastic high school of the Piarists where he obtained
his final examinations in 1865. In those days it was assumed that boys
of aristocratic families who wished to receive higher education had to
enter the faculty of law. The law studies, however, failed to satisfy him,
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therefore he always managed to find time to attend lectures in natural
sciences.

Eötvös’ signature. Courtesy the Loránd

Eötvös Geophys. Institute of Hungary.

Despite the fact that he com-
pleted his law studies, his dearest
wish was to “study at a university
abroad under the guidance of en-
lightened teachers in order to fully
understand the natural forces at
work in the scientific field”. In 1867 having obtained his father’s con-
sent, he took the final decision to follow a career in natural sciences, and
to this end entered the University of Heidelberg (Germany). There he
became the pupil of famous professors, such as Kirchhoff, Bunsen and
Helmholtz. First of all he studied physics, mathematics and chemistry.
The following six months he spent at the University of Königsberg, but
found the lectures too abstract and returned to Heidelberg. During his
university years he kept up a regular correspondence with his father.
These letters reveal the depth of understanding and sincerity in the
relationship between father and son.

In 1869, the young Eötvös, thirsty for adventure, planned to join
Petermann the German geographer on his expedition to the Spitzbergen.
At his father’s request he gave up the plan to travel and applied all his
energy to preparing for his examinations for a doctorate degree, that he
absolved “summa cum laude”.

Shortly after his return home in February 1871, his father, “the best
and truest friend” died. On his death-bed he warned his son once more
that his future happiness depended on his devoting himself to science
and keeping out of politics.

After his father’s death, Eötvös successfully applied for the post
of lecturer, advertised by the faculty of theoretical physics at the Pest
University, which now bears his name. It was characteristic of the social
climate of the time that the majority of the audience attending his
inaugural lecture did so because they were curious to see a real baron
giving a talk at the university.

After a short period of lecturing, in 1872 he was appointed to the
professorship of theoretical physics. In 1874 he was allowed to give
lectures in experimental physics and four years later he became professor
in this field too. He was then given the task of uniting the departments
of experimental and theoretical physics, and was nominated as Director
of the newly established Physical Institute.

In 1873 he became Associate Member of the Hungarian Academy of
Sciences, then Full Member in 1883, and in 1889 he was elected Presi-
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Single torsion balance designed by Eötvös for field work in 1898.

Courtesy the Loránd Eötvös Geophysical Institute of Hungary.

dent. Amongst his offices, he became Minister of religion and education
for seven months in 1894. In his inaugural speech as Minister, he ad-
dressed the ministerial staff as follows:

“We must strive, gentlemen, to make the field of public education
a true garden of flowers. To achieve this aim we must first create
order in the garden, so that every plant has its place. It is also
necessary that each one receives the right nourishment, the soil
and air that will allow its full development. In short, we have just
two things we must do here, to make order and then to help. And
gentlemen, I would like us to give more and more assistance and
show more tolerance in our regulations.”

Eötvös was a modest scientist who shunned the limelight. He disliked
noisy ceremonies and did not seek moral or financial reward. In spite
of this, he was acclaimed and received awards at home and abroad for
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Eötvös’ handwriting. A fragment of the manuscript dealing with the law

of proportionality of inertia and gravity, submitted to the Univertsity of

Göttingen, Germany, and rewarded by the Benecke award in 1909. Courtesy

the Loránd Eötvös Geophysical Institute of Hungary.

his scientific work and skill as an organiser. The most important ones
included the French Legion of Honour, the Franz Josef award from the
Hungarian King, the Saint Sava award from the King of Serbia. He
was also elected honorary member of the Prussian Royal Academy of
Sciences in Berlin and was given honorary doctorates from the Jagello
University in Cracow, and the Norwegian Royal Frederick University in
Christiania (now Oslo). In addition to the above, he received several
major and minor awards during his lifetime and was elected President
or a leading member of various social and scientific societies.

Eötvös was a well-balanced individual. Besides his intensive men-
tal work, he always found time for relaxation and sports. He often
went riding and regularly made the eleven-kilometre journey from his
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home to the university on the horseback. In the summer, he often
cycled and indulged in his passion for rock climbing. In the classic
time of mountaineering, he ranked among the best. As an enthusiastic
photographer, he took hundreds of pictures during his mountaineering
excursions. In his latter years, his daughters accompanied him on his
expeditions, and also became keen Alpinists. Eötvös’ climbing achieve-
ments in the southern Tirol made his name so well known that in 1902
one peak of 2837 metres high in the Dolomites (Italy) was named after
him Cima di Eötvös (Eötvös summit). In the company of friends he
often jokingly said that he was prouder of his mountaineering successes
than his discovery of the torsion balance. For many years as Presi-
dent of the Hungarian Touring Society, he achieved a great deal in the
popularization of tourism in Hungary.

With the advancing years, he strove to avoid prestigious appoint-
ments in order to devote himself entirely to his research. This prompted
him to give up his position as President of the Academy in 1905. The
last years of his life were clouded by a severe illness, but he continued to
lecture at the University as long as it was humanly possible. Until the
last moments of his life, he followed torsion balance fieldwork with great
interest. In the beginning, he asked his colleagues to inform him of the
daily results of their survey by telegram because he was very anxious
to know how far the results of the survey supported his theories. He
had never been able to tear himself away from his research, even during
his summer excursions to the mountains. When on holidays, he always
kept up a regular correspondence with his co-workers. He continued his
scientific work from his sick bed and sent his last paper to be published
only a few days before he died on April 8, 1919.

International scientific life and the whole of Hungarian society
mourned his death. Hungary had said farewell to one of the last great
representatives of classical physics and to the country’s greatest natural
scientist. Through his work, however, his name will live forever in the
history of physics and geophysics.

As a means of expressing their respect for Eötvös posthumously, the
international scientific community named the 1×10−9CGS unit after
him, and gave his initial, E, as its symbol.

Eötvös’ main scientific achievements

In his scientific research Eötvös was not interested in those topics that
were fashionable at that time, and would have brought him immedi-
ate public acclaim. He was concerned with capillarity, gravitation and
magnetism, phenomena so taken for granted that a superficial observer
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would fail to see the mysterious powers at work within them. He for-
mulated his ars poetica as follows:

“The true natural scientist . . . finds pleasure in research itself and
in those results which help to increase the prosperity of Mankind.”

It was characteristic of Eötvös’ scientific activity that he dealt with all
aspects of a problem. He first considered the theoretical base and fol-
lowed this by designing and constructing the instruments and method-
ology needed for the experiments. Then came the laboratory and field
measurements and, finally, he summarized his conclusions derived from
the measurements.

Studies in the field of capillarity The beginnings of Eötvös’ sci-
entific career are connected with liquids. He worked out a new way
to determine surface tension, which subsequently became known as the
reflection method. This method made it possible to determine precisely
the surface tension of various liquids. During his experiments, Eötvös
found a linear relationship between the molar surface energy of liquids
and their temperature. The proportionality factor is constant for all
compound liquids independently of their composition. The molar sur-
face energy is equal to the work needed to move one molecule from the
inside of the liquid to its surface.

Based on this finding, Eötvös was able to state the following rela-
tionship: with increasing temperature, the surface tension of a liquid
decreases until, at the critical temperature, it becomes zero. Later this
rule was named the Eötvös law and the proportionality constant the
Eötvös constant. In case of liquids this constant is as fundamental as
the universal gas constant in case of gases.

Eötvös torsion balance Around 1885 his attention turned to gravity
and magnetism. Studying the behaviour of the Coulomb balance in the
gravity field he invented a modified version of this instrument, which is
known in geophysics as the Eötvös torsion balance. This unbelievably
sensitive instrument can detect a change of 10−12 part/cm of gravity.
The instrument has been proved to be suitable for geological exploration
and paved the way towards world renown for Eötvös and his balance. In
the 1920’s and 1930’s hundreds of oil fields were discovered throughout
the world with the help of Eötvös’ ingenious instrument.

Inertial and gravitational mass Eötvös became concerned with the
question of the proportionality of the inertial and gravitational mass as
early as 1890. In 1908 Eötvös and his colleagues, Jenõ Fekete and Dezsõ
Pekár, perfected their measurements to such an extent that they were
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able to establish that the difference between the inertial and gravita-
tional mass was at the most 1/200,000,000. Their paper on the subject
won them the Benecke award at the Göttingen University in 1909.

Eötvös effect While studying Hecker’s results who carried out gravity
measurements on moving boats on the oceans in the years 1904–1905,
Eötvös noticed that no consideration had been given to the vertical com-
ponent of the Coriolis acceleration developed by the motion of the boat.
In his letter to Hecker, he proposed a correction for compensating this
effect. The international scientific world recognizes these phenomena as
the Eötvös effect and the Eötvös correction, respectively, both having
special importance nowadays in the field of sea and air gravimetry.

Just to list his further scientific achievements:

• He invented a new method to determine the value of the gravity
constant.

• He carried out measurements to study the problem of gravity ab-
sorption. He concluded that the gravity absorption of a 5 cm thick
lead plate (if there is such phenomenon at all) is less than 5×10−10

part of its attraction;

• He constructed a bifilar type gravimeter in 1901, more than a dec-
ade earlier as Schweydar did;

• He applied the astatic principle to his gravity compensator to
make it so sensitive that he could detect 1 cm variation of the
water level of the Danube river in a distance of 100 meter;

• He constructed a magnetic version of his balance and carried out
archeomagnetic measurements to determine the inclination of the
magnetic field in the past;

• Based on his torsion balance measurements carried out in the Arad
region (now in Romania), he elaborated a new method to contour
a very detailed geoid map for the region.

Zoltán Szabó

All photo images used in this publication were provided by the Loránd Eötvös
Geophysical Institute of Hungary (Eötvös Loránd Geofizikai Intézet, ELGI), where
the author of the present biographic article, Zoltán Szabó, maintains the Loránd
Eötvös Memorial Museum. The author would like to express his sincere gratitude to
László Sõrés and Péter Kovács, the close colleagues at the Institute, for their favour
and assistance in preparation of the photo images.
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(1873–1916)

Karl Schwarzschild. Courtesy AIP

Emilio Segrè Visual Archives.

The celebrated German astronomer and physicist, Karl Schwarzschild,
was born into a wealthy Jewish family in Frankfurt am Main, Germany,
on October 9, 1873. He was the oldest of his five brothers and one sister.
His mother, Henrietta Sabel, and father, Moses Martin Schwarzschild,
were very nice and hearthy persons. His large, extended family was
known to cultivate deep interest in art and culture. However, he became
the first in the family to pursue a career in science.

Schwarzschild’s prodigious talent manifested quite early on while
still a student at Frankfurt Gymnasium: at the age of 16, having taught
himself some advanced mathematics and studied much of contemporary
astronomy, he published his first scientific paper on celestial mechanics.
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Karl Schwarzschild writing in his study at Potsdam.

Courtesy AIP Emilio Segrè Visual Archives.

This was soon followed by another paper. Both papers touched upon the
orbital theory of binary stars. In his Gymnasium years, he was a close
friend of the famous mathematician specializing in number theory, Paul
Epstein, with whom there was a sharing of real scientific interests.

He further studied astronomy at the Universities of Strasbourg and
Munich, obtaining his doctorate in 1896 for a dissertation on the ap-
plication of Poincaré’s theory of rotating stellar bodies. His supervisor
was Hugo von Seeliger whom he often mentioned with much admiration
throughout his life.

From 1897 until 1899, he was employed as an assistant at the Kuffner
Observatory in the suburb of Vienna called Ottakring. Here, he was en-
gaged in the investigation and measurement of the apparent brightness
of stars using photographic plates, from which he produced a formula
to calculate the optical density of photographic material. This formula
was especially important in dealing with photographic measurements of
the intensities of distant, faint astronomical objects.

In the summer of 1899, he became a privatdozent at the University
of Munich after submitting his habilitation thesis entitled Beiträge zur
photographischen Photometrie der Gestirne which dealt with much of
the astronomical work he had done at the Kuffner Observatory.
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Outdoors. Sitting, second from left, with his family.

Courtesy AIP Emilio Segrè Visual Archives.

It is particularly interesting to note that already in 1900, Schwarz-
schild already pondered upon the possible non-Euclidean structure of
space. His ideas were expounded at the meeting of the German Astro-
nomical Society in Heidelberg that year. In the same year, he published
a paper in which he gave a lower limit for the (measurable) radius of
the curvature of space as 64 light years (suposing a hyperbolic space) or
1600 light years (an elliptic space). In dealing with solar radiation pres-
sure, he assumed that the tails of comets consisted of spherical particles
which acted as light reflectors. Thus he was able to calculate the size
of the particles in the tails of the comets. He instinctively knew that
radiation pressure had to somehow overcome gravitation, and that the
particles did not scatter light. This way, he gave the exact diameters of
the particles within the range of 0.07 and 1.5 microns.

From 1901 until 1909 he was an extraordinary professor at the Uni-
versity of Göttingen and also the director of the Observatory there.
In Göttingen, he had the opportunity to work with some significant
figures inhabiting the University, such as the mathematicians David
Hilbert, Felix Klein, and Hermann Minkowski. He studied astrophys-
ical phenomena associated with the energy transport mechanism in a
star by means of radiation and produced an important paper on radia-
tive equilibrium within the sun’s atmosphere. Following this period, he
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took up a post of the director at the Astronomical Observatory in Pots-
dam in 1909, a place which Eddington described for him as “. . . very
congenial. . . ” [1].

In 1913, Schwarzschild was elected a member of the Prussian Acad-
emy of Sciences in Berlin. During his election, he produced a memorable
speech which outlined the essence of his attitude towards science [1]:

“Mathematics, physics, chemistry, astronomy, march in one front.
Whichever lags behind is drawn after. Whichever hastens ahead
helps on the others. The closest solidarity between astronomy and
the whole circle of exact science. . . . from this aspect I may count
it well that my interest has never been limited to the things beyond
the moon, but has followed the threads which spin themselves
from there to our sublunar knowledge; I have often been untrue
to the heavens. That is an impulse to the universal which was
strengthened unwittingly by my teacher Seeliger, and afterwards
was further nourished by Felix Klein and the whole scientific circle
at Göttingen. There the motto runs that mathematics, physics,
and astronomy constitute one knowledge, which, like the Greek
culture, is only comprehended as a perfect whole.”

Soon, in 1914, Europe was plagued with the outbreak of World
War I. Subsequently, he joined the German army as a volunteer despite
being over 40 years old. He served on both the Eastern and Western
Fronts, eventually rising to the rank of lieutenant in the artillery di-
vision. Notably, he served in Belgium where he was put in charge of
a local weather station, in France where he produced calculations of
missile trajectories, and then in Russia.

While in Russia, despite suffering from a rare and painful skin dis-
ease called pemphigus, he managed to write three pivotal papers: two
on the exact solutions to Einstein’s field equations of the General The-
ory of Relativity, the new theory of space-time and gravitation, and
one on Planck’s quantum theory. As it is well-known, his papers on
the General Theory of Relativity gave the first exact solutions to Ein-
stein’s unimodular field equations of gravitation in the empty space
surrounding a spherical mass, a solution which now bears his name, the
Schwarzschild metric, which actually involves a slight modification of
his original solution. Meanwhile, his paper on quantum theory gave
a lucid explanation of the so-called Stark effect.

Upon receiving Schwarzschild’s manuscripts, Einstein himself was
pleasantly surprised to learn that his non-linear field equations of grav-
itation did admit exact solutions, despite their “prima facie” complex-



xviii The Abraham Zelmanov Journal — Vol. 1, 2008

Brief letter to Henri Poincaré, April 22, 1902. Courtesy Max-Planck-Institut

für Wissenschaftsgeschichte, MPIWG Library Collection.

ity, which, according to him, were elegantly shown by Schwarzschild in
“. . . such a simple way. . . ” [2]. Prior to this, Einstein himself was only
able to produce an approximate solution, given in his famous 1915 pa-
per on the advance of the perihelion of Mercury. In that paper, Einstein
employed a rectilinear coordinate system in order to approximate the
gravitational field around a spherically symmetric, static, non-rotating,
non-charged mass. Schwarzschild, in contrast to Einstein’s initial ap-
proach, chose a generalization of the polar coordinate system and was
thus able to produce an exact solution in a more elegant manner, a man-
ner somewhat more befitting the splendour and subtlety of the full non-
Euclidean nature of Einstein’s geometric theory.

In 1916, the elated Einstein famously wrote to Schwarzschild on his
newly obtained result [2]:

“I have read your paper with the utmost interest. I had not ex-
pected that one could formulate the exact solution of the problem
in such a simple way. I liked very much your mathematical treat-
ment of the subject. Next Thursday I shall present the work to
the Academy with a few words of explanation.”
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Shortly after he sent his last two papers on the General Theory of
Relativity to Einstein, Schwarzschild had to succumb to the skin dis-
ease he had contracted earlier. The disease, pemphigus, is a rare kind of
autimmune blistering skin rash. It is said that for people plagued with
this skin rash, the immune system mistakes the cells in the skin as for-
eign and attacks them, resulting in painful blisters. In Schwarzschild’s
time there was no known medical treatment or cure for the disease and,
after being freed from his military duty to be interned at home in March
1916, he died two months later, on May 11, 1916, at the age of 42.

Schwarzschild died at the height of his scientific achievements. He
certainly was a man of wide scientific interests. Apart from his earlier
work on astronomy, which included celestial mechanics, observational
stellar photometry, optical systems, observational and instrumental as-
tronomy, stellar structure and statistics, comets, and spectroscopy, and
his outstanding work in the area of the General Theory of Relativity, he
also worked on electrodynamics and geometrical optics (while in Göttin-
gen). He also maintained deep interest in quantum theory.

He married Else Posenbach, the daughter of a professor of surgery
at the University of Göttingen, on 22 October 1909. Together, they
had three children: Agathe, Martin, and Alfred. His second son, Mar-
tin Schwarzschild, followed in his father’s footsteps as a professor of
astrophysics at Princeton University.

Indranu Suhendro
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Biography of Abraham Zelmanov
(1913–1987)

A. Zelmanov in the 1940’s

Abraham Leonidovich Zelmanov was born on May 15, 1913 in Poltava
Gubernya of the Russian Empire. His father was a Judaic religious
scientist, a specialist in comments on Torah and Kabbalah. In 1937
Zelmanov completed his education at the Mechanical Mathematical De-
partment of Moscow University. After 1937 he was a research-student
at the Sternberg Astronomical Institute in Moscow, where he presented
his dissertation in 1944. In 1953 he was arrested for “cosmopolitism”
in Stalin’s campaign against Jews. However, as soon as Stalin died,
Zelmanov was set free, after some months of imprisonment. For several
decades Zelmanov and his paralyzed parents lived in a room in a flat
shared with neighbours. He took everyday care of his parents, so they
lived into old age. Only in the 1970’s did he obtain a personal municipal
flat. He was married three times. Zelmanov worked on the academic
staff of the Sternberg Astronomical Institute all his life, until his death
on the winter’s day, 2nd of February, 1987.

He was very thin in physique, like an Indian yogi, rather shorter
than average, and a very delicate man. From his appearance it was
possible to think that his life and thoughts were rather ordinary or
uninteresting. However, in acquaintance with him and his scientific
discussions in friendly company one formed another opinion about him.
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Those were discussions with a great scientist and humanist who reasoned
in a very unorthodox way. Sometimes we, people who were with him,
thought that we were not speaking with a contemporary scientist of
the 20th century, but some famous philosopher from Classical Greece
or the Middle Ages. So the themes of those discussions are eternal —
the interior and evolution of the Universe, the place of a human being
in the Universe, the nature of space and time.

Zelmanov liked to remark that he preferred to make mathemati-
cal “instruments” than to use them in practice. Perhaps thereby his
main goal in science was the mathematical apparatus of physical ob-
servable quantities in the General Theory of Relativity known as the
theory of chronometric invariants. In developing the apparatus he also
created other mathematical methods, namely — kinemetric invariants
and monad formalism (he also referred to monad formalism, the gen-
eral covariant extension of chronometric invariants, as orthometric in-
variants). Being very demanding of himself, Zelmanov published only
a dozen scientific publications during his life, so every publication is
a concentrate of his fundamental scientific ideas.

Most of his time was spent in scientific work, but he sometimes gave
lectures on the General Theory of Relativity and relativistic cosmol-
ogy as a science for the geometrical structure of the Universe. Stephen
Hawking, a young scientist in the 1960’s, attended Zelmanov’s semi-
nars on cosmology at the Sternberg Astronomical Institute in Moscow.
Zelmanov presented him as a “promising young cosmologist”. Hawking
read a brief report at one of those seminars. Zelmanov’s seminar was
visited by also John Wheeler, Kip Thorne, Roger Penrose, and other
well-known scientists.

Because Zelmanov made scientific creation the main goal of his life,
writing articles was a waste of time to him. However he never regretted
time spent on long discussions in friendly company, where he set forth
his philosophical concepts on the geometrical structure of the Universe
and the process of human evolution. In those discussions he formulated
his famous Anthropic Principle and the Infinite Relativity Principle. He
formulated the Anthropic Principle in 1941–1944, many years before the
other scientists such as Robert Dicke (1957)∗ or Brandon Carter (1973)†

∗Dicke R.H. Gravitation without a principle of equivalence. Reviews of Modern

Physics, 1957, vol. 29, issue 3, 363–376.
†Carter B. Large number coincidences and the anthropic principle in cosmology.

In: Confrontation of Cosmological Theories with Observational Data. Proceedings
of the Symposium (Krakow, Poland, September 10–12, 1973), Dordrecht, D. Reidel
Publishing Co., 1974, 291–298.
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turned their attention to this problem. Zelmanov, being very demanding
of himself, never published it in the scientific journals, meanwhile re-
maining his formulation of the Anthropic Principle wide known amongst
the research stuff and students of the Sternberg Astronomical Institute.

Zelmanov’s Anthropic Principle is stated here in his own words, in
two versions. The first version sets forth the idea that the law of human
evolution is dependent upon fundamental physical constants:

“Humanity exists at the present time and we observe world con-
stants completely because the constants bear their specific numer-
ical values at this time. When the world constants bore other val-
ues humanity did not exist. When the constants change to other
values humanity will disappear. That is, humanity can exist only
with the specific scale of the numerical values of the cosmological
constants. Humanity is only an episode in the life of the Uni-
verse. At the present time cosmological conditions are such that
humanity develops.”

In the second form he argues that any observer depends on the Universe
he observes in the same way that the Universe depends on him:

“The Universe has the interior we observe, because we observe the
Universe in this way. It is impossible to divorce the Universe from
the observer. The observable Universe depends on the observer
and the observer depends on the Universe. If the contemporary
physical conditions in the Universe change then the observer is
changed. And vice versa, if the observer is changed then he will
observe the world in another way, so the Universe he observes will
also change. If no observers exist then the observable Universe as
well does not exist.”

It is probable that by proceeding from his Anthropic Principle, in the
years 1941–1944, Zelmanov solved the well-known problem of physical
observable quantities in the General Theory of Relativity.

It should be noted that many researchers were working on the the-
ory of observable quantities in the 1940’s. For example, Landau and
Lifshitz, in their famous The Classical Theory of Fields, introduced ob-
servable time and the observable three-dimensional interval, similar to
those introduced by Zelmanov. But they limited themselves only to this
particular case and did not arrive at general mathematical methods to
define physical observable quantities in pseudo-Riemannian spaces. It
was only Carlo Cattaneo, an Italian mathematician of the Institute of
Mathematics, Pisa University, who developed his own approach to the
problem, not far removed from Zelmanov’s solution. Cattaneo pub-
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lished his results on the theme in 1958 and later. Zelmanov knew those
articles, and he highly appreciated Cattaneo’s works. Cattaneo also
knew of Zelmanov’s works, and even cited the theory of chronometric
invariants in his last publication.

In 1944 Zelmanov completed his mathematical apparatus for
calculating physical observable quantities in four-dimensional pseudo-
Riemannian space, in strict solution of that problem. He called the
apparatus the theory of chronometric invariants.

Solving Einstein’s equations with this mathematical apparatus, Zel-
manov obtained the total system of all cosmological models (scenarios
of the Universe’s evolution) which could be possible as derived from the
equations. Having this system a base, he developed a classification of all
possible models of cosmology which could be theoretically conceivable
in the space-time of the General Theory of Relativity. Now, we refer
to it as the Zelmanov classification. In particular, he had arrived at
the possibility that infinitude may be relative. Later, in the 1950’s, he
enunciated the Infinite Relativity Principle:

“In homogeneous isotropic cosmological models spatial infinity of
the Universe depends on our choice of that reference frame from
which we observe the Universe (the observer’s reference frame). If
the three-dimensional space of the Universe, being observed in one
reference frame, is infinite, it may be finite in another reference
frame. The same is just as well true for the time during which the
Universe evolves.”

In other words, using purely mathematical methods of the General
Theory of Relativity, Zelmanov showed that any observer forms his
world-picture from a comparison between his observational results and
some standards he has in his laboratory — the standards of different
objects and their physical properties. So the “world” we see as a result
of our observations depends directly on that set of physical standards
we have, so the “visible world” depends directly on our considerations
about some objects and phenomena.

The mathematical apparatus of physical observable quantities and
those results it gave in relativistic cosmology were the first results of Zel-
manov’s application of his Anthropic Principle to the General Theory of
Relativity. To obtain the results with general covariant methods (stan-
dard in General Relativity), where observation results do not depend
on the observer’s reference properties, would be impossible.

The fact is that Zelmanov published his scientific ideas in only
a dozen of very compressed scientific articles with formulae, without es-
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sential comments. As a result for more than 60 years Zelmanov’s work
and the achievements remained known only a close circle of several of
his pupils. His book Chronometric Invariants, containing his main fun-
damental studies on the General Theory of Relativity and relativistic
cosmology, was written in 1944 and had survived only in manuscript
until it has been published in 2006. It is impossible to find a more
detailed and systematic description of the theory of chronometric in-
variants, than there. Even the book Elements of the General Theory
of Relativity, which Vsevolod Agakov had composed from Zelmanov’s
lectures and articles, gives a very fragmented account of the mathemat-
ical methods that prevents a reader from learning it on his own. The
same can be said about Zelmanov’s original papers, each no more than
a few pages in length. Anyway Chronometric Invariants is the best for
depth of detail. Sometimes Zelmanov himself said that to use the math-
ematical methods of chronometric invariants in its full power would be
possible only after studying his book of 1944.

Now everyone may read it. I hope that Zelmanov’s classical works, in
particular the chronometric invariants, the Zelmanov classification, his
Anthropic Principle and the Infinite Relativity Principle, will become
more widely known and appreciated. May his memory live for ever!

Dmitri Rabounski
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(1910–1972)

A. Petrov in the 1960’s

Alexei Zinovievich Petrov was born on October 28, 1910, in the village
of Koshki in Samara Gubernya in the Russian Empire. The eleventh
of twelve children, Alexei was ill as a child. His father, Zinovey, was
the parish priest of the Russian Orthodox Church and died of tuber-
culosis when Alexei was only five years old. As a widow, his mother
Zoe was without financial resources. She therefore elected to send her
two youngest sons, Alexei and Sevir, to live with their aunt, Catherine
Petrova, a village school teacher. Catherine adopted both boys, giving
them her family name.

In 1926, Alexei was graduated from a normal school at Melekh, a
small provincial town. Being a sickly child, he preferred reading to play-
ing games with other boys. He was interested in mathematics, and read
many books in this field beyond the scholarly curriculum. In 1932, he
entered the Department of Physics and Mathematics of Kazan Univer-
sity, where he became a pupil of Prof. Peter Schirokov. The latter was
a prominent investigator in the field of non-Euclidean geometry. Schi-



xxviii The Abraham Zelmanov Journal — Vol. 1, 2008

rokov was highly enthusiastic concerning Einstein’s theory of relativity.
He supported any achievement in this direction. Amongst Schirokov’s
students, Alexei built a fine reputation as a powerful and independent
scientist, despite his youth. Following many long conversations with
Schirokov, Alexei Petrov selected the topic for his PhD Thesis. The re-
sulting manuscript became the basis for famous book Einstein Spaces.

In the beginning of World War II, Alexei Petrov volunteered for
military service and became a commander of mortar artillery. In De-
cember 1941, he was sent into battle and in August 1943, he was severely
wounded. After a prolonged confinement in the hospital, he remained
disabled and retired from military service. His health would never re-
turn.

Alexei Petrov then took up residence in Kazan, surviving with his
wife and son. He continued to study Einstein spaces and was led to the
idea of classifying such spaces according to the algebraic structure of
the curvature tensor. Today, this is known as the Petrov classification.
Petrov published his key papers on this classification in two forms, first
as a short communication in the Proceedings of the Academy of Sciences
of USSR (1951), and second, as an expanded treatment in the local
bulletin of Kazan University (1954).

During the late 1940’s through the 1950’s, Alexei Petrov was em-
ployed as a lecturer. He quickly became a very popular lecturer and
a favourite among the student community. He taught at many places
within Kazan, including Kazan University where he was elected a pro-
fessor in 1956.

In 1960, Petrov organized the Faculty of Relativity Theory and Grav-
itation at Kazan University, and led the Faculty during the next ten
years. That year, the first Russian edition of his monograph Einstein
Spaces was issued. With this publication, Petrov became a well known
and admired by theoretical physicists throughout the world. An En-
glish translation of his famous book was eventually published in 1969,
by Pergamon Press.

Aside from his classification system, Petrov was also interested in
the other fields related to Einstein’s theory of relativity. He tried to
apply the methods of group theory to these problems. Petrov was also
interested in gravitational waves. This is because Einstein spaces of
the second and the third kind, in the framework of his classification,
are related to the fields of gravitational radiation. Eventually, Petrov
authored a popular book entitled Space, Time, and Matter, which was
the result of his lectures explaining the essence of Einstein’s theory of
relativity to the general public.
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There was a long-term conflict between Petrov and the adminis-
tration of Kazan University: the Soviet bureaucracy non-allowed in-
dependent thinking and behaviour that was very specific to Petrov’s
individuality. In 1969, this conflict has reached the apogee. As hap-
pily Petrov had good friends amongst the fluent scientists at Kiev, the
capital city of Ukraine. The friends elected him in 1969 a full member
of the Academy of Sciences of the Ukraine at Kiev, and invited to join
the academic staff of the Institute of Theoretical Physics. He resolved
to leave Kazan immediately and settle in Kiev, but unfortunately these
would be the last two years of his life.

Alexei Petrov was consumed by his scientific ideas. The walls of his
office were adorned with the portraits of Einstein and Schirokov. Petrov
worked for many years without relaxation. It can be said that this train
of Petrov’s life, in conjunction with his old wounds and generally poor
health, slowly killed him. He suffered several heart attacks. However,
during each hospitalization, despite intense medical treatment, he would
ask his family and friends for a pen and paper. Tragically, he died from
the complications of a blood clot on May 09, 1972, at a hospital in Kiev.
He was only 61.

Dmitri Rabounski
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