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Cosmological Models in the Generalized

Einstein Action

Arbab I. Arbab∗

Abstract: We have studied the evolution of the Universe in the gen-
eralized Einstein action of the form R+ βR2, where R is the scalar
curvature and β= const. We have found exact cosmological solutions
that predict the present cosmic acceleration. These models predict an
inflationary de-Sitter era occurring in the early Universe. The cosmo-
logical constant (Λ) is found to decay with the Hubble constant (H)
as, Λ∝H4. In this scenario the cosmological constant varies quadrat-
ically with the energy density (ρ), i.e., Λ∝ ρ2. Such a variation is
found to describe a two-component cosmic fluid in the Universe. One
of the components accelerated the Universe in the early era, and the
other in the present era. The scale factor of the Universe varies as
a∼ tn, n=1/2 in the radiation era. The cosmological constant van-
ishes when n=4/3 and n=1/2. We have found that the inclusion of
the term R2 mimics a cosmic matter that could substitute the ordi-
nary matter. It is also equivalent to having a bulk viscosity of ordinary
cosmology.

Contents:

§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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§4. Model C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

§1. Introduction. Modified gravity models have been invoked to
resolve cosmological and astrophysical problems with observations (see
Hawking & Luttrel [1], Whitt [2], Srivastava [3], Srivastava & Sinha [4],
Kung [5]). The generalized Einstein action including an additional
scalar term R2 is given (by Kenmoku et al., 1992 [6]; Nojiri & Odintsov,
2005 [7]; Debnath & Paul, 2006 [8]) by

S = − 1

16πG

∫
d4x

√
g (R + 2Λ+ βR2 ) + Smatter (1)

where R is Ricci’s scalar curvature, Λ is the cosmological constant,
g is the negative determinant of the metric tensor gµν , Smatter is the
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matter action, and β is a constant. Several authors have studied classical
solutions of this action without matter and have concluded that big bang
singularity may be avoided (see Kung, 1996 [5]).

In this paper we will study the cosmological implications of this
action.

The variation of the metric with respect to gµν gives

Rµν − 1

2
Rgµν − Λgµν + βBµν = − 8πGTµν , (2)

where Tµν is the energy momentum tensor of the cosmic fluid, and

Bµν = 2R

(
Rµν − 1

2
Rgµν

)
+ 2 (R;µν − gµν∆R) , (3)

with R; µν = ∇µ∇νR and ∆R = gµνR; µν . For an ideal fluid one has

Tµν = (ρ+ p)uµuν + pgµν , (4)

where uµ, ρ, p are the velocity, density and pressure of the cosmic fluid.
The flat Robertson-Walker line element is given by

ds2 = − dt2 + a2(t)
[
dr2 + r2(dθ2 + r2 sin2θ dφ2)

]
. (5)

The time-time and space-space components of (2) give

3H2 − Λ − 18β
(
6ḢH2 + 2HḦ − Ḣ2

)
= 8πGρ , (6)

and

−2Ḣ − 3H2 + Λ+ 6β
(
2
...
H + 12HḦ + 18ḢH2 + 9Ḣ2

)
= 8πGp , (7)

where H = ȧ
a is the Hubble constant. We have noticed that Debnath

and Paul considered a similar action, but with variable G and Λ. They
arrive at very similar type of solutions.

§2. Model A. Now consider the cosmological model when

Λ = −18β
(
6ḢH2 + 2HḦ − Ḣ2

)
(8)

so that (6) is
3H2 = 8πGρ (9)

and (7) becomes

−2Ḣ − 3H2 = 8πG

[
p− 3β

2πG

(...
H + 3HḦ + 6Ḣ2

)]
. (10)
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A universe with bulk viscosity (η) is obtained by replacing the pres-
sure p by the effective pressure p−3ηH . In this case, one may attribute
that the inclusion of the R2 is equivalent to having a bulk viscosity
given by

η =
β

2πG

( ...
H

H
+ 3Ḧ + 6

Ḣ2

H

)
. (11)

Notice here that the bulk viscosity is normally parameterized by
η = η0 ρ

s (s, η0 = const), but here η depends on the rates of universe
expansion. Consider a power law expansion of the form

a = Atn, A, n = const (12)

so that

η =
3β

πG
(2n− 1) t−3. (13)

From (8), the cosmological constant becomes

Λ = 54 β n2(2n− 1) t−4, n 6= 0 , (14)

and the energy density

8πGρ =
3n2

t2
. (15)

Using (12), the cosmological constant becomes

Λ =
54β (2n− 1)

n2
H4, n 6= 0 , (16)

where H = n
t
. Upon using (9), this becomes

Λ =
6β (2n− 1)(8πG)2

n2
ρ2, n 6= 0 , (17)

i.e., Λ ∝ ρ2. Substituting (12) into (10), we see that the pressure is
given by

8πGp =

[
(2 − 3n)n

t2
− 72β n(1− 2n)

t4

]
. (18)

Using (15), this can be written as

p =

(
−1 +

2

3n

)
ρ−

(
1− 2n

n3

)
Nβρ2, N = 64πG , n 6= 0 . (19)

We know the Van der Waals equation of state is given by

p =
γ ρ

1− bγ
− αρ2, γ, b, α = const. (20)
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Thus, the resulting equation of state of a power law expansion is
that due to two-component fluid resembling the van der Waals equation

of state. Therefore, introducing a term of R2 in the Einstein action is
like introducing two fluid components in the Universe. We see that one
component of the fluid drives the Universe in cosmic acceleration, by
making p< 0, in some period and decelerates it in another period (p> 0).
In the early Universe, when the density was so huge, p was negative if
n< 1

2
. During the matter dominated epoch, when the density is very

small, p< 0, if n> 2
3
. Hence, we see that the Universe accelerates for

any deviation from the Einstein-de-Sitter expansion.

A. Inflationary Era. We see from (9) when H =H0 = const, i.e.,
a ∝ exp (H0 t), the cosmological constant vanishes, i.e., Λ=0. From
(11) the bulk viscosity also vanishes, i.e., η=0. We recover the de Sit-
ter solution, p = −ρ, as evident from (9) and (10).

For a static universe n=0, i.e., H =0, and hence, the cosmological
constant, the bulk viscosity, the energy density and the pressure vanish,
i.e., Λ= η= ρ= p=0. This means that a static universe in this scenario
can’t exist.

B. Radiation Dominated Era. During the radiation dominated
phase, as in the Einstein-de-Sitter model, i.e., a ∝ t

1
2 , one has n= 1

2
so

that Λ= η=0, and (19) gives the equation of the state p= 1
3
ρ. Thus

the Einstein-de-Sitter model is recovered. In this epoch the cosmological
constant vanishes. However, (19) shows that any deviation form n= 1

2
in

the radiation era, viz., n< 1
2
, the second term will be large and negative.

Thus, an accelerated expansion of the Universe will be inevitable.

C. Matter Dominated Era. In the matter dominated epoch of
Einstein-de-Sitter model one has n= 2

3
. In this case p=72πGβρ2.

Since ρ is small today, we see that the Universe asymptotically ap-
proaches the Einstein-de-Sitter type. However, for any deviation of this
expansion law, n> 2

3
accelerated expansion will be inevitable. In this

case p< 0. So, in the distant future, when ρ→ 0, the equation of state
reduces to

p =

(
− 1 +

2

3n

)
ρ = ω ρ , ω = − 1 +

2

3n
. (21)

Thus, n> 2
3
implies ω>−1. We remark here in the distant future,

when n→∞, p=−ρ. Hence, the future of our Universe will be a de-
Sitter expansion.
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§3. Model B. Now, let us define the cosmological constant by

Λ = − 6β
(
2
...
HH + 12HḦ + 18ḢH2 + 9Ḣ2

)
, (22)

so that (6) and (7) become

3H2 = 8πG(ρ + ρ̄) , (23)

and
−2Ḣ − 3H2 = 8πGp , (24)

where
8πGρ̄ = − 12β (

...
H + 3HḦ + 6Ḣ2) . (25)

A. Inflationary Era. We see that when H =H0 = const, i.e.,
a∝ exp (H0 t), p=−ρ, Λ=0 and ρ̄=0.

B. Radiation and Matter Dominated Eras. Now consider a
power law expansion of the scale factor of the form as in (12). We find

8πGp = n(2 − 3n) t−2, (26)

Λ = 18βn(2n− 1)(3n− 4) t−4, (27)

and

ρ =

(
3n

2−3n

)
p+N ′

[
2n−1

n2(2−3n)2

]
p2, N ′ = 637βG , n 6= 2

3
, (28)

and
8πGρ̄ = 72βn(1− 2n) t−4. (29)

Equation (28) represents our equation of state for the present cos-
mology. The cosmological constant here varies as t−4.

The equation of state now reads,

p = ω(t)ρ , ω (t) =

[
3n

2− 3n
+ 72β

(2n− 1)

n(2− 3n)

1

t2

]−1

, (30)

where the energy density becomes

8πGρ =
3n2

t2

[
1 +

24β (2n− 1)

n

1

t2

]
. (31)

It is evident from (30) that when n→∞ (i.e., a→∞), ω→−1 the
Universe becomes vacuum dominated and expands like de-Sitter. It is
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interesting to note that when n= 4
3
, the cosmological constant van-

ishes, i.e., Λ=0. In this case the pressure becomes negative, i.e., p< 0,
and this drives the Universe into an epoch of cosmic acceleration. The
deceleration parameter q=− ä

aH2 =−0.25. Once again, when n= 1
2
,

we recover the Einstein-de-Sitter solution, i.e., a∝ t
1
2 and p= 1

3
ρ and

Λ=0. For n= 2
3
, p=0, Λ=−8β t−4, and 8πGρ= 4

3t2

(
1+ 12β

t2

)
. Hence,

the Universe approaches the Einstein-de-Sitter solution asymptotically
(t → ∞). Notice that (27) and (29) relate the vacuum energy density
ρv =

Λ
8πG

to ρ by the equation ρv =(1− 3
4n)ρ, so that for n= 2

3
, ρ=2ρv.

§4. Model C. Now consider a cosmological model in which Λ=0.
In this case, (6) and (7) yield

3H2 = 8πG(ρ + ρ′) (32)
and

−2Ḣ − 3H2 = 8πG(p+ p′) , (33)
where

8πGρ′ = 18β (6ḢH2 + 2HḦ − Ḣ2)

8πGp′ = −6β (2
...
H + 12HḦ + 18ḢH2 + 9Ḣ2)



 , (34)

equations (32) and (33) can be written as

3H2 = 8πGρeff (35)
and

−2Ḣ − 3H2 = 8πGpeff , (36)
where

ρeff = ρ+ ρ′ , peff = p+ p′ . (37)

We therefore argue that the inclusion of the term R2 in the Einstein
action induces a fluid in the Universe that has pressure (p′) and energy
density (ρ′), in addition to the pre-existing matter. This may suggest
that our Universe is filled with a fluid with two components; one is bright
(ρ) and the other is dark (ρ′) without having a cosmological constant.

A. Inflationary Era. An inflationary solution arises when H =
=H0 = const which is solved to give a∝ exp(H0t). Equations (35) and
(36) give

peff = − ρeff . (38)

With some scrutiny, one would discover that (34) implies that p′ =
= ρ′ =0. Hence, the dark component does not contribute to this infla-
tionary era.
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B. Radiation Dominated Era. Now consider a power law expan-
sion for the Universe during the radiation dominated era of the form

a = Btn , n, B = const . (39)

Substituting this into (34) one gets

ρ′ =
54βn2 (1− 2n)

8πG
t−4, (40)

and

p′ =
18βn(1− 2n)(4 − 3n)

8πG
t−4. (41)

These two equations are related by the relation

p′ =

(
−1 +

4

3n

)
ρ′ , n 6= 0 , (42)

which represents the equation of state of the dark fluid. It is very inter-
esting to note that, when n= 1

2
, ρ′ = p′ =0. This implies that the dark

component does not disturb the nucleosynthesis constraints set forth by
the Einstein-de-Sitter solution. Notice that when n→∞, p′ =−ρ′, so
that in the distant future the Universe with or without normal matter
will be vacuum dominated. We notice that this dark component does
not live in a static Universe since it has p′ = ρ′ =0. For a positive en-
ergy density, we have (for β > 0) the constraint n< 1

2
. For 1

2
<n< 4

3
,

ρ′< 0, p′< 0. When n=1, p′= 1
3
ρ so that the dark component mimics

the ordinary radiation. The positivity of energy density is recovered if
β < 0. It is remarkable to notice that if the matter action is not incor-
porated in the Einstein action, the inclusion of the quadratic term acts
like matter. This type of matter is characterized by its equation of state
in (42). Hence, the inclusion of the R2 mimics the introduction of a new
matter in the Universe.

C. Matter Dominated Era. Applying (39)–(41) in (32) and (33),
one gets

8πGρ =
3n2

t2

[
1− 18β (1− 2n)

t2

]
, (43)

and

8πGp =
n(2− 3n)

t2

[
1− 18β (2n− 1)(3n− 4)

(2 − 3n)

1

t2

]
. (44)

Once again, we see from (41) that the pressure of the dark fluid
vanishes when n= 4

3
leaving only the bright fluid to contribute to the
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universal pressure. In this case, p< 0, and this will drive the Universe
into a cosmic acceleration era. Substitution of n= 2

3
in (43) and (44)

yields

8πGρ =
4

3t2

(
1 +

6β

t2

)
, 8πGp =

8β

t4
. (45)

We remark that the Universe approaches the Einstein-de-Sitter
asymptotically (when t→∞, i.e., in the distant future), where ρ = 1

6πGt2

and p=0. However, ρeff =
1

6πGt2
and peff =0. Notice that during this

era the dark component behaves like a stiff matter, with p′ = ρ′. It
is evident that when 2

3
<n< 4

3
the Universe enters a period of cosmic

acceleration. We may thus argue that the present observed cosmic ac-
celeration happened during this period. Equation (45) looks like having
a cosmological constant of the form Λ ∝ H4 in the Einstein-de-Sitter
universe.
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Hubble Redshift due to the Global

Non-Holonomity of Space

Dmitri Rabounski

Abstract: In General Relativity, the change in energy of a freely
moving photon is given by the scalar equation of the isotropic geodesic
equations, which manifests the work produced on a photon being
moved along a path. I solved the equation in terms of physical observ-
ables (Zelmanov A.L., Soviet Physics Doklady, 1956, vol. 1, 227–230)
and in the large scale approximation, i.e. with gravitation and defor-
mation neglected, while supposing the isotropic space to be globally
non-holonomic (the time lines are non-orthogonal to the spatial sec-
tion, a condition manifested by the rotation of the space). The solu-
tion is E=E0 exp(−Ω2at/c), where Ω is the angular velocity of the
space (it meets the Hubble constant H0 = c/a=2.3×10−18 sec−1),
a is the radius of the Universe, t= r/c is the time of the photon’s
travel. Thus, a photon loses energy with distance due to the work
against the field of the space non-holonomity. According to the solu-
tion, the redshift should be z= exp(H0 r/c)− 1≈H0 r/c. This solu-
tion explains both the redshift z=H0 r/c observed at small distances
and the non-linearity of the empirical Hubble law due to the expo-
nent (at large r). The ultimate redshift in a non-expanding universe,
according to the theory, should be z=exp(π)− 1= 22.14.

Contents:
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§1. Hubble redshift in a static universe. In this short presen-
tation, I show how the Hubble law, including its non-linearity with
distance, can be deduced directly from the equations of the General
Theory of Relativity. The Hubble law I have deduced is present in a
non-expanding universe. It is also present, in a slightly different form,
in an expanding universe and a compressing universe.

In General Relativity, the change of energy of a freely moving pho-
ton should be the solution to the scalar equation of isotropic geodesics,
which is also known as the equation of energy and manifests the work
produced on the photon being moved along the path. In terms of physi-
cally observable quantities — chronometric invariants (Zelmanov, 1944),
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which are the respective projections of four-dimensional quantities onto
the time line and spatial section of a given observer — the isotropic
geodesic equations are presented with two projections onto the time
line and spatial section, respectively [1–3]

dω

dτ
− ω

c2
Fi c

i +
ω

c2
Dik c

ick = 0 , (1.1)

d(ωci)

dτ
− ωF i + 2ω

(
Di

k +A·i
k·
)
ck + ω△i

nk c
nck = 0 , (1.2)

where ω is the proper frequency of the photon, dτ is the interval of phys-
ically observable time, ci is the chr.inv.-vector of the observable velocity
of light (ckc

k = c2). The physically observable properties of space are
presented with the chr.inv.-vector Fi of the gravitational inertial force,
the chr.inv.-tensor Aik of the angular velocity of the rotation of space
due to its non-holonomity (the non-orthogonality of the time lines to
the spatial section, which is expressed as g0i 6=0, and is manifested as
the three-dimensional rotation of space), the chr.inv.-tensor Dik of the
deformation of space (shows how space deforms with time), and the
chr.inv.-Christoffel symbols △i

nk (indicate the non-uniformity of space).
All these three-dimensional quantities bear the property of chronometric
invariance (i.e. they are invariant in the spatial section of the observer)
and are dependent on the gravitational potential w= c2 (1−√

g00), on

the linear velocity vi =− cg0i√
g00

of the rotation of space due to its non-

holonomity, and also on the chr.inv.-metric tensor hik =−gik+ 1

c2
vivk,

which characterize the time line and spatial section of the observer.
Integration of the scalar equation of isotropic geodesics (the equa-

tion of energy) should give a function E=E (t), where E= ~ω is the
proper energy of the photon. However, integration of time in a Rieman-
nian space is not a trivial task. This is because the observable interval
of time dτ =

√
g00 dt− 1

c2
vidx

i depends on the gravitational potential w
along the path, on the linear velocity vi of the rotation of space (due to
the non-holonomity of it), and on the displacement dxi of the observer
with respect to his coordinate net during the measurement. The result
of integration depends on the integration path, so time is not integrable
in a general case. We therefore consider the “large scale approxima-
tion”, where distances are close to the curvature radius of the Universe;
so gravitation and deformation are neglected in the space (g00 =1 and
Dik =0, respectively), and the observer is resting with respect to his
coordinate net (dxi =0). In such a case, integration of time is allowed,
and is simply dτ = dt. We also suppose the isotropic space, the “home
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space” of isotropic (light-like) trajectories and massless light-like parti-
cles (e.g. photons), to be globally non-holonomic (vi 6=0). With these
assumptions, the formula for the gravitational inertial force Fi [1–3],
losing the gravitational potential which becomes w= c2 (1−√

g00)= 0,
consists of only the second term

Fi =
1√
g00

(
∂w

∂xi
− ∂vi

∂t

)
≃ − ∂vi

∂t
, (1.3)

which is due to the space non-holonomity. This negative (centrifugal)
acceleration, experienced by such a photon in the isotropic space, is
the solely factor which is still acting on the energy of the photon in
the scalar equation of isotropic geodesics in the framework of the “large
scale approximation” in a globally non-holonomic isotropic space. It
acts on a photon due to the motion (global rotation) of the isotropic
space itself.

It should be noted that, despite the apparent similarity to the cen-
trifugal force of inertia, this factor is not related to the fictitious forces
of inertia. The forces of inertia are observed in a rotating coordinate
frame, and are due to the transformation of the coordinates and time
which include the angular velocity of the coordinate frame (these were
considered in 1909 by Max Born, and are known as the Born coordi-
nates). As a result, the space-time metric being written in the Born
coordinates gets additional terms in g00 and g0i. The additional terms
vanish, in common with the forces of inertia produced due to the terms,
by the transformation of the coordinates back to another, non-rotating
frame. In contrast, the factor we are considering is due to the basic
non-holonomity of space, which is only g0i 6=0, and is invariant in the
spatial section of the observer (i.e. this is a chronometrically invariant
effect), and cannot therefore be removed by the transformation from
one coordinate frame to another one in the spatial section.

Of course, one can derive the inertial force effects in General Relativ-
ity, when moving to a rotating coordinate frame (the Born coordinates).
These will, however, be only the removable (fictitious) effects, observed
on the background of the gravitational potential, the non-holonomity,
the deformation, the inhomogeneity, and the curvature of space, whose
effects cannot be removed by our choice of the coordinate frame in the
spatial section of the observer due to the invariance of the effects in the
spatial section.

We consider a single photon travelling in the x-direction. In this
case, c1= c, c2=0, c3=0. With the “large scale approximation” in
a globally non-holonomic isotropic space, and assuming the linear ve-
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locity of the space rotation to be v1= v2= v3= v and stationary, i.e.
∂v

∂t
=B= const, the scalar equation of isotropic geodesics for such a pho-

ton takes the form

dE

dt
= − B

c
E . (1.4)

This is a simple uniform differential equation of the 1st order, like
ẏ=− ky, so that we have dy

y =−kdt or d(ln y)=−kdt. It solves as
ln y=−kt+ lnC, where C is the integration constant which can be
evaluated when the initial conditions of integration (y= y0, t0 =0) are
substituted. Finally, we obtain y= y0 e

−kt. As a result, the scalar equa-
tion of isotropic geodesics (the equation of energy), in the “large scale
approximation” in the globally non-holonomic space, gives the solution
for the photon’s energy (frequency) and the redshift z= ω0−ω

ω as de-
pending on the distance r= ct travelled from the observer

E = E0 e
−kt, z = ekt − 1 , (1.5)

such that at small distances of the photon’s travel, i.e. with the exponent
ex=1+x+ 1

2
x2 + . . .≃ 1+x, it takes the form

E ≃ E0 (1− kt) , z ≃ kt , (1.6)

where k= 1

c
B= 1

c

∂v

∂t
= const. Thus, according to our calculation, which

is based on the equations of the General Theory of Relativity, a pho-
ton being moved in a non-holonomic space loses its proper energy and
frequency due to the work produced by it against the field of the space
non-holonomity (or, in other words, the negative work produced by the
field on the photon).

We suppose the space (space-time) of our Metagalaxy to be a spher-
ical geometry space, which has a constant curvature and is globally
non-holonomic. A constant curvature spherical space, whose metric is
sign-definite, is a hypersphere of constant radius (the curvature radius
of the space). However, we are considering a four-dimensional spherical
space with a sign-alternating metric (+−−−) or (−+++), which indicates
the presence of the special coordinate axis known as time among the four
coordinate axes of the space. The sign-alternating metric indicates, in
particular, that such a space consists of two subspaces, which are known
as the non-isotropic space (the home of non-isotropic trajectories which
are the trajectories of mass-bearing particles) and the isotropic space
(the home of isotropic trajectories which are the trajectories of mass-
less light-like particles, e.g. photons). We know that, given a point,
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only one geodesic line can be paved through it in a given direction,
and such a unique geodesic line can be either non-isotropic or isotropic
(see [4, §6] or [5, §101]). In other words, non-isotropic and isotropic
geodesics have no common points. Therefore, the spherical space with
the sign-alternating metric we are considering is presented with two
concentric hyperspheres — the home of non-isotropic trajectories and
that for isotropic ones — which have the same radius of curvature, but
are not coinciding with each other.

The constant radius of such a hypersphere manifests that the curva-
ture radius of the space of our Metagalaxy remains unchanged, so the
Metagalaxy as a whole does not expand or compress in the framework
of this model. Meanwhile, a local volume (a local element of the hy-
persphere’s surface) may experience any stages of the evolution, which
could be conceivable in the framework of Zelmanov’s theory of a locally
inhomogeneous anisotropic universe [2, 3], including the special states
of infinite density and infinite rarefraction, if it doesn’t change the sta-
tionary state of the space (the hypersphere’s surface) as a whole.

The non-holonomity of the four-dimensional (non-isotropic or iso-
tropic) space is the basic non-orthogonality of the time lines to the
spatial axes on the (non-isotropic or isotropic) hypersphere’s surface,
and is manifested by its three-dimensional rotation.∗

According to the concepts of topology [6, vol. 1], the surface of
an (n+1)-dimensional sphere is equivalent to the volume of an n-
dimensional torus. Thus, the globally non-holonomic spherical space
we are considering is representable also with a torus, the home of non-
isotropic trajectories and mass-bearing particles, which is coaxial to
another torus, the home of isotropic trajectories and massless light-like
particles, but is not coinciding with the first.

It is obvious that since the non-holonomity of such a space must
be stationary, we can express the acceleration experienced by a photon
in the isotropic space due to its non-holonomity, through the angular
velocity Ω of the rotation of the isotropic hypersphere and its curvature
radius, a= c

H0
, which is the same that the curvature radius of our

Metagalaxy (H0 is the Hubble constant). We obtain ∂v

∂t
=Ω2a= const.

In such a space, the coefficient k= 1

c

∂v

∂t
in the solution (1.5) we have

∗The non-orthogonality of the time lines to the spatial section is impossible to be
in a sign-definite metric space due to the absence of the special coordinate axis known
as time. Therefore, all that has been said about holonomic and non-holonomic spaces
is valid only for sign-alternating metric spaces such as pseudo-Riemannian spaces (for
instance, the four-dimensional pseudo-Riemannian space with the signature (+−−−)

or (−+++), which is the basic space-time of the General Theory of Relativity).
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obtained to the scalar equation of isotropic geodesics is

k =
1

c
Ω2a = const. (1.7)

Then, according to the redshift formula z≃ kt obtained in the frame-
work of our theory, for the galaxies located at a “small” distance of
r≃ 630 Mpc∗ (the redshift observed on them is z≃ 0.16) we obtain

Ω =

√
z c

at
=

√
z c2

ar
≃ 2.4×10−18 sec−1, (1.8)

that meets the Hubble constant, which isH0=72±8×105 cm/sec×Mpc=
=2.3±0.3×10−18 sec−1 (this is according to the Hubble Space Telescope
data, 2001 [7]).

With these we arrive at the following law

E = E0 e
−H0r

c , z = e
H0r
c − 1 , (1.9)

as a purely theoretical result obtained from our solution to the scalar
equation of isotropic geodesics. At small distances of the photon’s travel,
this law becomes

E ≃ E0

(
1− H0 r

c

)
, z ≃ H0 r

c
. (1.10)

As seen, this result provides a complete theoretical ground to the
linear Hubble law, empirically obtained by Edwin Hubble for small dis-
tances, and also to the non-linearity of the Hubble law observed at
large distances close to the size of the Metagalaxy (the non-linearity
is explained due to the exponent in our exact solution (1.9), which is
becoming a sufficient factor at large r).

Then, proceeding from our solution, we are able to calculate the
ultimate redshift, which is allowed in our Universe. It is, according to
the exponential law (1.9),

zmax = eπ − 1 = 22.14 . (1.11)

Proceeding from the theoretical considerations presented here, we
calculate the linear velocity of the rotation of the isotropic space, which
is due to the global non-holonomity of it. It is v̆=Ωa=H0a= c, i.e. is
equal to the velocity of light. I should note, to avoid misunderstand-
ing, that this linear velocity of rotation is attributed to the isotropic

∗1 parsec = 3.0857×1018 cm ≃ 3.1×1018 cm.
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space, which is the home of isotropic (light-like) trajectories specific
to massless light-like particles (e.g. photons). It isn’t related to the
non-isotropic space of sub-light-speed trajectories, which is the home
of mass-bearing particles (e.g. galaxies, stars, planets). In other words,
our result doesn’t mean that the visible three-dimensional space of cos-
mic bodies rotates at the velocity of light. The space of galaxies, stars,
and planets may be non-holonomic or not, depending on the physical
conditions in it.

It is possible to show, by the mathematical methods of orthometric
invariants [8] which allow calculation for physically observable quantities
in any reference frame of the four-dimensional pseudo-Riemannian space
(the basic space-time of the General Theory of Relativity), that the
basic non-holonomity of the isotropic space is such that it rotates as
a whole with the linear velocity equal to the velocity of light. So, our
result concerning the linear velocity of the rotation of the isotropic space
meets the basics of geometry of pseudo-Riemannian spaces.

In addition, it should be noted that, according to the theory of chro-
nometric invariants, given the isotropic space rotating at the velocity of
light, the observable three-dimensional metric hik of the space is non-
degenerate (h=det ‖hik‖6=0). Thus, the four-dimensional metric gαβ is
non-degenerate as well (g=−hg00 6=0, where g=det ‖gαβ‖6=0). This
means that the rotation of the isotropic space at the velocity of light
does not lead to a singulary break in it.

§2. The rôle of deformation. The exponential redshift law (1.9)
and its linear approximation (1.10) were deduced for a static universe,
which does not experience expansion or compression, so its space re-
mains non-deforming. Now, we study how the redshift law does change
its formulation in a universe which expands or compresses.

The redshift law (1.9) was obtained as a result of integrating the
scalar geodesic equation (1.1). According to the equation, the deforma-
tion of space is the second factor which, in addition to the gravitational
inertial force, changes energy of a freely moving photon. No other fac-
tors are manifested. Space deforms while the universe expands or com-
presses. Thus, integrating the scalar geodesic equation in a non-static
universe, we should take the factor of deformation into account.

The chr.inv.-tensor Dik of the deformation of space is formulated
[1–3] as the derivative of the chr.inv.-metric tensor hik by time

Dik =
1

2

∗∂hik
∂t

, Dik = − 1

2

∗∂hik

∂t
, (2.1)
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where the tensor’s trace (its physical meaning is the volume deformation
of space) is

D = hikDik =
∗∂ ln

√
h

∂t
=

1

V

∗∂V

∂t
, (2.2)

where
∗∂

∂t
= 1√

g00

∂

∂t
, h=det ‖hik‖, dV=

√
h dx1dx2dx3 is a differential in-

crement of the volume V of space, while the components of the chr.inv.-
metric tensor by definition [1–3] are

hik = − gik +
1

c2
vivk , hik = − gik, hik = − gik = δik . (2.3)

We will consider the redshift law in universes of two kinds, according
to two simplest types of deformation∗.

First, we will consider the redshift law in a constant deformation

universe. This means that the volume of space undergoes equal relative
changes with time†, so the deformation of space remains constant‡

D =
1

V

∗∂V

∂t
= const =⇒ Dik =

1

2

∗∂hik
∂t

= const. (2.4)

Deformation of this kind means increase of the linear velocity of the
expansion of space in an expanding universe, and decrease of the linear
velocity of the compression in a compressing universe. This can be illus-
trated by calculation of a volume. In the three-dimensional Euclidean
space, the volume of a parallelepiped built on the vectors ri(1), r

i
(2), r

i
(3)

is calculated as V=± det ‖ri
(n)

‖=±|ri
(n)

|. We obtain the invariant V 2 =

= |ri(n)||r(m)i|= |ri(n)||hik rk(m)|= |hik ri(n)r
k
(m)|. (It should be noted that

∗The chr.inv.-quantity Dik takes all changes of the space volume into account.
For instance, in a static non-holonomic universe (vi 6=0), space deforms by its rota-
tion. This is manifested by the derivative from the second term of the chr.inv.-metric
tensor hik (2.3). Meanwhile the coordinate three-dimensional metric gik changes due
to the rotation so that the resulting deformation of space is zero

Dik =
1

2

∗∂hik

∂t
= 0 ⇐⇒ c2

∂gik

∂t
= vi

∂vk

∂t
+ vk

∂vi

∂t
.

In a static holonomic universe (vi =0), the condition Dik =0 is realized by the
conditions gik = const and vi =0.

†I refer to this kind of universes as homotachydioncotic (oµoταχυδιoγκωτικó).
This terms originates in homotachydioncosis — oµoταχυδιóγκωσης — volume ex-
pansion with a constant speed, from óµo which is the first part of óµoιoς (omeos) —
the same, ταχύτητα — speed, διóγκωση — volume expansion, while compression
can be considered as negative expansion.

‡The stationarity of an invariant metric, such as gαβ or hik, leads to the station-
arity of its determinant, and vice versa. For instance, in the case under consideration,
hik = const ⇐⇒ h=det ‖hik‖= const.
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hik ≡−gik in an Euclidean space.) Concerning a differentially small
volume, the invariant is (dV )2 = |hik dxi(n)

dxk
(m)

|= |hik||dxi(n)
||dxk

(m)
|=

=h |dxi(n)||dxk(m)|. Thus, dV=
√
h |dxi(n)|. Expanding this method onto

an n-dimensional pseudo-Riemannian space, we obtain dV=
√−g |dxα(ν)|.

In particular, a three-dimensional differentially small volume in the four-
dimensional space-time of General Relativity is dV=

√
h |dxi(n)|, or, if

the basic vectors of the parallelepiped meet the spatial coordinate axes,
dV=

√
h dx1dx2dx3.

The volume of a finite space comes with the integration of dV ,
wherein the differential lengths dxi, and also the scale of xi we inte-
grate, do not depend on time (integration with respect to the spatial
coordinates is instant). Thus, we obtain

D =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√
h

∂t
=

1

V

∗∂V

∂t
= γ

1

a

∗∂a

∂t
= γ

v

a
, (2.5)

where V∼ a3 as for any three-dimensional volume, a is the radius of the
universe (equal to the curvature radius in a constant curvature space),
v =±|v| is the linear velocity of the expansion or compression of space
(positive in an expanding universe and negative in a compressing uni-
verse), and γ-factor is a constant numerical coefficient which is specific
to the shape of space (γ=3 in the homogeneous isotropic models [2,3]).
As seen from this formula under D= const, in a constant deformation
expanding universe, the linear velocity of its expansion increases with
the growing radius of space (this means accelerated expansion of the
universe). In contrast, in a constant deformation compressing universe,
the linear velocity of its compression decreases with the shrinking radius
of space (decelerated compression).

Second, we will consider the redshift law in a constant speed deform-

ing universe∗, i.e. in a universe which expands or compresses with a con-
stant linear velocity v=

∗∂a

∂t
=const. In a universe of this kind, the radius

of space changes linearly with time a= a0 ±v t (here the upper sign is
attributed to the expansion of space, while the lower sign characterizes
the compression), while the deformation of space (2.5) is

D = γ
1

a0 ± v t

∗∂a

∂t
≃ γ

1

a0

(
1∓ v t

a0

)∗∂a

∂t
≃ γ

v

a0
∓ γ

v2 t

a20
, (2.6)

∗I refer to this kind of universes as homotachydiastolic (oµoταχυδιαστoλικóς).
It’s origin is homotachydiastoli — oµoταχυδιαστoλή — linear expansion with a con-
stant speed, from óµo which is the first part of óµoιoς — the same, ταχύτητα —
speed, and διαστoλή — linear expansion (compression can be considered as negative
expansion).
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and is a linear function of time: D=D0 ∓µt, µ= const. Thus, in
a constant speed expanding universe, the deformation decreases with
time, while it grows with time in a constant speed compressing universe

D ≃ D0 − γ
v2 t

a20
in the case of expansion, (2.7)

D ≃ D0 + γ
v2 t

a20
in the case of compression, (2.8)

where D0 ≃ γ v
a0

is the deformation of space and a0 is the radius of
the universe at the start of measurement.

It should be noted that all that has been said here about the defor-
mation of space is valid to both a finite and an infinite universe. This is
because, according to the theory of an inhomogeneous anisotropic uni-
verse (Zelmanov, 1944 [2,3]), not only a whole universe can be a subject
of evolution, but also any volume element of it, including even differ-
entially small volume elements.

§3. Redshift in a constant deformation universe. In a universe
of this kind, D= const andDik= const. We neglect gravitation (g00=1),
i.e. the gravitational potential is w= c2 (1−√

g00)= 0 as in the “large
scale approximation”. As in our consideration of a static non-holonomic
universe, we consider a single photon travelling in the x-direction (in
this case, c1= c, c2=0, c3=0) and the linear velocity of the space ro-
tation to be v1= v2= v3= v. However, v is not stationary in this case.
(It is stationary only in a static universe, because it does not change its
volume during the rotation.)

We consider the function v= v (t). The relation ∂v

∂t
=Ω2a is obvi-

ous in a spherical space. The conservation of angular momentum of
the universe therefore means that Ωa2= const. These relations lead to
∂v

∂t
= Ω2a4

a3 =
χ

V
, where χ= σΩ2a4= const. Here σ is a constant struc-

tural coefficient specific to the shape of space so that the volume of
space is expressed as V = σa3 at any stage of the evolution of the uni-
verse (we assume that space does not change its shape being homo-
geneous expanding or compressing). The constant deformation con-

dition D= 1
V

∂V
∂t

= ∂ lnV
∂t

=A= const (here
∗∂
∂t

= ∂
∂t

because no gravita-

tion) gives lnV =At+ lnC. Thus, V =V0 e
At, where A= γ v

a according
to (2.5). Thus we obtain

∂v

∂t
=

χ

V0
e−At. (3.1)
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With these, we adopt the scalar equation of isotropic geodesics (1.1)
to a photon travelling in a constant deformation universe. We obtain

dE

dt
= −

(
χ

cV0
e−At +D11

)
E , (3.2)

or ẏ=− ky, where k=
χ

cV0
e−At+D11.

This is a simple uniform differential equation of the same kind as
the equation of isotropic geodesics (1.4) we deduced for a static (non-
deforming) non-holonomic universe with the only difference that being
k=

χ

cV0
e−At+D11. Expanding the contants A and χ, and taking into

account that Ω=H0, a=
c

H0
, t= r

c (H0 is the Hubble constant, r is the

distance of the photon’s travel), and that D11=D=A in the case under
consideration, we obtain

k = H0

(
e
−γ H0rv

c2 + γ
v

c

)
, (3.3)

where the linear velocity of the expansion or compression of space is
v=±|v|, becoming positive in an expanding universe and negative in a
compressing universe.

The equation (3.2) can be solved in the same way as (1.4). The
solution will have only k according to the formula (3.3) instead of k=H0

from the solution (1.9) we have obtained in a static (non-deforming)
universe.

Thus (3.2) solves as

E = E0 e
−H0r

c

(
e
−γ H0r |v|

c2 +γ |v|
c

)

in an expanding universe, (3.4)

E = E0 e
−H0r

c

(
e
γ H0r |v|

c2 −γ |v|
c

)

in a compressing universe. (3.5)

The redshift in a deforming non-holonomic universe (in the “large
scale approximation”, where gravitation is neglected) arrives with the
sum of two terms. First, the redshift due to the non-holonomity of
space, which is resulted from the solution to a photon’s scalar equation
of motion. Second, the relativistic Doppler redshift, which is an effect
of the photon’s motion with respect to the observer. Thus, with the ob-
tained solutions (3.4) and (3.5), we obtain the redshift law in a constant
deformation non-holonomic universe in the cases of the expansion and
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compression, respectively

z =


 e

H0r
c

(
e
−γ H0r |v|

c2 +γ |v|
c

)

− 1


+


 1 + |v|

c√
1− v2

c2

− 1


, (3.6)

z =


 e

H0r
c

(
e
γ H0r |v|

c2 −γ |v|
c

)

− 1


+


 1− |v|

c√
1− v2

c2

− 1


, (3.7)

where the main goal at sub-relativistic velocities∗ is due to the first term
(a result of the non-holonomity of space), while the numerical value of
the second (Doppler-effect) term is much less and consequently plays an
auxiliary rôle in the redshift law.

At small distances of the photon’s travel and sub-relativistic veloc-
ities of the expansion or compression, the redshift law (3.6) and (3.7)
takes the linear approximation form

z ≃ H0 r

c

[
1− γ

|v|
c

(
H0 r

c
− 1

)]
+

|v|
c

in an expanding
universe,

(3.8)

z ≃ H0 r

c

[
1 + γ

|v|
c

(
H0 r

c
− 1

)]
− |v|

c
in a compressing
universe.

(3.9)

What is curious in the obtained law is that it will be blueshifted
(z < 0) at only small distances r≪ a in a compressing universe. This is
because the first (exponential) term will be positive in any case due to
the exponent. At large distances, the first (always positive) term in the
law (3.7) is much bigger than the second (Doppler-effect) negative term.
For instance, let a photon travel at a distance r equal to the curvature
radius of space a= c

H0
≃ 1.3×1028 cm≈4×109 parsec, while the universe

compresses with a linear velocity of 100,000km/sec. We assume also the
shape-factor of space γ=3 as for the inhomogeneous isotropic models
[2,3], but this is not principal in the calculation (the numerical value of
γ depends weakly from the space of space). In this case, the first term in
the redshift law (3.7) is z1 =+4.6, while the second term (the relativistic
Doppler blueshift) is z2 =−0.29. If the universe compresses with a
velocity of 10,000km/sec, for a photon at the same distance r= a, we

∗It is unbelievable that a universe expands or compresses with a velocity close
to the velocity of light. On the other hard, such “ultimate cases” of ultra-relativistic
expansion or compression would be interested from purely theoretical viewpoint.
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obtain z1 =+1.7 and z2 =−0.033. In contrast, at small distances r≪ a,
the first term approaches to zero, while the second (Doppler-effect blue-
shift) term becomes valuable. For instance, if the universe compresses
at 300 km/sec, at a short distance of 106 parsec (the Andromeda Galaxy
is located at a distance of ∼ 780,000 parsec) we obtain z1 =+0.00023
and z2 =−0.001, so the resulting shift of a photon’s frequency at this
distance is negative (the photon is definitely blueshifted).

Therefore, I suggest the same name “redshift law” for the obtained
law in both expanding universe and compressing universe.

The redshift law (3.6, 3.7) and its linear approximation (3.8, 3.9)
were obtained in a constant deformation non-holonomic universe. It
is obvious that, in the absence of expansion or compression of space
(v= 0), these formulae transform into the redshift law (1.9) and its
linear approximation (1.10) as deduced in a static (non-deforming) non-
holonomic universe.

§4. Redshift in a constant speed deforming universe. A uni-
verse of this kind expands or compresses with a constant linear velocity
v= const.

In this case, neglecting gravitation as in the “large scale approxima-
tion” (g00 =1), and taking the conservation of the angular momentum
of the universe (Ωa2= const) into account, we obtain

∂v

∂t
= Ω2a =

Ω2a4

(a0 + vt)
3 ≃ Ω2a4

a30

(
1− γ

vt

a0

)
, (4.1)

where v=±|v| (the positive velocity characterizes the expansion of
space, while the sign minus characterizes the compression).

With (4.1) and the formula of deformation with v= const (2.6), we
apply the scalar equation of isotropic geodesics (1.1) to a photon travel-
ling in a constant speed deforming non-holonomic universe. As a result
we obtain

dE

dt
= −

(
Ω2a4

ca30
+ γ

v

a0

)
E + γ

v

a0

(
Ω2a4

ca30
+

v

a0

)
Et , (4.2)

i.e. a separable first order ordinary differential equation ẏ=− ay− by t,
which solves by separation of variables (moving the y terms to one side
and the t terms to the other side). Thus, we transform this equation
into dy

y =− (a+ bt) dt, then obtain d ln y=−
(
at+ 1

2
bt2
)
+ lnC. Finally,

we have the solution y= y0 e
−(at+ 1

2 bt
2). As a result, the scalar equation
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of isotropic geodesics (4.2) solves as

E = E0 e
−H0r

c

{
1+γ

|v|
c

−γ
H0r |v|
2c2

(
1+

|v|
c

)}
in an expanding
universe,

(4.3)

E = E0 e
−H0r

c

{
1−γ

|v|
c

+γ
H0r |v|
2c2

(
1−|v|

c

)}
in a compressing
universe.

(4.4)

Accordingly, the redshift law in a constant speed deforming non-
holonomic universe is the sum of the redshift proceeded from the solu-
tions to a photon’s scalar equation of motion and the relativistic Doppler
redshift. With these solutions (4.3) and (4.4) we obtain the redshift law
in a constant speed deforming non-holonomic universe, the the cases of
expansion and compression, respectively
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c
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|v|
c

−γ
H0r |v|
2c2

(
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|v|
c

)}

− 1



+
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c√

1− v2

c2

− 1



, (4.5)
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c
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2c2

(
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c
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− 1
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 1− |v|
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1− v2

c2

− 1



. (4.6)

In the case, where the photon travels at a small distance, while space
expands or compresses with a sub-relativistic velocity, the redshift law
(4.5, 4.6) takes the linear approximation form

z ≃ H0 r

c

[
1− γ

|v|
c

(
H0 r

2c
− 1

)]
+

|v|
c

in an expanding
universe,

(4.7)

z ≃ H0 r

c

[
1 + γ

|v|
c

(
H0 r

2c
− 1

)]
− |v|

c
in a compressing
universe.

(4.8)

As seen, the formulae (4.7, 4.8) differ from the linear form redshift
law in a constant deformation universe (3.8, 3.9) by only the numerical
multiplier 1

2
in the brackets of the second term, which is due to the

hon-holonomity of space, while the second term (due to the Doppler-
effect) remains the same. This means that the redshift in a universe
which expands with a constant linear velocity is less that the redshift
in a universe whose space expands so that its deformation remains un-
changed.

In a constant speed compressing universe, this difference leads to a
blueshift (due to the Doppler-effect, manifested by the second term of
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the redshift law) which is observed at a distance larger than in a con-
stant deformation compressing universe. Then the first term (due to the
non-holonomity of space), which is always positive due to the exponent,
increases with the distance, so that it exceeds the second (Doppler-effect
blueshift) term and the summary shift in a photon’s frequency becomes
positive: the photon becomes definitely redshifted in a compressing
universe.

This tendency is still valid in the exponential redshift law (4.5, 4.6),
which takes an account of the large distances and the ultra-relativistic
velocity of the expansion or compression.

If no expansion or compression of space (v=0), these formulae trans-
form into the redshift law (1.9) and its linear approximation (1.10) we
have deduced in a static (non-deforming) non-holonomic universe.

§5. Conclusions. To better view of the results obtained in this pa-
per, they have been collected into a Table shown on Page 26. Actually,
this is the redshift law and its linear approximation. These have been
theoretically deduced in the framework of a globally non-holonomic uni-
verse, where the isotropic space (the “home space” of isotropic trajec-
tories and massless light-like particles, e.g. photons) rotates with the
velocity of light and at an angular velocity equal to the Hubble con-
stant. In summary, the following results are emphasized:

1. The empirical Hubble law, including its non-linearity at large dis-
tances, is completely explained in a static (non-deforming) uni-
verse due to the redshift produced by the global non-holonomity
of the isotropic space (a photon being moved in a non-holonomic
space loses its proper energy/frequency due to the work produced
by it against the field of the space non-holonomity).

2. The non-linearity of the Hubble law, observed at large distances
close to the curvature radius of space, is explained due to the ex-
ponent in the redshift law deduced for a static universe.

3. The ultimate redshift in a static spherical universe, according to
the theory, should be z=exp(π)− 1=22.14.

4. Deformation (expansion or compression) of space results changes
in the redshift law. In a deforming universe, it consists of two
terms: the first term is due to the non-holonomity of space, while
the second term manifests the relativistic Doppler effect observed
on a photon due to the rapid expansion or compression of space.

5. In an expanding universe, according to the redshift law, the near
objects must be redshifted (on the average) due to the Doppler-
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Table 1: The redshift law and its linear approximation, obtained in the framework of a globally non-holonomic universe,
where the isotropic space (the “home space” of isotropic trajectories and massless light-like particles, e.g. photons) rotates with
the velocity of light and at an angular velocity equal to the Hubble constant.
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effect, while the redshift in the spectra of far galaxies must be
much larger than the Doppler redshift, and approaching expo-
nential growth at large distances. We however do not observe
any systematic redshift on the stars of our Galaxy and the near
galaxies (moreover the Andromeda Galaxy is blueshifted). Edwin
Hubble had discovered a systematic redshift on only far galaxies.
Meanwhile, a systematic Doppler redshift must be observed on the
near objects, if our Universe expands. Therefore, the expanding
scenario does not seem to properly characterize our Universe.

6. In a compressing universe, according to the redshift law, the near
objects must be blueshifted (on the average) due to the Doppler-
effect, while far galaxies must be redshifted due to the always
positive exponential (growing up with distance) term in the red-
shift law. Meanwhile, we do not observe any average blueshift on
the objects both within our Galaxy or near it (the blueshift of the
Andromeda Galaxy can be explained by the relative motion of
it toward our Galaxy). Therefore, the compressing scenario also
does not seem to properly characterize our Universe.

Consequently, the empirical Hubble law, which is a result of astro-
nomical observations, is completely explained by the theoretical redshift
law we have deduced in a static spherical universe, while the expansion
or compression of space would lead to the unbelievable changes of the
redshift law, never registered in astronomical observations. Therefore, I
conclude that we have enough reasons to mean the space of our Universe
static as a whole.

On the other hand, this conclusion does not exclude expansion or
compression of local volumes of space. According to Zelmanov’s theory
of an inhomogeneous anisotropic universe [2,3], a local volume element
of a universe can evolve in another way than the universe as a whole.
Thus, the local redshift or blueshift anomalies, which differ from the
redshift law (1.9, 1.10) we have deduced for a static universe, manifest
the fact that the space of our universe, static as a whole, is evolving
(expanding or compressing) in its local volume elements.

For instance, supernova explosions lead to the rapid expansion of
the surrounding (local) volume of space. An observer near a supernova
should register the redshift effect according to the expansion. In con-
trast, the process of collapse leads to compression of the local space
surrounding a collapsing object. Therefore, an observer near a collaps-
ing object should register the blueshift effect which manifests the fact
that the surrounding space compresses. Thus, collapsing bodies in the



28 The Abraham Zelmanov Journal — Vol. 2, 2009

Universe can be indicated by not only accretion of the near matter onto
such a body, but also by the blueshift in the compressing local space
of it. Note that, according to the redshift law we have deduced, the
blueshift effect of a compressing space is valid at only small distances
where the redshift due to the global non-holonomity of the Universe is
small. Therefore, in searching for a blueshift effect in a compressing
volume (actually, in look for the collapsing bodies in the Universe), we
should limit the area of our search by the distance to the Andromeda
Galaxy or by a distance which is not much larger.

In this row, bizarre should seem the result of observation produced
near a Cepheid, because its local space experiences periodical expansions
and compressions, i.e. oscillates, with a short period equal to the period
of pulsation of the star itself (days).

Submitted on October 31, 2008
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Preface of 2009 to “The Velocity of Light

in Uniformly Moving Frame”

Frank Robert Tangherlini∗

Abstract: This preface gives a brief historical background to my
1958 Stanford Ph.D. thesis, The Velocity of Light in Uniformly Mov-

ing Frames. As a graduate student at the University of Chicago in the
early 1950’s. I thought that by modifying the Lorentz Transformation
(L.T.) so as to keep a particle’s momentum finite at the speed of light,
one could solve the divergence problem of QED, and allow for faster-
than-light motion. However, after criticisms by eminent physicists,
before and after resuming graduate studies at Stanford, this approach
was finally abandoned in favor of a truncated version of the L.T. called
the Absolute Lorentz Transformation (A.L.T.) that is consistent with
Einstein’s principle of general covariance, the metric postulate, and
experiment.

At this writing, a little over fifty years have elapsed since I began in
the autumn of 1957 the line of investigations into special relativity that
are presented here in my Stanford thesis, which was completed and
submitted to the University in September 1958. Actually, my studies
in special relativity had begun about eight years earlier when I was a
graduate student at the University of Chicago. My investigations then
were along somewhat different lines, and were directed at obtaining a
cut-off to cure the logarithmic divergences that occur in quantum elec-
trodynamics, as well to see whether this would also enable particles
to travel faster than light. However these investigations led to very
complicated expressions mathematically, and after numerous negative
comments from distinguished physicists, I put them aside after I had
later gone to Stanford to resume my graduate studies in the fall of 1955,
following the offer of a graduate fellowship by the physics department
chairman, Leonard Schiff, whose textbook on quantum mechanics is
well-known [1]. Although I was unaware of it at the time, Schiff had a
deep interest in relativity, particularly in the testing of general relativ-
ity. I should mention that I left Chicago in the fall of 1952 and came
to San Diego for family reasons, where I eventually worked in the space
industry for about two and a half years before resuming my graduate
studies in physics at Stanford. In the fall of 1956 Sidney Drell, whose
work on quantum electrodynamics is well-known, became my thesis ad-
viser, and although while he welcomed the idea of a cut-off, he didn’t
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agree with the ideas of my Chicago approach either, hence, as indi-
cated above, I put them aside. and worked on other ideas, such as the
then newly-recognized parity and charge conjugation violations in the
weak interactions. The following summer I carried out some calcula-
tions about photoproduction of neutral pions [2] at the old Mark III
linear electron accelerator that was the ancestor of the present two-mile
Stanford linear accelerator, commonly known as SLAC, of which Drell
became the Vice-Director, but from which he has since retired.

In the fall of 1957, after the pion photo-production calculations were
finished, I decided to tackle the Lorentz transformation again, but this
time, instead of trying to modify it, I was interested in improving my
understanding of the transformation and special relativity more gener-
ally, while at the same time retaining the idea I had developed when I
was studying at the University of Chicago about there being an ether.
This idea had come about as follows. While there I attended many lec-
tures by Enrico Fermi, and in particular, during the winter and spring
quarters of 1949, I attended his course on nuclear physics [3]. In these
lectures I learnt for the first time about Dirac’s idea of space being
filled with a sea of negative energy states [4]. Although before coming
to Chicago, I had had a course on quantum mechanics as an undergrad-
uate at Harvard, given by Julian Schwinger, it was a non-relativistic
course, and I graduated before I could take the course in relativistic
quantum mechanics where the Dirac sea and the so-called hole theory
of positrons would be discussed. I might add, parenthetically, that it
was in a colloquium given late in 1947 by Schwinger concerning his then
recent work on quantum electrodynamics that I learnt of the logarith-
mic divergence of the first-order correction to the mass of the electron.
At any rate, Dirac’s idea of a sea of negative energy states struck me
as supportive of there being an ether, in the sense that space was not
empty i.e., it was not a “void”. This latter description of space was
the view that had emerged from Einstein’s famous 1905 work, and that
of course was in conflict with the views of Larmor, Lorentz, Poincaré,
and indeed nearly all the physicists of Einstein’s time. Also, while at
Chicago, I learnt of the experiment of Michelson and Gale, that is an
optical analogue of the Foucault pendulum experiment, and also the
experiment of Sagnac, both of which seemed more easy to interpret in
terms of an ether relative to which the Earth was rotating in the first
case, or relative to which the Sagnac interferometer was rotating in the
second case. This is briefly discussed in the thesis.

To those who have studied only special relativity, my attempt to
retain the ether might seem as though I had taken a step backward;
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however, while working in San Diego, but continuing to research rela-
tivity in my spare time, I found surprising support from the later work
of Einstein on the basis of his general theory of relativity. I should
note here that I had commenced the study of general relativity on my
own while at Harvard using the text by Peter Bergmann [5], and also
that by Arthur Eddington [6], while I also attended lectures on tensor
analysis by Léon Brillouin [7]. In 1953, I came across a translation of
Einstein’s [8] inaugural address in Leiden in 1920 where, following the
wishes of Lorentz and Ehrenfest, he had been invited to serve as an
annual visiting professor, while retaining his primary position in Berlin.
In the address he says,

“From the point of view of the special theory of relativity, the
ether hypothesis has certainly been an empty one at first sight. . .
On the other hand, there is an important argument in favour of
the ether. To deny the existence of the ether means, in the last
analysis, denying all physical properties of empty space. But such
a view is inconsistent with the fundamental facts of mechanics”.

It is unfortunate that many texts that are used to teach special relativity
never reference this important address by Einstein, although a notable
exception is the text by Pauli [9], which however is rarely used, so that
many students are left only with the view expressed in Einstein’s earlier
work of 1905 that contributes to the widespread view that space in
the absence of bodies and fields is a void. Interestingly, in 1953, as
referenced in the thesis, Dirac wrote in support of an ether. For a fairly
recent statement in support of an ether, see the article by the particle
physicist, Frank Wilczek [10], entitled, The Persistence of the Ether.

However, if one does have the ether in the background of one’s think-
ing about the propagation of light through space as a wave, together
with the invariance of its speed in each of two uniformly moving frames,
one seems to be entertaining contradictory pictures. (Unless the ether
is dragged along completely, but such a view had been shown to be un-
tenable.) To be sure, mathematically, it is easy to understand how this
invariance arises from the term that depends on space in the Lorentz
transformation for the time, and that gives rise to the relativity of si-
multaneity. The problem is not one of mathematics, but rather one of
intuition.

Thus, upon returning to the Lorentz transformation in 1957, I ex-
amined how clocks were to be thought of as synchronized according to
the Galilean transformation. It seemed to me, then, that the clocks had
been synchronized by instantaneous signals, so that if two events were
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simultaneous in the ether, they were also simultaneous in the frame
moving uniformly with respect to it. In other words, when such hy-
pothetical signals were used, simultaneity assumed an invariant, or as
I described it in the thesis, an “absolute” character. Although I was
unaware of it at that time, Lorentz himself [11] had argued for an ab-
solute or “true” simultaneity. He said, after he had become aware of
Einstein’s approach to time and simultaneity, that he still favoured the
“true” time and the “true” simultaneity and he went on to say,

“. . . together with this goes that we can imagine velocities of any
desired magnitude, e.g., a hundred times greater than the veloc-
ity of light (quite apart from whether they actually occur), while
according to the relativity principle such velocities are ruled out”.

He then describes how such signals, in the limit of infinite velocity, would
enable us to know what happened, e.g., on the star Sirius simultaneously
with what happened on earth.

Thus the thought underlying the transformation I finally constructed
was in accord with Lorentz’s ideas on simultaneity. Quite interestingly,
the transformation also represented the working out of a question put
forward by Poincaré in his 1904 address at the St. Louis Exposition,
which, regretfully, I had not read when I wrote my thesis, since if I had
been able to refer to it, that would have given further support for the
path I was following. In that 1904 address, Poincaré asked [12]:

“What would happen if one could communicate by non-luminous
signals whose velocity of propagation differed from that of light?
If, after having adjusted the watches by the optical procedure,
one wished to verify the adjustments by the aid of these new
signals then would appear divergences which would render evident
the common translation of the two stations.And are such signals
inconceivable, if we admit with Laplace that universal gravitation
is transmitted a million times more rapidly than light?”

In the thesis I assumed that there were signals that propagated instanta-
neously in the ether, and that these signals could be used to synchronize
clocks in the moving frame, and thereby reveal the motion of the frame
relative to the ether. However, as indicated in the thesis, I made no
assumptions about the physical nature of such signals, so that in this
sense, it was a mathematical exercise. On the other hand, unlike the
possibility mentioned by Poincaré, I did not regard such hypothetical
instantaneous signals as having anything to do with gravity, because I
was working in the framework of general relativity in which the gravi-
tational interaction is propagated with the speed of light. I might add
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that I found out later that Lorentz, in a little known paper [13] in 1900
had showed that the gravitational interaction could take place at the
speed of light, in contrast with Laplace’s model, without incurring the
empirically unobserved effects on the motion of the moon that Laplace
had found, essentially because the effects of a finite velocity of interac-
tion could be of second order in v

V
rather than of first order, where V

is the speed of gravity.

The transformation that I eventually came up with, which is given in
Eq. (1.12) of the thesis, I called the Absolute Lorentz Transformation
(abbreviated subsequently as A.L.T.), since it had some of the basic
properties of the Lorentz transformation: such as the Lorentz contrac-
tion and the time dilation, while in keeping with Lorentz’s viewpoint
that I had inferred from his writings, it kept simultaneity invariant, and
consequently it did not keep the one-way velocity of light invariant, al-
though, to be sure, the out-and-back velocity, as with the full Lorentz
transformation, remained invariant. If the instantaneous signals were to
propagate causally (i.e., not propagate backwards in time), there could
be only one frame in which light propagated isotropically with speed c
when clocks were synchronized with these signals. This is because, as
discussed by Einstein [14], a signal that propagated forward in time and
faster-than-light in one Lorentz frame can readily be shown to propagate
backwards in time in another Lorentz frame. The idea then was that the
above privileged frame would be the ether, and all other frames could
be ordered according to their speed relative to this frame, and in this
sense, one would return to Newton’s idea of there being an absolute ve-
locity of a moving body, a view which Lorentz clearly favoured. On the
other hand, in keeping with the principle of relativity, it had to be the
case that when measurements were made in the standard way, i.e., with
clocks that were synchronized according to the procedure described by
Einstein in his 1905 paper, or by slowly moving them apart after they
had been synchronized when they were together, the A.L.T. would yield
experimental results in agreement with the Lorentz transformation, and
would therefore make it impossible to determine one’s velocity relative
to the ether. Thus the failure to detect this velocity in the numerous ef-
forts that had been made with this purpose would not be a consequence
of the fact that such a velocity did not exist, but rather because when
measurements were made in the standard way, this velocity always can-
celled out, thereby engendering the principle of relativity. Physically,
one might say the ether does not exert a drag on bodies, nor bodies on
the ether, as maintained by Lorentz, who rejected the interpretation of
the Fresnel drag coefficient as an actual dragging of the ether.
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In the closing chapter of the thesis, I addressed the issue as to
what might give rise to the hypothetical instantaneous signals, and dis-
cussed the possibility of faster-than-light particles that are now known
as “tachyons”. I discussed some of their properties, which I had already
investigated to some extent seven years earlier when I was at the Uni-
versity of Chicago. Interesting work on this subject in this time period
is due to several authors [15–18], and particularly, G. Feinberg [19], to
whom we are indebted for the name, “tachyon”, as well as a detailed
quantum field theoretical analysis. My own contribution to the quan-
tum field formulation, as indicated in the thesis, was to introduce the
idea that the tachyons would be created in the faster-than-light region,
thereby avoiding the infinite barrier at the speed of light. I also noted
that if they were charged, they would exhibit Cherenkov-like radiation,
something I had also been able to show in the Chicago period. For ad-
ditional references to tachyons see the historical review up to 1969 by
Fröman [20]. A later further review on the subject by E.Recami [21]
appeared in 1986, in which there is a brief reference to my thesis, in
fact, the first reference to it in the literature to my knowledge.

After spending a year at the Niels Bohr Institute of Theoretical
Physics (in those days it was known as “Universitetets Institut for Teor-
etisk Fysik”, or “University Institute for Theoretical Physics”) in Co-
penhagen in 1958–1959 as a National Science Foundation post-doctoral
fellow, where I had interesting discussions with Christian Møller [22],
whose work on relativity had led me to Copenhagen, and then subse-
quently, on an extension of the N.S.F. fellowship, I spent the following
year at the Scuola del Perfezionamento in Fisica Téorica e Nucleare in
Naples, of which Eduardo Caianiello was the Director. While there,
I began to consider a physically-realizable way of re-interpreting the
A.L.T., in view of the obvious experimental absence of faster-than-light
signals. The idea, which was briefly mentioned in my introduction to
general relativity that I wrote when I was in Naples [23], while giving
some informal lectures there in the spring of 1960, is that one can think
of the clocks in the moving frame as having been synchronized externally
with the clocks in the rest frame, with the latter being any arbitrary
Lorentz frame, i.e., an inertial frame in which the clocks have been syn-
chronized so that the one-way speed of light is c in all directions. The
following is helpful in visualizing how this external synchronization may
be made with existing apparatus, and how the transformation may then
be interpreted and experimentally verified.

Imagine, as is customary in pedagogical presentations dealing with
special relativity, a railroad station that is taken to be an inertial frame,
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after suitable corrections, and a line of clocks stretching along the sta-
tion parallel to the tracks. These clocks have all been synchronized in
accordance with special relativity, so that the one-way speed of light
is c in the forward and rearward directions, the only direction with
which we shall be dealing for simplicity. Now let there be a train trav-
elling through the station with velocity v in the positive x-direction,
and on the train assume there is a row of clocks along the length
of the train similar to those in the station, but which have not been
synchronized. Finally, imagine an electro-mechanical system that en-
ables clocks on the station to transfer their time to the clocks on the
train. Assume adjustments have been made so that when the clocks
on the station all read zero, the connection is made with the clocks
on the train, just once, and this is done so rapidly that the time of
exchange can be neglected. After the connection has been made and
terminated, the clocks on the train run freely at their own rate. If t
denotes the time read by the clocks on the station, and t′ the time read
by the clocks on the train, then when t=0, t′ =0, and hence, under
the assumption of a linear relationship, t′ is directly proportional to
t, i.e., t′∝ t, The constant of proportionality follows from special rel-
ativity. For example, we know from numerous experiments that have
been carried out with relativistic decaying particles, such as the muon,
that their lifetimes increase as seen in the lab as they approach the
speed of light, and in fact this increase agrees with that predicted
by special relativity, so that if T0 is their lifetime when they are at
rest, then when they are travelling with speed v relative to the lab,
their lifetime becomes γT0, where as usual, γ =

(
1− v2

c2

)−1/2
. This then

determines the transformation for the time between the station and
the train to be t′ = γ−1t, as given in the thesis. This simple trans-
formation for the time yields the result that if two separated clocks
on the station describe an event as simultaneous, ∆t=0, then clocks
on the train will also agree that the events were simultaneous, since
∆t′ =0. This is of course unlike the case for the Lorentz transformation,
since ∆tL = γ

(
∆t− v

c2
∆x
)
, and if ∆t=0, one has that ∆tL =−γ v

c2
∆x,

which expresses the relativity of simultaneity. As noted in the the-
sis, the A.L.T. transformation for the time is needed in addition to
the Lorentz contraction of the spatial coordinate to guarantee a null-
effect in the unequal arm interferometer experiment of Kennedy and
Thorndike.

Now, as shown in the thesis, this transformation for the time has the
important property that when the clocks on the train that have been
synchronized externally are slowly-moved apart, and the one-way speed
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of light is measured with them, it turns out to be c. Indeed, one finds
that the slowly-moved clocks no longer read t′ but t′ − v

c2
x′, which is

just the time read by the clocks whose time is described by the Lorentz
transformation. Hence, the slowly-moved clocks yield that the one-way
speed of light is c.

In keeping with Niels Bohr’s idea to look for examples of comple-
mentarity outside of the domain of atomic physics [24], it is helpful to
recognize that there is a complementarity between the one-way speed
of light and simultaneity, which I did not recognize in the thesis, and
hence regretably did not discuss with Bohr when I was in Copenhagen.
Thus, one can keep the one-way speed of light invariant in transforming
between two uniformly moving frames, but then one must relinquish
the invariance of simultaneity and let it become relative, as described
by the Lorentz transformation, or, one can keep simultaneity invariant,
and let the one-way speed of light become relative, as described by the
A.L.T. Furthermore, this is fully in keeping with Einstein’s principle of
general covariance, which enables one to represent the comparison of
the two descriptions in mathematical form.

There are two obvious objections to external synchronization:
a) the standard special relativistic approach is based on synchroniza-
tion within a given uniformly moving frame; and b) even if external
synchronization is allowed, there is no natural frame in space (i.e. no
cosmological railroad station) with respect to which such a synchroniza-
tion could be made.

The reply to a) is that there is no way to prove empirically that
there is a relativity of simultaneity between two frames in relative mo-
tion, unless one is able to compare the measurements of simultaneity in
the two frames. Therefore one frame must make a necessarily external
contact with the other frame in order that there can be an exchange
of information between the two frames. Such an external contact can
obviously be also used to make an external synchronization, and hence
can be used to keep simultaneity invariant between the two frames.

With respect to b), the view that there is no natural reference frame
in space has to be reconsidered because of the discovery of the Cos-
mic Microwave Background Radiation (CMBR) by Arno Penzias and
Robert Wilson in 1965 [25], who were apparently unaware of the earlier
theoretical work of George Gamow, who had predicted the existence
of such radiation on the basis of his Big Bang model of cosmology, al-
beit at a different temperature [26]. For an excellent historical review,
together with their own important contributions, see the book by his
pupils, Ralph Alpher and Robert Herman [27], Genesis of the Big Bang.
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In later experiments it was found that the radiation is not uniform in
all directions, but is warmer in one direction and colder in the opposite
direction, so that it exhibits a dipolar structure [27]. This is to be ex-
pected if the CMBR defines a rest frame through which our solar system,
and hence the Earth is moving. (Note that in view of the magnitude of
this velocity of several hundred kilometers/second, the Earth’s velocity
around the Sun of ∼30 km/sec is, to a first approximation, negligible.)
Because of the Doppler effect, the radiation temperature is the highest
in the direction in which the Earth is moving, and exhibits a typical
cosine dependence. The detection of this velocity through the radiation
has led Peebles [28] to describe the result as the “new ether drift”. To
be sure, the measurement is not that of a true ether drift, because if
one places the antennae in an electromagnetically sealed laboratory, so
that the CMBR cannot penetrate, obviously one will not be able to
measure the frame’s velocity relative to the radiation, whereas the idea
underlying the determination of a true ether drift is that one can make
such a measurement in a closed laboratory. Nevertheless, ignoring very
small temperature fluctuations and hence anisotropy in the CMBR of
order 10−5 [29], and assuming the radiation is at rest with respect to
the expanding space of the Friedmann, Robertson, Walker, Lemâıtre
cosmological model, then one can synchronize one’s clocks in a moving
frame with respect to this CMBR frame, and all clocks so synchronized
in these frames in uniform motion relative to the CMBR will keep si-
multaneity invariant with respect to each other, at the expense of not
keeping the one-way speed of light invariant.

Since my work is sometimes compared in the literature with that
of Herbert Ives, the following comments are in order. When I was at
the University of Chicago, I wrote to Ives describing some of my ideas
about modifying the Lorentz transformation that would support the
idea of an ether, as I was aware from some of his publications that he
also strongly supported the idea of an ether. He wrote me back that he
preferred his own approach to mine, and kindly sent me a copy of his
paper, The Fitzgerald Contraction, referenced in the thesis. However,
in this work, he objected to the idea, supported by special relativity,
of making measurements of the one-way speed of light with clocks that
have been synchronized when they are together, and then moved in-
finitely slowly apart. He apparently had raised this objection earlier to
Percy W. Bridgman [30], who pointed out that one can achieve such
a measurement by the method of successive approximation and then
passing to the limit. I was unaware of Ives’ conversation with Bridg-
man (since Bridgman’s book came out after I had written my thesis as
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well as my Nuovo Cimento article), nor had I noticed in Ives’ Fitzgerald
article that he rejected synchronization with slowly-moved clocks. How-
ever, after I had formulated my transformation, I became concerned as
to whether if one had two clocks that had been synchronized together in
the moving frame at point A and one of them was slowly moved to point
B, and they were used to measure the one-way speed of light, whether
one would obtain c as predicted by special relativity. As the work in
Chapter 3 of the thesis shows, this is in fact the case, and in Chapter 4,
one can use this result in conjunction with other assumptions to derive
the A.L.T. A later derivation was published by me in 1994 [31]. Thus,
on this issue of slowly-moved clocks, there is a profound disagreement
between the approach in my thesis and the work of Ives. Regretably,
Ives died in 1953, and consequently I was never able to get comments
from him about the A.L.T., but in view of his objections to Bridgman
concerning slowly-moved clocks, it is unlikely he would have changed
his position. I might add that I sent a revised copy of my thesis, that I
had prepared while in Copenhagen, to Bridgman around June of 1959.
But he never replied, and tragically, because of a debilitating case of
cancer, he ended his life in 1961, although fortunately he was able to
complete his A Sophisticate’s Primer of Relativity, which was edited
posthumously with a prologue and epilogue by Adolf Grünbaum, whose
earlier article on synchronization is referenced in the thesis. There is
a second edition of Bridgman’s book [30], edited by Arthur Miller that
contains useful information about the chronology of Bridgman’s work
on his book. As noted in the thesis, Bridgman’s operational methodol-
ogy played a role in the formulation of the A.L.T. I might add that I
took his course on advanced thermodynamics during the fall semester
of 1947 when I was at Harvard, although relativity was not discussed.

At this point it is appropriate to turn to the idea of alternative syn-
chronization in a given Lorentz frame that was proposed by Hans Re-
ichenbach [32], and which is referred to in the literature as the “conven-
tionality of synchronization”. Although I did not mention Reichenbach
in the thesis, I became aware of his ideas through the above-mentioned
article by Grünbaum cited in the thesis. Reichenbach showed that it is
entirely consistent with the special theory of relativity to synchronize
clocks so that the one-way velocity of light is not c, by following a dif-
ferent synchronization procedure than that of Einstein. Let two clocks
in a uniformly moving frame be an arbitrary distance apart, one at A
the other at B. Then if a light signal leaves the clock at A at time t1
and strikes a mirror at B at time t2, and then returns to A at time t3,
according to Einstein’s synchronization procedure, t2 = t1 +

1
2
(t3 − t1),
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in accordance with the assumption that the speed of light is the same
in both directions. However, Reichenbach argued that no contradiction
with the other postulates of special relativity arises if instead of the
above synchronization, one sets t2 = t1 + ε(t3 − t1), with the following
restriction that 0<ε< 1, under the assumption that the one-way speed
of light is finite in both directions. Since this synchronization proce-
dure of Reichenbach does not describe a coordinate transformation, I
did not attempt to deal with it in the thesis beyond what is briefly stated
there. However, in recent years, Anderson et al. [33] have given a coor-
dinate representation for Reichenbach synchronization, by means of a
linear local time transformation. Thus, let us suppose that after clocks,
whose time will be denoted by tL, have been synchronized either by Ein-
stein’s method, or by slowly-moving them, one introduces another set of
clocks in the same frame whose time varies along the x-axis according
to the linear relation, tR = tL + k

c xL, and whose spatial coordinates are
the same as the Lorentz observer, i.e., xR =xL, yR = yL, zR = zL with
−1<k< 1. Transformations of this type were called by Lorentz, “local
time transformations”. Such a linear transformation for the time that
also involves the spatial coordinate seems to have been first used in con-
junction with the Doppler effect by Voigt [34]. Now let us think of the
Reichenbach synchronization having been made on the train travelling
uniformly through the above-mentioned railroad station, and compare it
with the time read by the clocks that have undergone external synchro-
nization using the A.L.T. Then, from the thesis, one has t′ = tL + v

c2
xL,

x′ =xL, y
′= yL, z

′= zL. In other words, the clocks under the A.L.T. are
related to the clocks internally synchronized in the moving frame by a lo-
cal time transformation. Hence, one can always think of a Reichenbach
synchronization (as represented by a linear local time transformation
following Anderson et al.) as equivalent to an external synchronization
for suitable choice of k. It is readily shown that, for the externally syn-
chronized clocks, one has for a signal sent in the direction of the train’s

motion, i.e., in the positive x-direction, that t′2 = t′1 +
1
2

(
1+ v

c

)
(t′3 − t′1),

and that in the reverse direction, one has t′2 = t′1 +
1
2

(
1− v

c

)
(t′3 − t′1).

Hence in the forward direction ε= 1
2

(
1+ v

c

)
, and in the rearward direc-

tion, ε= 1
2

(
1− v

c

)
, and since v

c < 1, Reichenbach’s restriction on ε fol-
lows. Thus the thesis anticipates to some extent the interesting analysis
of Anderson et al. Although it also important to carefully distinguish
between external synchronization involving two Lorentz frames, and al-
ternative synchronization within a given Lorentz frame. The effect of
external synchronization is to give rise to clocks that exhibit alternative
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synchronization to the clocks that obey the time transformation of the
Lorentz transformation. For a later discussion of Reichenbach’s work
see Grünbaum [35]. It should also be remarked that from the standpoint
of general relativity, and general covariance, it is entirely obvious that
one can introduce a Reichenbach synchronization as represented by a
linear local time transformation in a given Lorentz frame. However, as
discussed in the thesis, the coefficients of the Minkowski line element,
i.e. the gµν , no longer remain the same as for a Lorentz transforma-
tion. Nevertheless, since they are still constants, it follows that all the
Christoffel symbols vanish, and in the absence of external forces one
continues to have d2xµ

dτ2
=0, as for the Minkowski metric, corresponding

to the fact that Newton’s first law holds, so that such a transformation
is inertial.

It is of historical interest that the time dilation that is used in the
A.L.T. and that follows from special relativity, as I later found out,
was actually first introduced by Larmor [36], who found that he needed
it in order to keep the d’Alembertian wave equation invariant. Thus,
as some historians of science have observed, one might very well speak
of the Lorentz-Larmor transformation. On the other hand, it should
be emphasized that Larmor, unlike Lorentz, believed that the speed of
gravity if finite at all, vastly exceeded that of light, and hence he did
not attribute to the transformation the fundamental significance that
Einstein did later on, with his emphasis on the speed of light playing
the role of a limiting speed. Also, it should be noted that since the
appearance of the 1961 article in which the A.L.T. was first published,
there have been published many interesting papers, too numerous to
reference here, re-deriving, developing, and applying the transformation.

In 2008 I found [37] further support for the invariance of quantum
mechanics under local time transformations, as described in Chapter 11
of the thesis. It was shown that when the standard space and momen-
tum commutation relations are enlarged to a spacetime formulation,
they remain invariant under arbitrary linear, non-singular spacetime
transformations; while also maintaining the vanishing of the commuta-
tor of the time with the Hamiltonian operator, so that time can continue
to be treated as a c-number in accordance with quantum mechanics.

Finally, while the thesis was being prepared for publication, I was
informed by Dr. Gregory B. Malykin [38] that a literature search had
found that Albert Eagle, then a lecturer in mathematics at the Univer-
sity of Manchester, UK, had given the A.L.T. including its inverse in
a paper published in 1938, hence twenty years before my thesis. Eagle
expressed the view that the transformation could be understood as re-
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lating the moving frame to the ether frame with clocks that had been
synchronized with instantaneous signals [39], which is entirely similar to
the viewpoint expressed in the thesis. (Although, as noted above, I now
believe the alternate interpretation of the A.L.T. as associated with ex-
ternal synchronization is physically the more reasonable one.) However,
Eagle was under the impression that such instantaneous communication
could be accomplished by a rotating spindle, i.e, a mechanical device,
and hence that one could use such a device to determine the speed of
the frame through the ether. The idea that one could send instanta-
neous signals with a mechanical system is of course entirely false. See
Jammer’s recent book on simultaneity [40]. This misunderstanding, to-
gether with the fact that the quadratic form describing light propagation
is not left invariant under the transformation, apparently led Eagle to a
mistaken criticism of Minkowski’s spacetime formulation of special rel-
ativity, and also to a rejection of the general theory of relativity as well,
so that he regretably failed to recognize the A.L.T. is in full conformity
with Einstein’s principle of general covariance, and the metric postu-
late, and that the A.L.T. actually constitutes an interesting application
of general relativity for the simple case of a linear transformation in flat
spacetime, which is, in contrast, the approach taken in my thesis.

I am grateful to Dr. Gregory B. Malykin for valuable scholarly corre-
spondence concerning my thesis, as well as many stimulating questions.
I am also indebted to his son, Asst.-Prof. Edward G. Malykin, for his
further assistance. I am further indebted to Dr. Dmitri Rabounski for
encouraging the publication of the thesis in The Abraham Zelmanov

Journal, and his considerable assistance in helping to accomplishing this.
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Introduction

According to the ideas of special relativity the transformation connect-
ing two uniformly moving frames must be such as to leave the metric ten-
sor an invariant, and given by the diagonal tensor ηµν =(1,−1,−1,−1),
thus preserving the same value for the speed of light in all uniformly
moving frames. On the other hand, from an intuitive standpoint, such
a result is quite paradoxical, since one would expect that for two frames
in relative motion with speed v, the velocity of light ought to differ in
the two frames by quantities of the first order in v

c . The absence of such
an effect cannot be explained by Lorentz contraction of rods and the
slowing down of clocks, since these are second order effects. The answer
to the paradox, of course, lies in the fact that in special relativity, one
deals with clocks which have been synchronized in a certain manner in-
volving quantities of the first order in v

c so that a cancellation with the
above expected effect can occur. Thus the original objection is removed
— provided one agrees that this method of synchronization does not
contain any assumptions about the propagation of light which involve
a petitio principii.

It is the purpose of this paper to examine this method of synchro-
nization from the broader mathematical viewpoint of general relativity
which, based as it is on general covariance, enables one to envisage
more general transformations connecting uniformly moving frames. In-
deed we shall consider transformations in which clocks are synchronized
with “absolute signals”, that is, signals travelling with infinite or ar-
bitrarily large velocity. In our discussion we have not enquired into
the dynamics of such signals. For the purpose here, such signals serve
merely as a kinematic method for formulating in the framework of gen-
eral covariance certain types of experiments which are unthinkable in
the more restricted framework of special relativity. In the concluding
chapter some of the possibilities and difficulties associated with such
signals are briefly examined.

Using these signals, one arrives at the view of an absolute rest frame
(or ether frame) in which the velocity of light is the same in all di-
rections; but for observers in motion relative to this frame with speed
v, the velocity of light is not the same in all directions and differs in
different directions to first order by amounts of v

c , in agreement with
one’s intuitive ideas. With absolute signals, it is possible to measure
this speed v, and hence to linearly order all frames according to the
magnitude of this quantity. On the other hand, measurements made
with light signals do not make it possible to measure v. In the Ap-
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pendix the present status of the absolute frame and Mach’s principle
in general relativity is reviewed in connection with effects observed in
rotating frames.

Some of the basic physical ideas underlying the discussion here are
contained in the work of H. E. Ives [1], wherein the view is expressed
that the “out” and “back” velocities of light are in general different in
uniformly moving frames, and the Lorentz transformation is recast to
take this difference into account. The approach in this paper makes
it possible to circumvent the unnecessarily cumbersome algebra of his
formulation. Recently, in a comprehensive review of the foundations
of special relativity Grünbaum [2] has criticized the viewpoint of Ives
as being logically inadequate. However, since Grünbaum also observes
that other synchronization procedures than the usual one are logically
possible, and since an alternative synchronization procedure in general
leads to an asymmetry between out and back velocities, the approach
given here is mathematically equally valid from either the standpoint of
Ives or Grünbaum. Some valuable general remarks on the problems of
the one-way velocity of light are to be found in Bridgman [3].

As was already remarked, the mathematical technique that is em-
ployed is based on general covariance which permits one to write equa-
tions independently of the coordinate system, in contrast with special
relativity, where one is restricted to coordinate systems connected by
Lorentz transformations. However, while covariance makes it possible to
formulate equations independently of the coordinate system, the results
obtained by measurement would of course depend on these coordinates
if they had direct physical significance in terms of measuring rods and
clocks. For example, if one could construct rods and clocks that did not
exhibit the Lorentz contraction and time dilatation, one could use these
(non-physical) rods and clocks to define a Galilean coordinate system,
or set of coordinate systems, in which the velocity of light would not be
independent of the motion of the frame. The mathematical framework
of general relativity is broad enough to handle measurements made in
these arbitrary coordinate systems.

As was pointed out originally by Kretschmann [4], (see also Bridg-
man [5], Fock [6]) there is therefore a difference between the notion of
“relativity” as it is employed in general relativity where it means, from
the standpoint of general covariance, a removal of restriction on coordi-
nate systems, and the notion as it is employed in special relativity where
it entails a restriction on coordinate systems. As a consequence, from
the standpoint of general covariance alone, there is no necessity for two
uniformly moving frames to be connected by a Lorentz transformation.
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However, the “relativity” of general relativity is to be found really in an-
other equally important assumption [7], namely: in a sufficiently small
region of a frame, the propagation of light as measured by (rigid) rods
and clocks is such that it is locally describable by the line element of
special relativity and more generally, the laws of special relativity hold
locally — to a first approximation when such a line element cannot be
introduced in the large. In the case of uniformly moving frames, where
it is possible to introduce the special relativity line element in the large,
it is this assumption which then leads to the Lorentz transformation
connecting two such frames. It will be shown in what follows that this
latter assumption of general relativity is unnecessarily restrictive on the
basis of what is experimentally measured, and can be broadened to per-
mit the use of a line element in which there is an asymmetry in the
velocity of propagation of light.

Chapter 1. The Absolute Lorentz Transformation

In the absence of gravitational sources, the field equations of general
relativity reduce simply to

Rµν − 1

2
gµνR = 0 , µ, ν = 0, 1, 2, 3. (1.1)

The solutions to (1.1) with gµν constant are called “Cartesian
frames”. It is in such frames that we shall work. Since gµν is by defi-
nition a symmetric tensor, the coefficients of the quadratic form ds2 =
= gµν dx

µdxν , there are ten constants at our disposal, and with no other
assumptions, a tenfold infinity of such Cartesian frames. However, be-
cause of the symmetry of the gµν it can always be reduced by real linear
transformations to a diagonal matrix with diagonal values given by ±1,
or 0. The case with zero we exclude, since we are interested in working
with the full 1+3 dimensionality of the time and space coordinates. By
further demanding that the spatial coordinates of the reduced form sat-
isfy the Pythagorean law, the signature of the quadratic form becomes
±1,±(1, 1, 1). In order that ds2 =0, have real solutions correspond-
ing to displacements along the light cone, we finally arrive at the two
signatures, ±1,∓(1, 1, 1), one “time-like”, the other, “space-like”. For
such frames, the determinant of the metric tensor g satisfies the relation
g < 0. If we adopt the convention that ds2 should in the limit of small

velocities dxi

dx0 ≈ 0 (where i=1, 2, 3) reduce to (dx0)2, we finally arrive
at the canonical time-like metric tensor ηµν of special relativity.

However such frames are still too general, for consider a frame which
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originally had the line element

ds2 = −(dx̄0)2 + (dx̄1)2 − (dx̄2)2 − (dx̄3)2 (1.2)

by making the transformation, x̄0 →x1, x̄1 →x0, x̄2 →x2, x̄3 →x3 it
can be brought into the canonical form. Nevertheless the spatial part of
the line element originally does not satisfy the Pythagorean law. Frames
for which this requirement is not satisfied (to within a spatial coordinate
transformation) can be shown in some cases to be moving with velocities
greater than that of light. For example, the transformation of [8],

x̄1 =
x1 − vx0√
v2 − 1

, x̄2 = x2

x̄0 =
vx1 − x0√
v2 − 1

, x̄3 = x3





(1.3)

also transforms (1.2) into the canonical form. Since it is not our purpose
to consider phenomena in such frames here, it is necessary to restrict
the metric tensor gµν in the following way. Solving for the time ∆x0

for a light signal to propagate through a distance ∆xi one has, setting
ds2 = gµν dx

µdxν =0,

∆x0 = − g0i
g00

∆xi ± 1

|g00|

√
(g0ig0j − gijg00)∆xi∆xj . (1.4)

The average out-and-back time for a light signal to propagate is
therefore, choosing the positive root in order to make the time delay
positive,

1

2

(
∆x0out +∆x0back

)
=

1

|g00|

√
γij∆xi∆xj , (1.5)

with γij ≡ g0ig0j − gijg00. Now unless γij is positive definite, there will
be directions corresponding to the choice of the ∆xi for which the delay
either vanishes or becomes imaginary. Such a situation occurs, for ex-
ample, in a frame moving faster than light. Moreover, in such a frame,
a light signal emitted say from the origin cannot be reflected back to
the origin since it cannot overtake the frame. Or again, consider the
line element,

ds2 = (dx0)2 − (dx1)2 − (dx2)2 + (dx3)2, (1.6)

for which γij is not positive definite: light cannot propagate in the
cones opening above and below the (x1, x2) plane along the x3 axis.
Since, as remarked previously we wish to remain in frames in which light
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propagates in the customary manner, freely in all directions and with
non-zero average delay, and for such frames to provide an alternative
description to that given by special relativity, we therefore impose the
requirement,

γij : positive definite

γ11 > 0 ,

∣∣∣∣∣
γ11 γ12

γ21 γ22

∣∣∣∣∣ > 0 ,

∣∣∣∣∣∣∣

γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

∣∣∣∣∣∣∣
> 0 . (1.7)

This requirement, needless to say, imposes a restriction on allowed
coordinate transformations, for example, the transformation, x0 →x1,
x1 →x0, x2 →x2, x3 →x3, is excluded. In order to arrive at the time-
like definition of ds2, it is necessary to further impose the restriction
g00 > 0; a relation which will then be preserved under all real transfor-
mations which leave γij positive definite.

By the above assumptions and restrictions we therefore arrive at a
multiplicity of frames in which light propagates in the usual manner
and such that by a real linear transformation the metric tensor may be
brought into the canonical form. Such frames we shall call “Lorentz-
reducible” frames. Because these frames are all related to one another by
linear transformations, they are easily seen to be in uniform translation
(or at rest) with respect to one another. Thus for two such frames

dxµ = bµν dx
′ν , (1.8)

where the bµν do not depend on the coordinates, then

dxi

dx0
=
bi0 +

bijdx
′j

dx′0

b00 +
b0j dx

′j

dx′0

, i, j = 1, 2, 3. (1.9)

Hence, if a point in the primed frame is at rest dx′i

dx′0 =0, its velocity
in the unprimed frame is constant and given by

dxi

dx0
=
bi0
b00
. (1.10)

The above result holds for more general frames than Lorentz-
reducible ones (since all that is required is a linear transformation con-
necting the two frames), so that actually we are dealing with a subset
of uniformly translating frames, namely, ones travelling less than the
speed of light.
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Now it is customary to impose a further restriction on Lorentz-
reducible frames, that of special relativity, so that we exclude frames
with gµν not given by ηµν . For example, we exclude Galilean frames.
This exclusion is not demanded by anything in the structure of gen-
eral covariance, or anything we have done in the above derivation. It
is imposed by the hypothesis that all uniformly translating frames are
in every sense equivalent, and consequently there should be nothing in
the metric tensor which would imply a difference in the propagation of
light signals in one frame as distinguished from another.

But if we do not impose this relativity requirement, a variety of other
expressions are obtained for the line element, depending upon one’s
choice of coordinate system. It is our purpose to investigate to what
extent some of these alternative line elements are physically permissible,
in the sense that they do not violate experimental evidence, taking into
account the manner in which the experiments are performed.

Consider a frame with the following expression for the line element,

ds2 = g′µν dx
′µdx′ν = dt′2−2vdx′dt′−

(
1− v2

)
dx′2−dy′2−dz′2, (1.11)

where we introduce units such that c =1, also x′0 = t′, x′1 = x′, x′2 = y′,
x′3 = z′, and v is a parameter. From the customary standpoint, one
would say that this line element represents an improper choice of coor-
dinate system and that one should perform a further coordinate trans-
formation to put the metric tensor in canonical, diagonal form and the
observer in a special relativistically admissible coordinate system. But
there is more than one way to diagonalize (1.11), each with a different
physical significance.

Thus one method to diagonalize (1.11) is to make the coordinate
transformation (provided v < 1),

x′ = γ (x− vt) , y′ = y

t′ =
1

γ
t , z′ = z





(1.12)

with γ≡ 1√
1−v2

, (1.12) has the inverse

x =
1

γ
x′ + γvt′, y = y′

t = γ t′, z = z′




 . (1.13)

What meaning are we to assign to the transformation (1.12)? We
interpret the meaning as follows: 1) the frame with coordinates (t′, x′,
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y′, z′), which we shall call S′, is in uniform translation with speed v in
the x-direction with respect to the frame with coordinates (t, x, y, z),
which we shall call S; 2) rods in S′ are contracted with respect to those
in S by the factor 1

γ , and clocks in S′ indicate less elapsed time than
those in S, again by the factor 1

γ .
Thus the transformation is in some respects similar to the Lorentz

transformation, but clearly the clocks have been synchronized in a dif-
ferent manner, since the time t′ in S′ only depends on the time t in S,
and not on the spatial coordinates.

Moreover, we note that unlike the case with the Lorentz transfor-
mation, a measurement of a rod at rest in S, by an observer in S′,
leads to the conclusion that the rod in S has expanded relative to a rod
at rest in S′, similarly such an observer would say that a clock in S
is going faster than a clock in S′. One does not have the paradoxical
situation of special relativity that both observers say each other’s rods
have shrunk, or each other’s clocks are moving more slowly, rather, one
has an absolute relationship. If we regard S as the fundamental frame,
then it is the rods in S′ which have contracted, so that conversely the
rods in S appear expanded with respect to the contracted rods in S′,
and similarly for clocks. Consider a third frame, S′′ in motion with
respect to S, and with speed w; clearly, we can state whether S′′ is
moving faster or slower than S′ with respect to S simply by comparing
the rates of clocks in S′′ and S′, since

t′′ = t′

√
1− w2

1− v2
. (1.14)

In other words, all uniformly moving frames S′, S′′, etc., may be
linearly ordered with respect to S in terms of a parameter v, the speed of
the moving frame relative to S, and this ordering is absolute in the sense
that observers in the two frames S′, S′′ by comparing the relative rates
of their clocks can assert which is moving faster than the other relative
to the frame S — without referring to the frame S — a situation which
is not possible in special relativity. Because of this absolute property, we
shall refer to (1.12) as the Absolute Lorentz Transformation (A.L.T.),
and S as the absolute frame.

So far we have not shown that the A.L.T. is actually physically
allowable, in the sense that it doesn’t violate experimental evidence. In
the following chapters we shall show that when measurements are made
in the customary manner this is indeed the case.

Let us now observe that instead of diagonalizing the quadratic form
by the A.L.T., one might also have chosen to diagonalize it by the
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transformation,

tL = t′ − vx′, yL = y′

xL = x′, zL = z′

}
. (1.15)

A point at rest in the primed frame is at rest in the frame SL and
conversely. Thus there is a different physical significance to the two
transformations: In the one case (A.L.T), the diagonalized frame is in
motion relative to the undiagonalized frame and in the second case,
the two frames are at rest relative to one another but there has been a
resynchronization of clocks.

Now we note that the transformation above connecting SL with S′,
when multiplied by the A.L.T., connecting S′ with S, is a Lorentz trans-
formation. Thus since the frame S′ may all be ordered with respect to S
according to the parameter v, and since to each of these frames S′ there
is a corresponding Lorentz frame SL at rest relative to S′, it follows the
Lorentz frames themselves may be ordered with respect to S. On the
other hand, it is clear that unless the observer in SL has some way of
factoring out of the Lorentz transformation the above synchronization
of clocks so as to make measurements in S′, the ordering with respect
to v is lost and one is back to the situation of special relativity.

Chapter 2. Factorization of the Lorentz Transformation

The results of diagonalization obtained above may be stated more ele-
gantly in the following way. Define the three unimodular transforma-
tions (we are using “unimodular” in the sense that the determinant is
unity),

O1 ≡




1 0 0 0

−v 1 0 0

0 0 1 0

0 0 0 1


 , O2 ≡




γ−1 0 0 0

0 γ 0 0

0 0 1 0

0 0 0 1




O3 ≡




1 −v 0 0

0 1 0 0

0 0 1 0

0 0 0 1








(2.1)

and the column vectorsX =(t, x, y, z), X ′=(t′, x′, y′, z′), XL =(tL, xL,
yL, zL), then the A.L.T. may be written

X ′ = O2O1X (2.2)
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and the Lorentz transformation

XL = O3O2O1X. (2.3)

Thus we have a factorization of the Lorentz transformation into three
sub-transformations O1, O2, O3. Such a factorization is meaningless in
special relativity (since only transformations which leave the diagonal
form invariant are permitted), whereas it is not in general relativity
because there is the freedom of considering arbitrary coordinate trans-
formations. Thus, reading from right to left, the transformations say,

O1X : Make a Galilean transformation from the frame S to a frame
moving with velocity v in the x-direction with respect to S;

O2O1X : In the new frame, shrink the rods (that are oriented along
the x-axis) and slow down the clocks — renormalization of length
and time;

O3O2O1X : Without changing the state of motion of the frame,
resynchronize the clocks.

In addition, because the determinant of each of the transformations
is unity, they preserve the four dimensional volume element dxdydzdt
for each of the intermediate steps. Further, since O1, O2, O3 do not
commute among one another, the order in which they are performed
is significant. For example, if O2 is performed before O1, one will
pick a frame which does not have velocity v with respect to S, but
a velocity v (1− v2). It is interesting to note that O1 and O3 gener-
ate subgroups in themselves, since O2

1 (v)=O1(2v), O
−1
1 (v)=O1(−v),

O0
1 (v)=O1(0)=1, the identity, and similarly for O3, but O2 does not

have this property.
Let us now observe that in the original diagonalization of the line

element in S′, we might have proceeded by first performing the operation
O−1

2 which would have brought us without changing the state of motion
into the Galilean frame with line element

ds2 =
(
1− v2

)
dt2g − 2vdtgdxg − dx2g − dy2g − dz2g , (2.4)

with
tg = γ t′, yg = y′

xg =
1

γ
x′, zg = z′





(2.5)

and then proceeded from the Galilean frame Sg to the rest frame S.
Note that in the Galilean frame, the velocity of light in the principal
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directions has the “classical” values,

dxg
dtg

= ± (1∓ v) ,
dyg
dtg

= ±
√
1− v2 ,

dzg
dtg

= ±
√
1− v2 , (2.6)

while in the Lorentz frame SL at rest with respect to Sg, the velocity
has the values, ±1. The values in S′ we shall discuss in detail in the
subsequent chapters.

Chapter 3. Velocity of Light and Synchronization of Clocks
under the Absolute Lorentz Transformation

The physical picture presented by A.L.T., then, is that of clocks and
rods which have experienced a change in rate and length due to their
motion relative to the absolute frame (or ether). (This was the picture
used in the era preceding special relativity.) But unlike the situation
with the usual Lorentz transformation, we have not further synchronized
the clocks in the moving frame by demanding that the velocity of light
be the same in all direction as in the absolute frame. Rather, the clocks
have been synchronized in the following way: all clocks in both the frame
S′ and S have been initially synchronized from one clock by a signal
travelling with infinite velocity in all directions; upon being synchro-
nized, the clocks keep time at their “natural” rate, the natural rate in
the moving frame S′ being slower than the natural rate in the rest frame

S. This is the physical meaning of the transformation, t′ =
√
1− v2 t. It

is not our purpose here to enquire as to how one might generate such sig-
nals, for example, by using the frames previously mentioned which were
travelling with v > 1. In a later chapter we shall examine the question
as to whether such signals violate any fundamental ideas of causality.
Consider now, measurements of the velocity of light made by observers
in S′. The relative velocity in S′ of a point travelling with constant
velocity in the x′-direction is given by, upon using the A.L.T.,

dx′

dt′
=

dx

dt
− v

1− v2
. (3.1)

So that since the velocity of light in S is 1, one obtains in the positive
and negative directions,

dx′

dt′
=

1

1 + v
, − 1

1− v
. (3.2)

A result which one obtains directly in the primed frame by setting
ds2 = g′µν dx

′µdx′ν =0, and solving for the roots. For the transverse
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direction one finds

dy′

dt′
= ±1 ,

dz′

dt′
= ±1 . (3.3)

One might feel that such results violate experience; we shall see
that this is not the case because of the way in which measurements
are made. Thus consider a measurement of the velocity of light along
the x′-axis. One sends a light signal from the origin in S′, to a point
located at positive distance ∆x′ from the origin and back again. The
time required is

∆t′out = (1 + v)∆x′

∆t′back = (1− v)∆x′

}
. (3.4)

And hence the average time, which is used in obtaining the velocity
of light is

1

2
(∆t′out +∆t′back) = 1 ·∆x′, (3.5)

so that one obtains the same value as in the unprimed frame, or the
Lorentz frame. We see that there is an exact cancellation that comes
about due to the fact that the reciprocal of the velocity or “slowness” of
the light signal is a linear function of the velocity of the primed frame.
For an arbitrary direction, corresponding to displacements, ∆x′, ∆y′,
∆z′, we have, setting ds2 =0,

∆t′ = v∆x′ +
√
∆x′2 +∆y′2 +∆z′2 . (3.6)

On the outward and return paths, ∆x′ changes sign, hence

1

2
(∆t′out +∆t′back) =

√
∆x′2 +∆y′2 +∆z′2 . (3.7)

Thus the same average value of the out and back times is obtained
in S′ as would be obtained by Lorentz observers. We note further that
it is the reciprocal of the average slowness which is obtained in a typical
out-and-back determination of the “velocity of light”.

In sending a light signal to a point ∆x′ from the origin, we see that
the delay consists of two parts: ∆x′ and v∆x′, that is, the delay one
uses in special relativity and an additional part associated with the fact
that one has synchronized the clocks with absolute signals. Since the
extra delay is constant for a given frame, depending only on the location
of the clock and the speed v of the frame, one can introduce a new time
tL, given by

tL = t′ − vx′. (3.8)
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So that the delay in sending a light signal becomes

∆tL = ∆t′ − v∆x′ = (1 + v)∆x′ − v∆x′ = 1 ·∆x′, (3.9)

the delay assigned in special relativity for the process. Indeed, on in-
troducing the expressions for the A.L.T., (3.8) reduces to

tL = γ (t− vx) , (3.10)

or the well known relativistic transformation for time. The transforma-
tion (3.8) is our previously described transformation O3. It is interest-
ing to note historically that the above transformation was first given by
Lorentz [9] using Galilean coordinates, under the title, “local time”, in
order to eliminate first order effects, so that his original transformation
was O3O1. After he discovered O2, he still gave the transformation in
the form (3.8), instead of the relativistic form. We see therefore that
the possibility of introducing the “local time” arises as a consequence of
the arbitrariness of the synchronization of separated clocks when there
are no absolute signals present. However, one might wonder whether by
considering two similar clocks, synchronized at the origin A, and then
slowly moving one of the clocks to B, ∆x′ from the origin, and then
measuring the velocity of light, one could not perhaps determine v∆x′,
and hence v. This is not possible for the following reason: In terms of
a clock located at the origin in the unprimed frame, initially coincident
with that of the primed frame, the time of the two clocks at the origin
in the primed frame is given by

t′ =
√
1− v2 t . (3.11)

Then, on slowly moving one of the clocks in the primed frame to the
point B, one has a change in rate of the clock given by

δt′ = − vδv√
1− v2

t . (3.12)

On the other hand, the time t required to move the clock through a
distance ∆x in the absolute frame is

(v + δv) t = ∆x =
√
1− v2 ∆x′ + vt , (3.13)

or

t =

√
1− v2

δv
∆x′, (3.14)
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and hence,
δt′ = − v∆x′, (3.15)

so that there is an exact cancellation in the limit δv=0. We shall use
this result later in “deriving” the absolute Lorentz transformation.

In the above we assumed δv→ 0; for clocks moving with finite veloc-
ities, we encounter the following: Since the rate of the clock varies with
the velocity with which we move the clock, it is also necessary to know
this velocity in order to correct for this change in rate. But how can we
measure the velocity of the clock? In order to measure the velocity we
need to know the time it left the origin t′A which we can measure and
the time t′

B
which it arrived at the point B, which we cannot measure.

We can of course send a light signal back to the origin when the clock
arrives. But how long did it take the light signal to go from B back to
the origin? This is precisely what we were looking for originally! Thus
we arrive at the following remarkable and somewhat astonishing result:

Unless one can synchronize separated clocks absolutely, it is im-
possible to determine the one-way velocity of an object, since ve-
locity is defined non-locally and one has no way of determining
the time of arrival in terms of the time of departure.

Einstein [10], in formulating special relativity attempted to circumvent
this difficulty in the following way:

“We have not defined a common “time” for A and B, for the latter
cannot be defined at all unless we establish by definition that the
“time” required ”by light to travel from A to B equals the “time”
it requires to travel from B to A”.

Such a definition assumes more than is warranted by experiment, since
only the out-and-back propagation time of light is measured, or, if mea-
sured one-way, the motion of clocks is involved. Eddington [11] consid-
ered in detail this problem of the one-way velocity of light and attempted
to actually give a “formal proof” that the out and back velocities must
be the same. Thus he says:

“If v (θ) is the velocity of light in the direction θ, the experimental
result is

1

v (θ)
+

1

v (θ + π)
= const = C

1

v′ (θ)
+

1

v′ (θ + π)
= const = C′

(v, v′ refer to S and S′ respectively — our note) for all values of
θ. The constancy has been established to about 1 part in 1010.
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It is exceedingly unlikely that the first equation would hold
unless

v (θ) = v (θ + π) = const

and it is fairly obvious that the existence of the second equation
excludes the possibility altogether”.

We shall not attempt to discuss his “proof”, but merely point out
that these “unlikely” results are precisely what the line element associ-
ated with the A.L.T. yields. Thus as we have shown, ∆t′ = v∆x′ +
+
√
∆x′2 +∆y′2 +∆z′2, hence introducing dσ′ = dx′2 + dy′2 + dz′2,

where dσ′ is the spatial distance; one may write the above as

∆t′

∆σ′ = v cos θ′ + 1 , (3.16)

where cos θ′ = ∆x′

∆σ′
, and we see that the slowness in the direction θ′, and

θ′ + π, satisfy
∆t′

∆σ′ (θ
′) +

∆t′

∆σ′ (θ
′ + π) = 2 , (3.17)

for all θ′, and this result is independent of the velocity v of the frame
relative to S. The difference in slowness is given by

∆t′

∆σ′ (θ
′)− ∆t′

∆σ′ (θ
′ + π) = 2v cos θ′, (3.18)

which, together with (3.17) summarizes our previous results expressed
in terms of the principal directions.

Although for convenience in the above discussion we have chosen v
to lie along x, this is clearly not necessary. Thus if the velocity of S′

with respect to absolute frame S has components vi, the line element
in S′ becomes

ds2 = g′µν dx
′µdx′ν = dt′2 − 2vidx

′idt′− dx′idx′j + vivj dx
′idx′j . (3.19)

upon replacing the local time dtL by dt′ − vidx
′i in the Lorentz line

element for the corresponding Lorentz frame. Setting ds2 =0, the time
∆t′, for light to traverse ∆x′i is

∆t′ = vi∆x
′i +∆σ′, (3.20)

which may be written in the form (3.16) and the above results hold pari

passu. To avoid confusion it should be noted that the notation “vi”
is not meant in a covariant sense, but as a simplified way of writing
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quantities which are, mathematically, components of the various coor-
dinate transformations relating SL, S

′, S. Thus since S is connected
with S′ via dxµ = āµνdx

′ν , and since the vi are defined as the velocity of

S′, one has vi =
dxi

dx0
=

āi
0

ā0
0

, since ā0i =0. Also writing dxµL = lµνdx
′ν , one

has vi =− l0i . Finally, from (3.19) it follows g′0i=−vi and we shall also
see g′0i =−vi.

Chapter 4. Derivation and Generalization of the Absolute Lo-
rentz Transformation

In the preceding, some of the consequences of the A.L.T. have been
examined. Let us now reverse the procedure and undertake to see what
postulates are necessary in the framework of general covariance to derive
the transformation.

We assume that there exists an absolute (or ether) frame S, and
in this frame the propagation of light is governed by (assuming that
Rµν − 1

2
gµνR=0)

ds2 = dt2 − dx2 − dy2 − dz2 = 0 , (4.1)

so that the time for light to go from A to B is the same as the time from
B to A, the “time” being measured by clocks at rest in the absolute
frame and synchronized with absolute signals. Such an expression is
taken to hold irrespective of the state of motion of the source of the
light , an assumption wherein general relativity, special relativity, and
the ether theories of light all agree.

We now consider a frame S′, with coordinates t′, x′, y′, z′ in uniform
motion with speed v in the positive x-direction as measured in S, and
look for a linear transformation of the form,

t′ = g0 (v) t , y′ = g2 (v) y

x′ = g1 (v)(x − vt) , z′ = g3 (v) z

}
. (4.2)

The physical interpretation of this transformation is that the rods
and clocks in S′ have changed their length and rate with respect to
those in S, but that the synchronization of clocks in S′ with those in
S has been without delay. Under the above transformation, the line
element becomes

ds2 =

(
1− v2

)

g20
(dt′)

2 − 2v

g0 g1
dt′dx′ −

− 1

g21
(dx′)

2 − 1

g22
(dy′)

2 − 1

g23
(dz′)

2
. (4.3)
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If we demand that the average slowness (or equivalently, the out-
and-back velocity) be the same in all directions — as experiments so far
have indicated — we arrive at

g0
g1
γ2 = n(v) ,

g0
g2
γ = n(v) ,

g0
g3
γ = n(v) , (4.4)

where n(v) represents the average slowness in S′ and is a positive quan-
tity. It should be remarked that nothing in the above derivation requires
that n(v) be unity.

Let us now require that for a slowly moved clock, the shift in set-
ting on being moved from A to B be just such as to compensate the
extra delay experienced by light in travelling from A to B, so that a
one-way measurement of the velocity of light will give n(v). For a dis-
placement in the positive x′ direction by amount ∆x′, this extra delay
is given by [

g0
g1

1

1− v
− n(v)

]
∆x′. (4.5)

Then by the same argument as in the previous Chapter we are led
to the differential equation,

g0
g1

1

1− v
− n(v) +

1

g1

dg0
dv

= 0 , (4.6)

which becomes, upon substitution from (4.4),

1

g0

dg0
dv

= − v

1− v2
(4.7)

and hence since g0 (0)=1, because the clock rates are the same when
S′ is at rest relative to S,

g0 (v) =
√
1− v2 . (4.8)

The same result would have been obtained had the clock been moved
in the negative x′ direction. For motion in the transverse direction,
the change in setting is zero, since δg0(v)=− 1√

1− v2
vy δvy =0, since

vy =0. It is therefore necessary and sufficient that g0(v)=
√
1− v2 in

order that a clock slowly moved in any direction, yield n(v) for a one-
way determination of the velocity of light. Using this value for g0(v)
one finds,

g1(v) = γn(v)−1

g2(v) = g3(v) = n(v)−1

}
. (4.9)
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Thus we are led to a transformation of the form

t′ =
1

γ
t , y′ = n(v)−1y

x′ = γn(v)−1 (x− vt) , z′ = n(v)−1z




 , (4.10)

which we shall refer to as the generalized A.L.T. Under this transfor-
mation, the line element becomes,

ds2 = dt′2 − 2vdx′dt′n(v)−
−n(v)2

(
1− v2

)
dx′2 − n(v)2dy′2 − n(v)2dz′2. (4.11)

If one now assumes that in S′, the average slowness must be the same
as in S, one has n(v)= 1, and the A.L.T. is derived. More generally, if
one obtains the same contraction of rods independently of whether the
frame was moved in the positive or negative x direction, corresponding
to setting v→−v, n(v)=n(−v). Further, for v=0 , since the frames
coincide, n(0)= 1.

One can proceed to define a local time tL for the generalized trans-
formation (4.10) in the same way as for the A.L.T. Thus set,

tL = t′ − n(v)vx′ (4.12)

so that,
∆tL = ∆t′ − n(v)v∆x′ (4.13)

and since the slowness of light from (4.10) is, for the positive and neg-
ative x′ directions,

∆t′

∆x′
= n(v) (1 + v) , −n(v) (1− v) , (4.14)

it follows
∆tL = n(v)∆x′ (4.15)

which is the delay desired. One therefore arrives at the transformation
connecting tL with the absolute frame,

tL = γ (t− vx) (4.16)

so that the local time does not actually depend on n(v). Using tL, the
line element (4.11) becomes

ds2 = dt2L − n(v)2
(
dx′2 + dy′2 + dz′2

)
. (4.17)

It follows from the derivation of (4.10) and (4.17) that if n(v) were
not strictly independent of v, it still would not be possible to determine
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v by non-absolute measurements of the velocity of light in S′ alone. For
example, a Michelson-Morley type of experiment in a uniformly moving
frame can only lead one to conclude the relations (4.4) when combined
with the assumption that the velocity of light is independent of the
source.

On the other hand, since for the Earth, v varies as a function of
time, an experiment with an interferometer having unequal arms, such
as the one of Kennedy-Thorndike [12], would show a periodic shift in the
fringe system from one time of the year to the next. Thus with unequal
interferometer arms ∆x′, ∆y′, the difference of the average times in the
two directions is

∆T ′ = n(v) (∆x′ −∆y′) (4.18)

and hence,

δ∆T ′ = 2

(
dn

dv2

)
vδv (∆x′ −∆y′) . (4.19)

The rotational and orbital motion of the Earth will give rise to pe-
riodicities in the term vδv causing a displacement in the fringe system
proportional to dn

dv2
. In the theory of their experiment, Kennedy and

Thorndike did not consider the possibility that n(v) was not unity and
so regarded their measurements in terms of checking the time dilatation,
∆t′ = 1

γ ∆t and interpreted their data correspondingly. Thus assuming
only the Lorentz contraction and independence of the velocity of light
on the source, they showed one is led to an expression of the form,

∆T = γ (∆x′ −∆y′) ≈
(
1 +

1

2
v2
)
(∆x′ −∆y′) (4.20)

which can be obtained from (4.18) by setting n(v)=1 and ∆T ′= 1
γ ∆T .

Hence as v varies,

δ∆T = vδv (∆x′ −∆y′) . (4.21)

However, if in fact ∆t′ = 1
γ ∆t, as experiments for example with

meson lifetimes indicate, there is still an effect to be expected unless
dn
dv2

=0, as derived above. Interpreting their data from this standpoint,
the values they quote for an absolute velocity are to be regarded as
being the quantity 2v dn

dv2
. They found from an analysis of the diur-

nal periodicities in the fringe system, 2v dn
dv2

=24± 19 km/sec and for

the annual periodicities 2v dn
dv2

=15± 4 km/sec. They concluded that
because these velocities were so small compared to the velocities of
thousands of kilometers per second known to exist among the nebulae,
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and since moreover the directions of the two velocities differed by 123◦,
their experiment was to be interpreted as yielding a null result. How-
ever the results could mean merely dn

dv2
is small. Since in this paper we

are primarily interested in showing that the A.L.T. and the associated
line element contain the results of special relativity because of the way
in which measurements are made, we shall assume that dn

dv2
=0. Under

these circumstances, n(v)= 1 and (4.10) reduces to the A.L.T.
Alternatively, in deriving the A.L.T. we could have proceeded in the

following manner: after requiring that the average slowness be inde-
pendent of direction (which led to equation 4.4), we could have further
demanded that it also be independent of the absolute velocity of the
frame. Under these circumstances, n(v)= 1, and (4.4) becomes

g1 =
g0

1− v2
, g2 = g3 =

g0√
1− v2

. (4.22)

The corresponding transformation is

t′ = g0 t , y′ = g0γ y

x′ = g0γ
2 (x− vt) , z′ = g0 γ z

}
(4.23)

for which the line element takes the form,

ds2 =
1

(γ g0)
2

(
dt′2 − 2vdt′dx′ −

(
1− v2

)
dx′2 − dy′2 − dz′2

)
. (4.24)

For a line element of this form it is clear that no effect is to be
expected in either the Michelson-Morley or Kennedy-Thorndike exper-
iment. If one now makes the assumption that the one-way velocity as
determined by slowly moved clocks is the same as that yielded by the
out-and-back methods, then (4.6) reduces to

1

g0

dg0
dv

= − v

1− v2
, (4.25)

and once again g0 =
1
γ .

Thus we see, in summary, that the A.L.T. follows uniquely as a
consequence of the following postulates:

1. There exists a frame S in which light propagates with a constant
velocity, the same in all directions, independently of the motion
of the source;

2. In a coordinate frame S′, in uniform translation with respect to S,
the out-and-back travel time for light is independent of direction,
and the velocity of S′ with respect to S;
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3. The one-way velocity of light as measured with clocks that have
been synchronized together and then slowly separated is the same
as the value yielded by the out-and-back technique.

In addition, we have employed a synchronization procedure based
on the hypothetical “absolute” or “instantaneous” signal, in contrast
with the usual relativistic approach based on establishing, by definition,
the equality of the out and back times for the propagation of a light
signal.

A similar approach to the one above for obtaining the line element in
the moving frame has been given by Robertson [13]. However, because
he employs the relativistic synchronization procedure before using ex-
periment to restrict the coefficients in the metric of the moving frame,
his derivation leads to the ordinary Lorentz transformation and the
metric ηµν , rather than the A.L.T.

Let us now observe that in the above derivation of the A.L.T.,
nowhere was the assumption made that ds is the proper time, but
merely that ds2 =0 represents the propagation of light. But now set-

ting dxi

dt
= vi in the line element viewed in the absolute frame, ds2 =

=
(
1− v2

)
dt2, so that for a clock at rest in S′, since dt′2 =

(
1− v2

)
dt2,

one has ds2 = dt′2. Thus the assumption about the property of slowly
moved clocks which yielded g0 =

1
γ , is equivalent to demanding

ds2 = dt′2 for a clock at rest in S′, as indeed an examination of the
line element (4.3) indicates.

Chapter 5. Velocity of Light in a Moving Refractive Medium
and Further Applications Involving Relative Vel-
ocity

So far our discussions have pertained only to the velocity of light in the
vacuum, and we have seen that in S′ the relative velocity of light is dif-
ferent in different directions but unobservable with present techniques
so that one cannot measure the velocity v of S′. The questions arise
as to whether such a velocity v might be detectable by a) causing the
light to pass through a refractive medium at rest in S′ and determining
whether the out-and-back time is a function of v, b) comparing the
time it takes light to travel a distance ∆x′ in the refractive medium
to the time it takes to travel the same distance in the vacuum and
seeing whether this time difference, varies with v. But we know by,
experiment (at least to the approximation n(v) is unity mentioned in
the preceding chapter) that there are no effects of the kind a) and b).
The problem is therefore to write down a line element for the propaga-
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tion of light in a refractive medium at rest in S′ which exhibits these
properties.

Consider the line element,

ds2 = dt′2 − 2vdx′dt′ −
(
n2 − v2

)
dx′2 − n2dy′2 − n2dz′2, (5.1)

which reduces to the vacuum A.L.T. line element for n=1, where n
is the index of refraction when the refractive medium is at rest in S,
the absolute frame (the index of refraction n used here should not be
confused with n(v) used in the preceding chapter, although they are
somewhat similar in character). The line element (5.1) has the property
that under the local time transformation, tL = t′ − vx′, it goes into the
form

ds2 = dt2
L
− n2

(
dx′2 + dy′2 + dz′2

)
, (5.2)

which, upon setting ds2 =0, yields the same slowness for light in all

directions, ∆tL =n∆σ′, where ∆σ′ is as before
√
∆x′2 +∆y′2 +∆z′2

and thus (5.1) predicts the results of special relativity.
Setting ds2 =0 in (5.1) one finds

∆t′ = v∆x′ + n∆σ , (5.3)

and hence the average out-and-back time is

1

2
(∆t′out +∆t′back) = n∆σ (5.4)

so that there are no effects of the kind mentioned in a). The slowness

of light in the direction θ′, with cos θ′ = ∆x′

∆σ′
is,

∆t′

∆σ′ = n+ v cos θ′. (5.5)

On the other hand, for a comparison stretch in the vacuum, as was
shown previously,

(
∆t′

∆σ′

)
VAC

=1+ v cos θ′. Hence the time difference per
distance ∆σ′ is

∆t′

∆σ′ −
(
∆t′

∆σ′

)

VAC

= n− 1 (5.6)

and so there are no effects of the kind mentioned in b).
Let us now enquire as to what the velocity of light through the

refractive medium at rest in S′ appears to be as measured in the absolute
frame. For simplicity we consider the light to be moving in the positive
x′ direction. Then using the formula for the relative velocity given by



Frank Robert Tangherlini 67

the A.L.T., namely, dx′

dt′
= dx/dt−v

1−v2
, we have

dx

dt
=
(
1− v2

) dx′
dt′

+ v (5.7)

and hence since dx′

dt′
= 1

n+v
from (5.5), it follows

dx

dt
=

1
n + v

1 + 1
n v

, (5.8)

so that we have the same result as that prescribed by special relativity,
but without requiring the slowness of light in the refractive medium in
S′ to be n.

In the above, for simplicity, we considered only two frames S′ and
S, but suppose, as in the Fizeau experiment, the refractive medium is
in motion relative to the terrestrial frame, which in turn is in motion
relative to the absolute frame, what value do we obtain for the refractive
index in the terrestrial frame as a function of the relative velocity of the
refractive medium? Let the moving refractive medium have velocity v2
in the positive x direction relative to the absolute frame, and the Earth
frame a velocity v1, then the relative velocity u1, of the light in the
refractive medium with respect to the Earth frame is

u1 =

(
1
n + v2

1 + 1
n v2

− v1

)
1

1− v21
, (5.9)

and the slowness 1
u1
. Now in order to measure this slowness one has

to know, as remarked previously, the time ∆t′ to traverse a distance
∆x′ which one has no way of measuring without absolute signals. If
we employ the special relativistic convention that light travels with unit
speed in a comparison vacuum stretch ∆x′, we are actually assigning a
slowness 1

u1
− v1, to the light in the refractive medium, hence a velocity

given by u1

1−u1v1
. A simple calculation yields

u1
1− u1v1

=

1
n + vr

1 + 1
n vr

, with vr =
v2 − v1
1− v2v1

, (5.10)

which is again the relativistic result. On the other hand, measurements
made with absolute signals in the Earth frame would give the value
u1. Clearly if v1 =0, u1

1−u1v1
reduces to u1 so that the relative veloc-

ity with respect to the absolute frame is the same for observers using
the A.L.T. or special relativity, since under these circumstances both
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observers agree that the slowness of light is unity. In order to avoid
confusion with the various “relative velocities” that we encounter it will
be convenient to use the following terminology:

“Galilean relative velocity”:
dxg
dtg

=
dx

dt
− v

“A.L.T. relative velocity”:
dx′

dt′
=

dx
dt

− v

1− v2

“relativistic relative velocity”:
dxL

dtL
=

dx
dt

− v

1− dx
dt
v






(5.11)

and for the quantity dx/dt, the “velocity relative to the absolute frame”
or simply, “absolute velocity”.

Another example illustrative of calculating with the A.L.T. is the
following: consider twin observers, initially at rest at the origin in the
primed frame, and let them be moved with equal and opposite velocities
in the positive and negative x′ direction, by equal amounts ∆x′; do they
have the same age upon arriving at their respective destinations? In
special relativity the answer is clearly, yes; however, one might wonder
whether the same would be true in the conceptual framework presented
here, since the twin that went in the positive x′ direction will have a
larger velocity relative to the absolute frame than the twin that went in
the negative x′ direction (except as discussed below) and hence the rate
of ageing of the former is greater than the rate of ageing of the latter
— and in an absolute sense. However, the key to the discrepancy in
the two results lies in the phrase, “equal and opposite velocities”. As
discussed before, we have with current techniques no way of measuring
their velocities; on the other hand, special relativity states that the two
twins had equal and opposite velocities, if upon arrival, they each sent
back light signals which arrived at the origin simultaneously. Let us
calculate with this requirement in the framework of the A.L.T. and see
what result is obtained.

If the twins have A.L.T. relative velocities u−, u+ to the left and
right respectively, the total time elapsed after they have left the origin
and the two light signals return is

(
1

u−

+ 1 + v

)
∆x′ =

(
1

u+

+ 1− v

)
∆x′, (5.12)

since the two signals are required to arrive simultaneously, and the slow-
ness of light is 1+ v in the positive direction and 1− v in the negative
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direction. Hence, 1
u−

+ v= 1
u+

− v. Now the twin that went to the right,

required a time ∆t′ in the primed frame given by ∆t′ = 1
u+

∆x′, which

in the absolute frame meant a time ∆t= 1
u+

∆x′γ. Hence a clock at rest

with the twin indicated a time

∆t′′+ = ∆t

√
1− (v+

2 )
2 =

1

u+

∆x′ γ
√
1− (v+

2 )
2 , (5.13)

where v+

2 is the absolute velocity of the twin that went to the right. From

the relation, u+ =
v+
2 −v

1−v2
, one has v+

2 = u+(1− v2) + v and inserting this

in (5.13) and simplifying, there results,

∆t′′
+
= ∆x′

√(
1

u+

− v

)2
− 1 , (5.14)

and similarly for the twin that went to the left,

∆t′′
−
= ∆x′

√(
1

u−

+ v

)2
− 1 . (5.15)

Hence, since 1
u−

+ v= 1
u+

− v, the two ages are the same. Moreover we

note 1
u+

− v, 1
u−

− v are nothing but the expressions for the reciprocal

of the relativistic relative velocities, namely,

1

u+

− v =
1− v2

v+

2 − v
− v =

1− v+

2 v

v+

2 − v
≡ 1

v+
r
, (5.16)

also, remembering 1
u−

is treated as a magnitude above,

1

u−

+ v =
1− v2

v − v−

2

+ v =
1− v−

2 v

v − v−

2

≡ 1

|v−

r |
, (5.17)

so that, as one would calculate relativistically,

∆t′′
±
=

∆x′

v±

r

√
1− (v±

r )
2
, (5.18)

where we can omit the absolute magnitude sign of v−

r treating ∆x′ as
negative for motion to the left.

From the above we see that since 1
u+

= 1
u−

+2v, the twin that went

to the right actually had less A.L.T. relative velocity than the twin
that went to the left. So that an observer using absolute signals would
not agree with a relativistic observer that the twins had arrived “si-
multaneously” at their (respective destinations. Had we therefore made
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u+ = u−, their ages upon arrival would have been different, as may be
seen from (5.14) and (5.15) and indeed, as was surmised initially, the
twin that went to the right would have been younger when he arrived
than-the twin that went to the left.

It should be noted that in the theory presented here there is no twin
paradox of the kind in special relativity, since time can be measured in
an absolute sense. For a “twin” moved to the right from the origin in
S′, the rate of ageing is less than a twin at the origin.

When the twin returns (provided of course he doesn’t return so
swiftly that his absolute velocity is greater than v) his rate of ageing is
greater than the twin at the origin. But the total ageing for the journey
is always less than that for the twin who remained at the origin. Thus
the out-and-back time ∆t̄′ measured by a twin at the origin is,

∆t̄′ =
1

u+

∆x′ +
1

u−

∆x′ (5.19)

and the total ageing of the twin that travelled out and back is,

∆t̄′′ = ∆x′

√(
1

u+

− v

)2
− 1 + ∆x′

√(
1

u−

+ v

)2
− 1 (5.20)

and using the relations, 1
v+
r
= 1

u+
− v, 1

|v−
r | =

1
u−

+ v, one has

∆t̄′

∆x′
=

1

v+
r
+

1

|v−

r |
(5.21)

and
∆t̄′′

∆x′
=

1

v+
r

√
1− (v+

r )
2
+

1

|v−

r |

√
1− (v−

r )
2

(5.22)

and since all quantities are positive, one always has,

∆t̄′

∆x′
>

∆t̄′′

∆x′
(5.23)

a result which is expected from simpler considerations using special
relativity. On the other hand, the following result is meaningless in
special relativity.

Let there be two pairs of identical clocks in S′, one pair at A, call
them a1, and a2, and the other pair at B, call them b1, and b2. And
let B be at a positive distance ∆x′ from A. Let both sets of clocks be
synchronized with absolute signals at some time t′ =0 and then permit-
ted to run at their natural rates. Now let a2 be moved to the right to
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B, and let b2 be moved to the left to A. Then the above considerations
show that while the time indicated by a2 when it arrives at B will al-
ways be less than the time indicated by b1, the time indicated by clock
b2 when it arrives at A will be greater than, equal to, or less than the
time indicated by a1, according to the following scheme,

tb2 > ta1 :

∣∣∣∣
−2v

1− v2

∣∣∣∣ > u− > 0

tb2 = ta1 :

∣∣∣∣
−2v

1− v2

∣∣∣∣ = u−

tb2 < ta1 :

∣∣∣∣
−2v

1− v2

∣∣∣∣ < u−





. (5.24)

Since the elapsed time read by a1 is 1
u−

∆x′ and the time by b2 is
1
u−

∆x′γ
√
1− v22 , where v2, is the absolute velocity of b2 corresponding

to u−, u−=
∣∣ (v2−v)

1−v2

∣∣, and their ratio is γ
√
1− v22 which by the above

scheme may be adjusted to be equal to, or less than unity.
The relation between u− and v−

r which was found in the preceding
by essentially a physical argument follows quite simply from the local
time transformation: tL = t′ − vx′, xi

L
=x′i, since this may be written,

upon using ∆σL =∆σ′,

∆tL
∆σL

=
∆t′

∆σ′ − v cos θ′, (5.25)

and hence for θ′ =0, 1
vr

= 1
u − v. If we take ∆tL

∆σL
=1, we obtain the ex-

pression, for the slowness of light found in (3.16), ∆t′

∆σ′
=1+ v cos θ′.

Chapter 6. Measurements with Signals Travelling with Finite
Velocities

As has been shown, it is possible to determine the asymmetries in the
propagation of light in S′ using absolute signals, but can one measure
such asymmetries with signals travelling with merely finite velocities
greater than that of light? Before determining the answer to this ques-
tion, let us note it is possible to define operationally such superlight (or
“supervidic”) signals without any assumptions about the synchroniza-
tion of separated clocks. Let there be two similar clocks in S′, one at
the origin A, and the other ∆x′ from the origin at B. Let a light signal
and the signal in question be sent out simultaneously from A, and let
their respective times of arrival, t′1 and t′2 be measured at B. Then if
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t′2 − t′1> 0, the signal in question traveled more slowly than light, and
if the time difference is negative, t′2 − t′1< 0, the signal traveled faster
than light and was a superlight signal. Note that there is nothing in
the above definition about the magnitudes of the velocities, but rather
a statement about their ordering as to magnitude.

Consider a set of such superlight signals, arriving at B at times t′2,
t′3, etc., each travelling faster than the other, then

|t′2 − t′1| < |t′3 − t′1| < · · · < |t′m − t′1| . (6.1)

The upper bound of this sequence defines the absolute signal. More-
over there exists such a bound, since the absolute (and largest) delay
for light is (1+ v)∆x′ in the positive x′-direction, hence |t′m − t′1| 6
6 (1+ v)∆x′, the equality sign holding for the absolute signal.

Let us now suppose we wish to determine the velocity of the frame S′

(say the Earth frame) with respect to the frame S; can this be done with
a superlight signaling apparatus? In order to make such a measurement
one would do the following: Compare the difference in times of arrival of
the light signal and the superlight signal from A to B with the difference
in times of arrival from B to A. Thus

(
1 + v − 1

u+

)
∆x′ = ∆t′

+

(
1− v − 1

u−

)
∆x′ = ∆t′

−




, (6.2)

where u+, u− represent the magnitudes of the A.L.T. relative velocities
of the superlight signals in the positive and negative directions. It will
be seen one has two equations in three unknowns so that in general
there is no solution. However for special cases there are solutions, the
simplest situation being 1

u+
, 1
u−

≪ v so that effectively we are dealing

with absolute signals. Or again, if one discovers by experiment that the
velocity of the super-light signal is independent of the velocity of the
source (as is the case for light signals) and given by w> 1, then

u+ =
w − v

1− v2
, u− =

|−w − v|
1− v2

, (6.3)

and one has two equations in two unknowns. For the time differences
one finds

∆t′+ −∆t′
−
= 2v

(
w2 − 1

w2 − v2

)
∆x′, (6.4)
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and for the sum,

∆t′+ +∆t′
−

= 2

(
1− w

1− v2

w2 − v2

)
∆x′, (6.5)

from which one can determine w and v.
One can for such a signal, formally define a line element ds in the

absolute frame given by

ds̄2 = dt2 − 1

w2

(
dx2 + dy2 + dz2

)
, (6.6)

which under the A.L.T. becomes in S′,

ds̄2 =
1

w2

[
w2−v2
1−v2 (dt′)2−2vdx′dt′−

(
1−v2

)
dx′2−dy′2−dz′2

]
, (6.7)

and hence setting ds̄2 =0, the time ∆t′ for such signals to traverse ∆x′,
∆y′, ∆z′ is

∆t′ =
v
(
1− v2

)
∆x′

w2 − v2
±

± 1− v2

|w2 − v2|

√
w2 (∆x′)2 +

w2 − v2

1− v2
(∆y′2 +∆z′2) . (6.8)

Although the above results were derived assuming w> 1, it is inter-
esting to note that they also hold if w< 1, except that under these cir-
cumstances the slower-than-light signal cannot propagate in certain di-
rections in the primed frame if w<v, namely those directions for which

w2 (∆x′)
2
+
w2 − v2

1− v2

[
(∆y′)

2
+ (∆z′)

2
]
< 0 , ∆t′ < 0 (6.9)

since in these directions the delay in sending such a signal is neither real
nor positive. The signals are therefore confined to a cone opening in the
negative x′ direction. On the other hand when w>v, all directions are
allowed.

Using these slower-than-light signals it would also be possible to
detect the absolute motion of the Earth as with superlight signals for
which w is constant, employing (6.4) and (6.5) if w>v, and if w<v,
measuring the slope of the cone of preferred directions and ∆t′

−
above

— from which it is possible to obtain v and w by a simple calculation. It
is interesting to note that if w is zero, the cone shrinks to a line. Physi-
cally, this “signal” consists in the identification of a point in the absolute
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frame which then in S′ moves rearward with velocity −v
1−v2 . Compar-

ing the delay of such a “signal” with a light signal we find using (6.2)
∆t′

−
=
(
1
v − 1

)
∆x′ and hence v can be found in this case as well.

Thus we see that a sufficient condition for it to be possible to detect
the absolute motion of a frame S′ is that there be at least one other
signal propagating with constant absolute velocity w in the vacuum,
with w 6= 1.

Chapter 7. Dynamics of a Free Particle

§7.1. Energy-momentum relations in an A.L.T. frame

As was remarked in the Introduction, a fundamental distinction between
special relativity and general relativity (from the standpoint of general
covariance) is that “invariance” in the former implies a restriction, on
coordinate transformations, whereas invariance in the latter is really a
tautology. Given any contravariant vector V µ, and its covariant vector
Vµ = gµνV

ν , the statement,

VµV
µ = “an invariant” (7.1)

is true independently of what coordinate transformation is made; it is
a tautology of general covariance. On the other hand, the statement,

V 0V 0 − V iV i = “an invariant” (7.2)

is in general not true except for certain transformations, the Lorentz
transformations, so that it is a “conditional” invariance relation. This
relation in special relativity leads to the result, p0

L
p0

L
− pi

L
pi

L
=m2, where

pµL are the momenta in a Lorentz frame. Let us now seek to find the
analogous conditional invariance relation when the A.L.T. is employed,
and finally, for further comparison, the relation when the Galilean trans-
formation is employed.

Let a particle of mass m, be moving with absolute velocities, ẋ, ẏ, ż,
the equations of motion are obtained from the variational principle,

δ

∫
mds = 0 , ds =

√
ηµν dxµdxν . (7.3)

In the primed frame S′, under the A.L.T., the variational principle
becomes

δ

∫
m
√
g′µν dx

′µdx′ν =

= δ

∫
m
√
1− 2vux − (1− v2)u2x − u2y − u2z dt

′ = 0 , (7.4)
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when t′ is taken as parameter, and where ux=
dx′

dt′
, uy =

dy′

dt′
, uz =

dz′

dt′
.

The Lagrangian is therefore,

L = m
√
1− 2vux − (1− v2) u2x − u2y − u2z . (7.5)

The covariant momenta are,

p′x =
∂L

∂ux
= −mΓ

[
v +

(
1− v2

)
ux
]
, p′y = −mΓuy

p′0 = −ui
∂L

∂ui
+ L = mΓ (1− uxv) , p′z = −mΓuz

Γ =
m

L
=

1√
1− 2vux − (1− v2)u2x − u2y − u2z





. (7.6)

Alternatively, the expression for p′0 is more generally obtainable us-

ing p′0 =
∂L
∂u0

, where u0 =
dt′

ds
, and after differentiation, setting dt′

ds
=1,

if t′ is taken as parameter. The contravariant metric tensor g′µν is
obtained from inverting g′µν is given by

‖g′µν‖ =

∥∥∥∥∥∥∥∥∥∥

1− v2 −v 0 0

−v −1 0 0

0 0 −1 0

0 0 0 −1

∥∥∥∥∥∥∥∥∥∥

. (7.7)

If the velocity of the frame S′ were not along the x axis but in an
arbitrary direction vx, vy, vz, g

′µν is obtained from inverting the tensor
given in (3.19) and is

‖g′µν‖ =

∥∥∥∥∥∥∥∥∥∥

1− v2 −vx −vy −vz
−vx −1 0 0

−vy 0 −1 0

−vz 0 0 −1

∥∥∥∥∥∥∥∥∥∥

. (7.8)

For simplicity we shall continue to restrict our discussion, to motion
of S′ along the x-axis.

The contravariant momenta are then obtained from (7.6) and (7.7),

p′x = g′x0p′0 + g′xxp′x = mΓux , p′y = mΓuy

p′0 = g′0xp′x + g′00p′0 = mΓ , p′z = mΓuz

}
. (7.9)
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In order to obtain the momenta in the unprimed frame, it is the con-
travariant quantities above which are to be transformed via the A.L.T.,
hence as is the case with the coordinates

px =
1

γ
p′x + γ vp′0, py = p′y

p0 = γ p′0, pz = p′z




. (7.10)

Using the transformation properties of the absolute relative veloci-
ties,

ux = (ẋ− v) γ2, uy = γ ẏ , uz = γ ż , (7.11)

one can rewrite Γ as

Γ =
γ̄

γ
, γ̄ ≡ 1√

1− ẋ2 − ẏ2 − ż2
. (7.12)

Substituting this expression for Γ, together with the expressions for
the velocities (7.11) and the momenta (7.10) into the transformation
yields

p0 = mγ̄ , px = mγ̄ ẋ, py = mγ̄ ẏ , pz = mγ̄ ż (7.13)

as would have been obtained using the ordinary Lorentz transforma-
tion, or as we shall now show, any transformation. The line element,

ds=
√
ηµν dxµdxν =

√
ηµν

dxµ

dτ
dxν

dτ
dτ , where τ is an arbitrary parameter,

under the transformation, dxµ = bµν dx
′ν , becomes

ds =
√
ηµν b

µ
λb

ν
ρdx

′λdx′ρ =

√
ηµν b

µ
λb

ν
ρ

dx′λ

dτ

dx′ρ

dτ
dτ ′, (7.14)

where τ ′ is another arbitrary parameter. The momenta (per unit mass)
are

p′ρ = ηµν b
µ
λb

ν
ρ Γ

dx′λ

dτ ′
, p′ρ = Γ

dx′ρ

dτ ′
, Γ ≡ dτ ′

ds
. (7.15)

The coordinate transformation may be written,

dxµ

ds
= bµν

dx′ν

ds
= bµν

dx′ν

dτ ′
dτ ′

ds
(7.16)

and if in the unprimed frame dτ
ds

≡ γ̄,

γ̄
dxµ

dτ
= bµν Γ

dx′ν

dτ ′
, (7.17)

which is the desired result when dτ = dx0 ≡ dt, dτ ′ = dx′0 ≡ dt′.
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Let us now observe that in the primed frame, the following relation-
ship holds:

(p′0)
2 − (p′x)

2 − (p′y)
2 − (p′z)

2
= m2. (7.18)

That is, the covariant energy and the contravariant spatial momenta
satisfy the usual relativistic energy-momentum relationship for a free
particle of mass m. Since this invariance relation, does not depend
upon v, the absolute velocity of the frame, it is true in all uniformly
moving frames for which the A.L.T. holds. It is the conditional in-
variance relation for which we were seeking that is the analog of (7.2).
Moreover one finds after some manipulation that,

p′x = mγr vrx , p′y = mγr vry

p′0 = mγr , p′z = mγr vrz

}
(7.19)

with γr ≡ 1
√

1−(vrx)
2−(vry)

2−(vrz)
2
, and

vrx =
ẋ− v

1− vẋ
=

1
1
ux

− v

vry =

√
1− v2

1− vẋ
ẏ =

uy
1− uxv

vrz =

√
1− v2

1− vẋ
ż =

uz
1− uxv





. (7.20)

Thus p′0, p
′i are to be identified with their relativistic counterparts,

p0
L
, pi

L
based on using the ordinary Lorentz transformation. This re-

sult may be made more transparent by noting that the transformation
connecting p′0, p

′i to the absolute frame is the Lorentz transformation.
Thus, as may be shown,

p′0 = p′0 − vp′x (7.21)

(which follows most easily from recognizing dt= dt′ − vdx′ and making
the appropriate identification — alternatively, from suitably reshuffling
the terms in the line element or more formally, using p′0 = g′0µp

′µ), and
hence substituting for p′0 in the transformation (7.10), there results,

px = (p′x + vp′0) γ , py = p′y

p0 = (p′0 + vp′x) γ , pz = p′z

}
. (7.22)

The fact that the (p′0, p
′i) are to be identified with what are called

the energy and momentum in special relativity, provides us therefore
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with a very simple way of transcribing the dynamical laws of one theory
in terms of the other, and moreover, as we have been showing, when
measurements are made in certain ways, they are the same laws.

Let us now enquire as to the physical meaning of the momenta com-
plementary to the above, p′0, p′i. On using the relations, Γ= γ̄

γ , ẋ=

=(1− v2)ux + v etc., we find,

p′x = −mẋ γ̄
γ
, p′y = −mẏ γ̄

p′0 = m
γ̄

γ
, p′x = −mż γ̄





(7.23)

so that apart from the time dilatation factor 1
γ , these quantities are

nothing but the covariant momenta pµ as measured in the absolute
frame. They are therefore “unobservables” unless measurements are
made with absolute signals or the equivalent. Note the square of these
momenta satisfy,

γ2
[(
p′0
)2 −

(
p′x
)2]−

(
p′y
)2 −

(
p′z
)2

= m2, (7.24)

which contains explicit reference to the absolute velocity of the frame
and is therefore not an invariance relation.

These complementary momenta do not have the same kind of re-
flection properties that are possessed by the (p′0, p

′i). Thus consider a
particle moving in S′ along the x′ axis, upon colliding elastically with
a sufficiently heavy object, the quantities p′0, p

′x satisfy (the subscripts
i and f denoting initial and final states)

(p′0)f = (p′0)i , (p′x)f = − (p′x)i (7.25)

the same as for the Lorentz observer. Whereas, for the quantities p′0,
p′x one has since p′x=−p′x − vp′0, p

′0 = p′0 + vp′x,

(p′0)f = (p′0)i − v (p′x)i 6= (p′0)i = (p′0)i + v (p′x)i

(p′x)f = (p′x)i − v (p′0)i 6= − (p′x)i = (p′x)i + v (p′0)i

}
. (7.26)

This result is the analogue of the effect that was discussed in Chap-
ter 5, where we saw that a Lorentz observer says two objects are moving
with equal speeds in opposite directions if |v−

r | = v+
r whereas the A.L.T.

observer using u+, u− finds the two objects are in fact travelling in gen-
eral with different speeds. Despite this lack of symmetry, both species
of momenta are conserved in a collision process. For indeed, if one is
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conserved, so is the other, since they are linearly dependent. Thus if∑
i p

′x =
∑

f p
′x,
∑

i p
′
0 =
∑

f p
′
0, then

∑
i

p′x −∑
f

p′x = −
(∑

i

p′x −∑
f

p′x
)
− v
(∑

i

p′0 −
∑
f

p′0

)
= 0

∑
i

p′0 −∑
f

p′0 =
∑
i

p′0 −
∑
f

p′0 + v
(∑

i

p′x −∑
f

p′x
)
= 0





, (7.27)

where
∑

i ,
∑

f represent the summation over the momenta of the par-
ticles in the initial and final states.

§7.2. Energy-momentum relations in a Galilean frame

It is of interest to see what the preceding method yields when applied
to a Galilean frame. The line element ds2 = ηµν dx

µdxν becomes under
the Galilean transformation, tg = t, xg =x− vt, yg = y, zg = z, as given
earlier in (2.5),

ds2 =
(
1− v2

)
dt2g − 2vdtgdxg − dx2g − dy2g − dz2g ,

the contravariant metric tensor for the Galilean frame being the covari-
ant metric tensor for the A.L.T. frame and conversely. The momenta are

pgx = −mΓg (v + ẋg) , pgy = −mΓg ẏg

pg0 = mΓg

(
1− vẋg − v2

)
, pgz = −mΓg żg

pxg = mΓg ẋg , pyg = mΓg ẏg

p0g = mΓg , pzg = mΓg żg

Γg =
1√

(1− v2)− 2vẋg − ẋ2g − ẏ2g − ż2g





. (7.28)

Relating the contravariant momenta via the Galilean transformation
to their values in the absolute frame by

px = pxg + vp0g , py = pyg

p0 = p0g , pz = pzg

}
(7.29)

one also obtains the expressions for the energy and momenta given by
(7.13) as our general arguments showed must be the case.
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However, unlike the situation with the A.L.T., these Galilean quan-
tities can not be identified with appropriate relativistic counterparts
in the Lorentz frame. Indeed, on using ẋ= ẋg + v, etc., and observing,
Γg =

1
√

1−(ẋg+v)2−ẏ2
g−ż2

g

= γ̄, we have the following identification,

pgx = −mγ̄ ẋ = px , pgy = −mγ̄ ẏ = py

p0g = mγ̄ = p0 , pgz = −mγ̄ ż = pz

}
(7.30)

so that these quantities are in fact, the covariant absolute momenta.
Thus the Galilean observer states the same invariance relation as the
absolute observer but with a change in notation, i.e., (p0g)

2 − (pgx)
2 −

− (pgy)
2 − (pgz)

2 =m2.
Consider now the complementary quantities pg0, p

i
g: we note Γg can

also be written

Γg =

√
1− v2 γr
1− vẋ

(7.31)

and using the expressions for vrx, vry, vrz we find,

pxg =
mγr vrx

γ
, pyg = mγr vry

pg0 =
mγr
γ

, pzg = mγr vrz





(7.32)

so that these quantities are almost, but not quite, the Lorentz momenta.
They satisfy,

γ2
[(
pg0
)2 −

(
pxg
)2]−

(
pyg
)2 −

(
pzg
)2

= m2 (7.33)

which is not a conditional invariant for arbitrary Galilean observers,
depending as it does on v. It is analogous to the expression (7.24).

Chapter 8. Transformation of Maxwell’s Equations and Fur-
ther Applications

§8.1. Transformation of Maxwell’s equations

In the absolute frame S, Maxwell’s equations may be written

∂Fµν

∂xλ
+
∂Fλµ

∂xν
+
∂Fνλ

∂xµ
= 0

∂Fµν

∂xν
= jµ




. (8.1)
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Under a transformation to S′, given by

dx′µ = aµν dx
ν , dxν = āνµdx

′µ, aµν ā
ν
ρ = δµρ , (8.2)

where the aµν , ā
ν
µ are the coefficients of the A.L.T. and its reciprocals,

the above equations take the same tensor form,

∂F ′
µν

∂x′λ
+
∂F ′

λµ

∂x′ν
+
∂F ′

νλ

∂x′µ
= 0

∂F ′µν

∂x′ν
= j′µ





. (8.3)

The above results of course are not conditional on using the A.L.T.;
they are true for any transformation (for non-linear transformations
with Fµν and jµ replaced by tensor densities). As remarked in the
preceding chapter the above result is simply a tautology of covariance.

On introducing the vector potential A′
µ defined by F ′

µν =
∂A′

µ

∂x′ν
− ∂A′

ν

∂x′µ
,

the second Maxwell equation becomes

g′λν
∂2A′µ

∂x′λ∂x′ν
= j′µ (8.4)

with the imposition of the gauge condition, ∂A′µ

∂x′ν =0. Since g′λν is an

explicit function of the absolute velocity of the frame S′, it is in this form
of the Maxwell’s equations that the fundamental difference between the
A.L.T. and the Lorentz transformation manifests itself.

An invariant element of charge at rest in the frame S′ is given by δe=

= j′0
√
−g′dx′dy′dz′ where g′ is the determinant of the metric tensor g′,

but since A.L.T. is unimodular−g′=−η=1 (where η is the determinant
of ηµν). Hence j′0dx′dy′dz′ is an invariant of the transformation , and
one may write

δe = j′0dx′dy′dz′ = j0dxdydz (8.5)

which is the same law as for the Lorentz observer. However, for charges
in motion in S′, the quantity j′0 is not what a Lorentz observer would
associate with j0

L
(= jL0), as we shall see it is j′0, which for charges at

rest in S′ is given by j′0 = g′0ν j
′ν = j′0. The transformation laws for the

A′µ, j′µ are, as before, for the momenta,

Ax =
1

γ
A′x + γvA′0, Ay = A′y

A0 = γA′0, Az = A′z



 , (8.6)
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jx =
1

γ
j′x + γvj′0, jy = j′y

j0 = γ j′0, jz = j′z



 . (8.7)

As before in dealing with the momenta we may write

A′
0 = g′0µA

′µ = A′0 − vA′x

j′0 = g′0µ j
′µ = j′0 − vj′x

}
. (8.8)

And hence the transformation for the potential and current using
these mixed quantities becomes that of the Lorentz quantities:

Ax = (A′x + vA′
0) γ , Ay = A′y

A0 = (A′
0 + vA′x) γ , Az = A′z

}
(8.9)

and similarly for the currents. Thus (A′
0, A

′i), (j′0, j
′i) are to be identi-

fied with the Lorentz quantities (A0
L
, Ai

L
), (j0

L
, ji

L
), whereas for example

(j′0, j′x)γ are (j0, jx), the latter being the quantities measured in the
absolute frame — as was the case for the momenta, and is indeed true
for all vectors.

Let us now relate the electromagnetic field quantities F ′
µν , F

′µν to

their values in the absolute frame. One has, Fµν = aρµa
λ
νF

′
ρλ, F

µν =

= āµρ ā
ν
λF

′ρλ, which reduce to

F0x = F ′
0x , F 0x = F ′0x

F0y =
1

γ
F ′
0y − γvF ′

xy , F 0y = γF ′0y

F0z =
1

γ
F ′
0z − γvF ′

xz , F 0z = γF ′0z






, (8.10)

Fyz = F ′
yz , F yz = F ′yz

Fxy = γF ′
xy , F xy =

1

γ
F ′xy + γvF ′0y

Fzx = γF ′
zx , F zx =

1

γ
F ′zx + γvF ′z0





. (8.11)

In order to compare the quantities F ′
µν , F

′µν with the values ob-
tained by a Lorentz observer FLµν , F

µν
L , we use the transformation O3

relating Lorentz coordinates to the primed coordinates,

dxµ
L
= ℓµν dx

′ν , dx′µ = ℓ̄µν dx
ν
L
, ℓµν ℓ̄

ν
λ = δµλ . (8.12)
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as given in Chapter 1. So that FLµν = ℓ̄ρµℓ̄
λ
νF

′
ρλ, F

µν
L = ℓµρℓ

ν
λF

′ρλ one
obtains,

FL0x = F ′
0x , F 0x

L
= F ′0x

FL0y = F ′
0y , F 0y

L = F ′0y − vF ′xy

FL0z = F ′
0z , F 0z

L
= F ′0z − vF ′xz





, (8.13)

FLyz = F ′
yz , F yz

L
= F ′yz

FLxy = F ′
xy + vF ′

0y , F xy
L

= F ′xy

FLzx = F ′
zx + vF ′

z0 , F zx
L = F ′zx




. (8.14)

Thus the electromagnetic field quantities F ′
0i, F

′ij are what corre-
spond to the electric and magnetic fields as measured by a Lorentz ob-
server at rest with respect to S′. Using the above expressions one can
rewrite the transformations from the primed frame to the unprimed
frame in the form,

F0x = F ′
0x , F yz = F ′yz

F0y =
(
F ′
0y − vF ′xy) γ , F xy =

(
F ′xy − vF ′

0y

)
γ

F0z = (F ′
0z − vF ′xz) γ , F zx = (F ′zx − vF ′

0z) γ





(8.15)

thereby exhibiting explicitly the Lorentz-like behaviour of (F ′
0i, F

′ij).
Denoting these quantities then by E ′,H′, it follows that E ′2−H′2, E ′ ·H′

are the conditional invariants under the A.L.T. On the other hand, the
quantities (F ′0i, F ′

ij) do not have this property, as may be inferred from
the manner in which they are connected with the absolute frame as
given above, such a product would contain explicit references to the
absolute velocity of the frame.

§8.2. Equations of motion of a charged particle

Let us now consider the equations of motion of a particle interacting
with the electromagnetic field, as observed in S′. We shall see that they
may be written in a form identical to that seen by a Lorentz observer
and for the same quantities but with a different label.

The variational principle in the absolute frame is

δ

∫
mds+ eAµ ẋ

µds = 0 , (8.16)

(where ẋµ = dxµ

ds
) and under the A.L.T., or indeed any transformation,
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becomes

δ

∫
mds+ eA′

µ ẋ
′µds = 0 , (8.17)

so that the equations of motion, written in both contra-and covariant
form, are

dẋ′ν

ds
=

e

m
ẋ′µF

′µν

dẋ′ν
ds

=
e

m
ẋ′µF ′

µν





. (8.18)

Consider the equation for the development of the energy,

dẋ′0
ds

=
e

m
ẋ′iF ′

i0 . (8.19)

As we saw ẋ′0 has the same value as the Lorentz quantity, ẋL0, sim-
ilarly ẋ′i = ẋiL, F

′
i0 =FLi0 hence, this equation may be written

dẋL0

ds
=

e

m
ẋLFLi0 (8.20)

and is therefore identical to the corresponding equation as seen by the
Lorentz observer. Consider now the equations

dẋ′i

ds
=

e

m
ẋ′µF

′µi; (8.21)

they may be written

dẋ′i

ds
=

e

m

(
ẋ′0F

′0i + ẋ′jF
′ji) ; (8.22)

but as we saw in (8.13), F 0y
L =F ′0y−vF ′xy which generalized for motion

of the frame S, with velocity vx, vy, vz, becomes F 0i
L =F ′0i−vjF ′ji, but

F 0i
L =−FL0i =−F ′

0i, hence

F ′0i = −F ′
0i + vj F

′ji; (8.23)

(which may also be derived using F ′
0i = g′0µg

′
ivF

′µν) so that the above
equation may be written

dẋ′i

ds
=

e

m

(
− ẋ′0F ′

0i +
(
ẋ′0vj + ẋ′j

)
F ′ji) (8.24)

but ẋ′j = g′jµẋ′µ =−vẋ′0− ẋ′j , hence

dẋ′i

ds
=

e

m

(
−ẋ0F ′

0i − ẋ′jF ′ji) , (8.25)
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and now noting F ′
0i =−F 0i

L , ẋ′j = ẋjL =− ẋLj , the equation is identical to

dẋ′iL
ds

=
e

m
ẋLµF

µi
L (8.26)

and our original observation is proved.
The importance of this result is that it means provided an observer in

S′ makes measurements of velocity using light signals or slowly moving
clocks, he always arrives at the same equations of motion as the Lorentz
observer at rest with respect to S′; on the other hand, if he makes
observations using absolute signals, he can arrive at a second set of
equations of motion, namely those given by

dẋ′i
ds

=
e

m
ẋ′µF ′

µi

dẋ′0

ds
=

e

m
ẋ′µF

′µ0





(8.27)

which do not reduce to the equations of motion as seen by the Lorentz
observer. With current techniques, these equations are “unobservables”,
since they involve knowledge of the absolute velocity of the frame.

Finally, we note that in the presence of an electromagnetic field
the conditional invariance relation on the momentum under the A.L.T.
(7.18) becomes (

p′0 − eA′
0

)2 −
(
p′i − eA′i)2 = m2. (8.28)

§8.3. Unobservability of a correction to the wave number un-
der the A.L.T.

In the discussions given in previous chapters it was shown that there
were no effects to be expected due to the asymmetric propagation of
light in S′ because of the way in which measurements are made. This
was done using the line element and observing the cancellation in the
out-and-back slowness. It is also possible to give an analogous discussion
from a wave standpoint working with the D’Alembertian equation in S′.
One has
[(
1− v2

) ∂2

∂t′2
− 2v

∂2

∂x′∂t′
− ∂2

∂x′2
− ∂2

∂y′2
− ∂2

∂z′2

]
A′i = 0 , (8.29)

and one looks for plane wave solutions of the form, exp±i
(
k′µx

′µ), the
k′µ satisfying

(
1− v2

)
k′20 − 2vk′0k

′
x − k′2x − k′2y − k′2z = 0 . (8.30)
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This expression may be diagonalized by using k′x=−vk′0−k′x, so
that (upon introducing k′y =−k′y, k′z =−k′z), the above reduces to the
usual conditional invariance relation,

k′20 − (k′x)
2 − (k′y)

2 − (k′z)
2
= 0 . (8.31)

And hence for the phase we may write

k′0 t
′ − (vk′0 + k′x)x′ − k′y y′ − k′zz′. (8.32)

By introducing the local time tL = t′−vx′, the above expression be-
comes the usual relativistic one,

k′0 tL − k′xx′ − k′yy′ − k′zz′ = k0
L
tL − ki

L
xi

L
(8.33)

with the previously noted identity between (k′0, k
′i), and the correspond-

ing Lorentz quantities (k0L, k
i
L) in the case of particle dynamics.

It is now our purpose to show that even though one has an expression
for the phase given by (8.32), that in any typical measurement involving
this phase, the quantity vk′0x

′ cancels out, so that effectively one is
dealing with the Lorentz expression (8.33). The argument is a trivial
extension of ones given previously.

Thus consider a typical interference experiment involving two beams
of light. They will each propagate from an initial point P ′

1(x
′
1, y

′
1, z

′
1),

where they were initially in phase, via two different paths, to a final
point P ′

2(x
′
2, y

′
2, z

′
2) where a phase comparison is to be made. Then we

have for their respective phases along the two paths

Path 1:

P ′
2∫

P ′
1

(vk′0 + k′x) dx′ + k′ydy′ + k′zdz′

Path 2:

P ′
2∫

P ′
1

(vk′0 + k′x) dx′ + k′ydy′ + k′zdz′






. (8.34)

And we see that in the phase difference, the term of interest,

P ′
2∫

P ′
1

vk′0dx
′ −

P ′
2∫

P ′
1

vk′0dx
′ = vk′0

∮
dx′ (8.35)

reduces to a line integral around a closed contour and hence vanishes,
leaving the customary relativistic expression for the phase difference.
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In the above we have assumed the light paths to be in vacuum, how-
ever the interposition of refractive media causes no difficulty. Taking the
inverse of the metric tensor given in (5.1), the D’Alembertian equation
on these paths becomes

[(
1− v2

n2

)
∂2

∂t′2
− 2v

n2

∂2

∂t′∂x′
− 1

n2

∂2

∂x′i∂x′i

]
A′i = 0. (8.36)

Proceeding as before, the wave numbers satisfy

(
1− v2

n2

)
k′20 − 2v

n2
k′0k

′
x − 1

n2
(k′i)

2
= 0 . (8.37)

Using k′µ = g′µνk′ν , one has k′x =−vk′0−n2k′x, k′y =−n2k′y, k′z =
=−n2k′z, and the above may be written, k′20 −n2k′ik′i=0. Hence nk′i,
rather than k′i represents the wave number in vacuum. Denoting nk′i

by k′i, they satisfy k′20 − k′ik′i=0, and the phase may be written

k′0 t
′ −
(
vk′0 + nk′x

)
x′ − nk′yy′ − nk′zz′, (8.38)

and as before,
∫
vk′0dx

′ vanishes along a closed path leaving the usual
expression. This result may be also derived noting that for a Lorentz
observer, the phase in a refractive medium is, k0

L
t
L
−nki

L
xi

L
, where ki

L

are the vacuum wave numbers, hence setting tL = t′−vx′ and making
the appropriate correspondences, the result follows.

It is interesting to note that what a Lorentz observer describes
to be a plane wave propagating perpendicular to the x′ axis (say in
the y′ direction) with kxL = k′x=0 , an A.L.T. observer using absolute
signals describes as propagating in a direction tilted with respect to
the y′ axis and with wave number vk′0 along the x′ axis. This fol-
lows immediately from the expression for the phase, but it is interest-
ing to give a physical reason for this result. Now a Lorentz observer
would declare the relative phase of two portions of a wave front cross-
ing the x′ axis to be the same if, as they crossed say at −∆x′

2
, ∆x′

2
,

they each triggered a device which sent light signals to the origin, one
from the left, one from the right, which arrived simultaneously. But
as we have seen, the slowness of the light signal propagating from the
right to the origin is (1−v), and slowness from the left to the ori-
gin is (1+v), hence two signals arriving simultaneously correspond to

a time difference of (1−v)∆x′

2
− (1+v)∆x′

2
, and a phase difference of

k′0

[
(1−v)∆x′

2
− (1+v)∆x′

2

]
=−vk′0∆x′, as indicated above. Thus for
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an A.L.T. observer it is necessary for −k′x= k′x+vk′0 to vanish to
have transverse propagation; one then has, k′x =−vk′0 also using (8.30)
k′y = 1

γ k
′
0 , so that a relativistic observer would declare the wave is prop-

agating with direction
kx
L

ky
L

= k′x

k′y
=−vγ.

§8.4. Transformation of energy-momentum and angular mo-
mentum tensors

Let us now consider the transformation properties of the energy-
momentum tensor T µν which for the electromagnetic field is given by
T µν =FµλF ν

λ − 1
4
FλρF

λρgµν . However, in the following, for general-
ity, we shall consider T µν to be an arbitrary energy-momentum tensor
that in the absolute frame has the properties of being symmetric and
satisfying the conservation law ∂Tµν

∂xν =0. Then since these are tensor
properties they also hold in the A.L.T. frame,

T ′λµ = aλν a
µ
ρ T

νρ = aµρ a
λ
ν T

ρν = T ′µλ

∂T ′λµ

∂x′µ
= āνµa

λ
ρ a

µ
ς

∂T ρς

∂xν
= aλρ

∂T ρν

∂xν
= 0




. (8.39)

It follows from these two properties that angular momentum will be
conserved in the A.L.T. frame. Define the generalized angular momen-
tum density M′µλν about the origin to be

M′µλν ≡ x′µ T ′λν − x′λ T ′µν , (8.40)

then
∂M′µλν

∂x′ν
= T ′λµ − T ′µλ = 0 . (8.41)

Since this derivation does not depend on the coordinate system (al-
though we are here only working in Cartesian frames), this conservation
law is a typical example of a result which follows from general covariance
rather than one which follows from working in the restricted (Lorentz)
coordinate frames of special relativity.

The tensors T ′
µν , T

′µν , T ′µ
ν are related to the tensors in the corre-

sponding Lorentz frame by

TLµν = ℓ̄ρµ ℓ̄
λ
ν T

′
ρλ

T µν
L = ℓµρ ℓ

ν
λ T

′ρλ

T ν
Lµ = ℓ̄λµℓ

ν
ρ T

′ρ
λ




. (8.42)
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Obtaining ℓµν , ℓ̄
µ
ν , from dtL = dt′−vjdx′j , dxjL = dx′j , one has

TL00 = T ′
00

TL0i = T ′
0i + viT

′
00

TLij = T ′
ij + viT

′
0j + vj T

′
0i + vivj T

′
00

T 00
L = T ′

00 − 2vi T
′i0 + vivj T

′ij

T 0i
L

= T ′0i − vj T
′ji

T ij
L

= T ′ij

T 0
L0 = T ′0

0 − viT
′i
0

T i
L0 = T ′i

0

T 0
Li = T ′0

i + viT
′0
0 − vj T

′j
i − vivj T

′j
0

T i
Lj = T ′i

j + vj T
′i
0






. (8.43)

Because of the general relations T ′µν = g′µλg′νρ T ′
λρ, T

′µ
ν = g′µλ T ′

λν

there are actually only ten linearly independent components to the stress
tensor. As can be seen from the above, the ten components which are
to be identified with the quantities measured by the Lorentz observer
are T ′

00, T
′i
0 , T

′ij ; the other twenty-six components T ′
µj , T

′0µ, T ′0
µ ,T ′i

j ,
except for special cases of symmetry, are unobserveables unless mea-
surements are made with absolute signals. It will be noted that while
T ′
µν , T

′µν are both symmetric tensors T ′µ
ν does not have this property.

In the Lorentz frame one has T 0
Li=−T i

L0, T
i
Lj =T j

Li while for T ′µ
ν , from

above
T ′i
j − T ′j

i = vi T
′j
0 − vj T

′i
0 , (8.44)

and using T ′i
0 = g′iλ T ′

λ0, T
′0
i = g′0λ T ′

λi,

T ′i
0 = −vi T ′

00 − T ′
i0

T ′0
i =

(
1− v2

)
T ′
0i − vjT

′
ji

}
. (8.45)

In the limiting case vi =0, the relations that hold on the mixed
tensor in the absolute frame and the Lorentz frame follow.

The momentum of the field as measured by the Lorentz observer
is Pµ

L =
∫
T µ

L0d
3xL, and since d3xL = d3x′, T j

L0 =T ′j
0 , T 0

L0 =T ′
00, this

corresponds to the A.L.T. quantities

P ′
0 =

∫
T ′
00 d

3x′, P ′i =

∫
T ′i
0 d

3x′ (8.46)
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in analogy to the correspondence found in the particle case. Consider
now, for simplicity, the field to be sufficiently localized (that of a par-
ticle) so that the total angular momentum about the origin may be
written

M ′ij = x′ip′j − x′jp′i; (8.47)

because of the above correspondence, this is the same as that obtained
by the Lorentz observer, that is,

M ′ij =M ij
L . (8.48)

On the other hand, employing the relations p′i=−p′i− vip0, x
′i =

=−x′i− vix
′
0, one obtains

M ′ij =M ′
ij − x′0

(
vip

′j − vjp
′i)− p′0

(
x′ivj − x′jvi

)
(8.49)

whereas for the Lorentz observer M ij
L =MLij .

Thus, in summary, we have shown by explicit calculation that in
an A.L.T. frame there always exists a set of tensors which are identi-
cal (apart from label) to a corresponding set obtained in the Lorentz
frame. Consequently, it is always possible for the A.L.T. observer to
write his equations in the same form employing the same quantities as
the Lorentz observer. On the other hand, the A.L.T. observer finds
there are additional quantities involving the absolute motion of the
frame. The fact that the A.L.T. observer finds there are these addi-
tional quantities is an expression of the possibility he has for another
method of measurement (based on absolute synchronization) not avail-
able to the Lorentz observer, the results of which will not in general yield
the same value as for the Lorentz observer. This was seen most clearly
in connection with the one-way velocity of light. On the other hand,
as we also saw in this connection, when the A.L.T. observer performs
his measurements in the same way as the Lorentz observer, he obtains
the same results — indeed this formed the basis for the derivation of
the A.L.T.

Chapter 9. Kinematic Implications of Superlight Signals for
Relativistic Causality

The basic idea of causal propagation is that a disturbance from a mea-
surement propagates only forward in time. In order to violate causal
propagation it would be necessary to have “signals” that propagate
backwards in time. As we shall see, however, this condition is not suf-
ficient due to the different ways in which various observers define time.
For brevity, signals that propagate backwards in time will be called
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“acausal”, independently of whether or not they actually lead to a vio-
lation of causality.

It will be shown that when there are faster-than-light signals present,
they can appear to an infinite class of Lorentz observers as exhibiting
this acausal propagation, although for an A.L.T., observer this is not
the case. However it will also be shown that if two measurements do
not interfere for an A.L.T. observer, they do not interfere for a Lorentz
observer, so that the latter cannot use such acausal signals to influence
events before they occurred. In the language of general relativity one
would say this acausal propagation is due to an improper choice of
coordinate system, namely: the use of the Lorentz local time. Indeed
one can always in a given frame make any signal propagating forwards
in time propagate backwards in time by redefining time, say T = t− qx,
and choosing q sufficiently large; this will be discussed in detail anon.

Let us now temporarily confine our attention to the absolute frame
so that observers using the ordinary Lorentz transformation, the A.L.T.
and the Galilean transformation all agree that the velocity of light is
the same in all directions and of magnitude unity. Consider two mea-
surements being made on the x axis (for convenience) one at the point
x0 at time t0, and the other at x1>x0 and at time t1>t0. Then in
order for a light signal emitted at (x0, t0) to be unable to interfere with
the measurement at (x1, t1), it is necessary that

t1 − t0 < x1 − x0 (9.1)

or more generally, t1 − t0< |~x1 − ~x0 |, that is, the interval must be space-
like, to guarantee non-interference of an earlier measurement with a
later measurement. This is the “relativistic causality” assumption. But
actually it contains two distinct assumptions, namely:

1. There are no signals that travel faster than light forward in time;

2. There are no signals that travel backward in time.

For, if merely 1 were satisfied, a signal violating 2 could leave the later
measurement at (x1, t1) and arrive in time to interfere with the earlier
measurement at (x0, t0).

Let us now suppose that 1 is violated and there are indeed su-
perlight signals available, of constant velocity vs in the absolute frame
S, but that there are no acausal signals present. Under these circum-
stances, the assumption that the interval be space-like to guarantee
non-interference is no longer sufficient. A Lorentz observer, an A.L.T.
observer and a Galilean observer at rest in S would all agree that the
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above requirement is to be replaced by

t1 − t0 <
1

vs
(x1 − x0) , (9.2)

and more generally,

t1 − t0 <
1

vs
|~x1 − ~x0 | . (9.3)

An interesting situation now arises in the limit vs →∞, since the
condition for non-interference reduces to the requirement t1 − t0< 0,
that is the measurement at (x1) was earlier in time than the measure-
ment at (x0). This is in contradiction with our initial assumption that
t1>t0. Indeed, if we allow t1 to be earlier than t0, the former measure-
ment could then have influenced the latter measurement, and hence
the requirement (9.2) would no longer be applicable in guaranteeing
non-interference. In other words we are actually working with a set of
inequalities

0 < t1 − t0 <
1

vs
(x1 − x0) . (9.4)

The first inequality, to guarantee the measurement at t1 does not
interfere with the one at t0 (based on assumption 2), and the second
inequality to prevent interference of the earlier measurement with the
later measurement by putting it outside the superlight cone. Clearly
the limiting case vs →∞ does not belong to the set.

On the other hand, if instead of the above we employ

0 6 t1 − t0 6
1

vs
(x1 − x0) , (9.5)

we do not arrive at a self-contradictory requirement in the limit. Hence,
if we wish to include the absolute signal as a limiting case of causal prop-
agation, the conditions for non-interference of a measurement at t1 with
one at t0 is that the former measurement be later than or simultaneous
with the latter measurement, t1 > t0, rather than simply t1> t0 as we
have been working with above. Since the inclusion of the equality sign
may seem paradoxical, it is necessary to include a stipulation that the
“effect” or disturbance occur after the arrival of the initiating causal im-
pulse. For example, in a classical case, the effect or disturbance might
be a pointer displacement, the cause, a force producing a unit acceler-
ation commencing at time t=0. Then the displacement is d= 1

2
t2 and

there is no displacement until t> 0. For simplicity in what follows, vs
will be taken to be finite although arbitrarily large.
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With the above qualification on vs, let us now return to the require-
ment (9.2) and ask the question, does this requirement guarantee that
two measurements which did not interfere in the absolute frame will
not interfere for the several observers in the moving frame? Moreover,
if a signal propagates causally in the absolute frame, will it propagate
causally in the moving frame? We shall consider three cases: Galilean
observer, A.L.T. observer, and Lorentz observer.

Case I: Galilean observer. The transformation notation is as be-
fore, xg = x− vt, tg = t. The elapsed time ∆t(vs) for the signal in
the unprimed frame to travel the distance x1 −x0 is x1−x0

vs
; hence the

Galilean observer describes the signal as having occupied the same (pos-
itive) interval of time

∆tg(vs) = ∆t(vs) =
x1 − x0
vs

. (9.6)

The time interval between measurements is

∆tg(1, 0) = ∆t(1, 0) = t1 − t0 . (9.7)

Hence by our original assumptions t1 − t0<
x1−x0

vs
, it follows

∆tg(1, 0)−∆tg (vs) < 0 , (9.8)

and the measurements do not interfere; also, the signal is clearly causal,

since it traverses the distance, ∆xg(vs)=(x1−x0)− v (x1−x0)
vs

=(x1−x0)×
×
(
1− v

vs

)
, in a positive interval of time.

Case II: The A.L.T. observer. The above argument is basically
unchanged. One has, for the signal,

∆t′ (vs) =
x1 − x0
vsγ

(9.9)

and for the time interval between measurements,

∆t′ (1, 0) =
t1 − t0
γ

(9.10)

and hence,

∆t′ (1, 0)−∆t′ (vs) < 0 (9.11)

and the measurements do not interfere. Moreover the signal is causal
since the time interval is positive to traverse the distance ∆x′ (vs)=
=∆xgγ.
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Case III: The Lorentz observer. Proceeding as above, the time
intervals are

∆tL(vs) =

[
x1 − x0
vs

− v (x1 − x0)

]
γ (9.12)

∆tL(1, 0) =
[
(t1 − t0)− v (x1 − x0)

]
γ (9.13)

and once again, ∆tL(1, 0)−∆tL(vs)< 0.
It will be noted however, that for an infinite class of Lorentz ob-

servers it is possible to choose v such that vvs> 1, and the time in-
terval ∆tL(vs) becomes negative. Hence the above class of Lorentz
observers declare the superlight signal to have propagated acausally.

However if vvs> 1, since x1−x0

t1−t0
>vs,

v(x1−x0)
t1−t0

>vvs, ∆tL(1, 0) is also
negative, and the Lorentz observer asserts that the measurement at
x1 took place earlier than the measurement at x0. Moreover since
∆tL(1, 0)<∆tL(vs), he would then say the superlight acausal signal
did not propagate backwards in time sufficiently fast to influence the
earlier measurement. Thus, insofar as genuinely violating causality is
concerned, this “acausal” propagation of the superlight signal is spuri-
ous, and arises only because of the method of synchronization employed
by the Lorentz observer.

To complete the above discussion, it is necessary to show that when
v is chosen such that the later event is mapped onto an earlier event,
so that ∆tL(1, 0) is negative, a superlight signal that was emitted from
the event at (x1, t1) cannot arrive before the event at (x0, t0) as seen in
the new Lorentz frame. Denoting by ∆tL(vs) the interval for the signal
to propagate from right to left, one has

∆tL(vs) =

[
x1 − x0
vs

+ v (x1 − x0)

]
γ (9.14)

so that ∆tL(vs) is positive. Hence it is necessary to show ∆tL(vs)−
−
(
−∆tL(1, 0)

)
> 0. Using the expression for ∆tL(1, 0) given in (9.13)

one obtains

∆tL(vs)−
(
−∆tL(1, 0)

)
=
x1 − x0
vs

+ (t1 − t0) > 0 (9.15)

and hence the signal arrives later.

Tolman [14] has given a discussion of this problem, but upon showing
that a superlight signal can propagate backwards in time for a class of
Lorentz observers, he inferred that such signals violate causality. As we
have just seen this conclusion is invalid, since it is not sufficient to show
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merely that such signals propagate backwards in time in the new Lorentz
frame, one must also show that the signals interfere with measurements
that, in the original frame, occurred before their arrival — which is not
the case.

Let us now re-derive the above results working in the moving frame
S′ alone, thus giving us a more general proof that if two measure-
ments do not interfere for an A.L.T. observer, they do not interfere
for a Lorentz observer, although the latter will in general have to admit
of acausal propagation to describe the propagation of causal superlight
signals.

In the primed frame S′, the A.L.T. observer describes the two mea-
surements as having occurred at (x′0, t

′
0) and (x′1, t

′
1), with t

′
1> t

′
0> 0,

since the latter measurement is by assumption later. A superlight sig-
nal leaves the earlier event and propagates to the point x′1, with A.L.T.
relative velocity u, moreover since the measurements did not interfere

t′1 − t′0 <
x′1 − x′0

u
. (9.16)

The time interval for the signal to propagate is,

∆t′ (u) =
x′1 − x′0

u
. (9.17)

The local time interval for the propagation is,

∆tL(u) = ∆t′ − v∆x′ =
x′1 − x′0

u
− v (x′1 − x′0) (9.18)

and the local time interval between measurements is

∆tL(1, 0) = (t′1 − t′0)− v (x′1 − x′0) . (9.19)
Hence,

∆tL(1, 0)−∆tL(u) = (t′1 − t′0)−
x′1 − x′0

u
< 0 (9.20)

and the measurements did not interfere. It will be noted that the
acausality condition is now vu> 1, but since u= vs−v

1−v2
, this is equivalent

to vsv−1
1−v2

+1> 1, and hence vvs> 1, as before.

Alternatively, the above discussion might be carried out using the
expressions for relative velocity in the moving frame. The Galilean rela-
tive velocity and the A.L.T. relative velocity both transform a superlight
signal that was causal in the absolute frame into a causal signal in the
moving frame. But the denominator of the relativistic relative veloc-
ity, vr =

vs−v
1−vvs

changes sign for vvs> 1, which does not mean the signal

propagated in a reversed direction in positive time, but as we saw, the
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signal propagated in a positive direction backwards in time, an inter-
esting example of the ambiguity in velocity. For vvs =1, the Lorentz
observer says the signal propagated with infinite velocity. Consider now
the relation between vr and the A.L.T. relative velocity u developed in
preceding chapters. The Lorentz observer has corrected (or phased) his
clocks so as to make the slowness of light unity by effectively subtract-
ing v∆x′, and hence declares a signal of slowness 1

u to be of slowness
1
vr

= 1
u − v. For vvs< 1, 1

u >v, and the relativistic slowness 1
vr

is posi-

tive, for vs =
1
v , u also equals 1

v (interestingly enough), and 1
vr

vanishes,

becoming negative for vs>
1
v , and hence 1

u <v. Thus vr has the char-
acter of a phase velocity in these regions, which can be made to run
forward or backward in time by appropriate relative synchronization of
clocks corresponding to the choice of Lorentz frame.

Chapter 10. The A.L.T. Line Element under Improper Trans-
formations

As we have seen, given an A.L.T. frame S′ with the general line element

ds2 = dt′2 − 2vidt
′dx′i − dx′idx′i + vivj dx

′idx′j

it is possible to pass, via the local time transformation, to the corre-
sponding Lorentz frame SL with line element ds2 = dt2

L
− dxi

L
dxi

L
. Now

the metric tensor ηµν of the Lorentz line element is invariant under
the improper transformations T : (tL →−tL, xiL →xiL), P : (xiL →−xiL,
tL → tL) and the problem is to study the behaviour of the A.L.T. line
element under similar transformations.

Denoting the improper coordinate transformations by

T ′ :
(
t′ → −t′, x′i → x′i

)

P ′ :
(
x′i → −x′i, t′ → t′

)

}
, (10.1)

one has that under either T ′ or P ′, the line element becomes

ds2 = dt′2 + 2vidt
′dx′i − dx′idx′i + vivj dx

′idx′j (10.2)

so that in the reflected coordinate system g′0i →−g′0i, the other com-
ponents of the metric tensor remaining unchanged. Thus unlike the
situation with the Lorentz observer, the metric tensor is not invariant
under the improper transformations, the new line element being that
for an A.L.T. frame translating with absolute velocity −vi, without re-
flection of time or space. Let us examine how this lack of invariance
would show up in a classical experiment performed in S′.
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Consider first an experiment designed to check invariance under T ′.
An observer in S′ sends a light signal from the origin in the direction
θ′ through a distance ∆σ′ to a point A and measures the delay to be
∆t′ = (1 + v cos θ′)∆σ′. Now in reversed time, the signal returned from
A back to the origin in the direction θ′+π. The expression for slowness in
reversed time obtained from (10.2) is ∆t′ =(1−v cos θ′)∆σ′ and hence
for θ′ → θ′ + π, the delay is the same as on the outward journey. On the
other hand, invariance under time reversal in a given frame means that
the motion observed in the time reversed frame is a possible state of
motion in the original frame before time reversal. Hence a light signal
sent from A to the origin in the original frame should also exhibit the
same delay as it did on its outward path, which is of course not the case,
the delay being ∆t′ =(1+ v cos(θ′ + π))∆σ′ =(1− v cos θ′)∆σ′. Thus
T ′ is not an invariance operation in the given frame S′.

The physical reason for this lack of invariance is clear: in reversed
time not only did the light signal return from A to the origin but the
frame itself also reversed its direction of absolute motion, whereas in the
above experiment only the direction of motion of the light signal was
reversed, not the frame. Thus in order to preserve overall invariance
with respect to time reversal it is necessary to go outside the given
frame and include the frame travelling with absolute velocity −vi, the
only exception being the absolute frame for which vi = 0.

Similarly the parity transformation P ′ : (x′i →−x′i, t′ → t′) is not
an invariance operation in the given frame: a clock slowly moved in the
direction θ′ does not read the same as a clock moved in the opposite
direction θ′ + π. Once again, to obtain overall invariance with respect
to parity one must include the frame travelling in the opposite direction
with absolute velocity −vi.

On the other hand, strong reversal, T ′P ′, does represent an invariant
transformation, since the two operations have the effect of cancelling
the asymmetry produced by the absolute motion so that the metric
tensor is left unchanged. Thus unlike the Lorentz line element, for which
T , P , TP represent invariant improper coordinate transformations, the
A.L.T. line element possesses only one, T ′P ′. However the possibility
of performing the local time transformation tL = t′ − vix

′i has the effect
of restoring the full symmetry of the absolute frame to one in uni-
form motion.

The lack of invariance under P ′ in a given A.L.T. frame is of course
of an entirely different character than the parity violations observed
in the weak interactions. In the former case vi is a polar vector and
the correlated asymmetry in the propagation of light is likewise polar,
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whereas in the weak interactions one has a correlation between an axial
vector and a polar vector. To obtain the latter kind of correlation on
the basis of the metrical structure of the line element it would be neces-
sary that g′0i be an axial vector, so that light propagated with different
slownesses, for example, parallel and anti-parallel to the “direction” of
an axial vector.

Chapter 11. Invariance under the Local Time Transformation

Although it has been shown that for the usual classical-mechanical and
electromagnetic type of experiments, the absolute velocity v cancels out
in a typical measurement, so that utilization of the A.L.T. does not
lead to any contradictions, the question arises as to what are some of
the effects to be expected at the quantum level. It will be shown that
in a given Lorentz frame, upon resynchronizing the clocks absolutely,
by means of the local time transformation, so as to transform to the
A.L.T. frame, the Schrödinger state function undergoes a unitary trans-
formation so that the measureables of the two observers are the same.
(The method of proof, however, will lead to a result of somewhat greater
generality which will be discussed below.) That such a unitary transfor-
mation should exist follows on general principles from the fact that as
was shown in Chapter 7, the energy-momentum relation for an A.L.T.
observer satisfies the conditional in variance relation p′20 − p′jp′j =m2,
and as was shown in Chapter 8, the equations of motion for an A.L.T.
observer can be written in a form involving the same quantities in the
same way as for a Lorentz observer.

Consider first the Schrödinger representation in a given Lorentz
frame. In this representation, the state vector satisfies the equation,
for units in which ~=1,

i
∂

∂tL
Ψ(tL) = HΨ(tL) , (11.1)

where the Hamiltonian H is a time independent Hermitian operator
whose relativistic transformation properties will discussed below.
Choose a representation for the Ψ’s in which H is diagonal and the
Ψ’s are the energy eigenstates of H , then

i
∂

∂tL
ΨE(tL) = EΨE (tL) . (11.2)

Consider now a transformation from the Lorentz frame to the A.L.T.
frame, employing tL = t′ − vjx

′j , xjL = x′j , then

∂

∂tL
→ ∂

∂t′
, ΨE (tL) → ΨE (t

′ − vjx
′j) . (11.3)
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But since the ΨE are energy eigenstates, their time dependence is of
the form exp (−iEtL) and hence under the above time transformation,

ΨE(tL) = UΨE (t
′) , U ≡ exp

(
iEvjx

′j) . (11.4)

Hence the Schrödinger equation becomes

i
∂

∂t′
ΨE(t

′) = U−1EUΨE (t
′) = EΨE (t

′) (11.5)

and the energy levels and eigenfunctions are the same for the A.L.T.
observer as for the Lorentz observer.

It is interesting to note that the proof of (11.5) did not rely on
the relativistic properties of H , all that was required was that H be a
time independent operator and that there exist stationary solutions of
the form: ΨE(tL)= exp (−iEtL) ΦE, with

∂ΦE

∂tL
=0, HΦE =EΦE . In-

variance under the local time transformation is therefore an extremely
fundamental property of Schrödinger-type equations which deserves to
be further exploited. On the other hand, when we are not dealing with
a Lorentz invariant system, upon performing the local time transforma-
tion, we are not of course transforming to an A.L.T. frame, since the
concepts of Lorentz frame and A.L.T. frame are no longer defined; we
are then simply transforming from a frame with coordinates labelled xµL
to one with coordinates labelled x′µ.

So far we have confined our remarks to systems in an eigenstate of
energy with H diagonal, when this is not the case, the generalization of
U is the displacement operator, which may be formally represented by

U = exp

(
−vjx′j

∂

∂t′

)
. (11.6)

We arrive at such an operator by looking for a generalization of
(11.4), namely: an operator for which the following holds

Ψ
(
t′ − vjx

′j) = UΨ(t′) (11.7)

even when Ψ is not eigenstate of energy. Although a great many interest-
ing mathematical questions occur in connection with such an operator,
its use here will be justified by showing for the space with which we are
working U is unitary. This is done rather simply by first noting that
our above analysis has actually given us the unitary “eigenvalues” of U ,
that is,

UΨE(t
′) = eiEvjx

′j

ΨE (t
′) . (11.8)
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Now in order to establish unitarity, we must show that U preserves
the “lengths” of vectors: ‖UΨ‖= ‖Ψ‖. But since U clearly leaves in-
variant the lengths of the orthogonal base vectors ΨE, which by com-
pleteness span the space, U is unitary and U †=U−1=exp

(
vj x

′j ∂
∂t′

)
.

Thus we have in general that under the above assumptions, under
the local time transformation,

i
∂

∂t′
Ψ(t′) = U−1HUΨ(t′) = HΨ(t′) . (11.9)

We may see more explicitly how U acts by expressing H in the form
H
(

∂

∂xj
L

, xjL
)
and noting that under the local time transformation H be-

comes H
(

∂
∂x′j

+vj
∂
∂t′
, x′j

)
but since

(
∂

∂x′j
+vj

∂
∂t′

)n
UΨ=U

(
∂

∂x′j

)n
Ψ, we

have, assuming we can expandH in a power series,H
(

∂
∂x′j

+vj
∂
∂t′
, x′j

)
U

=UH
(

∂
∂x′j

, x′j
)
and the result (11.9) follows.

As an illustration of the above in the relativistic case, we consider
the Dirac equation

(
−iγµ ∂

∂xµ
L

+m
)
Ψ(xµL)= 0, since the invariance of

the Klein-Gordon equation is immediate. Transforming to the A.L.T.
frame under the local time transformation, the Dirac equation becomes
[
− i
(
γ0 + γjvj

) ∂

∂t′
− i γj

∂

∂x′j
+m

]
Ψ
(
t′ − vjx

′j , x′j
)
= 0 . (11.10)

It will be noted that if we define γ′0 ≡ γ0 + γjvj , γ
′j ≡ γj they satisfy

γ′µγ′ν + γ′νγ′µ = 2g′µν

g′00 =
(
1− v2

)
, g′j0 = −vj , g′jk = −δjk

}
(11.11)

as would be the case if we had formulated the equation in the A.L.T.
frame directly. Proceeding as above, we set Ψ(t′ − vjx

′j , x′j)=
=UΨ(t′, x′j), hence since

− iγj
∂

∂x′j
UΨ(t′, x′j) = U

(
−iγj ∂

∂x′j
+ ivj γ

j ∂

∂t′

)
Ψ(t′, x′j) , (11.12)

we obtain finally
(
−iγµ ∂

∂x′µ
+m

)
Ψ(x′µ) = 0.

Let us now observe in connection with the above that after making
the unitary transformation, the spatial momenta obtained from i ∂

∂x′j

are not p′j but −p′j and are therefore the Lorentz observer’s covariant
momenta pLj . Before performing the unitary transformation on Ψ for
a plane wave state ΨE one has

p′jΨE = i
∂

∂x′j
ΨE = −

(
p′j + vjE

)
ΨE . (11.13)
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The unitary transformation is therefore a method for eliminating the
“unobservable” components of the A.L.T. covariant spatial momenta,
i.e., −vjE. Alternatively stated, from the standpoint of quantum me-
chanics, the reason that they are unobservable is that they can be elim-
inated by a unitary transformation. Thus a breakdown of some one or
more of the assumptions we have employed here would be necessary to
make v an observable.

The possibility of introducing an absolute time and ether velocity
into quantum field theory has been discussed by Dirac [15] in connection
with a reformulation of electrodynamics.

Chapter 12. Conclusions

The preceding analysis shows that the experimental results of special
relativity may be obtained without imposing the usual requirement that
the line element be the same in all uniformly moving frames. Rather, we
may employ the A.L.T. line element which leads to an asymmetry in the
propagation of light, depending on the absolute velocity of the frame.
As we have seen in the various examples presented, this absolute velocity
always cancels when measurements are performed in the usual manner.
Under these circumstances, from the standpoint of mathematical sim-
plicity, it is advantageous to further introduce the local time transfor-
mation, since the results do not depend on the absolute synchronization
of separated clocks. Thus the final diagonalization of the line element
in the moving frame appears as a convenient but unnecessary step.

On the other hand, one might legitimately raise the question: if
this velocity relative to an absolute frame were to always cancel out,
would it and the absolute frame have any physical significance? Cer-
tainly it would be unsatisfactory to introduce these concepts, together
with others employed here such as instantaneous synchronization, su-
perlight signals, etc., in order to justify certain intuitive ideas about the
propagation of light, and then show that they play no role in physical
phenomena.

At the present time this unsatisfactory situation does seem to exist

insofar as uniformly moving frames are concerned; but if we consider
phenomena in rotating frames, as is discussed in the Appendix, the
situation is somewhat different. As is pointed out there, general rela-
tivity does not entail Mach’s principle, without which, inertia must be
regarded as being relative to space rather than the “fixed stars”, and
hence, rotation as absolute, rather than merely relative to these fixed
stars, indeed, throughout the preceding discussion, we have worked with
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solutions to Rµν − 1
2
gµνR=0, that is, a space in which the effect of

other matter is vanishingly small. Nevertheless, this did not prevent
us from assigning inertia to a particle, and propagation properties to
light, which would not have been possible if Mach’s principle were con-
tained in the theory. Under these circumstances, one has no choice but
to regard the gµν as representing a description of space-time itself, as
manifested in the propagation of light, the behaviour of rods and clocks,
and the inertial properties of bodies.

Once this view of the gµν is accepted, the objections raised above
are considerably lessened but not eliminated, since one still has the
problem of how uniform motion relative to space is to be measured
and the absolute velocity thereby determined. As we have seen, this
determination could be made if, in the simplest case, there were signals
propagating with arbitrarily large velocities. The well known arguments
for excluding such signals are based on the following: Since the energy
of a particle increases according to mγ, it would require infinite energy
even to achieve to the speed of light, while beyond the speed of light
the energy would become imaginary — both of which are physically
untenable requirements. However, while the first objection is certainly
valid in classical mechanics, where, to produce a particle travelling faster
than light, one would first have to accelerate it through the speed of
light, the situation is somewhat different in quantum field theory. For
in this case, one can conceive of the possibility of creating, via a collision
process, particles (e.g. a pair) that are already in the faster-than-light
region. Thus the infinite energy at the speed of light would then divide
the spectrum of particles with non-zero mass into two classes: those
travelling with v < 1, and those with v > 1.

It is therefore the second objection, the imaginary energy for v > 1,
that represents the serious problem. From a classical standpoint, this
imaginary energy can be avoided by transferring to the space-like branch
of the energy momentum relations as seen in the absolute frame S. Thus
we formally define the line element for a particle moving v > 1 to be

ds2 = dx2 + dy2 + dz2 − dt2, (12.1)

where the coordinates of the particle are measured in S. Then ds2 is
real for v > 1, and the energy and momentum satisfy p2 −E2 =m2 and
are also real. Also setting ds2 =0, yields, necessarily, the same prop-
agation properties for light in S as the time-like definition. (It should
be noted that frequently in the literature (12.1) appears in connection
with the usual relativistic theory; however, since −ds2 is employed for
the particle variational principle, δ

∫
m
√
−ds2 =0, one is really working
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with the time-like branch. Similarly in quantum field theory although
gµν =−ηµν is sometimes used, this is compensated for by employing
±im where one would have had m working with the time-like metric.)
By employing the transformation (1.3), one can transform to the moving
frame bringing the line element into the diagonal form

ds2 = dt̄ 2 − dx̄2 + dȳ2 + dz̄2, (12.2)

or, employing the analogue of the A.L.T., into the non-diagonal form

ds2 = dt′2 + 2vdx′dt′ +
(
v2 − 1

)
dx′2 + dy′2 + dz′2. (12.3)

In either case, light cannot propagate freely in all directions as must
be the case for a frame travelling with v > 1. However, whether one can
build a consistent extension to field theory that includes this space-like
branch is an open question.

At present, therefore, we can only conclude that the above objections
to particles travelling with v > 1 do not as yet suffice to exclude such
states and further study is necessary. The principal objection, then, that
can be raised is that such states have not been experimentally observed
— in agreement with the fundamental viewpoint of special relativity.
However, this objection can be turned around and used in the construc-
tion of a faster-than-light field theory which makes such states difficult
to observe. Thus the fact that they have not been observed could be
taken to imply some combination of the following: the coupling is weak;
the lifetime is short; the threshold for production is high; the particles
are neutral. (Charged particles with v > 1 would exhibit Cherenkov-like
radiation, since space-like energy-momentum relations permit a spon-
taneous “wake” radiation. Such states need not on this account be
eliminated since the threshold might be high, the lifetime short.) Thus
the rather extensive possibilities that exist in quantum field theory sim-
ply do not permit any firm conclusions about the non-existence of such
states to be drawn from present experimental data.

Let us now turn to a question of a different nature: the significance
of the transformation O2. As we have seen, it is this transformation in
conjunction with O1, the Galilean transformation, which gives rise to
an extension of the relativity of Newtonian mechanics to include fields
propagating with the speed of light. Were it not for O2, it would not be
possible to eliminate the absolute velocity from the line element even
after performing a local time transformation. For example, the local
time transformation, dtℓ = dtg − dxg

v

1−v2
, diagonalizes the line element

in the Galilean frame but it does not eliminate v; an observer could
still detect his motion through space by a Michelson-Morley type of ex-
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periment. Thus, while we have made it clear in the derivation of the
A.L.T. that O2 must arise in conjunction with O1, to make v unob-
servable in the usual experiments, we have not in turn indicated why
this should be the case from the standpoint of some more fundamen-
tal dynamical principle. It would perhaps be more satisfactory from
the standpoint of logical economy of postulates if it were possible to
show that just as O3 is generated from O2 and O1, that O2 in turn
follows from O1, and as a consequence of the nature of the equations
with which we are dealing. It should be stressed that this problem does
not exist for the Lorentz observer for whom it is impossible in princi-
ple to ever determine v and hence O2 by measurements made in his
frame. But for the A.L.T. observer such measurements are in princi-
ple possible, and therefore the contractions and dilatations are some-
thing to be explained in the sense that they are for him an observable
function of v. On the other hand, as was pointed out when he makes
measurements in the same way as the Lorentz observer, v is no longer
determinable, and as was proved in Chapter 11, to the extent the usual
quantum mechanical principles hold, it is in this manner that he will
make measurements. Moreover this rather general invariance that was
found under the local time transformation, even when the concepts of
Lorentz observer and A.L.T. observer no longer apply, indicate O3 is
in every respect as fundamental to the problem as O2 and O1, and so
one might rather regard O2 as being generated as a consequence of O3

and O1.

In conclusion then, there are two theoretical problems to be solved
to complete the point of view developed here:

1. An extension of quantum field theory to include states with v > 1
(or alternatively, a demonstration that there can exist another
signal propagating with constant velocity 6= 1 in the absolute
frame);

2. A further simplification of the postulates underlying the A.L.T.

On the other hand, to lend support to the opposite view that motion
relative to the absolute frame has no physical significance, it would be
logically necessary to:

a) develop a modification or extension of general relativity that fully
incorporates Mach’s principle;

b) demonstrate that any extension of field theory along the lines of
1 above would lead to a contradiction with known phenomena.
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Appendix. Mach’s Principle and the Concept of an Absolute
Frame

As the development in the preceding chapters indicates, it is possible
to construct a mathematical formalism yielding the same experimental
results as special relativity, but in which uniform motion is referred to
an absolute frame. Since the treatment was premised on the assumption
of absolute signals, for which there is as yet no experimental evidence,
the question arises as to whether there are any known physical phe-
nomena which would lend support to the notion of an absolute frame.
To find such phenomena it is necessary to go outside the framework of
uniformly translating systems and consider other types of motion such
as, for example, rotation. Because of the non-inertial character of a
rotating frame, an observer located in such a frame can determine he is
in rotation, without reference to the “fixed stars”, by a variety of me-
chanical and optical experiments: Foucault pendulum, precessing gyro,
the rotating-interferometer of Sagnac [16], the Michelson-Gale experi-
ment [17].

The latter experiment, which may be regarded as the optical ana-
logue of the Foucault pendulum, determines the angular velocity of the
Earth by sending two beams of light around a large rectangle (in the
actual experiment 2010×1113 feet) in opposite directions, whereupon
the beams are made to interfere and a fringe displacement is measured
relative to a fringe system produced by sending the beams around a
smaller rectangle as a reference. The shift can be calculated very sim-
ply from a classical picture in which one takes the Earth as rotating
relative to an absolute frame in which the velocity of light is c, so that
the velocity of light is different in opposite directions relative to the
terrestrial path. Alternatively, one may calculate the effect from the
standpoint of general relativity employing the line element

ds2 =

(
1− Ω2r2

c2

)
c2dt2 − 2r2Ωdφdt− dr2 − r2dφ− dz2, (A.1)

obtained from the usual expression for the line element in cylindrical
coordinates by substituting φ→φ+Ωt, and leaving the other coordi-
nates unchanged. In both cases one finds [18] to first order in Ω (which
represents the limits of experimental accuracy) that the time difference
is 1

c2
4AΩ for the two beams of light to traverse a figure of area A.

In neither method of calculation is there any reference to the other
matter of the universe, the result being a consequence of purely kine-
matical considerations which, to first order in Ω, do not even involve
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relativity. Of particular interest is the appearance in the above line el-
ement of the cross term 2r2Ωdφdt, which has the consequence that the
time it takes light to go a distance r∆φ is different in opposite direc-
tions ±∆φ. The effect of this cross term is therefore entirely analogous
to that of the cross term 2vdx′dt′ we encountered in the A.L.T. line
element which also gave rise to a difference in the velocity of propaga-
tion in different directions. Without absolute signals, however, as we
saw, this cross term cancels out in a typical interference measurement,
because effectively all that is measured is the average slowness of light
which does not involve v. But in a rotating frame one has the oppor-
tunity, due to the symmetry involved, to measure the difference of the
slowness in opposite directions around the light path and hence obtain
the effect of the cross term. Thus, using the A.L.T. expression for the
slowness (with c=1) ∆t′

∆σ
=1+ v cos θ′, we have the following expression

for the time difference for the two light beams traversing a closed circuit
in opposite directions (+,−),

∫

(+)

∆t′ −
∫

(−)

∆t′ =

∫

(+)

v cos θ′∆σ′ −
∫

(−)

v cos θ′∆σ′ =

=

∫
(∇×~v) d ~A′ +

∫
(∇×~v) d ~A′ = 4Ω̄A′ (A.2)

where Ω̄ is the average normal component of 1
2
∇×~v over the area. This

derivation is of course not rigorous since the expression for the slowness
was derived assuming uniform motion; however, one can always consider
a series of uniformly moving frames oriented along the light path as
having instantaneously the same value of ~v as the point the light is
traversing. Since the contractions and dilatations are second order,
the use of Stokes’ theorem to first order is justified. Thus from the
standpoint of the A.L.T., the effect observed in rotation is simply the
measurement of the curl of the absolute velocity appearing in the set
of A.L.T. line elements instantaneously defining the light path in the
rotating frame, and hence Ω is to be regarded as the angular velocity
of the terrestrial frame relative to the absolute frame.

Needless to say such an interpretation is inadmissible if one holds to
the relativistic viewpoint that motion of a material body has meaning
only with respect to other material bodies or reference frames. Under
these circumstances it is logically necessary for the relativist to inter-
pret the apparent absolute character of the effects observed in rotating
frames (or more generally, non-inertial frames) from the standpoint of
Mach’s idea [19], as formulated into a principle by Einstein [20]. Ac-
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cording to this principle, bodies do not have inertia relative to space
but relative to the totality of matter in the universe which not only
influences the inertia of a body but somehow produces it. This totality
of matter, of which the “fixed stars” constitute the visible and presum-
ably principal component, then determines via an averaging process the
fundamental inertial frame (to within an inertial motion: uniform trans-
lation, free-fall in a local gravitational field) relative to which rotations
and other apparently “absolute” motions are to be referred.

From the standpoint of the relativity of motion and the elimination
of non-observable frames, Mach’s idea is very attractive; however, it has
never been successfully incorporated into a dynamical scheme. Thus in
general relativity, as we have seen, a possible solution to the field equa-
tions in the absence of sources is gµν = ηµν , or ds

2 = dt2−dx2−dy2−dz2,
and hence the usual Euler-Lagrange equations follow, indicating a sin-
gle particle can have inertia without other masses being present. The
field equations therefore admit of solutions in which inertia is relative
to space. In order to satisfy Mach’s principle, however, it would be
necessary that the field equations have no solutions admitting of inertia
in the absence of other matter. It was with the idea of securing this
result that Einstein introduced the modification of the field equations
involving the famous cosmological constant, an attempt which was later
abandoned since, among other reasons, the equations still possessed a
solution admitting of inertia in the absence of other matter, de Sitter’s
“empty” universe [21]. The rotating shell model of Thirring [22], which
is sometimes taken as suggesting that general relativity contains Mach’s
principle, suffers from the difficulties that the “shell” would have to be
travelling faster than the speed of light even for the nearest stars, let
alone distances as great as the fixed stars, and hence Thirring’s solution
does not apply. Also the mass of the shell is introduced ad hoc into the
equations, whereas according to Mach’s principle the mass of the shell
must arise as a consequence of the interaction.

Thus the situation still remains that when one calculates the effects
observed in rotating bodies using general relativity, one is not mak-
ing a calculation whose physical interpretation is Machian, but rather
Newtonian (in the sense of an absolute frame). The view that general
relativity in its present form does not entail Mach’s principle has been
expressed by many authors including Beck [23], Bondi [24] and at the
1955 Jubilee of Relativity at Bern by Heckmann and Robertson and
by Pauli [25]. A recent interesting attempt to construct an alternative
theory to general relativity by R.H.Dicke [26] can be easily shown to
admit a line element of the form ds2 = dt2 − dx2 − dy2 − dz2 even
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in the absence of matter and therefore likewise does not entail Mach’s
principle.

On the basis of experimental evidence the simplest assumption that
summarizes the facts of rotation seems to be:

There is a universal frame, embracing the “fixed stars”, relative
to which it is possible to determine that a material body is in
rotation by mechanical and electromagnetic measurements made
on the body without reference to the stars. (This frame we shall
call the “absolute frame” or simply the “ether”.)

The absolute frame as described and defined above is essentially what
Newton referred to as “absolute space”, except that we have now at-
tributed to it, on the basis of experiment, electromagnetic properties
as well as mechanical ones. In so doing, it has been tacitly assumed
that the angular velocity one determines by the mechanical experiment
(Foucault pendulum) agrees with that determined by the optical ex-
periment (Michelson-Gale experiment), an assumption in accordance
with the experimental facts but not a priori necessary. The assumption
of “universality” is needed to correlate these determinations of Ω with
those determined from the observations of the fixed stars. The apparent
rotation of the fixed stars is then due simply to the fact that the Earth
is rotating in the ether and the stars travelling with velocities less than c
relative to the ether, and at these distances c

RΩ
≪ 1. Their influence on

the events (e.g. precession of Foucault pendulum) observed in the Earth
frame is, in the absence of Mach’s principle, presumably very small and
would appear only through their influence on the metric structure of
the absolute frame, say via the field equations of general relativity. In
addition to the fixed stars, as Eddington [27] points out, more locally
gravitating bodies can produce effects simulating a rotation of the coor-
dinate system, however such effects are quite small (a few seconds per
century for the Moon’s orbit) and do not entail Mach’s principle∗. How-
ever because of these effects, one cannot regard the absolute frame as
a rigid structure existing independently of matter as in the Newtonian
theory or Lorentz’s theory of the ether, but rather as in general relativ-
ity, a (space-time) structure capable of being influenced and perturbed
by the distribution of matter. Once an absolute frame is admitted on
the basis of providing a simple explanation for the rotation experiments,

∗Eddington is not talking about the Thirring model, but about the modification
of the Moon’s orbit based on the analysis due to de Sitter. See pp. 95–99 of the
reference, not just p. 99. See also the detailed analysis in Ciufolini & Wheeler’s book
Gravitation and Inertia, 1995, pp. 133–134. — Note by the Author, 2009.
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there is no reason for rejecting it on the basis of the Michelson-Morley
experiment, etc., since as was shown, the A.L.T. is capable of provid-
ing the same results as special relativity without requiring the complete
equivalence of uniformly moving frames — the requirement that was
primarily responsible for discarding the absolute frame.
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Maxwell’s Equations and the Absolute

Lorentz Transformation

Frank Robert Tangherlini

Abstract: This note supplements Chapter 8 of my thesis that stud-
ies Maxwell’s equations under the Absolute Lorentz Transformation
(A.L.T.), and it compares in greater detail the fields transformed un-
der the A.L.T. with those under the L.T. The general covariance of
Maxwell’s equations is reviewed, and it is noted that in the case of flat
spacetime this includes the A.L.T. The d’Alembertian equation un-
der the A.L.T. is given for the vector potential in the Landau gauge
which is shown to be invariant under linear transformations. It is
also pointed out that the trajectory of a particle will be the same
with the L.T. or the A.L.T., except that the two sets of clocks will
record different travel times; although they will agree for a round-trip
journey.

This paper is a supplementary background to Chapter 8 of my the-
sis that will hopefully make it clear that certainly Maxwell’s equations
hold under the Absolute Lorentz Transformation (A.L.T.) as well as
further clarify how the electromagnetic fields transformed under the
A.L.T. compare with those transformed under the Lorentz Transfor-
mation (L.T.). First of all, it should be kept in mind that, following
Einstein’s principle of general covariance, when Maxwell’s equations are
written in generally covariant form they hold in all coordinate systems,
not just under the L.T. or the A.L.T. Unfortunately, for physicists and
engineers only exposed to special relativity, and who therefore think
solely in terms of the L.T., this more general result comes as something
of a shocker! But of course one has to consider carefully what are the
measured quantities when one employs these alternative transforma-
tions, and as regards the A.L.T. and the linear local time transforma-
tion, this is done in Chapter 8. But before going into this in detail, I
wish to review the generally covariant form of Maxwell’s equations.

As in special relativity, one introduces a second-rank antisymmetric
tensor for the electromagnetic field, Fµν =−Fνµ, with µ, ν=0, 1, 2, 3,
and for simplicity, c=1, and further on below I will occasionally set
x0 = t, x1 =x, x2 = y, x3 = z. One can readily show that because of the
asymmetry, Fµν has only six linearly independent components given by
F0i with (i=1, 2, 3) corresponding to the three components of the elec-
tromagnetic field, and to a suitable set of the components of the Fij

corresponding to the three components of the magnetic field. Note that
different authors have different conventions so that, e.g., F0i might for
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some correspond to the positive components of the electric field, while
for others it might correspond to the negative component. It is also
sometimes more convenient to work with the contravariant form of the
electromagnetic tensor which is given by Fµν = gµαgνβFαβ , and summa-
tion over the repeated indices α, β is understood. The second rank sym-
metric tensor gµν is the contravariant form of the metric tensor and is
also its inverse, so that gµαgνα = δµν , where the latter is the identity ma-
trix, with δµν =0, µ 6= ν, and δµν =1, µ= ν, no sum. One can show that
Fµν =−F νµ, as is true for the covariant form of the tensor used above.
(Note that the term covariant is used in two different ways: sometimes
it refers to putting equations in tensor form, and sometimes it refers to
where the tensorial indices are located, hence with covariant forms, the
indices are below, and with contravariant forms, the indices are above,
and for second rank tensors or higher, there are mixed forms.) The proof
of the asymmetry of Fµν follows from the asymmetry of Fµν and the
symmetry of gµν . One has F νµ = gνβgµαFβα =−gνβgµαFαβ =−Fµν .

It is shown in textbooks dealing with special relativity and electro-
magnetism that Maxwell’s equations in all Lorentz invariant systems
take the following form with partial derivatives replaced by a comma,
thus ∂f

∂x
is replaced by f,x , so that one has, see (8.1) in the thesis,

Fµν,λ + Fλµ,ν + Fνλ,µ =0 , (1)

Fµν
,ν = jµ. (2)

To put these equations in generally covariant form, one replaces the
commas by semicolons that indicate covariant derivatives, so that the
above equations become

Fµν;λ + Fλµ;ν + Fνλ;µ = 0 , (3)

Fµν
;ν = jµ . (4)

Now a remarkable simplification occurs because of the asymmetry of
the Fµν , and the symmetry of the Christoffel symbols that are involved
in the covariant derivatives that are in (3). The first term can be written,

Fµν;λ =Fµν,λ −Γα
µλFαν −Γβ

νλFµβ , and similar expressions for the other
two covariant derivatives. Well, one finds that all the terms involving
the Christoffel symbols cancel, so the covariant derivatives can all be
replaced by partial derivatives, or commas, so the equation takes the
same form as (1). Although in our work, all the Christoffel symbols
vanish, since they involve partial derivatives of the metric tensor, and we
are working within flat spacetime with Cartesian spacetime coordinates,
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for which all the metric coefficients are constants, and hence their partial
derivatives vanish, nevertheless it is interesting to see that the first
equation of Chapter 8 and (1) above holds more generally than in special
relativity: it is true even in general relativity in arbitrary systems of

coordinates. Now let us look at (4), the generally covariant divergence
equation. One can show that the covariant derivative takes the form

Fµν
;ν =Fµν

,ν + Γµ
αν F

αν + Γν
βν F

µβ . (5)

Now the second term on the right hand side of (5) vanishes, because
Fαν =−F να and Γµ

αν =Γµ
να. While for the third term on the right hand

side, one can show that Γν
βν =

∂ ln
√−g

∂xβ , where g is the determinant of the

metric tensor. Hence upon multiplication by Fµβ and then replacing β
by ν, since it is a “dummy” index, and then combining it with the first
term on the right hand side, and substituting in (4), one has

1√−g
∂
√−g Fµν

∂xν
= jµ. (6)

Now it turns out for the A.L.T. and for the L.T., as I point out in
the thesis, these transformations are “unimodular” so that their deter-
minant is −1, and hence

√−g=1. Thus the second of the two equations
labelled (8.1) in the thesis holds not only for the L.T., but for the A.L.T.
as well, as given in the second of the two equations labelled (8.3). Also,
importantly, because of the asymmetry of the Fµν , one readily derives
the continuity equation for the current four-vector

∂2Fµν

∂xµ∂xν
= Fµν

,µ,ν = jµ,µ =0 . (7)

What about the vector potential Aµ? In generally covariant form
Fµν =Aµ;ν −Aν;µ, and the generally covariant derivatives of the vec-
tors are given by Aµ;ν =Aµ,ν −Γλ

µνAλ and Aν;µ =Aν,µ −Γλ
νµAλ, and

since Γλ
µν =Γλ

ν mu, one has that the difference of the generally covariant
derivatives reduces to the difference of the partial derivatives, and hence
for the A.L.T. as for the L.T., or indeed for all coordinate systems in
general, one has remarkably

Fµν =Aµ,ν −Aν,µ . (8)

And if one substitutes this expression for the Fµν into the first of
the two equations in (8.1) of the thesis, and changes the indices in a
cyclical fashion, one readily finds that the six resulting terms cancel
one another, so that the equation is satisfied. Hence, as pointed out in
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thesis, if we assume the two equations in (8.1) to hold, say in the rest
frame, and then transform them by the A.L.T. to the moving frame,
then one has exactly the same form of the equations, but with a prime
on the variables, as in (8.3).

On the other hand, when one looks at the d’Alembertian wave equa-
tion for the vector potential, for convenience in the contravariant form,
Aµ, the difference between the A.L.T. and the L.T. manifests itself.
To obtain (8.4), we use Fµν = gµνgνλFαλ = gµαgνλ (Aα,λ −Aλ,α) =
= gνλAµ

,λ − gµαAν
,α . At this point it is of interest to make a brief di-

gression into general relativity. You will notice that I raised the indices
on the vector potential in the last two expressions. I could do this be-
cause the metric tensor for the A.L.T. as well as the L.T. are constants,
and hence their partial derivatives vanish. I could have also done this if
we were working with general coordinates for which the components of
the metric tensor are not constants, provided the “comma” derivative
was replaced by the covariant derivative, i.e., the semicolon derivative,
since the covariant derivative of the metric tensor always vanishes. But
returning to flat spacetime, and the above results, when one takes the di-
vergence of Fµν , one gets two terms: the first term is the d’Alembertian
term given in (8.4) of the thesis, and the second term is −gµα ∂

∂xα

(
∂Aν

∂xν

)
.

Then (8.4) follows if one sets ∂Aν

∂xν
=0; this relation is sometimes called

the Landau gauge. Incidentally, you might wonder whether the Landau
gauge is invariant under transforming say from the Lorentz frame to the
A.L.T. frame. It turns out the gauge is invariant under all linear trans-
formations. Proof: Let the linear coordinate transformation be given as
dx′λ = aλν dx

ν , and hence Aν = āνµA
′µ with āνµa

λ
ν = δλµ. So the matrices

are inverse to each other. Then ∂Aν

∂xν = āνµ
∂A′µ

∂x′λ

∂x′λ

∂xν = āνµa
λ
ν
∂A′µ

∂x′λ = ∂A′µ

∂x′µ .

Hence, if it is the case that ∂Aν

∂xν
(which can also be written using the

comma notation as Aν
,ν) is chosen to vanish in one inertial frame, say

the ether frame, it vanishes in any other frame connected to it by a lin-
ear coordinate transformation. Incidentally you might wonder what the
situation is when we work with Aν

;ν , that is, when we work with the co-
variant (or semicolon) derivative rather than just the partial (or comma)
derivative? Well, from what I have written above one has Aν

;ν =Aν
,ν +

+Γν
ανA

α =Aν
,ν +

∂ ln
√−g

∂xα
Aα, and upon making use of the fact that α

is a dummy index, and can be replaced by ν, the second term upon
combining with the comma derivative leads to the following expression
for the covariant divergence

Aν
;ν =

1√−g
∂
√−g Aν

∂xν
=Aν

,ν , (9)
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for
√−g=1 or, more generally, when

√−g is a constant.
Now let us suppose we have transformed from the rest frame to the

A.L.T. frame which, as above, will continue to be denoted by primes
on the coordinates and field quantities, then we arrive at (8.4) in the
thesis. However, the contravariant components of the metric tensor,
i.e., g′µν were not given explicitly in (8.4). They are the inverse to the
components of g′µν given in (1.11) of the thesis. One finds with c=1
that the non-vanishing components are the following: g′00 =(1 − v2),
g′01 = g′10=−v, g′11 = g′22 = g′33 =−1. So (8.4) becomes
[
(1 − v2)

∂2

(∂x′0)2
− 2v

∂2

∂x′0∂x′1
− ∂2

(∂x′2)2
− ∂2

(∂x′3)2

]
A′µ = j′µ. (10)

This is of course different than the d’Alembertian equation in the
corresponding Lorentz transformed frame, which is exactly of the same
form as the rest frame. The reason for the difference is that in the
A.L.T. frame, the speed of light is not the same in all directions, since
the clocks have been synchronized externally so as to keep simultaneity
invariant. On the other hand, as pointed out on numerous occasions
before, this does not contradict the fact that the out-and-back speed is
the same as for the Lorentz observer.

Since the subsequent material in the thesis through (8.7) is self-
explanatory, let me go now to the equations given in (8.8). You will
note that I have lowered the indices to obtain A′

0, j
′
0 in terms of their

contravariant expressions. Here we see another difference with the L.T.,
because gL00 =1, gL0i=0, one has AL0 =AL0, jL0 = jL0 in contrast to
the relations in (8.8). What is now of interest is that if we work with
the mixed components, A′

0, A
′i, the transformation from the rest frame

to the primed frame is exactly the same as would be the case for the
the Lorentz contravariant components, A0

L
, Ai

L
, and similarly for the

currents, so that j′0, j
′i are the same as j0

L
, ji

L
.

In the thesis, I then go on to say that (j′0, j′x)γ are to be iden-
tified with the quantities (j0, jx) in the rest frame. It follows from
the second equation of (8.7) that we have j′0γ= j0, but since in the
rest frame j0 = j0, the results follow for the zeroth component. To show
that the above is true for the x-component, we have j′x = g′x0 j

′0 + g′xx j
′x.

Then substituting the values of the metric tensor from (1.11) we have
j′x =−vj′0 − (1−v2)j′x, and upon substituting from the first equation
in (8.7) for j′x into the above expression one obtains the following:
j′x =−vj′0 − (1−v2)(γjx−γ2v j′0)=− 1

γ j
x, and since jx=−jx, upon

multiplying both sides by γ the result follows.
Now let’s work out some of the transformations leading to the rela-
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tions in (8.10). As introduced above, the quantities aρµ and āµρ are
the transformation coefficients and their inverse for the A.L.T., and
expressed in terms of partial derivatives, they are given by aρµ =

∂x′ρ

∂xµ
,

āµρ =
∂xµ

∂x′ρ
. Then, for example, F01 = a00a

1
1F

′
01 + a10a

0
1F

′
10, but since

a01 =
∂x′0

∂x1
=0, unlike the case for the L.T., one has F01 = γ 1

γ F
′
01 =F ′

01

as in the thesis, but with the subscript “1” replaced by the letter “x”,
and recalling c=1, x0 = t, x′0 = t′. Let us now derive the contravariant
expressions given by F 01 = ā00 ā

1
1F

′01 + ā01 ā
1
0F

′10. Once again, the sec-
ond term on the right hand side vanishes for the A.L.T., and since its

inverse is given by x= 1
γ x

′ + vγt′, t= γt′, it follows that ā00 =
∂x0

∂x′0 = γ

and that ā11 =
1
γ , hence it follows that F 01 = γ 1

γ F
′01 =F ′01.

Thus we see that the covariant and contravariant forms of the anti-
symmetric electromagnetic field tensor are invariant under the A.L.T.
in the direction of motion! This is also true for the L.T. as shown in the
two top relations in (8.13), and as I will prove here explicitly further
below. But physically, why is this the case? The argument that I have
heard goes as follows. Let us imagine electric charge spread uniformly
on an infinite plane metal surface, which we will take to be the yz plane.
The electric field is uniform, and given by Ex, and in suitable units is
just the surface charge density. Now look at the field in a frame trav-
elling in the x-direction, i.e., normal to the plane. Since the electric
charge is conserved, as discussed in the paragraph following (8.4), and
since the y and z coordinates are left invariant under both the L.T. and
the A.L.T., then the surface charge density is invariant, and hence the
electric fields are invariant, which explains physically why the two top
equations for the electric fields in (8.13) come out the same for the two
transformations. I have only discussed here the electric fields in the
direction of motion, and you might find it interesting to work out the
case for the electric fields in the y and z directions as given in (8.10).

But before going on to the transformation that links the L.T. fields
with the A.L.T. fields, let us look at the transformation for the covariant
and contravariant components of the magnetic fields as given in (8.11).
Now Fyz is the magnetic field in the x-direction in the rest frame, and
we see it is the same as in the A.L.T. frame. Mathematically, this
comes about because Fyz = aµy a

ν
zF

′
µν , and since aµy = δµy , a

ν
z = δνz from

the A.L.T., the result given in the thesis follows. A similar argument
holds for F yz. Physically, this means the magnetic field in the direction
of motion is invariant under the A.L.T. as it is under the L.T. One
can show that this should be the case by an argument similar to the
argument for the electric field by thinking in terms of little current loops
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lying in the yz plane, and using the fact that the y and z coordinates
are not changed under either transformation. Once again you may wish
to work out the case for the other components of the magnetic field as
given in the remainder of the relations in (8.11).

Now let us turn to comparing the fields under the A.L.T. with those
under the L.T., and in order to be clear as to the physical circumstance
under which the comparison is being made, imagine we are on a train
travelling with velocity v in the x-direction with the station taken as the
rest frame. On the train there are two sets of clocks: one set has been
synchronized internally, either by the Einstein method, or by slowly
moving them. According to these clocks, the one-way speed of light is
the same in all directions. These are the clocks that obey the Lorentz
transformation. The second set of clocks are those associated with the
observers using the A.L.T. who have synchronized their clocks with
those in the station. As discussed in the thesis, the transformation
connecting the A.L.T. with the L.T. is a local time transformation:
tL = t′−vx′, xL =x′, yL = y′, zL = z′, which in differential tensorial form

as given in (8.12) is written dxµL = ℓµν dx
′ν , and the inverse transforma-

tion is dx′µ = ℓ̄µν dx
ν
L
. Let us work out explicitly FL01 = ℓ̄µ0 ℓ̄

ν
1F

′
µν . Now

rewrite the local time transformation as t′ = tL + vxL, x
′ =xL, y

′ = yL,

z′= zL, so that ℓ̄µ0 = ∂x′µ

∂x0
L

= δµ0 , while ℓ̄′ν1 = ∂x′ν

∂x1
L

has two nonzero values

given by ℓ̄01 = v, and also ℓ̄11 =1. However, because F ′
µν is antisymmetric,

F ′
00 =0, and therefore the only term that survives corresponds to FL01 =

= ℓ̄00 ℓ̄
1
1F

′
01 =F ′

01 as given in the top left relation in (8.13). One can of

use the same analysis based on the local time transformation to derive
the rest of the relations I have given there.

What is very interesting is that we see that the covariant form of the
electric field (i.e., with both indices lowered as given in the upper left
column of (8.13) for the L.T. is exactly the same as for the corresponding
electric field for the A.L.T. This can be summarized in the following
way: FL0i =F ′

0i, i=1, 2, 3, or, i=x, y, z, as in the thesis. On the other
hand, when it comes to the magnetic field, as is clear from the lower right
hand column in (8.14), it is the contravariant components describing the
magnetic field that are the same for both transformations. It follows
that when we use the covariant components of the e-m field tensor for the
electric field, and the contravariant components for the magnetic field,
the transformation from the rest frame to the primed frame is exactly

the same as for the Lorentz transformation. We have already shown this
is the case for the components in the direction of motion, but now let us
look at the transverse components, and specifically, the y-component,



118 The Abraham Zelmanov Journal — Vol. 2, 2009

since by isotropy, the result will hold for the z-component as well.
So let us go back to (8.10) and look at

F0y =
1

γ
F ′
0y − vγF ′

xy . (11)

We want to rewrite this so that instead of F ′
xy being present in (11),

we have F ′xy, and then verify that this relation has the same form as for
the Lorentz transformation. We use F ′

xy = g′xµ g
′
yνF

′µν = g′x0 g
′
yyF

′0y +
+ g′xxg

′
yyF

′xy, since all other terms vanish. Note that I have use x, y
instead of 1, 2 as indices at this point so as to make it easier to compare
with the thesis. Next, substituting values from the A.L.T. metric given
in (1.11) one finds

F ′
xy = vF ′0y + (1− v2)F ′xy. (12)

However we see that we have now introduced F ′0y which we do
not want. So we now use the following relation F ′0y = g′0µg′yνF ′

µν =
= g′00g′yyF ′

0y + g′0xg′yyF ′
xy =−(1−v2)F ′

0y + vF ′
xy, which we now sub-

stitute in (12) to obtain

F ′
xy = − v (1− v2)F ′

0y + v2F ′
xy + (1− v2)F ′xy . (13)

Upon bringing the term v2F ′
xy over to the left hand side and solving,

one finds that F ′
xy can be written as

F ′
xy = −vF ′

0y + F ′xy. (14)

Now substitute (14) in (11), so that we have F0y =
1
γ F

′
0y − vγ×

×(−vF ′
0y+F

′xy), and rearranging terms, we have F0y = γ ( 1
γ2 +v

2)F ′
0y−

− vγF ′xy, and using 1
γ2 + v2 =1, we finally have that

F0y = γ
(
F ′
0y − vF ′xy) , (15)

which is exactly the transformation for the corresponding L.T. quanti-
ties, i.e., one has that

F0y = γ (FL0y − vF xy
L

) , (16)

which can be obtained directly by employing the L.T. for the covariant
components, and noting that for the L.T., unlike the case for the A.L.T.,
one has

FLxy = gLxµgLyνF
µν
L

= (−1)(−1)F xy
L

= F xy
L
, (17)

since all the off-diagonal terms vanish, and the diagonal terms for the
spatial components are equal to −1. And as we have shown, using the
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local time transformation, F ′
0y =FL0y, and one can show in the same

way, F ′xy =F xy
L , and hence the equivalence of the results for the A.L.T.

and the L.T. is established.
It is interesting to note from (15) and (16) that while F ′

0y, F
′xy are

equivalent to what the L.T. observer says are the electric and magnetic
fields in the x and z directions, respectively, the A.L.T. observer says
that in addition, there is another projection of the magnetic field that
involves the velocity relative to the rest frame as well as the electric
field. Thus from (8.14) one has FLxy =F ′

xy + vF ′
0y, and from (8.13) one

has F ′
0y =FL0y, so that finally one has

F ′
xy = FLxy − vFL0y . (18)

However, unless one has some way of setting up an external syn-
chronization with the rest frame, F ′

xy is strictly unobservable. This is
the same situation that exists for the one-way velocity of light: if one
has no way of making an external synchronization, one relies on either
Einstein synchronization, or that with slowly moved clocks, in which
case the speed of light is c in all directions.

I think the remainder of section (8.1) in the thesis is self-explanatory,
but here is an additional comment that has bearing on section (8.2) that
deals with the equations of motion of a charged particle. Let us suppose
in a frame travelling uniformly with speed v in the x-direction relative
to the rest frame, one does an experiment, say with electrons in an
electromagnetic field, causing them to travel along some path, chosen
for simplicity to be in the plane zL = z′=0. Let us suppose the L.T.
observer finds an electron follows a path given by yL = f(xL). Then un-
der the local time transformation connecting the A.L.T. with the L.T.,
we must have y′= f(x′), so the electron will travel on the same path
for the A.L.T. observer as for the L.T. observer. However, if the elec-
tron left the point A at the L.T. time tL(A), and arrived at the point
B at the time tL(B), these times will in general be different for the
A.L.T. observer, who will assign them times corresponding to the local
time transformation. For convenience, one can assume initially that the
A.L.T. observer’s clock at A has been seen set to agree with that of the
L.T. observer’s clock, so that t′(A)= tL(A). Then, assuming the elec-
tron does not travel on a closed path, one has t′(B)= tL(B)+ vxL(B),
so that the two observers assign different travel times to the electron for
the same path, just as the A.L.T. observer assigns a different travel time
for light than the L.T. for the same path, provided it is not closed. For a
closed path, they of course agree, since the synchronization of separated
clocks is not involved, and the A.L.T. clock and the L.T. clock both
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keep time at the same rate. This underlies the agreement between the
A.L.T. and the L.T. for the Michelson-Morley and Kennedy-Thorndike
experiments.

Finally, I would like to remark, as I noted in my 1961 Supplemento

al Nuovo Cimento article, that the A.L.T. is useful in teaching students
about the meaning of general covariance in the simple case when the
metric tensor is not diagonal, but its coefficients are all constants, so
that all the Christoffel symbols vanish, and the covariant derivatives
reduce to ordinary partial derivatives. Also, there is an analogy with
quantum mechanics, in that one sees that the A.L.T., because of the
different synchronization of clocks from the L.T., splits the degeneracy
between covariant and contravariant components which, under the L.T.,
apart from a possible minus sign, are the same. So in the case of the
A.L.T., the student has to confront the different physical interpretation
of these now degeneracy-split terms, that would not be the case if one
only dealt with the L.T., and this can help to stimulate new insights into
special relativity and electromagnetic theory, and possibly even suggest
new experiments to be performed.

In conclusion, I would like to thank Dr. Gregory B. Malykin for his
interesting questions concerning this Chapter of the thesis, which led to
the above comments. I am also grateful to Dr. Dmitri Rabounski for
his strong support and helpful suggestions.

Submitted on April 25, 2009
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Abstract: Here we comment on some of the most important re-
sults obtained by Frank Robert Tangherlini, in his Dissertation of
1958. We show that the main difference between the Tangherlini
transformations and the Lorentz transformations arises from a special
method synchronizing two clocks spatially separated in two different
inertial reference frames as was suggested by Tangherlini, which is
different from Einstein’s method of synchronization suggested earlier.
It is shown, despite the aforementioned circumstance and also despite
the fact that the Tangherlini transformations differ from the Lorentz
transformations (in particular, the Tangherlini transformations allow
the velocity of light to be anisotropic in a moving inertial frame of
reference), the Tangherlini transformations provide adequate expla-
nations to all known well-verified experimental tests of the Special
Theory of Relativity. Several possible applications of the Tangher-
lini transformations could give an explanation to the effects, already
predicted by physicists but not yet registered. In particular, once
the effects have been experimentally observed (a possible violation of
the Lorentz-invariance may be involved), the effects might be more
properly described with use of the formalism of the Tangherlini trans-
formations.

During the last seven decades, physicists have discussed kinematic the-
ories which are claimed as alternatives to the Special Theory of Relativ-
ity, or are based on transformations of the spatial coordinates and time
from one inertial frame into another one which differ from the Lorentz
transformations [1]. Meanwhile, despite the fact that several suggested
transformations can explain numerous basic experiments of the Spe-
cial Theory of Relativity, in particular — the Michelson-Morley exper-
iment [2, 3], not one of the suggestions except the Tangherlini trans-
formations [4] and the Sjödin transformations [5], which generalize the
former, are able to give a proper explanation to all known experimental
tests of the Special Theory of Relativity, in particular — the interfer-
ence experiments, the measurements of the transverse Doppler effect,
and the increased lifetimes of decaying high energy particles. In addi-
tion, these alternative transformations can deal with the effects in the
rotating frame of the Sagnac experiment [6–10] in which the Einstein
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synchronization procedure cannot be used nor that involving slowly-
moved clocks, as was pointed out for the latter case by Tangherlini in
a thought experiment described in his general relativity lectures [11],
and verified some years later in the well-known Hafele-Keating experi-
ment [12, 13].

It should be noted that, in the framework of most of the aforemen-
tioned transformations, due to the specific methods of synchronization
of spatially separated clocks, the velocity of light is isotropic only in
a single (preferred) inertial reference frame. In the framework of these
transformations, the velocity of light still remains isotropic and invari-
antly constant (equal to c), and independent of the velocity of the source,
in agreement with the Special Theory of Relativity, while, in contrast,
the value of the transverse Doppler effect predicted according to these
transformations (excluding those of Tangherlini and Sjödin) differs from
the value predicted by the Special Theory of Relativity, and hence are
in disagreement with present experimental evidence. Recall that the
constancy of the velocity of light in vacuum in any direction and its
independence from the velocity of the radiating source, in an arbitrary
inertial frame of reference, are well-verified experimental postulates of
the Special Theory of Relativity, which follow directly from the Lorentz
transformations [14].

Not one of the transformations alternative to the Lorentz transfor-
mations has been so actively discussed in the scientific press as the
Tangherlini transformations obtained in 1958 [4]. The discussion has
led to a large amount of literature on the subject. The interest to the
Tangherlini transformations has been due to the fact that they can be
useful in the search for a theoretical explanation of a possible “delicate
violation” of the Lorentz-invariance (this is employed sometimes in order
to explain several exotic phenomena such as the origin of high-energy
cosmic beams, the origin of dark matter and dark energy, several cos-
mological models, and also quantum gravity models, see [15–24]). Anti-
relativists suggest that the Tangherlini transformations can be used as
a proof for an absolute (preferred) inertial frame of reference, which is
connected with the “luminiferous ether”, and as a proof for the viola-
tion of Lorentz invariance in physical phenomena. Hence, they declare
that the Tangherlini transformations refute the validity of the Special
Theory of Relativity. Other researchers emphasize that the Tangherlini
transformations are not merely an alternative but an equal replacement
for the Lorentz transformations, hence the Special Theory of Relativ-
ity is no more than one of many equivalent theories describing physical
processes from the viewpoints of observers located in two different iner-
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tial frames. Probably, not many of the participants who have discussed
the Tangherlini transformations (this discussion started in 1977, after
Reza Mansouri and Roman U. Sexl published the paper [25]) have read
Tangherlini’s original Dissertation of 1958 [4], wherein he deduced the
transformations and studied their applications to classical theory and
quantum theory. Most scientists know only the later publications of
1961 and 1994 [11, 26], which give the transformations with different
deductions and fewer applications. For more than fifty years the Dis-
sertation was able to be accessed, as a manuscript copy, only at the
Stanford University Library. Its appearance here in the present issue
of The Abraham Zelmanov Journal [4] marks its first date of publica-
tion. Moreover, it is prefaced by the very interesting discussion written
by Frank Robert Tangherlini himself [27], and is accompanied by his
fine comment [28] to §8.1 of [11], where he gives an explanation about
several properties of the Maxwell electrodynamics on the basis of the
transformations.

In his Dissertation [4], Tangherlini uses a special system of units
which is specific to several studies on the theory of relativity. In this
system, time has the same dimension as length (so that Tangherlini
means time t as a regular time multiplied by c, the velocity of light in
vacuum), while velocities are dimensionless. In other words, a velocity
he uses is a regular velocity divided by c. As a result, the velocity
of light in vacuum in this system of units equals 1. This makes the
understanding of the obtained result a little complicated. Meanwhile,
in the preparation of the manuscript for publication, the Editor of the
journal and the Author have decided to keep the original notations and
the system of units unchanged for historical reasons. In contrast, in
what follows, we will use the regular system of physical units when
discussing the Tangherlini transformations and their sequels in physics,
which will make their understanding a lot easier.

The main task we are targeting in this paper, which accompanies
Tangherlini’s Dissertation [4], are comments on the results obtained
therein. The biography of Tangherlini and the circumstances of his Dis-
sertation were given in detail in the publications [29, 30]. We therefore
limit ourselves to only a brief survey of the events.

Frank Robert Tangherlini was born on March 14, 1924, in Boston
(Massachusetts, USA), in the family of a worker. In 1943, during the
World War II, he volunteered to be drafted into the U.S. Army, and later
volunteered, after arriving in England in 1944 as an infantry replace-
ment, to serve in the 101st Airborne Division as a paratrooper. After
parachute training in England, he was dispatched to France, and then
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fought in Belgium and Germany. He also participated in bloody Battle
of the Bulge in the Ardennes, where many of his paratrooper friends
were killed in action. In 1946, he returned to the USA and was honor-
ably discharged from the U.S. Army. In 1948, he obtained his BSc (cum
laude) from Harvard University, followed by an MSc from the University
of Chicago (1952), and a PhD from Stanford University (1959). During
1952–1955 he worked in the space industry in San Diego, and during
1958–1960 he served as a National Science Foundation postoctoral fel-
low, and from 1960–1994, he worked as a faculty member, or on the staff
of different universities and research institutes in the USA and Europe.
At the present time he is retired. He lives in San Diego, California,
where he is still active in scientific research. The field of his scientific
interest is very wide and covers the Special Theory of Relativity, di-
mensionality of space, relativistic cosmology, Mach’s principle, etc. His
most important scientific results are the transformations he deduced
while working on his Dissertation of 1958. Later, these became widely
known as the Tangherlini transformations (in 1958 Tangherlini used an-
other, less successful term the Absolute Lorentz Transformations). His
chief supervisor in this work was Sydney David Drell (b. 1926), the well-
known expert in Quantum Electrodynamics who later became a friend
of Andrew D. Sakharov. At the initial stage of Tangherlini’s work, his
actual supervisor was Donald R. Yennie, also well-known for his work
on quantum electrodynamics, and who had been appointed his super-
visor by Leonard Isaac Schiff (1915–1971) who was the chairman of the
Stanford physics department, and was also responsible for Tangherlini
receiving a fellowship to continue his graduate studies at Stanford. In
June, 1958, Tangherlini reported his results at a colloquium of physics at
Stanford University, and then submitted the Dissertation to the Physics
Section of the Graduate Division. Positive reviews of the dissertation
were submitted by Drell and Schiff. Afterwards, following the receipt of
a National Science Foundation postdoctoral fellowship, Tangherlini went
to the University Institute for Theoretical Physics in Copenhagen (this
Institute was later called Bohr Institute). While abroad, Tangherlini
was graduated with a PhD degree from Stanford University in absentia.

The direct and inverse Tangherlini transformations are introduced
by means of a special method of synchronization of spatially separated
clocks located in two inertial frames of reference, one of which is taken
to be the preferred frame in which the one-way speed of light is c, and
the other frame is moving relative to it with speed v, in which the
speed of light varies with direction and v as discussed below. In this
method, the clocks are synchronized by signals travelling with an in-
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finitely high speed. Already in 1898, Henri Poincaré in his paper [31]
and his address [32] delivered on September 24, 1904, at the Congress
of Arts and Sciences in St. Louis (Missouri, USA), pointed out the sig-
nificance of faster-than-light synchronization methods in effecting the
outcome of the measurements of the velocity of light, and some years
earlier, in 1898 [31] had given an interesting discussion of the meaning
of simultaneity. This problem was also considered in 1934 by Leonid
I. Mandelshtam (1879–1944), in his lectures on the physical grounds of
the theory of relativity [33] read in 1933–1934 at Moscow University.
Sergey M. Rytov (1908–1996) restored Mandelshtam’s lectures after his
death, on the basis of the records made by Gabriel S. Gorelik, Maxim A.
Divilkovski, Michael A. Leontovich, Z. G. Libin, who heard the lectures,
and also on the basis of Mandelshtam’s draft notes. Then Rytov pub-
lished the lectures in 1950 [33] (second edition [34] was printed in 1972).
In his lecture, held on March 10, 1934, Mandelshtam was engaged in
polemics with anti-relativists on the formulation of the causality prin-
ciple in the Special Theory of Relativity, and on the problem of the
simultaneity of events in different inertial frames of reference. In these
polemics, Mandelshtam focused the attention of the listeners on the
fact that Reichenbach’s method of synchronization does not violate the
causality principle∗. He said:

“Thus, the requirement that the causality principle must not be
violated in the definition of simultaneity can be simply satisfied
. . . if there would be a signal travelling at infinite speed, the re-
quirement that the causality principle must be true would give a
simple condition universally to all frames [of reference]. . . . Thus,
it is required to understand that there should not be such a faster-
than-light signal, which may generate action. . . . If I make use of
a process, which cannot produce action, this does would violate
the causality principle. . . . Many researchers tried to give such
a definition to simultaneity, which they believed does not depend
on the possibility of its empirical determination, but rather arises
from the supposition that there is an apriori simultaneity”.†

Proceeding further, Mandelshtam considered a possibility of synchro-
nization of spatially separated clocks, in different inertial frames of ref-

∗Here Mandelshtam obviously considered the method of synchronization of spa-
tially separated clocks suggested by Hans Reichenbach (1891–1953) in [35,36], which
is quite different from the synchronization method suggested by Einstein [14].

†Here Mandelshtam attempted to focus the attention of the listeners on the fact
that synchronization of clocks by infinite speed signals leads to simultaneity in all
inertial frames of reference.
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erence, by phase velocity signals (phase velocity may be as faster than
light as possible). Such signals transfer neither action nor information.
Therefore, if a phase velocity approaches infinity, the causality princi-
ple is not violated. Unfortunately, Mandelshtam, in his lectures [33,34],
arrived at the conclusion that this method of synchronization is unable
to be realized in practice. This is because he considered the phase ve-
locity of a signal produced by a mechanical device like scissors, namely
— the motion of the cross-point of a scissors, which is realized with
only a finite phase velocity. Therefore Mandelshtam had not realized
the principal step in this research: he had not deduced transformation
of the spatial coordinates and time from one inertial reference frame to
another one, synchronized by infinite speed signals. It is probable that
1934 was too early a time for this principal step that was made only 24
years later, by Tangherlini.

In this connexion, we should emphasize an interesting and impor-
tant paper, published by Albert Eagle, the British mathematician who,
already in 1938, was extremely close to the Tangherlini transformations.
In his paper [37], Eagle considered a method of synchronization of spa-
tially separated clocks by a mechanical shaft, rotating by a clock engine
located at its centre. The clocks under synchronization were fixed at
the shaft’s butt-ends. This method of synchronization was also con-
sidered in Eagle’s second paper [38]. Albert Eagle, being an obvious
anti-relativist∗, held the erroneous belief that a mechanical shaft ro-
tates as a perfectly rigid body, so that torsional perturbations would
travel instantaneously along it. Meanwhile, as we know, the perturba-
tions do not propagate instantaneously along the shaft, but with the
sound velocity specific to the substance of the shaft. This velocity is
many orders slower than light†. Eagle targeted his publications [37, 38]
as a proof for the reality of an absolute (preferred) reference frame con-

∗This fact concerning his personality can be easily concluded from his papers
[37, 38] and, especially, from his other paper [39].

†We note that, aside for this simplest reason, synchronization of clocks by a
rotating shaft is sensitive to the relativistic change of the figure of the shaft in a
resting inertial frame of reference, as was considered by Ives (1882–1953), in [44],
in the example of a rotating double Fizeau cogwheel (actually, a double obturator).
When Stefan Marinov (1931–1997) performed his single-way measurements of the
velocity of light using two mechanically connected systems consisting of rotating mir-
rors [45], he met a criticism from the side of Simon James Prokhovnik (1920–1994)
who pointed out the inconsistency of this method of synchronization [46, 47]. De-
spite this criticism, Marinov continued measurements based on this synchronization
method, but with another mechanical system which was similar to the previous one
(it was a modified double obturator called by him the “coupled shutters” system).
See [48] and literature referred therein, for Marinov’s experiments.
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nected with “luminiferous ether”. Meanwhile, in spite of his incorrect
considerations on the basis of the Newtonian views on absolute simul-
taneity which were already obsolete in 1938, Eagle [37] arrived at the
transformations of the spatial coordinate x and time t associated with
an observer’s inertial frame of reference to the corresponding space-
time coordinates in another inertial reference frame in the x-direction.
Eagle’s expressions for the transformation of x and t agree with the cor-
responding expressions of the Tangherlini transformations (1). Direct
and inverse transformations for the transverse coordinates y and z were
not discussed by Eagle, but he did note that the inverse transforma-
tion for the x and t coordinates was not of the same form as the direct
transformation, as did Tangherlini.

Unfortunately, Eagle’s key paper [37] was ignored by the scientific
community from the time commencing in 1938 when it was first pub-
lished. The sole reference to this paper, which we have found in the
scientific literature, appeared in Eagle’s second paper [38]∗. Why? No
simple answer can be given to this question. In any case, whatever
be the answer, the real physical sense of the transformations was only
achieved 20 years later in Tangherlini’s thesis of 1958, in which their
derivation and application is discussed clearly and in detail. Dmitri
Rabounski, who also discussed Eagle’s papers [37, 38], commented this
situation as follows [41]:

“After reading Eagle’s paper of 1938, and his following paper, I
arrived at the conclusion that Eagle obtained his transformations
of the spatial coordinate and time, which particularly meet the
Tangherlini transformations, as a result of a formal blindfold of
combinations, not a systematical research. Besides, he was mis-
taken about the obtained result due to his erroneous disbelief in
the theory of relativity. His appeal is that the presence of a physi-
cal medium fixed to (accompanying) the space as a whole is in con-
tradiction with the theory of relativity. This is absolutely wrong
and seems naive. He merely had no clear understanding of the
theory of relativity — the geometrical theory of space-time and
matter — and how the theory works. The second paper authored
by Eagle is a logical continuation of his erroneous views on the
theory of relativity, based on the principles of classical physics.
According to him, “true synchronization” is synchronization of

∗Max Jammer in his book Concepts of Simultaneity [40], published in 2006, refers
to authors who criticized Eagle’s synchronization procedure. Tangherlini refers to
Jammer’s book in his Preface of 2009 to “The Velocity of Light in Uniformly Moving

Frames” [27].
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clocks in the Newtonian sense, while all the remaining methods of
synchronization leads to non-observable (imaginary) effects, which
are unable to be registered in real measurements. In particular,
Eagle referred to his first paper of 1938 as an example of how
the use of “true synchronization” manifests that all effects of the
theory of relativity are non-real, imaginary. Eagle’s conclusion is
in contradiction to the many decades of experimental verifications
of the theory of relativity performed in different experiments with
high precision of measurement. In fact, Eagle had no idea about
the real physical sense of his formal mathematical deduction. He
was in captivity of the views of classical physics, and failed the
possibility of all other research methods in physics (the theory
of relativity, for instance). This is the same as, given all expla-
nations on the basis of the wave theory of light, denying all the
results obtained in the framework of the corpuscular theory”.

In continuation of this discussion, Tangherlini wrote recently in his pri-
vate letter dated June 01, 2009 [42]:

“With respect to Dr. Rabounski’s penetrating criticism, I would
add further that Eagle’s obvious anti-relativity bias led him to
reject the general theory of relativity, and this was most ironic,
and indeed tragic, because a key principle in general relativity
is Einstein’s principle of general covariance which permits arbi-
trary transformations of the coordinates, and hence permits the
transformation Eagle was using when supplemented by the trans-
formation for the transverse y and z coordinates. In fact I would
like to take this opportunity to emphasize to you and Dr. Raboun-
ski that I probably would never have undertaken the writing of my
thesis were it not for the logical justification provided by general

covariance for making use of such a transformation when supple-
mented by the metric postulate as mentioned in the Introduction
to my thesis”.

Meanwhile, we should pay tribute to Eagle’s paper [37], despite the fact
that Eagle himself misunderstood the physical sense and meaning of his
pioneering result. He was the first person who obtained, in a purely
formal way, a part of the common transformations of the spatial coor-
dinates and time which were developed in detail later by Tangherlini,
and are known as the Tangherlini transformations.

What is interesting is that, in already 1922, a method of synchroniza-
tion of spatially separated clocks by means analogous to a locomotive
wheel pair was suggested by Carl Axel Fredrik Benedicks, the Swedish
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physicist who considered a rotating wheel (that can be any space body,
the Earth for instance) as an original time-giver [43]:

“Let us return to the top, which seems to offer a somewhat clearer
example of an original time-giver. . . . the question arises, how its
time-indication may be applied to another process which might
occur at a great distance. The simplest example is that where
the second process is also an identical, rotary one that is, another
identical top, rotating on the same fixed plane. Simultaneity or
synchronism is said to prevail if a radius vector of the one is always
parallel to a corresponding radius of the other. We ask, in what
way can this definition be applied? Evidently, it can be realized
in the way used to synchronize two paired wheels of a locomotive;
that is, a solid movable connecting rod is pivoted at the end points
of two radii, where the length of the rod is equal to the distance
separating the two axles. As the two radii have been assumed
to be equal, they will during the motion also remain parallel. In
principle this will fully define simultaneity, so long as the axes of
rotation remain parallel. The first rotating body, A, is the stan-
dard which determines time; the second body, B, may act as a
clock or timepiece, by exactly reproducing A’s time. . . . We say
that two distant clocks are synchronous, provided that their hands

are moving as though their axles were connected by one rigid axle,

consisting of an absolutely solid body. This is the simpler form of
synchronizing frequently used, for example, in synchronizing two
wagon-wheels belonging to the same axle. . . . This definition of
synchronism is precise, and has no ambiguity. It is founded only
upon the fundamental basis for all measurement of time the ac-
cepted unchangeability of the rotation process chosen as standard
and upon pure geometry the fundamental basis of which is the
existence of the absolutely solid body”.

This method of synchronization meets that suggested by Eagle [37,38].
However, in contrast to Eagle, Benedicks [43] had no idea about respect-
ive transformations for the spatial coordinates and time. Also, Bene-
dicks assumed that there are absolutely rigid bodies, i.e. bodies in which
signals propagate instantaneously from one end to the other, and hence
his proposal encounters the same difficulty as Eagle’s proposal, and as
was remarked earlier, he seemed unaware that torsional waves, or waves
in material bodies more generally, propagate with a finite velocity.

Tangherlini also suggested another method of synchronization of spa-
tially separated clocks, the “external synchronization”, which was given
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in detail later, in his general relativity article [11]. He writes [42]:

“It was the difficulty I encountered with the failure to find em-
pirical evidence to support faster-than-light signalling that led me
to turn to external synchronization, which represents an experi-
mental procedure one can carry out now with existing equipment,
that can be used to verify the basic predictions of the transforma-
tion empirically, as you discuss. . . . Actually I did not make any

hypotheses as to how the instantaneous signals would arise in my
thesis, so my synchronization would include the light spot method,
but would be more general. The tachyons (as they are now called)
were only mentioned in the concluding Chapter 12 of the thesis as
a conceivable way of implementing the instantaneous synchroniza-
tion, but the argument in the body of the thesis is independent

of any way of achieving such a synchronization; in a sense, there-
fore, it is purely mathematical of the type: if we assume X , then
the following is the case. . . . Actually, I didn’t mention external
synchronization there, until my later publication An Introduction

to the General Theory of Relativity (see in Supplemento al Nuovo

Cimento, 1961, ser.X, vol. 20, 1–86)”.

Many physicists believed (and, indeed, still believe) this to be impos-
sible, because superluminal speeds are attributed only to hypothetical
faster-than-light particles — tachyons∗ [49,50]. In fact, synchronization
of this kind can be performed. The easiest case is the one where all
clocks of both the moving inertial frame of reference and the resting
frame of reference are located along the same line. To perform such

∗Tachyons — faster-than-light particles were first coined in the scientific pub-
lications on the theory of relativity in the pioneering paper of 1962 [51], authored
by Olexa-Myron Bilaniuk, Vijay Deshpande, and George Sudarshan, who worked in
Department of Physics and Astronomy, University of Rochester, New York. They
pointed out the historical fact that, in pre-relativity times, Thomson, Heaviside,
and Sommerfeld had considered particles moving faster than the velocity of light in
vacuum. They considered the possibility of such particles in the framework of the
Special Theory of Relativity. This term, “tachyon”, was introduced into science by
Gerald Feinberg (1933–1992) five years later, in 1967 [52], while Feinberg worked at
Rockefeller University, New York, the same city as his predecessors. In this back-
ground story, many researchers and historians of science missed the fact that Frank
Robert Tangherlini was actually the first person who considered the possibility of
tachyons and faster-than-light signals, in a very general sense, in the framework of
the Special Theory of Relativity, already in 1958. Unfortunately, most papers and
books on the history of tachyons do not mention this fact. See [53], for instance.
Meanwhile, the most important surveys of this theme such as [50, 54] referred to
Tangherlini’s goal with respect to this problem. In the last decade [55, 56], the
possibility that tachyons had been produced was investigated at CERN.
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“instantaneous” synchronization in this case, the “light spot method”
should be used, where a light spot travels with a phase velocity which
may exceed the velocity of light. This method was suggested by Vi-
taly L. Ginzburg (b. 1916) in [57], and, in more detail, in the common
paper by Boris M. Bolotovskĭı (b. 1928) and Vitaly L. Ginzburg [58].
In these papers, the motion of a light spot along a screen was con-
sidered, where the light spot was due to a light beam produced by a
source (searchlight) rotating with an angular velocity Ω. If two points,
say A and B, are equally distanced at a very large distance R from
the searchlight, the linear velocity v of the light spot on the screen
should satisfy the condition v=RΩ≫ c. Of course, a light spot can-
not transfer energy/information from A to B (with any velocity, both
subluminal and superluminal): photons coming in A never come to B,
hence the causality principle is still true, without violation in the exper-
iment. Thus, huge speeds much faster than light are attributed to the
light spots produced by the radiation of pulsars [57–60]. More details
about synchronization of distant clocks by the light spot method are
considered in our works [60–62].

Thus, Frank Robert Tangherlini has deduced transformations for
the spatial coordinates and time from one inertial frame of reference to
another one in the case where clocks located in both inertial reference
frames are synchronized by infinite speed signals in the sense of that
which was considered above.

Although not discussed in his Dissertation [4], in his later inves-
tigations, Tangherlini also considered another method of synchroniza-
tion not involving faster-than-light signals, as described in detail in Ap-
pendix A of his 1994 paper Light Travel Times Around a Closed Uni-

verse [26]. This is the so-called “external synchronization”, consisting of
two steps. First, light signals synchronize clocks which are spatially sep-
arated from each other in the same resting (“preferred”) inertial frame
of reference. Then, these already synchronized clocks of the “preferred”
inertial frame are used for synchronization of clocks of moving inertial
frames of reference during those moments of time when each of the mov-
ing clocks physically meets one of the resting (synchronized) clocks in
space. In this method of synchronization, inertial frames of reference
are non-equal to each other: the inertial frame where clocks were first
synchronized is “preferred” to all remaining (moving) inertial frames.

What is interesting is that Mandelshtam, already in 1934, considered
a method of synchronization, which would also give rise to absolute
simultaneity in the inertial reference frames K and K ′, as he described
in his lectures [33, 34]:
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“. . . Suppose we have a frame [of reference], and one set up syn-
chronization in it by a method, for instance — by the Einsteinian
method . . . Let us also have another frame [of reference]. I could
arbitrarily set up synchronization in this other frame [of reference]
so that clocks located in it would always show the same time as
that displayed by the clocks of the first frame [of reference]”.

This is however not the same as Tangherlini’s method of external syn-
chronization. Tangherlini, when found Mandelshtam’s achievements in
the 2000’s (his lectures were published only in Russian, so inaccessible
to most scientific community), says [42]:

“This is not true for my transformation because (think of the
clocks on the train going past the station) after the brief moment
of synchronization, the clocks on the train run more slowly than
the clocks on the station platform, this is why high energy muons
decay significantly more slowly than muons at rest in the labora-
tory!”

Meanwhile, with use of both methods of synchronization, not all in-
ertial frames of reference are equal: that inertial frame of reference,
wherein the first synchronization was performed, becomes preferred to
all remaining inertial reference frames. In particular, Mandelshtam
wrote [33, 34]:

“. . . in this case, we cannot require the relativity principle. . . .
When Einstein says that the relativity principle takes a place in
nature, this means that, if all definitions of age are given equally
in any frames [of reference], events [in any reference frames] will
be processed equally”.

Mandelshtam had not realized any step towards respective transforma-
tions in this case. This fact manifests, again, the outstanding thinking
and courage Tangherlini showed in scientific research: he worked with-
out looking back on the authoritative persons in science, mostly conser-
vators, so he reached the advanced results which were out of the access
for many other scientists.

Consider the direct and inverse Tangherlini transformations

x′ = γ (x− vt) , x = γ−1x′ + γvt′,

y′ = y, y = y′,

z′ = z, z = z′,

t′ = γ−1 t , t = γ t′ ,






(1)
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where x, y, z, t and x′, y′, z′, t′ are the spatial coordinates and time in
the inertial reference frames K and K ′ respectively, c is the velocity of
light in vacuum, v is the velocity of the reference frame K ′ with respect
to the preferred reference frame K (we assume it to be moving along

the x-axis), while γ=1/
√
1−v2/c2 is the so-called Lorentz-factor.

Comparatively, the classical Lorentz transformations are

x′ = γ (x− vt) , x = γ (x′ + vt′) ,

y′ = y , y = y′,

z′ = z , z = z′,

t′ = γ (t− vx/c2) , t = γ (t′ + vx′/c2) .






(2)

It is obvious that, according to the Tangherlini transformations (1),
time t′ of a moving inertial frame of reference is slower than time t
by the factor γ. That is, the Tangherlini transformations lead to the
transverse (relativistic) Doppler effect as in Einstein’s Special Theory of
Relativity [14]. The direct Tangherlini transformations, which are the
first column in formula (1), differ from the direct Lorentz transforma-
tions, the first column in (2), by only the transformation of time due to
the different methods used in the synchronization of clocks in inertial
frames of reference.

Both direct and inverse Lorentz transformations take the same form
upon reflecting the velocity, while the direct and inverse Tangherlini
transformations are not (see the final part of Tangherlini’s comment [28]
for detail). Besides, in contrast to the Lorentz transformations, which
form a Lie group whose parameter is the velocity, the Tangherlini trans-
formations do not form such a group, since as is clear from (1), the
inverse of the Tangherlini transformation does not have the same form
as the direct transformation, nor do the product of two such transfor-
mations have the same form as the direct transformation. On the other
hand, Tangherlini [63] has pointed out that the transformations are
members of the group of linear space-time transformations that keep
simultaneity invariant, of which the Galilean transformations form a
proper Lie subgroup. Also, along with the Lorentz and Galilean trans-
formations, the Tangherlini transformations are also members of the
linear unimodular group, i.e., the group of linear space-time transforma-
tions with unit determinant, as mentioned in his thesis. The asymmetry
of the direct and inverse Tangherlini transformations is connected with
the fact that two inertial reference frames K and K ′ having Galilean
(rectangular Cartesian) coordinate frames are equal in the framework of
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the Lorentz transformations, while in the framework of the Tangherlini
transformations the inertial reference frames are non-equal: K still pos-
sesses the Galilean (rectangular) coordinate frame because the observer
is resting in this frame, while the coordinate frame of K ′ is non-Galilean
(oblique-angled).

Here we should note that the term “Lorentz transformations” was
introduced by Henri Poincaré [64, 65]∗ in 1905, and he also discussed
their group properties, as did Einstein in that same year.

Proceeding from the Tangherlini transformations (1), one can obtain
a formula connecting the co-linear velocities V and V ′, measured in the
inertial reference frames K and K ′ respectively, or, similarly, the law of
composition of velocities according to the Tangherlini transformations

V ′ =
V − v

1− v2

c2

(3)

as originally obtained by himself in [4]. As visible, this formula is quite
different from the law of composition of velocities V ′ = V − v

1− vV/c2
, which

holds according to the Lorentz transformations.
Having the law (3) as a base, Tangherlini [4] has also obtained a

formula for the velocity of light in vacuum, measured in a moving inertial
reference frame K ′, and referred to as c ′

c ′ =
c

1 + v
c cos θ

′
, (4)

where the angle θ′ is counted from the x′-axis in the moving inertial
frame K ′.

In a common case, where light travels in an optical medium whose
refraction coefficient is n, measured in a resting inertial reference frame
K, the velocity of light in a moving inertial reference frame K ′, accord-
ing to Tangherlini [4] takes the form

c ′ =
c

n+ v
c cos θ

′
. (5)

It is clear that formula (4) explains the results obtained in the
Michelson-Morley experiment [2, 3] and the Kennedy-Thorndike exper-
iment [67]. This is because, following from (4), the total time of light’s
travel forward and backward does not depend on the velocity v of the

∗Hendrik Antoon Lorentz (1853–1928) passed through a long way, full of many
tests, to his understanding of the Special Theory of Relativity. He stopped his
research when was at a minor step from the acquisition of the transformations [66].
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inertial reference frame K ′ moving with respect to the preferred iner-
tial reference frame K. Moreover, as was shown in [1], the Tangherlini
transformations provide a clear explanation to all interference experi-
ments targeted on checking the Special Theory of Relativity, in partic-
ular — the Sagnac experiments [6–10]. And also, as remarked above
(see page 121), Tangherlini synchronization can be used to carry out
calculations in a rotating frame of reference in which it is not possible
to synchronize clocks by the standard methods of Special Relativity.

A simple explanation of the physical sense of the Tangherlini trans-
formation is given by Giancarlo Cavalleri and Carlo Bernasconi [15].
The invariance of the velocity of light and the non-conservation of the
simultaneity of events, spatially separated in different inertial frames
of reference, are often considered as specific properties of the Special
Theory of Relativity. Therefore, Tangherlini [4] formulates his own
version of the theory of relativity, where the absolute simultaneity of
spatially separated events is allowed, and the velocity of light becomes
non-invariant. In the framework of the “standard” Special Theory of
Relativity, the velocity of light determined by formula (4) should not be
a physical (observed) velocity, but a coordinate velocity. Actually, the
conservation/non-conservation of simultaneity and the invariance/non-
invariance of the velocity of light depend on the employed method of
synchronization of clocks, located in different inertial frames of refer-
ence. This fact leads to an infinite number of versions of transfor-
mations from one inertial reference frame to another one [5]. In this
row, two kinds of transformations — the Lorentz transformations and
the Tangherlini transformations — are the limiting cases of the Sjödin
transformations [5].

Michael A. Miller, Yuri M. Sorokin, and Nikolai S. Stepanov [68],
and then Anatoly Logunov [69] take under consideration an arbitrary
linear transformation from Galilean coordinates x, y, z, t of an inertial
reference frame to coordinates X , Y , Z, T of a so-called “generalized”
inertial reference frame. Such transformations mean non-orthogonal
(oblique-angled) coordinate netsX , Y , Z, T [68] described by the metric
tensor whose components are constants. As was shown in [69], if we
assume different parameters of the components of the metric tensor in
the “generalized” inertial frame of reference, different formulae can be
obtained for the components of the coordinate velocity of light (VX ,
VY , VZ) in the “generalized” frame, and the velocity is anisotropic in
a general case, while in contrast, in the Special Theory of Relativity,
as is well-known, the speed of light takes the same value for all inertial
frames of reference and is isotropic.
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Tangherlini [70] was able to show that when the standard canon-
ical commutation relations of Quantum Mechanics in the Schrödinger
representation are enlarged to included the energy and time, and one as-
sumes that the energy and momentum transform as a four-vector, these
commutation relations are not only invariant under the Lorentz transfor-
mations, but under all non-singular linear space-time transformations,
which would include the general transformations discussed above.

The main advantage of the Lorentz transformations, in contrast to
the other kinds of transformations of the spatial coordinates and time,
consists in the Einsteinian method of synchronization of spatially sep-
arated clocks that keeps the velocity of light isotropic and constant in
transferring from one inertial frame of reference to another one. In “gen-
eralized” inertial frames of reference, which are a result of the Tangher-
lini transformations in particular, no so-called pseudo-forces (the cen-
trifugal force of inertia, or Coriolis’ force, for instance) appear as in
non-inertial frames of reference where such forces play the rôle equal to
the force of gravity. In this connexion, incorrect claims, from the past
to the present, can be found in the scientific publications. Thus, Hans
C. Ohanian [71] claimed, incorrectly, that the Reichenbach method of
synchronization of clocks [35, 36], upon being realized in an inertial
frame of reference, should inevitably lead to the formal appearance of
the pseudo-forces in the inertial reference frame.

At first, the Tangherlini transformations did not attract much of
the attention of scientists. This situation changed after 1977, when an
anisotropy in the Cosmic Microwave Background Radiation had been
definitely verified in observations on board a U2 sub-stratosphere air-
plane performed by George Smoot’s team [72]∗. In fact, this means that
the inertial frame of reference connected with the Earth moves in the
cosmos with a velocity of about 360km/sec with respect to a preferred
inertial frame of reference, in which the Microwave Background Radi-
ation is “most” isotropic and the common momentum of all masses of
the Universe is probably zero. As a result of the experimental success,
different suggestions arose to the origin of the observed anisotropy in the
Cosmic Microwave BackgroundRadiation as due to the anisotropy of the
velocity of light, so the Tangherlini transformations became of interest.
The first persons who turned our attention to the Tangherlini transfor-

∗The dipole-like anisotropy was first observed in the ground-based observations
performed by Edward K. Conklin in 1969 [73], then studied in the balloon observa-
tions by Paul S. Henry in 1971 [74] and by Brian E. Corey and David T. Wilkinson
in 1976 [75]. The main reason for Smoot’s success of 1977 [72], and his fame which
followed later, was very certain observations of the anisotropy.
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mations as a possibility of explaining the results of the Michelson-Morley
experiment [2, 3], following Tangherlini himself∗, were Reza Mansouri
and Roman U. Sexl [25]: they said in the bibliography to their first
paper that the transformation had been considered by Tangherlini. Af-
terwards, many papers were published, wherein the Tangherlini trans-
formations were employed: see, for instance, [5, 15, 71, 76–91].

There are also numerous papers wherein the Tangherlini transfor-
mations were “re-discovered” anew. These are Stefan Marinov’s publi-
cations of the 1970’s [92–94], the paper of 1992 [95] authored by Ernest
W. Silvertooth and Cynthia K. Whitney, the papers [96–98] published
by Nikolai V. Kupryaev commencing in 1999, and the paper of 2001 [99]
by Juri A. Obukhov and Igor I. Zakharchenko. Looking along the sci-
entific literature, we found a note on the absence of priority concerning
the earliest of the “re-discovering” papers: Giancarlo Cavalleri and Gi-
ancarlo Spinelli [100] commenting on the transformations appearing in
Marinov’s publications of the 1970’s, and claimed by him as his own
original achievement, gave the priority to Tangherlini who had actu-
ally obtained these already in 1958, although they were not published
in a journal until 1961 [11], and it was to this article to which Sexl
and Mansouri referred. All the rest of the papers “re-discovering” the
Tangherlini transformations were published only much later, commenc-
ing in the 1990’s, so the absence of priority in those papers was not
found somewhere being discussed in the scientific literature.

Interestingly, Frank Robert Tangherlini met Stefan Marinov in per-
son at the General Relativity 9th Meeting in Jena, Germany, in 1980.
Tangherlini wrote, in his private letter dated October 14, 2006, about
how this happened [101]:

“I met Marinov under a most curious circumstance: he had put
up over the doorway of a hall, where many passed through, a
poster of about 1/3 meter wide and about 2 meters long in which
he criticized me, in artistic calligraphy, for not having followed
up on my transformations. I found this very strange behaviour.
After all, why didn’t he write directly to me, or arrange a meeting
at a conference? So I suspected then he was somewhat crazy,
although possibly artistically talented. With any crazy person,
one shouldn’t spend too much time on him except as an example
of how people in science, just as in every day life, can go astray”.

∗In his Nuovo Cimento article of 1961 [11], Tangherlini wrote: “Finally we should
note that the usual results of special relativity can obtained from the line element
(1.17) and co-ordinate transformation (1.16), as we have already shown for the prob-
lem of sending light signals out and back”.
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In recent years, a second wave of increasing interest in the Tangher-
lini transformations has risen due to the possibility of a small anisotropy
of the velocity of light claimed by the Grenoble group of experimen-
talists [102, 103] (see also [104–106]). At the present time, there are
neither definitely verified experimental facts nor fundamental principles
of physics which could require the failure of the Lorentz-invariance in
inertial reference frames (see [33, 107], for instance). Meanwhile, physi-
cists are still continuing experimental and theoretical attempts to find
violations of Lorentz invariance, and also theoretical grounds to these
in the course of interpretation of bizarre physical phenomena such as
those in cosmology, quantum gravity, quantum field theory, particle
physics, space beam physics and super-high energy physics (see, in par-
ticular, [18, 19, 107]). One regularly connects this possible violation,
without which CPT-invariance of quantum field theory and the law
of charge conservation of classical electrodynamics cannot be violated,
with a possible violation of the space-time symmetry due to, say, pro-
cesses at the Planck (small) scale or due to additional (hypothetical)
measurements producing a new vector or tensor field which acts onto
physical bodies depending on their velocity and orientation in space
(which is different for particles and anti-particles). As a result, theoret-
ical physicists expect various new effects such as a length contraction
and time dilation in addition to the Lorentz ones, a variation of the elec-
tromagnetic field polarization, a non-zero rest-mass of photons, changes
of the masses of decaying particles and of their decay channels, and also
many other effects which depend on the motion of the inertial frame
of reference wherein the processes occur. The simplest case of theories
that violate Lorentz invariance is the so-called Doubly Special Theory of
Relativity (see [20,108–111], for instance), wherein elementary particles
cannot be accelerated up to a velocity exceeding the velocity of light,
nor can they acquire an energy exceeding a fixed numerical value spe-
cific to each particle (the so-called Planck energy). The aforementioned
vector or tensor field has no direct connexion to the gravitational field.
Whether such possible violations of Lorentz invariance would lead to
changes of the gravitational field of a moving body, or to changes of the
properties of a black hole that are not predicted by the General Theory
of Relativity are issues for further research.

Putting aside gravitation, it is useful to study various consequences
of the violation of Lorentz invariance. In particular, as already discussed
above, the possibility of introducing alternative methods of synchroniza-
tions in a given inertial frame. In this regard, it is important to keep
in mind that whether clocks are synchronized according to the Einstein
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procedure, or externally, one has not changed inertial frames, but ef-
fectively one has merely introduced another set of clocks in the same
inertial frame. In addition to the Tangherlini synchronization which has
already been described, still another form of synchronization has been
suggested by Torgny Sjödin in his paper of 1979 [5] in which clocks are
synchronized etc. The discussion in Chapter 6 of Tangherlini’s thesis,
entitled Measurements with Signals Travelling with Finite Velocities, to
some extent anticipates Sjödin’s considerations, in that Tangherlini con-
siders the possibility of other signals propagating with constant speeds
greater than or less than the speed of light relative to the rest frame.∗

Even if digressing from gravitation and other effects of the General
Theory of Relativity, different scenarios of the violation of the Lorentz-
invariance are useful to be studied on the basis of not only the Lorentz
frames of reference (their preference is due to the Einsteinian method
of synchronizations of clocks, where the out and back travel times for
light are equal), but also on the basis of other inertial frames in which
there has been an alternative synchronization of clocks. In particular,
the time dilation is to be considered/described by the use of a frame
of reference whose clocks are synchronized by infinite speed signals (in
practice — a respective light spot). Such reference frames were studied
by Tangherlini, when he compared descriptions of physical processes
obtained in such a reference frame to the well-known Lorentz descrip-
tion. A larger class of alternatively synchronized inertial frames, where
clocks are synchronized by signals travelling with a finite speed which
can exceed the velocity of light, was suggested later by Torgny Sjödin
in his paper of 1979 [5].

The Tangherlini transformations and also the Sjödin transformations
which generalize them gave rise to a substantial discussion a quarter
century ago, and then found respective places in the Special Theory of
Relativity. Despite the fact that the Tangherlini and Sjödin transforma-
tions can yield the same results as the Special Theory of Relativity, these
transformations are more complicated than the Lorentz transformation
since they don’t leave the speed of light invariant. However, physicists
will probably turn to these transformations each time when there is

∗In this concern, Tangherlini writes [42]: “. . . changing synchronization does not

change the inertial frame. Think of it this way. You have a train moving with con-
stant velocity relative to the railroad station. You may synchronize clocks according
to Einstein on the train, or according to my method, which is related by a local time
transformation to the Einstein synchronization, or to that of Reichenbach, or to that
of Sjödin, but that doesn’t change the uniform motion of the train. It is only when
one considers transformations from, say, the station to the train, or vice versa that
one has changed inertial frames”.
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even the smallest chance that they are encountering Lorentz-invariance
violating effects in their experiments.

The anisotropy of the coordinate velocity of light c ′ (3), measured
in a moving inertial frame of reference K ′, is the price one has to pay
to keep simultaneity unchanged between all inertial frames of reference.
Note: within a given inertial frame, there is agreement everywhere in
that frame as to when two events are simultaneous, after the clocks have
all been synchronized, say, by the Einstein method, and in this sense
simultaneity is absolute within a given frame. It is whether simultaneity
within one frame agrees with simultaneity within another frame that the
problem of relative simultaneity arises.

Because the Tangherlini transformations are linear, Maxwell’s equa-
tions are invariant with respect to the transformations. Meanwhile, as
shown by Tangherlini [4], in a moving inertial reference frame K ′ an
effective “optical medium” appears which makes the velocity of light
different in the forward and backward directions, with respect to the
motion of K ′. Hence, the Tangherlini transformations in common with
the Lorentz transformations can provide adequate description of phys-
ical processes in a moving inertial frame of reference, but the Lorentz
transformations are more useful in this deal because they keep the ve-
locity of light constant and isotropic in all inertial frames of reference.

Finally, it should be mentioned that Tangherlini in his thesis used
the fact that since Maxwell’s equations can be written in generally co-
variant form, they obviously hold under his transformations as well as
for the Lorentz transformations. However, because his transformations
are linear and unimodular, as are the Lorentz and Galilean transfor-
mations, and also include the Lorentz contraction and time dilation,
which the Galilean transformations do not, he found that despite the
difference with the Lorentz Transformation as to synchronization, a set
of tensorial expressions for the electromagnetic fields could be extracted
that were exactly the same as for the Lorentz transformation, so that
the equations of motion of a charged particle, when written in term
of proper velocity and proper acceleration (i.e., derivatives taken with
respect to proper time) could be written so as to take the same form

as for the Lorentz transformation, and, importantly do not involve the
velocity of the moving frame relative to the rest frame. He points out
in the thesis that there exist a second set of equations of motion which
do not reduce to the equations of motion, as seen by the observer in
the moving frame who uses the Lorentz transformation, that explicitly
involve the velocity of the moving frame relative to the rest frame, but
that in the absence of any way to synchronize the clocks in the moving
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frame with the rest frame, these equations of motion are unobservables.
He also points out that the d’Alembertian operator is not invariant un-
der his transformation and that this is a consequence of the fact that the
one-way velocity of light in the moving frame has not remained invariant
in the moving frame as is the case for the Lorentz transformation, but
that in the absence of the possibility of synchronization with the rest
frame, this anisotropy is unobservable, in agreement with observation.
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Abstract: This is an extended formulation of General Relativity
based on the existence of an additional segment curvature, due to the
non-vanishing covariant derivative of the metric tensor. The resulting
enlarged manifold allows for a permanent “free” field to exist next to
the usual phenomenological energy-momentum tensor. This field may
provide plausible explanation to further unanswered pending issues.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

Hyperbolic (+−−−) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Tensors:

Symmetrization: A(ab) =
1
2
! (Aab +Aba);

Anti-symmetrization: A[ab] =
1
2
! (Aab − Aba);

Kronecker symbol: δab = (+1 if a = b ; 0 if a 6= b);

Levi-Civita tensor: ǫabcd (where ǫ1234 = 0).

Three-dimensional vectorial quantities:

P = Pα .
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Introduction

As early as 1915, Einstein’s General Theory of Relativity (GR) has suc-
cessfully generalised Newton’s original equations wherefrom most of the
cosmological observations have been accurately described (to a certain
extent).

As a possible doorway to further analysis, I would like to present here
a new approach of the concept of gravity by considering a “free” gravity-
like field which is assumed to be present and “localizable” throughout
our Universe. Like the usual gravitational field classically resulting from
the mass, this specific field interacts with matter and this coupling ac-
tually accounts for the known gravitational mass.

In this paper, our basic idea rests upon following observation. In the
framework of classical physics, electrodynamics is described by means
of two tensors:

• A pure electromagnetic field tensor described by Maxwell’s tensor;

• A massive tensor which constitutes the charged particle.

Interaction of both quantities results in a conserved global momen-
tum vector. Proceeding, in perfect analogy with the above, we suggest
that gravitation also be described by two tensors:

• One tensor inherent to a pure field;

• The other tensor generalized only relative to the particle’s mass.

By doing so however, we come across a major difficulty. Classi-
cal electrodynamics takes place in either an Euclidean space or on a
Riemannian manifold. A straightforward gravitational analogy is not
admissible, for whatever be the gravity field, it defines the space-time
structure, which in turn will affect the matter field coupling.

Our line of attack consists of assigning to the macroscopic energy-
momentum tensors a “dominant Riemannian” characteristic which is
embedded in a more global geometry. In the framework of this scheme,
the Riemannian physics would then just appear as a large scale ap-
proximation characterizing the elementary masses and energies, thus
never conflicting with the known results of GR. On the very small scale,
however, the non-Riemannian geometry is no longer negligible and its
properties should be taken into consideration.

To achieve such a construction, we develop an antisymmetric ex-
tended (torsion-free) General Relativity (while keeping the four space-
time dimensions), by ruling out the restrictive metric condition∇gab=0,
thus introducing a new connection built from the non-vanishing covari-
ant derivative of the metric tensor.
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The resulting enlarged manifold displays here an extra curvature
called the segment curvature.

With this preparation, we can derive a generalized Einstein tensor
denoted here the EGR tensor (i.e. the Extended GR tensor), which
implies the existence of the so-called EGR field equations very close to
the classical case.

In the absence of energy (e.g. mass), the EGR field equations how-
ever, do not reduce to the Riemannian source free equations: they ac-
tually always retain a “remnant-like” energy-momentum field tensor,
which can be regarded as a vacuum “background” displaying a non-
vanishing low level Riemannian part and non-Riemannian part due to
the covariant derivative of the metric tensor.

As a conceptual gift, with this new theory, one no longer requires a
“vanishing” (symmetric) gravitational energy-momentum pseudo-tensor
[1] attributed to the mass and whose physical meaning has always re-
mained unclear. In this sense, the EGR “residual” (true) field tensor is
just a continuation of this pseudo-tensor when escaping a massive body.
As well, its deep antisymmetric nature arises naturally from the theory.

It clearly confirms Einstein’s early choice (as well as Dirac), and
thus simply avoids the confusing controversy between the two versions.
Last but not the least, the cosmological constant term gabλ, which is
initially discarded in the text, automatically reappears under the form
of a (small) term gabJ

2 where J2 is the square of a slightly varying
four-vector fundamentally related to the extra segment curvature.

In our opinion, J2, which prevails among other terms on the right
hand side of the EGR field equations, has been “erroneously” approx-
imated to the famous constant λ, thus misleading, since the complete
structure of the EGR equations has been ignored.

Chapter 1. Gravitational Field: The Classical Theory

§1.1. The GR fundamental equations

Typically, the source-free field equations are non-linear equations of
propagation which must contain derivatives of gab up to 2.

So, we consider the action

S =

∫
LE

√−g d4x , det ‖gab‖ = g , (1.1)

which must be stationary when the metric tensor is varied and where
the Lagrangian LE and its density LE are expressed with the Christoffel
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symbols as in the classical Einsteinian theory (Riemannian geometry)

L
E
=

√−g L
E
=

√−g gab
({

e
ab

} {
d
de

}
+
{
d
ae

} {
e
bd

})
(1.2)

being derived from the contracted curvature tensor (Ricci’s tensor)

Rbc = ∂a
{
a
bc

}
− ∂c

{
a
ba

}
+
{
d
bc

}{
a
da

}
−
{
d
ba

}{
a
dc

}
. (1.3)

Thus one infers the source-free field equations

Gab = Rab −
1

2
gabR = 0 . (1.4)

The Einstein tensor Gab is a symmetric second-rank tensor, which
is a function of only gab and their first and second derivatives. We
have thus ten equations in (1.4) with partial derivatives which are not
mutually independent.

There exists only 6 independent conditions, since the space-time
coordinates can be subjected to an arbitrary transformation allowing
us to choose four out of the ten generalizations of the metric tensor gab.

In order for the four conservation identities resulting from (1.4)

∇aG
a
b = 0 (1.5)

to be satisfied along with the previous conditions, Elie Cartan showed
that the tensor Gab should have the following form

Gab = k

[
Rab −

1

2
gab (R− 2λ)

]
, k = const, (1.6)

where λ is known as the cosmological constant, and it will be discarded
here. When a source (matter) is present, we obtain ten non-linear equa-
tions

Gab = Rab −
1

2
gabR = κ Tab , (1.7)

which show that masses and space-time are not mutually independent.
Also, here

κ = − 8πG

c4
(1.8)

is Einstein’s constant and G is Newton’s constant.
The (massive) energy-momentum tensor here is given by

Tab = ρc2uaub , (1.9)

where ρ is the matter density.
The fundamental equation (1.8) generalizes the Poisson equation,

which is clearly valid in Newtonian physics when the macroscopic ve-
locities are slow compared to the light velocity c.
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§1.2. Energy-momentum pseudo-tensor density

The condition ∇aG
a
b = 0 implies

∇aT
a
b = 0

or
∂aℑa

b = 0 (1.10)

with the tensor density

ℑa
b =

√−g T a
b .

However, inspection shows that

∂aℑa
b =

1

2
ℑcd ∂b gcd

and the condition (1.10) is thus never satisfied in a general coordinate
system.

The classical theory requires that the total four-momentum of mat-
ter and its gravitational field

P a =
1

c

∫
(T ab + tab)

√−g dSb

should be conserved.
We thus have to introduce a tensor density

Tab =
√
−g tab

such that
∂a(ℑa

b + T a
b ) = 0 (1.11)

with the explicit form

T c
d =

1

2κ

[
(∂d Gab) ∂L

E

∂ (∂c Gab)
− δcd LE

]
, (1.12)

where
Gab =

√
−g gab

is the metric tensor density, constructed from the fundamental metric
tensor gab.

The quantities T ab are called pseudo-tensor densities of Landau-
Lifshitz, for they can be transformed away by a suitable choice of the
reference frame. The densities T ab are just formed with the Christoffel
symbols, themselves becoming a generalization of a true tensor only with
respect to linear coordinate transformations. This is why the classical
theory stipulates that the gravitational energy, which is attributed to
masses, is not localizable and therefore cannot be engineered.
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Chapter 2. The Basics of the EGR Theory

§2.1. Extended Riemannian geometry

§2.1.1. Structure of the extended manifold

Consider the generalization R
e · · ·
·acd having the same form as the Riemann

curvature tensor Re · · ·
·acd , but constructed on other connection coefficients

R
e · · ·
·acd = ∂dΓ

e
ac − ∂cΓ

e
ad + Γe

acΓ
k
kd − Γk

adΓ
e
kc . (2.1)

On a manifold M referred to a natural basis, ea, it is known that the
connection coefficients Γc

ab can be decomposed as follows

Γc
ab = {cab}+Kc

ab + (Γc
ab)s , (2.2)

where {cab} are the conventional Christoffel symbols of the second kind,
used in General Relativity, and (see Tonnelat [1, p. 30–32] for detail)

Kc
ab =

1

2
gce
(
T [ae],b + T [be],a + T [ab],e

)
(2.3)

is referred to as the contorsion tensor, which includes the torsion tensor∗

T c
[ba]=

1
2
(Γc

ba−Γc
ab). The quantity

(Γc
ab)s =

1

2
gce
(
Db gae +Da gbe −De gab

)
(2.4)

is the so-called segment connection, which is formed with the covariant
derivatives of the metric tensor

Dc gab = ∂c gab − Γac,b − Γbc,a . (2.5)

This last connection characterizes a particular property of the man-
ifold M, which is related to a specific type of curvature called the “seg-
ment curvature”.

In a dual basis θ defined on M, to any parallel-transported vector
along a closed path can be associated:

• A rotation curvature

Ωa
b = −1

2
R

a · · ·
·bcd θ

c∧ θd; (2.6)

• A torsion

Ωa =
1

2
T a
cd θ

c∧ θd; (2.7)

• A segment curvature

Ω = −1

2
R

a · · ·
·acd θ

c∧ θd. (2.8)

∗Somewhere in the scientific literature, the torsion tensor is used in the other
form T c

[ba]
=Γc

ba
−Γc

ab
that does not matter in the present case.
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§2.1.2. Modified action principle

As we know, the classical General Relativity is constructed from the
Riemannian action S=

∫
LE

√−g d4x (1.1), which is varied with respect
to gab. The derived source free equations are

Gab = Rab −
1

2
gabR = 0 .

In this case, the geometry is Riemannian, i.e.

T c
[ab] = 0 ,

Dgab = ∇gab = 0 .

At this stage, our way of generalizing the GR theory is legitimized
by the following remarks:

• The symmetry of the Einstein tensor is not sufficiently natural.
Indeed, when derived from the relativistic theory, the canonical
energy-momentum tensor is always antisymmetric, as in the elec-
tromagnetic field with a source

θbc =
1

4
gbcFdeF

de − F ba∂cAa + gbcjaA
a

and, in order to fit in the field equations, this tensor has to after-
wards be symmetrized;

• The condition Dgab 6= 0 is more general than the restrictive Rie-
mannian condition

∇gab = 0 ;

• Moreover, we deem that the torsion tensor T c
ab resorts more to an

artificial mathematical property and does not offer a full physical
and clear meaning. We therefore postulate a torsion-free manifold
with 40 general symmetrical connection coefficients

Γa
bc = {abc}+ (Γa

bc)J , (2.9)

where the latter connection is not necessary (2.4).

The Riemannian manifold should nevertheless be recovered when
Dgab=0. To begin with, we follow here the basic ideas of Einstein:
instead of the potentials gab, we consider 40 connection coefficients (2.9)
as the “field” variables.

In this context, the generalization of the Ricci tensor formed with
Γa
bc is still expressed by

Rbc = ∂aΓ
a
bc − ∂cΓ

a
ba + Γd

bcΓ
a
da − Γd

baΓ
a
dc . (2.10)
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§2.1.3. Eulerian equations

We consider the tensor density

Rab = R
ab√−g , (2.11)

from which we construct the invariant density

H = Rab
Rab (2.12)

with

Rab =
∂H
∂Rab

.

The least action principle is then

δS =

∫
δH d4x = 0 . (2.13)

For a variation δΓa
bc, we obtain

δS =

∫ [(
∂H
∂Γa

bc

)
δΓa

bc +

(
∂H

∂(∂eΓa
bc)

)
δ (∂eΓ

a
bc)

]
d4x = 0 . (2.14)

The variation of H is also expressed by

δ

∫
Rbc

Rbc d
4x =

∫ [
Rbc∂Rbc δΓ

a
de

∂Γa
de

+
Rbc∂Rbc δ(∂kΓ

a
de)

∂ (∂kΓa
de)

]
d4x

and, integrating by parts, we obtain

δ

∫ [
Rbc ∂Rbc

∂Γa
de

− ∂k

(
Rbc ∂Rbc

∂(∂kΓa
de)

)]
δΓa

de +

+

∫
∂k

[
Rbc ∂Rbc δΓ

a
de

∂(∂kΓa
de)

]
d4x = 0 . (2.15)

If the variations δΓa
de are zero on the integration boundary, the last

divergence integral has no contribution.
The condition (2.15) reduces to

δ

∫
Rab

Rab d
4x =

∫ (
Qbc

a δΓ
a
bc

)
d4x = 0 (2.16)

with

Qbc
a = Rde ∂Rde

∂Γa
bc

− ∂k

[
Rde ∂Rde

∂ (∂kΓa
bc)

]
. (2.17)

The stationary principle for the symmetric Γa
bc leads to the Eulerian

equations

Q(bc)
a =

1

2

(
Qbc

a +Qcb
a

)
= 0 . (2.18)
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From the expression (2.10), we derive the derivatives

∂Rdk

∂ (∂eΓa
bc)

= δem δ
b
d δ

c
k δ

m
a − δek δ

b
d δ

c
m δ

m
a (2.19)

and

∂Rdk

∂Γa
bc

= δna δ
b
dδ

c
kΓ

m
nm + δma δ

b
nδ

c
kΓ

n
dm −

− δna δ
b
dδ

c
mΓm

nk − δma δ
b
nδ

c
kΓ

n
dm . (2.20)

Now substituting these into (2.17) yields

−Qbc
a = ∂aR

bc − δca∂eR
be −RbcΓm

am − δkaR
dcΓb

dk +

+RbkΓc
ak +RkcΓb

ka = (Rbc)′,a − δca (R
be)′,e (2.21)

with
(Rbc)′,a = ∂aR

bc + Γb
eaR

ec + Γc
eaR

eb − Γe
aeR

bc (2.22)

where ′, are the covariant derivatives constructed with the global Γa
bc

defined in (2.9).
The condition (2.18) explicitly yields

(Rbc +Rcb)′,a − δca (R
be)′,e − δba (R

ce)′, e = 0 . (2.23)

§2.2. Connection coefficients

In order to determine the exact form of the connection, we first decom-
pose Rbc into the metric density G bc =

√−g gbc and two parts Ebc+Abc,
where Abc is antisymmetric

Rbc = (G bc + Ebc) +Abc. (2.24)

The two-term quantity in brackets represents the Riemann-Ricci ten-
sor density

Rbc√−g = Rbc = G bc + Ebc (2.25)

so that when Abc = 0, (2.24) reduces, as it should be, to (2.25).
Consistency of our theory leads to impose the following constraint

(Ebc)′,b = 0 . (2.26)

So forth we set
J b = (Aba)′,a = ∂aAba (2.27)

(due to the antisymmetry of Aab) with

J a =
√−g Ja,
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where the four-vector Ja will play a central role.
We now aim to check whether the condition (G bc)′,c = 0 reinstates a

Riemannian connection whereby the curvature tensor Rab (2.10) would
reduce to the Riemann-Ricci tensor Rab.

By contracting (2.23) on c and a, and taking into account (2.26),
one finds

(G bc)′,a = −5

3
J b. (2.28)

If inserting (2.28) into (2.23), the conditions (2.18) eventually read

(G bc)′,a = −1

3

(
δba J c + δca J b

)
. (2.29)

Dividing by
√−g , we obtain

∂a g
bc + gbc∂a ln

√−g + Γb
ea g

ec + Γc
ea g

be − Γe
ea g

bc =

= −1

3

(
δbaJ

c + δcaJ
b
)

(2.30)

and multiplying through by gbc, having gba g
ca= δcb taken into account

as well as
dg = ggbcdgbc = −ggbc dgbc,

we infer

Γe
ae = ∂a ln

√−g + 1

3
Ja . (2.31)

Substituting this last relation into (2.30) and multiplying it by gbd gkc
(after noting that dged =−gec gbddgbc), we eventually find

∂a gbc−Γk
ba gkc−Γk

ca gbk =
1

3
(Jc gab+Jbgac−Ja gbc) =Da gbc . (2.32)

Interchanging the indices a and b, then a and c, we obtain two more
equations of type (2.32), which could be virtually denoted by (2.32)′

and (2.32)′′. From the linear combination (2.32)′ + (2.32)′′ − (2.32), we
eventually get the explicit form of the global connection

Γd
ab =

{
d
ab

}
+ (Γd

ab)J =
{
d
ab

}
+

1

6

(
δda Jb + δdb Ja − 3gabJ

d
)
. (2.33)

Our last equation (2.33) shows that when Ja =0, we have Da gbc =0
and thus

(G ab)′,b = 0 . (2.34)

From (2.31), the condition Ja =0 implies (Γb
ae)J=0, so we see that

in the case, the generalized curvature tensor Rab (2.10) reduces to the
Riemann-Ricci tensor Rab.
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Chapter 3. The EGR Field Equations

§3.1. EGR curvature tensors

§3.1.1. The fourth-rank curvature tensor

From the connection

Γd
ab =

{
d
ab

}
+ (Γd

ab)J =
{
d
ab

}
+

1

6

(
δda Jb + δdb Ja − 3gabJ

d
)

(3.1)

the EGR curvature tensor can be derived

R
a · · ·
·bcd = Ra · · ·

·bcd +∇dΓ
a
bc −∇cΓ

a
bd + Γk

bcΓ
a
kd − Γk

bdΓ
a
kc . (3.2)

Inspection shows that the following relations hold

(R e · · ·
·dab)′, k + (R e · · ·

·dka)′,b + (R e · · ·
·dbk)′,a = 0 , (3.3)

R
e · · ·
·dab + R

e · · ·
·bda + R

e · · ·
·abd = 0 . (3.4)

Let us now contract

gceR
e · · ·
·dab = Rcdab , (3.5)

we then note that, from ∇a(Γ
e
db)J ,

gce∇a

[
(Γe

bk)J δ
k
m δ

m
d

]
= gcd∇a(Γ

e
be)J

and the curvature tensor (3.5) now reads

Rcdab = Rcdab + gce∇b(Γ
e
da)J − 1

2
gce
[
∇a(Γ

e
db)J +∇d(Γ

e
ab)J

]
+

+ gce
[
(Γe

kb)J (Γk
da)J−(Γe

ka)J (Γk
db)J

]
+ gcd

[
∂a(Γ

e
be)J−∂b(Γe

ae)J
]
. (3.6)

With the definition (3.1) we have

(Γd
ad)J =

1

3
Ja (3.7)

and

∂a (Γ
d
bd)J − ∂b (Γ

d
ad)J =

1

3
Jab (3.8)

with
Jab = ∂aJb − ∂bJa . (3.9)

§3.1.2. The EGR second-rank tensor

The relation (3.6) eventually leads to the contracted tensor

R
d · · ·
·abd = Rab = Rab +∇d (Γ

d
ab)J −∇b (Γ

d
ad)J +

+ (Γk
ab)J (Γ

d
kd)J − (Γk

ae)J (Γ
e
kb)J , (3.10)
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we then have once more the splitting

Rab = R (ab) + R [ab] (3.11)
with

R (ab) = Rab +∇d (Γ
d
ab)J − 1

2

[
∇b (Γ

d
ad)J +∇a (Γ

d
bd)J

]
+

+ (Γk
ab)J (Γd

kd)J − (Γk
ae)J (Γe

kb)J (3.12)

and

R [ab] =
1

2

[
∂a (Γ

d
bd)J − ∂b (Γ

d
ad)J

]
(3.13)

that is

R (ab) = Rab −
1

2

(
gab∇dJ

d +
1

3
JaJb

)
, (3.14)

R [ab] =
1

6
(∂aJb − ∂bJa) . (3.15)

§3.1.3. The EGR curvature scalar

Applying R = gdaRda, we have

R = R−∇e

[
gda(Γe

da)J
]
−∇e

[
gdc(Γe

dc)J
]
−

− gda
[
(Γe

da)J (Γc
ce)J − (Γk

de)J (Γe
ka)J

]
(3.16)

or

R = R− 1

3

(
∇eJ

e +
1

2
J2

)
. (3.17)

§3.2. The EGR Einstein tensor

Unlike the Riemann curvature tensor, the EGR curvature tensor is no
longer antisymmetric on the indices pair ca

Rcabk + Racbk =
2

3
gcaJbk (3.18)

or

R
ca · ·
· ·bk + R

ac · ·
· ·bk =

2

3
gcaJbk . (3.19)

Lifting the indices d in the equation (3.3) and contracting on d and
k as well as on b and e, we obtain

(R bk · ·
· ·ab)′,k + (R bk · ·

· ·ka)′,b + (R bk · ·
· ·bk)′,a = 0 (3.20)

then we replace R
bk · ·
· ·ab by its value from (3.19). We eventually find

(R bk · ·
· ·bk)′,a + 2(R bk · ·

· ·ab)′,k +
2

3
gbk (Jka)′,b = 0 (3.21)
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that is (
R

k
a − 1

2
δkaR

)

′, k
= −1

3
(Jk

a )′,k (3.22)

which is just the generalized conservation law for the EGR tensor Gda=
=(Gda)EGR (here we substitute d= k)

Gda = R(da) −
1

2

(
gdaR − 2

3
Jda

)
. (3.23)

The latter will be called here the EGR Einstein Tensor. It obviously
reduces to the “Riemannian” Einstein tensor

Gda = Rda −
1

2
gdaR = 0

in the framework of the classical GR field equations.
The equations (3.23) are a transcription of the tensor density EGR

field equations
Rda + Bda = 0 , (3.24)

whose conservation law is
(
Rb

a + Bb
a

)
′, b

= 0 .

In the strong (ideal) Riemannian regime J a = 0, thus

(Rb
a)′,b = ∇bRb

a = 0 ,

∂bRb
a − {cba}Rb

c = 0 ,

or

∂bRb
a −

1

2
Rcb∂a gcb = 0

eventually

∇b

(
Rb

a −
1

2
δbaR

)
= 0 ,

which is just the conserved Einstein tensor Gab as inferred from the
Bianchi identities in the classical GR

Gab = Rab −
1

2
gabR .

It is now easy to derive the expression of the tensor Bda correspond-
ing to Bda

Bda = −1

2

(
3

2
gda∇eJ

e +
1

3
JdJa −

1

6
gdaJ

2 +
2

3
Jda

)
. (3.25)

By doing so, we note that 1
6
gdaJ

2 is only the term in the bracket

which carries J2, and which prevails over the others as a candidate to
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generalize gdaλ (the cosmological term). The term 1
6
gdaJ

2 is reminis-
cent of the classical gdaλ, where λ was long regarded as a mere constant
in the usual Riemannian theories.

§3.3. The persistent field

§3.3.1. The EGR field equations

In the framework of the EGR theory, our universe is completely de-
scribed by Gab =(Gab)EGR.

In the classical GR, the source-free field equations are

Gab = 0 , (3.26)

but according to our basic postulate, the latter “Riemannian” equation
is merely a particular case in the framework of the global EGR geometry.
Therefore, in the absence of the macroscopic energy term, there should
always remain a faint energy tensor described by the extra curvature.

The classical vacuum equations (3.26) should be replaced by the
following EGR field equations

Rab + Bab = κ (ℑab)field . (3.27)

When matter or ponderomotive energy is present, we simply write

ℑab = (ℑab)Riem + (ℑab)field , (3.28)

which has a certain analogy with the “Riemannian” electrodynamics,
where there exists a massive tensor for a conductor, and an interacting
electromagnetic energy-momentum tensor.

In the immediate neighbourhood of a mass, the Riemannian geom-
etry represented by (ℑab)Riem becomes increasingly dominant inside the
global one, and (ℑab)field coincides with the gravitational pseudo-tensor
density classically attributed to the mass.

§3.3.2. The persistent energy-momentum tensor

By considering the tensor density Tab =
√−g tab (see Page 154),

T c
d =

1

2κ

[
(∂dG ab)

∂L
E

∂ (∂cG ab)
− δcdLE

]
(3.29)

one can express the tensor density (ℑab)field, which can be determined
through the usual canonical equations

(ℑa ·
·b)field =

1

2κ

[
Hδab − (∂bΓ

e
dk)

∂H
∂ (∂aΓe

dk)

]
. (3.30)
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It has a tensor counterpart (Tab)field which is written as

√−g (T ab)field = (ℑab)field . (3.31)

As expected from Bab, we can easily check that this tensor is anti-
symmetric on the indices a and b.

In accordance with (3.28), we now suggest that the massive tensor
density (ℑab)Riem still be given by

(Tab)Riem = ρ uaub , (3.32)

where ρ is the density of the (neutral) massive fluid.
The conservation law (1.10) then corresponds to

(ℑ·b
a ·)′,b =

[
(ℑ·b

a ·)field ′,b + (ℑ·b
a ·)Riem ′,b

]
= 0 , (3.33)

(ℑ·b
a ·)mass ′,b = ∂b(ℑ·b

a ·)Riem
−
[
{cba}(ℑ·b

c ·)Riem
+(Γc

ba)J (ℑ·b
c ·)Riem

]
=

= ρ
√−g Dua

dτ
.

In the Riemannian regime, J a = 0 (which is an ideal case) and we
should have

∇b ℑ·b
a · = 0 , ρ

√−g ∇ua
dτ

= ∂b (ℑ·b
a ·)Riem

− {cba} (ℑ·b
c ·)Riem

that is

ρ
∇ua
dτ

=
1√−g ∂b (ℑ

·b
a ·)Riem

− {cba} (T b
c )Riem

= ∇bT
b
a

in accordance with the classical result inferred from the definition of the
massive tensor

T ab = ρuaub.

Strictly speaking, the four-velocity ua should be slightly modified
since the Universe is characterized here by two forms:

• The quadratic form

ds2 = gab dx
adxb;

• The linear form
dJ = f(Jb)dx

b.

A reasonable choice for (ua)
EGR

can be

(ua)
EGR

=
dxa√

ds2 + dJ
. (3.34)



Patrick Marquet 165

§3.3.3. Interaction with matter

Reinstating the light velocity c, we now consider the immediate vicinity
of a massive body. We write the total energy-momentum four-vector
(attributed to field and mass)

P a =
1

c

∫ [
(T ab)field + (T ab)Riem

]√−g dSb (3.35)

across any given hypersurface.
In the framework of the immediate neighbourhood of the mass, the

field tensor (Tab)field is replaced by the tensor tab which coincides with
the classical gravitational energy-momentum pseudo-tensor.

In this case, the total energy-momentum four-vector reduces to the
“Riemannian” result

P a =
1

c

∫ [
tab + (T ab)Riem

]√−g dSb . (3.36)

Consider then the “contact” situation for which (Tab)Riem, when in-
tegrated over the volume ϑ of the mass, gives the contribution

m0c
2 =

∫ [
(T 1

1)Riem
+(T 2

2)Riem
+(T 3

3)Riem
−(T 4

4)Riem

]√−g dϑ (3.37)

into the total energy-momentum four-vector (3.35).
On the other hand, the “Riemannian” static field equations result

in the follows

R4
4 =

8πG

c4

[
(T 4

4)Riem
− 1

2
(T )

Riem

]
=

=
4πG

c4
[
(T 4

4)Riem
− (T 1

1)Riem
− (T 2

2)Riem
− (T 3

3)Riem

]
, (3.38)

where we have first established that classically
∫
R4

4

√−g dϑ = − 4πG
P 4

c3
, P 4 = m0c , (3.39)

P a =
1

c

∫ [
(ℑab)field + (ℑab)Riem

]
dSb (3.40)

across any given hypersurface.
At a large distance from a source, (ℑab)Riem → 0, thus

P a ≈ 1

c

∫
(ℑab)field dSb . (3.41)
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Chapter 4. Concluding Remarks

As a temporary conclusion, we would like to consider the foregoing the-
oretical elements in the light of the long discussed “MOND” paradigm
and its developments. Let us first recall some relevant history.

§4.1. The MOND formulation

Newtonian gravitational theory, when applied to describe acceleration
of stars and gas as estimated from Doppler velocities, does not fit with
the Newtonian field generated by the visible matter. This is known as
the “missing mass” problem, which has led astrophysicists to invoke
some sort of dark energy or exotic matter while it has actually never
been detected.

In the meanwhile, some scientists have turned to a possible new law
of gravity which would be more appropriate in predicting the observed
anomalies. In the beginning of the 1980’s, the astronomer Mordehai
Milgrom [2] restated Newton’s second law with the following scheme

µ

(
a

a0

)
a = − ∂αΦN (4.1)

where a is the generic acceleration, ΦN is the Newtonian potential of the
visible matter, a=aα is the three-dimensional acceleration vector, and
∂α=

∂
∂xα is the three-dimensional spatial differential operator. Milgrom

termed the acceleration scale a0, where the function µ satisfies

µ
a

a0
= 1 for a≫ a0 , and µ

a

a0
=

a

a0
for a≪ a0 (4.2)

with an estimate numerical value of

a0 ≈ 10−8 cm/s
2
.

In the limit of low accelerations, Newton’s second law should be
quadratic and approach the following form (in the direction of the radial
coordinate r) in the presence of a gravitational potential

a

a0
ar = ∂rΦ .

For a point mass m the attractive potential at r is

V 4 = Gma0 ,

which describes a flat rotation curve.
This is the MOND paradigm, the “modified Newtonian dynamics”,

which so far predicts most of the observed anomalies.
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§4.2. Non-relativistic reformulation of MOND

A first Lagrangian (Riemannian) density was found to be

L =
a20

8πG′ f

(
(∂αΦ)

2

a20

)
− ρΦ , (4.3)

where (∂αΦ)
2= ∂αΦ ∂

αΦ. This leads to the following gravitational field
equation

∂α

[
µ

(√
(∂µΦ)2

a0

)
∂αΦ

]
= 4πG′ρ , (4.4)

where

µ (
√
y) =

df(y)

dy
,

assuming

f(y) =

{
y for y ≫ 1

2
3
y2/3 for y ≪ 1

and G′ is a constant which reduces to Newton’s gravitational constant
G in the classical regime ΦN. Inspection shows that, when the usual
form of the generic acceleration is applied

a = − ∂αΦ , (4.5)

the solution corresponds to (4.1).
The Lagrangian density (4.3) is “aquadratic”, therefore the theory

is known as the AQUAL theory.

§4.3. A theory of Te-Ve-S

First Relativistic AQUAL. It has been suggested to consider a
physical metric (gab)

′ conformal to a “primitive” Einstein metric gab
according to

(gab)
′ = e2Ψgab , (4.6)

where Ψ is a real scalar field.
The action of a particle of mass m0 is expressed as

S = −m0

∫
eΨ
√
− gab dxadxb . (4.7)

For slow motion in a quasi-static situation with nearly flat metric
and in a weak field Ψ,

eΨ
√
− gab dxadxb ≈

(
1 + ΦN +Ψ− v2

2

)
dt ,
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where

ΦN = −g44 + 1

2
(4.8)

is the known tensor form of the Newtonian potential induced by the
mass density ρ as inferred from the linearized Einstein equations, while
v is the velocity with respect to the Minkowski metric ηab = gab−hab .

The particle’s Lagrangian is thus

m0

(
v2

2
− ΦN −Ψ

)
, (4.9)

which leads to the equation of motion

a ≈ − ∂α (ΦN +Ψ) . (4.10)

Whenever
|∂αΨ| ≫ |∂αΦ| ,

so (4.10) reduces to (4.1). Thus we obtain the MOND-like dynamics,
and also

|∂αΨ| ≪ a0 .

In the regime where |∂αΨ|≫ a0, µ≈ 1, f(y)≈ y, the quantity Ψ
reduces to ΦN.

To keep the particles’ acceleration Newtonian, the measurable New-
tonian gravitational constant G is twice to the bare constant G′ intro-
duced in (4.4).

However Bekenstein [3] pointed out the setbacks of the relativistic
AQUAL: it turns out that the Ψ-waves can propagate faster than light
due to the conformal transformation of the physical null cone, and there-
fore the contribution of Ψ should be kept to a minimum. The last
assumption is quite contradicting to the actual galaxies and clusters,
which are observed to deflect light stronger than the visible mass.

Disformal related metrics

a) Field ∇aΨ. The light deflection problem can be cured by discarding
the relation (4.6). It is then suggested to replace the conformal relation
by a “disformal” generalized

(gab)
′ = e−2Ψ

(
A gab + BL2∇aΨ∇bΨ

)
(4.11)

with A and B functions of the invariant gab∇aΨ∇bΨ, and L= 1
a0
. This

allows to deflect light via the term ∇aΨ∇bΨ of the physical metric.
Here the causality is fully maintained, but it yields smaller light

deflection instead of enhancing it.
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b) Field Ua. In February 2008, Jacob D. Bekenstein [3] suggested a pos-
sible relativistic generalization of the MOND paradigm. This is known
as the Tensor-Vector-Scalar content theory (in short, Te-Ve-S [3]), which
introduces, next to the metric tensor gab, a timelike four-vector field Ua

and a scalar field φ. This vector is normalized so that

gab UaUb = −1 . (4.12)

The physical (real) metric here is obtained by stretching the Einstein
metric in the space-time directions orthogonal to Ua = gabUb, by a factor
e−2φ, while shrinking it by the same factor in the direction parallel to
Ua according to

(gab)
′ = e−2φ (gab + UaUb)− e2φUaUb . (4.13)

When a specific matter content is present, with a density ρ, the
physical velocity (ua)

′ of the matter, normalised with respect to (gab)
′,

is taken to be collinear with Ua

(ua)
′ = eφ Ua ,

from which it follows that

(gab)
′ + (ua)

′(ub)
′ = e−2φ (gab + UaUb) . (4.14)

With these elements, Bekenstein’s MOND relativistic theory success-
fully provides a suitable explanation for mass discrepancy (hypothetical
dark matter), and also for several cosmological anomalies without con-
flicting with GR.

§4.4. Matching the relativistic MOND formulation

Let us consider again the contracted EGR tensors

R(ab) = Rab −
1

2

(
gab∇dJ

d +
1

3
JaJb

)
, (4.15)

R [ab] =
1

6
(∂aJb − ∂bJa) , (4.16)

where the time components reduce to

R(44) = R44 −
1

2

(
g44∇dJ

d +
1

3
J4J4

)
, (4.17)

R [44] = 0 , (4.18)

(we note that although, obviously, R [44] =0 and J4 6=0).
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For low velocities and weak fields, the quasi-Euclidean approxima-
tion holds and ∇dJ

d is negligible with respect to 1
3
J4J4

R(44) = R44 −
1

2

(
1

3
J4J4

)
, (4.19)

whereas in the classical Newtonian theory

R44 =
1

c2
∂2ΦN

∂xα∂xα
.

Upon the linear approximation, the quantity

B44 = −1

6
J4J4 (4.20)

can be identified with the Laplacian of the scalar field Ψ, i.e. with
the quantity −∆Ψ, and we find back the conclusions inferred from the
conclusions of the AQUAL model, without recurring to the conformal
metric,

a ≈ − ∂α (ΦN +Ψ) . (4.21)

Causality is therefore respected since no hypothesis is formulated on
the light cone structure. As a result, we see that there is no need to
introduce the specific (real) metric

(gab)
′
= e−2φ (gab + UaUb)− e2φ UaUb . (4.22)

This purely theoretical approach does not take into account the order
of magnitude of the extra curvature which describes the residual field.

Because of this, it may not fit in the relativistic MOND formulation.
However we just want to focus our attention onto the fact that the new
outlook made possible here by the EGR theory.

Indeed, as we will see in the forthcoming papers, the existence of a
persistent field, which is viable through only the EGR theory, provides
a sound consistency in other known theories.
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Formulation of General Relativity
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Abstract: In the recently presented extended formulation of Gen-
eral Relativity (the EGR theory), a “persistent field” expressed by
a gravity-like energy-momentum tensor has been suggested. Due to
the non-Riemannian curvature manifested by the theory, this field
tensor is a true entity unlike Einstein’s pseudo-tensor. Here this ten-
sor is considered in the case of a charged particle in a gravitational
field. In the “gravitational radiation damping”, the usual relativistic
treatment leads to a mass renormalization process. In the framework
of the presented theory, this renormalization is not longer required.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

Hyperbolic (+−−−) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Tensors:

Symmetrization: A(ab) =
1
2
! (Aab +Aba);

Anti-symmetrization: A[ab] =
1
2
! (Aab − Aba);

Kronecker symbol: δab = (+1 if a = b ; 0 if a 6= b);

Levi-Civita tensor: ǫabcd (where ǫ1234 = 0).

Three-dimensional vectorial quantities:

P = Pα .
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Introduction

As a follow up to my recent paper The EGR Theory: An Extended

Formulation of General Relativity [1], we now turn to the consequences
of this field contribution to an accelerated charged particle.

We recall the classical concept: In an electrostatic situation, the
energy of a charged particle such as the electron, is eV

2 , where V is
the scalar potential of the field generated by the charge e. However,
the Special Theory of Relativity tells us that any elementary particle is
assumed to be a point mass or charge (non-elastic body), thus implying
that at its “centre” R=0, where V = e

R
must become infinite. As a

result, the proper energy (i.e. the proper mass of the electron) would
also become infinite, which is physically irrelevant.

The usual way to overcome this difficulty leads to an implicit kind
of external negative “mass” which compensates for the divergent one:
this is accepted as the “renormalisation” process.

The free field predicted by the EGR theory is introduced in in the
form of a “gravitational” energy-momentum tensor density (ℑab)field
next to the mass tensor density (ℑab)mass, which is the “continuation”
of the classical energy-momentum pseudo-tensor so far associated with
matter. In the framework of my understanding, this extra field, linked
with the space-time segment curvature, naturally allows us to avoid
the renormalisation requirement, providing the general electrodynamics
with a clear and consistent explanation. The EGR Universe is entirely
described by two curvatures. Accordingly, the present theory implicitly
involves the EGR Ricci tensor Rab rather than the Ricci tensor Gab.

We begin this paper by recalling that, according to the Special The-
ory of Relativity, an accelerated electron will radiate and produce a
reactive damping force in addition to the mechanical inertia force [2].
In the framework of the classical representation of the General Theory
of Relativity (we will refer to it as GR), a charged particle does not
suffer a reactive damping as long as its absolute acceleration is uni-
form. We may then expect that this particle actually radiates when
deflected by a gravitational field i.e. when a kind of “Bremßtrahlung”
effect takes a place; however, it has been shown that a more subtle phe-
nomenon occurs. As has been pointed out by De Witt and Brehme [3],
a plane or spherical sharp pulse of light when propagating in a curved
4-dimensional hyperbolic manifold, gradually develops a “tail” which
is responsible for this electrogravitic “Bremßtrahlung”. This “thinning
out” of the elementary waves appears as an extra term in the relativistic
equation of a moving charge [2].
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Chapter 1. Relativistic Electrodynamics

§1.1. Electromagnetic radiation: variable fields

Variable potentials. Here, the charges are assumed to be located
inside a volume element dϑ where the variable charge density is µ(t).

Inside this volume, the scalar electrostatic potential V , which is
derived from the electric field E, is

E = − gradV. (1.1)

Maxwell’s second group of equations states that the variable field
produced by arbitrary moving charges obeys the equation

∂bF
ab = −4π

c
ja, (1.2)

ja = µ
dxa

dt
, (1.3)

where ja is the four-vector density of charge µ. By setting the Lorentz
gauge, ∂aA

a = 0, we realise that

∂2Aa

∂xb ∂xb
=

4π

c
j a, (1.4)

which can be decomposed into two equations

∆A− 1

c2
∂2A

∂t2
= −4π

c
j (1.5)

and

∆V − 1

c2
∂2V

∂t2
= 4πµ . (1.6)

If de is the variable charge in a given volume element dϑ, the charge
density is

µ = de(t) δR , (1.7)

where δ is the Dirac function which will be analysed in the next section,
while R is the distance from the origin of the coordinates, a unique point
at which δR is not zero.

Retarded potentials. For an arbitrary charge distribution µ(xa), we
write

de = µdϑ .

For a volume ϑ we have

µ = e δR .
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In this case, equation (1.4) can be reduced to a plane wave equation
whose solution is of the type

V = f

(
t− R

c

)
.

This represents the progression of the potential V along R, however,
with some retarded amplitude measured at the time t. This retarded
amplitude results from the signal velocity limited by the light velocity c.
Adding V0 and A0 to the solutions of equations (1.4) and (1.5), we have

A =
1

c

∫ (
jt−R/c

)
dϑ

Ra
+A0 , (1.8)

V =

∫ (
µt−R/c

)
dϑ

Ra
+ V0 . (1.9)

If Ra(t)= ra − (ra)0 is the distance to an electron e observed in
P (xa) at t, the state of motion of the charge at an earlier time t′ is
determined by the equation

t′ = t− R(t′)

c
. (1.10)

In the resting frame at t′, the field at P (t) is simply given by the
Coulomb potential

V =
e

c
(t− t′) since A = 0 . (1.11)

In a four-dimensional situation, in any arbitrary frame, we find the
potential in the form

Aa = e
ua

Rb
ub, (1.12)

which is the well-known expression of the Liénard-Wiechert potential,
where

Ra =
[
c (t− t′) , ra − r′a

]
.

§1.2. Electromagnetic radiation: radiative damping

General coordinate system. On a general metric manifold, the dy-
namical equations for the electron of mass m0 and charge e, in an elec-
tromagnetic field, are

m0
Dua

ds
=
e

c
F abub , (1.13)

where ua = dxa

ds
is the four-velocity and the Maxwell tensor Fab is

Fab = DaAb −DbAa . (1.14)
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Here, the electromagnetic field’s energy-momentum tensor is

Tab =
1

4π

(
FacF

c ·
·a +

1

4
gabFckF

ck

)
. (1.15)

In a general coordinate reference frame, we assume the following
dynamical equations for a particle at za

ża =
Dza

dτ
= ub Db u

a, (1.16)

z̈a =
Dża

dτ
=
dża

dτ
+ Γa

bd ż
b żd, (1.17)

...
z a =

dz̈a

dτ
+ Γa

bd z̈
b żd, (1.18)

where τ is the proper time of the particle∗.

Three-dimensional radiative damping. An arbitrary distribution
of charges with the velocities slow to c does not substantially vary during
the time R

c . Therefore we expand µt−R/c and jt−R/c into series of R
c .

Up to third order, we find for the scalar potential

V = − 1

6c3
∂3

∂t3

∫
R2µdϑ . (1.19)

Since the vector potential A already contains a term in 1
c , we can

restrict the expansion to second order. We take

A = − 1

c2
∂tf

∫
j dϑ ,

then follow with the transformations

A′ = A+ grad f and V ′ = V − 1

c
∂tf .

Then we choose the function f so that the scalar potential V van-
ished, i.e.

f = − 1

6c2
∂2

∂t2

∫
R2µ dϑ .

Hence

A′ = − 1

c2
∂t

∫
j dϑ− 1

6c2
∂2

∂t2
grad

∫
R2µdϑ .

∗The connection coefficients (Christoffel symbols) are here assumed general for
keeping the theory compatible with the EGR theory, we denote Γa

bd
instead of the

conventional Christoffel symbols
{

a
bd

}

of General Relativity. See Page 178.
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Thus, we arrive at the formula

A = − 1

c2
∂t

∫
j dϑ− 1

3c2
∂2

∂t2

∫
Rµdϑ . (1.20)

The first-order terms of the field equation exhibit an additional force
exerted on the charge. This force depends on the time derivative of the
charge’s acceleration. This force, resulting from a higher approximation,
is called the Lorentzian damping force

Fα =
2

3

e2

c3
...
z α . (1.21)

The equation of motion of the electron without external fields and
solely subjected to (1.21), is due to the action of the charge itself

m0
...
z α =

2

3

e2

c3
...
z α . (1.22)

Ultrarelativistic case. In the Special Theory of Relativity, the equa-
tions of motion for the electron should be written

m0
dua

ds
=
e

c
F abub + fa. (1.23)

For the state of low velocity of the electron, the relation (1.23) should
reduce to the expression (1.22). This condition is satisfied when

fa =
2

3

e2

c

(
d2ua

ds2
− uaub

d2ub
ds2

)
. (1.24)

The second term in the brackets is chosen so as to satisfy the physical
condition faua =0, and so (1.24) can be written equally as

fa =
2

3

e2

c3

(
...
z a − 1

c2
ża z̈2

)
. (1.25)

Chapter 2. Trajectory of a Charged Particle in a Gravita-
tional Field

§2.1. Brief reminder of the EGR theory

Free gravity field. In the EGR theory, the field equations

Gda = Rda −
1

2
gdaR

are generalized to

Gda = Rda −
1

2

(
gdaR− 2

3
Jda

)
, (2.1)
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where Gda =(Gda)EGR, The antisymmetric Ricci tensor Rda=(Rda)EGR

is constructed with the general connection

Γ = { }+ (Γ)J (2.2)

with the latter coefficients (Γ)J , additional to the conventional Christof-
fel symbols { }, depending on the extra “segment curvature” through
the 4-vector J according to

Dgab =
1

3

(
gacJb + gcbJa − gabJc

)
dxc.

The new generalized field equations are written down as

Rab + Fab = κ
[
(ℑab)mass + (ℑab)field

]
, (2.3)

where the (ℑab)field represents the “energy-momentum” free field tensor
density which is persistent even in the source-free EGR field equations.

Having defined the Lagrange density H = Rab
Rab with

Rab =
∂H
∂Rab

,

the free field density is inferred from the canonical equations

(ℑa
b )field =

1

2κ

[
Hδab − ∂bΓ

e
dk

∂H
∂
(
∂aΓe

dk

)
]

(2.4)

(we have decomposed the curvature tensor density Rbc=
√−g Rbc into

a symmetric part Gbc and an antisymmetric part Abc),

Rbc = Gbc +Abc with Gbc = Rbc + Ebc

so that
(Ebc)′,c = 0 and J a = (Aba)′,a = ∂aAba

(due to the antisymmetry of Aba), we have a set of

J a =
√−g Ja,

Gab =
√−g gab,

Rbc =
√−g Rbc,

(Gbc)′,c = −5

3
J b,

(Gbc)′,a = −1

3
δbaJ c + δcaJ b,
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where ′, is the covariant derivative formed with Γ in (2.2). In fact, within
the framework of my theory, the field equations (2.3) always have their
second term, which corresponds to the free field tensor density

Rab + Fab = κ (ℑab)field . (2.5)

Thus, in the EGR theory, in the neighbourhood of matter, the mass
density (ℑab)mass increasingly dominates over the free field density
(ℑab)field. This is the quasi-Riemannian regime of the classical theory.

Four-momentum vector of the free field. In tensor notation, we
write the global four-energy momentum vector for the field and mass as

P a =
1

c

∫ [
(T ab)field + (T ab)mass

]√
−g dSb

across any hypersurface. Inspection shows that the pseudo-tensor ℑab is
a true tensor quantity lending support to the theory of a free field (which
is merely the natural extension of the Riemannian gravitational field),
for which the quantity is classically attributed to the mass. When inte-
gration is performed on the volume ϑ containing this mass, the tensor
field (Tab)field vanishes inside the matter, thus only the time component
of the four-momentum vector remains (i.e. we are in the Riemannian
regime)

P 4 = m0c =
1

c

∫ [
−(T a

a )mass

]√−g dϑ
or

m0c
2 =

∫ [
(T 1

1 )mass + (T 2
2 )mass + (T 3

3 )mass − (T 4
4 )mass

]√−g dϑ

that is the total mass of the given corpuscle (particle). If distantly
located from the source, (ℑab)mass → 0 and

P a ≈ 1

c

∫
(ℑab)field dSb . (2.6)

§2.2. Gravitational influence

§2.2.1. Dirac bi-tensors

Dirac’s distribution function. We now consider the delta function

introduced by P.A.M. Dirac [4]

δ(x′ − x) , (2.7)

which is known as the Dirac distribution function

δ(x) = 0 for x 6= 0 , δ(0) = ∞ , (2.8)
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hence ∫ +∞

−∞
dx = 1 . (2.9)

If f(x) is a continuous function at the point x = 0, we have
∫ +∞

−∞
δ(x)f(x)dx = f(0) (2.10)

under a more general form
∫
δ(x − a)f(x)dx = f(a) , (2.11)

where the integration domain contains the point x= a, and f(x) is con-
tinuous at the point x = a.

We write (2.11) as

〈δ(x, x′), f(x′)〉 = f(x) . (2.12)

The notation
δ(x, x′) (2.13)

is called the Dirac bi-scalar. It will be generalized in the next section.

Displacement bi-tensors. On a differential manifold Vn, we are go-
ing to consider a point x′ located in the neighbourhood of another point
x. Along the geodesic connecting x′ to x, we define a “displacement”
which represents a “canonical isomorphism” (basis-independent) of the
tangent space Tx at x on the manifold, into the tangent space Tx′ at x′.
The free bases ea(x) and ec(x

′) are attributed to the neighbourhoods.
The relevant isomorphism therefore defines a “bi-tensor”, which we

call a displacement tensor, and denote as

tc
′

a , (2.14)
hence

gab t
a
c′t

b
d′ = gc′d′ . (2.15)

Here we have

tac′ = gc′d′ td
′

a = gab t
b
c′ , (td

′

a tbd′ = tda′ t
b′

d = δba) , (2.16)

t = det ‖ tac′(x)‖ =
√
det ‖gab(x)‖

√
det ‖gc′d′(x)‖ , (2.17)

the particular case x = x′ implies

tc
′

a (x, x
′ = x) = δc

′

a or tac′(x, x
′ = x) = gac′ , (2.18)

∇a t
d′

c (x, x′ = x) = ∇c′ t
d′

a (x, x′ = x) = 0 . (2.19)
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If Vn is an Euclidean space of the given signature (e.g. Minkowskian),
we simply have

tac′ = ea ec′ . (2.20)

We choose the space-time signature, as earlier, to be

gab = diag(+−−−) , (2.21)

so the determinant is g=det ‖gab‖< 0, while
√−g > 0.

§2.2.2. The Feynman propagator (reminder)

The Pauli-Jordan propagator (reminder). In the quantized field
technique, the commutation function of the scalar field is introduced.
It satisfies

D(x) = D+(x) +D−(x) (2.22)
with

D+(x) = −D−(−x) =

=
1

(2π)3
i

∫ [
exp(iP x)

]
δ(P 2 −m2

0) θ(P
4) d3P . (2.23)

This commutation function or the Pauli-Jordan propagator is expli-
citly written

D(x, x′) =
1

(2π)3
i

∫ [
exp(iP x)

]
ǫ(P 4) δ(P 2 −m2

0) d
3P , (2.24)

where
ǫ(P 4) = θ(P 4)− θ(−P 4)

is the “sign function”

ǫ = +1 for P 4 > 0 ,

ǫ = −1 for P 4 < 0 .

The upper indices + and − indicate, respectively, the positive or
negative energy parts contributed into the complete commutator D,
which corresponds to the future and the past, and whose boundaries
are the characteristic hyperboloids in the Minkowski representation.

The Green function. The Jordan-Pauli commutation relation is an
odd function

D(x, x′) = −D(x′, x) . (2.25)

This (scalar) propagator is Lorentz invariant. It satisfies the homo-
geneous Klein-Gordon equation

(
− ∂a∂a −m2

0

)
D(x) = 0 . (2.26)
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We then define the Green function of the scalar field by the equation

(− ∂a∂a −m2
0) G(x, x′) = − δ(4)(x, x′) , (2.27)

and then, passing to the momentum representation

G(x, x′) =
1

(2π)4

∫ [
exp

(
iP (x, x′)

)]
G(P ) d4P , (2.28)

we obtain, for G(P ), the expression

G(P ) =
1

m2
0 − P 2

. (2.29)

Writting the denominator as

P 2 = (P 4)2 − (P2 +m2
0) , (2.30)

we see that for a given P2, the time component P4 has two poles

P4 = ±E , (2.31)

where the total energy of the particle is

E =
√
P 2 +m2

0 . (2.32)

In order to remove this ambiguity when integrating (2.29) over d4P ,
the Feynman contour rules should be used to circumvent the poles. First
we consider the “retarded” Green function defined by the condition

G
−
(x, x′) = 0 for x4 − x′4 < 0 . (2.33)

We then remark that the function (2.29) is not substantially modi-
fied, if multiplied by exp

[
− ǫ(x4 − x′4)

]
, where ǫ > 0,

G
−
exp

[
− ǫ(x4 − x′4)

]
= Gǫ , (2.34)

and it can thus be represented by

G
−
(x, x′) = lim

ǫ→0
Gǫ , (2.35)

and Gǫ is defined by (2.31), hence satisfies
[
∆− (∂t + ǫ)

2 −m2
0

]
Gǫ = − δ(x, x′) . (2.36)

In the momentum representation, when ǫ→ 0, we have

Gǫ =
1

m2
0 − (P 4 − iǫ)2 + P2

−→ 1

m2
0 − P 2 − 2iǫP4

, (2.37)



Patrick Marquet 183

and (2.31) takes the form

G
−
(x, x′) =

1

(2π)4

∫
exp [iP (x, x′)]

m2
0 − P 2 + 2iǫP 4

d4P . (2.38)

The same effect can be achieved if one integrates along the real axis
by shifting the poles by an infinitesimal mass of the particle in the
complex plane.

In the same way, the advanced Green function defined by

G
+(x, x′) = 0 , for x4 − x′4 > 0 , (2.39)

which satisfies (3.36), is of the form

G
+(x, x′) =

1

(2π)4

∫
exp(iPx)

m2
0 − P 2 + 2iǫP 4

d4P . (2.40)

The integral

G(x) =
1

(2π)4

∫
exp(iPx)

m2
0 − P 2

d4P (2.41)

can be taken over the principal value, upon being separated into real
and imaginary parts

1

x+ iǫP 4
=
P

x
− iπ δ(x)ǫ(P 4) , (2.42)

and we obtain

P

(2π)4

∫
exp(iPx)

m2
0 − P 2

d4P =
1

2
ǫ(x4)G(x) . (2.43)

Local bi-tensors on a four-dimensional manifold. Let us recall
that the simplest example of a bi-tensor is the product of two local
vectors taken at the different space-time points x and x′

Ak(x) and Ba(x
′) , (2.44)

Ck
a (x, x

′) = Ak(x)Ba(x
′) . (2.45)

We shall here adopt De Witt’s convention that indices taken from
the Latin characters a . . . k are always to be associated with the point x′

(denoted, from now, by z), while indices taken from k to y, are always
associated with the point x.

The transformation law for the bi-tensor (2.45) is given by

C′k
a =

(
∂x′k

∂xm

)(
∂zb

∂z′a

)
Cm

b . (2.46)
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The Dirac bi-scalar (2.13) extended to the Minkowski space is

δ(4)(x, z) = δ(x4−z4)δ(x1−z1)δ(x2−z2)δ(x3−z3) =
= δ(4)(z, x) , (2.47)

and is also called the bi-density.
We also define the geodesic interval bi-scalar s(z, x) by the invariant

gkm δks δms = gab∂as ∂bs = ±1 (2.48)
with

lim
x→z

s = 0 .

§2.2.3. Trajectory of a charged particle

World tube. Let us consider a particle describing a world line whose
point coordinate will always be denoted by z. We construct a small
sphere surrounding the particle. The energy-momentum flow will be
determined across the surface. In the course of time, such a sphere
generates a hypersurface called a world tube.

We begin by introducing, at the point z on the world line of the
particle, three unit vectors orthogonal to each other and to the world
line itself

na
αnβa = δβα , nαa ż

a = 0 . (2.49)

We next introduce a set of direction cosines ς satisfying

ςα ςα = 1 (2.50)

in terms of which we can specify the direction, relative to na
α, of an

arbitrary unit vector perpendicular to the world line at z.
Then, in the direction of this arbitrary vector, we construct a geo-

desic from z extending throughout a fixed distance ξ to a point x of the
“tube wall”. The coordinates at the point z depend on the direction
cosines ςα and on the proper time τ at this point, which is explicitly
expressed at the tube wall by the function xk(ς, τ).

Let us set up a bi-scalar σ related to the distance ξ as

σ =
1

2
ξ2,

whence
∂aσ = − ξnαa ς

α , (∂aσ) ż
a = 0 . (2.51)

A pair of independent variations δ1ςα, δ2ςα in the direction cosines
defines an element dΩ of solid angle by the relation

ςαdΩ = ǫαβγ δ1ς
β δ2ς

γ ,
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or in virtue of (2.51), we have

∂q∂aσδ3x
q = ςadξ ,

or

δ3x
q = −(Dqa)−1 ςadξ , Dqa = − ∂q∂aσ .

We define a “tube section” as

dSq = ǫqruw δ1x
r δ2x

u δ3x
w

and with ∆=−t−1 det ‖−Dqa‖, where t is the determinant (2.17), we
obtain

dSq = − 1

c
√−g ∆−1Dqa ż

a ξ2dξdΩ . (2.52)

§2.2.4. Dynamical equations for a particle

The conserved energy-momentum tensor. Let L denotes the sur-
face of the world tube limited by two sections of hypersurfaces S1 and
S2 corresponding to two proper times τ1 and τ2 (with τ1 < τ2).

We choose the integration volume d4x as a portion of the tube,
in order to express an integral conservation condition for the energy-
momentum bi-tensor density ℑqr.

However, one cannot integrate the divergence of ℑqr over the four-
volume (at x) d4x, to replace the volume integral by an integral over
the hypersurface Sr containing z, since Gauss’ theorem is not longer
applicable for a bi-tensor.

There is nevertheless a natural procedure to overcome this difficulty
by introducing the displacement bi-tensor taq in order to refer to the
contributions into the integral

Ia =

∫
(taq ∂rℑqr) d4r (2.53)

at the point x back to some fixed point z.
The latter integral becomes a local four-vector at z where

• xa corresponds to xq, and

• x′a corresponds to za.

Let us then consider the integral over S1, S2 and the volume ϑ, the
conservation condition for ℑab is then written down as

1

c

∫
(taq ∂rℑqr) d4x = 0 , (2.54)
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Integrating by parts

1

c

(∫

L

+

∫

S1

+

∫

S2

)
taq ℑqr dSr −

1

c

∫

ϑ

(∂rt
a
q)ℑqr d4x = 0 (2.55)

with zero contribution of the last integral, and considering the replace-
ment ∫

L

−→
∫ τ2

τ1

∫

4π

, (2.56)

we can write (2.55) in the limit ξ → 0, while taking (2.52) into account,

lim
ξ→0

1

c

∫ τ2

τ1

∫

4π

taqℑqrdSr +m0

[
tab′
(
z(τ ′), z(τ)

)
żb

′

(τ ′)
]τ ′=τ2

τ=τ1
−

−m0

∫ τ2

τ1

∂r′t
a
b′
(
z(τ ′), z(τ)

)
żb

′

żr
′

(τ ′) dτ ′ = 0 . (2.57)

The next step is to let τ1 and τ2 both approach τ , and denoting
their infinitesimal separation in the limit by dτ , we express the relation
(2.57) as follows

m0 z̈adτ = − lim
ξ→0

1

c

∫
taq ℑqrdSr . (2.58)

The geodesic principle is obviously given by

m0 z̈a = 0 . (2.59)

In the framework of the Euclidean approximation, when the parti-
cle’s trajectory is taken along x, the latter equation reduces to

m0
d2x

dτ2
= 0 . (2.60)

Chapter 3. Gravitational Damping

§3.1. Green functions on a curved manifold

§3.1.1. Scalar Green functions

Elementary solutions of J. Hadamard. In a non-Euclidean space,
the second derivatives of any vector or tensor are not equivalent

(DeDk −DkDe)A
h...
d... = −R

h···
·iekA

i...
d... − 2Γi

keDiA
h...
d... +R

i · ··
·dkeA

h...
i... . (3.1)

From the identities, the equations

−DeF
de = jd (3.2)
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read

−√−g gdhgekDe (DhAk −DkAh) =

=
√−g gekDeDkA

d −√−g DdDkA
k −√−g R

cdAc = − jd, (3.3)

and by fixing a gauge
DkA

k = 0 , (3.4)

we have √−g
(
gekDeDkA

d − R
dhAh

)
= − jd. (3.5)

Consider then the vector wave equation

gekDeDkA
d − R

dhAh = 0 . (3.6)

Following Hadamard, we shall try to find so called “elementary so-
lutions” corresponding to Green functions. We can then infer the par-
ticular solutions of (3.5).

The Feynman propagator. We first consider here the scalar wave
equation on a four-dimensional manifold

gdh∂d∂hA = 0 . (3.7)

Here, we find the elementary solution which is a bi-scalar having the
form

G
(1) =

1

(2π)2

(
u

ξ
+ b ln |ξ|+w

)
, (3.8)

where u, b, w are bi-scalars satisfying the normalization condition

lim
x→z

u = 1 . (3.9)

After some algebra, we show the validity of the equation

u−1∂du =
1

2
∆−1∂d∆ , (3.10)

which, with the boundary condition (3.9), has the unique solution

u =
√
∆ . (3.11)

Eventually we arrive at

lim
x→z

b =
1

12
G . (3.12)

Separating the full Green function GF into real and imaginary parts

G
F = G

(1) − 2iG , (3.13)
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where

G
F =

1

(2π)2

[ √
∆

(ξ + i0)
+ b ln(ξ + i0) +w

]
(3.14)

is identified with the Feynman propagator.
The formula (2.42) becomes

1

ξ + i0
=

p

ξ − πiδ(ξ)
(3.15)

and
ln (ξ + i0) = ln |ξ|+ πiǫ(−ξ) (3.16)

with the sign function such that

ǫ(ξ) = 0 for ξ < 0
and

ǫ(ξ) = 1 for ξ > 0 .

The scalar Green function corresponding to the bi-scalar b can be
computed as

G =
1

8π

[√
∆ δ(ξ)− bǫ(−ξ)

]
. (3.17)

§3.1.2. Vector Green functions

Hadamard solutions. Consider now the wave equation

ghkDhDkAd + R
·h
d· Ah = 0 . (3.18)

The procedure is entirely analogous to the above, thus we introduce
the elementary solution of the form

G
(1)
qa =

1

(2π)2

[
uqa

ξ + bqa
ln |ξ|+wqa

]
, (3.19)

where the functions uqa, bqa and wqa are now bi-vectors. Normalization
for uqa leads to

lim
x→z

uqa(x, z) = gqa(z)

and, after some algebra, we find

uqa =
√
∆ tqa . (3.20)

Making use of the extension, for the bi-vector bqa,

bqa = tqa

(
1− 1

12
R

be∂bσ∂eσ +O(s2)

)
(3.21)



Patrick Marquet 189

at the limit

lim
x→z

bqa = −1

2
tbq

(
Rab −

1

6
gabR

)
. (3.22)

The presence of the determinant (∆ symbol) in (3.20) reveals the
singular behaviour of the elementary waves originating from the point
z: this represents actually the so-called “thinning out” of these waves
due to the induced curvature.

The Feynman propagator. The full propagator is of the form

G
F

qa = G
(1)
qa − 2iG (3.23)

that is

G
F

qa =
1

(2π)2

[√
∆

tqa

(ξ + i0) + bqa
ln(ξ + i0) +wqa

]
. (3.24)

Advanced or retarded Green functions. We set

G
±

qa =

∫ √
t G

±

qr′ t
r′

a δ
(4)d4x′. (3.25)

The quantities G±

qa correspond to advanced and retarded portions
of the Green functions Gqa, whose components depend on two distinct
points x and z: they define a bi-vector.

If we consider an arbitrary space-like hypersurface S(x) containing
x, we regard “actions” as retarded when the source za lies to the past
of S, and advanced when the source za lies to the future of S. The
“symmetric” Green function is then

Gqa =
1

8π

[√
∆ tqa δ ξ − bqaǫ(−ξ)

]
, (3.26)

where the functions G can, just as in the flat-space case, be separated
into advanced and retarded parts

Gqa =
1

2

(
G

−

qa +G
+

qa

)
(3.27)

with

G
−

qa = 2ǫ(S, z)Gqa(x, z) , (3.28)

G
+

qa = 2ǫ(z, S)Gqa(x, z) , (3.29)

ǫ

[
S(x), z

]
= 1− ǫ

[
z, S(x)

]
= 1 ,

when z lies to the past of S, and vanishes when it lies to the future.
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§3.2. Dynamical equations for the electron

§3.2.1. Tensor density of the electromagnetic field

Energy-momentum field global tensor density. On an arbitrary
manifold, the approximated Lagrangian for a particle of mass m0 is

Lm = −m0c
2

∫ √
− gab ża żb δ

(4)dτ . (3.30)

The inferred massive tensor density of this particle with respect to
the proper time τ following the geodesic z(τ) is

M qr = m0c

∫ √
t tqa t

r
b ż

a żb δ(4)dτ . (3.31)

For an electron interacting with an electromagnetic field, the Lag-
rangian density becomes

L = −m0c
2

∫ √
− gab ża żb δ

(4)dτ +

+ e

∫
Aa ż

a δ(4)dτ − 1

16π

√−g FqrF
qr . (3.32)

The current vector density expressed with the charge density (1.7)
can be determined from the four-velocity ża at the point z, by parallel
displacement along the geodesic extending z to x

jq = e

∫ √
t tqa ż

a δ(4)dτ . (3.33)

The form of this density justifies the form of the second term in
(3.32), which corresponds to the classical electron-field interaction,
eAqj

q. Application of the least action principle to

S =
1

c

∫
Ld4x (3.34)

yields the dynamical equations

m0 z̈
a =

e

c
F a ·

·b ż
b, (3.35)

√
−g ∂rF qr =

4π

c
jq = ∂rF

qr. (3.36)

Given the current density jq, the tensor F a ·
·b appearing on the right

hand side of (3.32) is divergent, and this leads to the well-known diffi-
culty that the electron’s proper mass m0 is infinite, which must thereby
be renormalized.
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For reasons which will become clear later, we hereby proceed to
consider the tensor density of the whole system as

ℑab = (ℑab)mass + (ℑab)field + (ℑab)elec . (3.37)

Advanced or retarded potentials. According to Quantum Elec-
trodynamics, the particular solutions of equation (3.5) are the retarded
and/or advanced potentials

A
−

q (x) =
4π

c

∫
G

−

qr (x, x
′) j r

′

(x′) d4x′, (3.38)

A+

q (x) =
4π

c

∫
G

+

qr (x, x
′) j r

′

(x′) d4x′. (3.39)

Substituting the expressions of jq in the previous equations, we ob-
tain

A±

q = 4πe

∫ +∞

−∞
G

±

qa ż
adτ =

= ± e

∫ ±∞

τs

[
uqa δ ξ − bqaǫ(−ξ)

]
żadτ , (3.40)

where τS is the value of the proper time at the point of intersection
of the world line of the particle with an arbitrary hypersurface S(x)
containing x.

Defining the advanced and retarded proper time of the particle rel-
ative to the point x, τ±, we obtain the advanced and retarded poten-
tials as

A±

q = ∓ e
[√

∆ tqa ż
a
(
żb∂b ξ

)−1
]

τ=τ±
∓ e

∫ ∞

τ±

bqa ż
adτ . (3.41)

These are the covariant Liénard-Wiechert potentials. For flat space-
time these potentials obviously reduce to the form (1.12).

Retarded and advanced fields. From the potentials defined above,
we define the corresponding proper fields

F±

qr = ∂qA
±

r − ∂rA
±

q . (3.42)

The total field can be expressed in the alternative forms

Fqr = (Fqr)
in + F

−

qr = (Fqr)
out + F+

qr , (3.43)

where in and out mean the incoming field and the outgoing field, re-
spectively.
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Defining the average field

〈Fqr 〉 =
1

2

(
F

−

qr + F+

qr

)
, (3.44)

we write the total field in terms of the average free non-radiative field

Fqr = 〈(Fqr)
free 〉+ 〈Fqr 〉 (3.45)

with
〈(Fqr)

free 〉 = 1

2

[
(Fqr)

in + (Fqr)
out
]
. (3.46)

The field strengths can be explicitly written as

F±

qr = ∓ e
{
(ura∂qξ − uqa∂rξ) ż

a (żb że∂b∂eξ + z̈b∂bξ)(ż
d∂dξ)

−3 −

−
[
∂b(ura∂qξ − uqa∂rξ) ż

a żb + (ura∂qξ − uqa∂rξ) z̈
a
]
(że∂eξ)

−2 +

+ (∂qura − ∂ruqa + bra∂qξ − bqa∂rξ)ż
a(∂bξ ż

b)−1
}

τ=τ±
∓

∓ e

∫ ±∞

τ±
fqra ż

adτ +O(ξ) , (3.47)

where
fqra = (∂qbra − ∂r bqa) . (3.48)

§3.2.2. Global damping

Energy-momentum tensor density. We consider the energy-
momentum tensor density ℑab =(ℑab)mass +(ℑab)field +(ℑab)elec (3.37)
of the system at the point x. Thus (here O vanishes when ξ → 0),

1

c
taq ℑqrdSr =

1

4πc

√
−g

[
taq
(
〈F q ·

·s 〉〈F rs 〉+ 〈(F q ·
·s)

free 〉〈F rs 〉+

+ 〈F q ·
·s 〉〈(F rs)free 〉

)
dSr −

(
1

4
〈Fst 〉〈F st 〉+ 1

2
〈(Fst)

free 〉〈F st 〉
)
×

× tqa dSq

]
+

1

c
taq (ℑqr)field +O (ξ) . (3.49)

Avoiding the mass renormalization. Reverting to the result in-
ferred in the present theory, we integrate (3.49) according to

1

c

∫

4π

taqℑqrdSr =

[
e2

2ǫc2
z̈a − e2

c
żb
∫ +∞

−∞
fa · ·
·be′ ż

e′τ ′dτ ′ −

− e

c
〈(F a ·

·b )
free 〉 żb

]
dτ +

1

c

∫

4π

taq (ℑqr)field dSr +O (ξ) , (3.50)
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where z̈a is a function of the electromagnetic field.

In this equation, we must get rid of the term e2

2ξc2
z̈a which is diver-

gent. This term has the same kinematical structure as the mass term
in (2.58). Therefore, we renormalize the mass as follows

m = m0 + lim
ξ→0

e2

2ξ c2
(3.51)

and (2.58) reads now

mz̈a =
e

c
〈(F a ·

·b )
free 〉 żb + e2

2c
żb
∫ +∞

−∞
fa · ·
·be′ ż

e′dτ ′. (3.52)

By setting

z̈a
e2

2ξ c2
dτ = −1

c

∫

4π

taq (ℑqr)field dSr , (3.53)

we remark that the renormalization is no longer required, which gives
a better physical consistency to the present theory. This particular
circumstance tends to lend support to the existence of free gravitational
fields predicted by the EGR theory.

In the absence of charge, we obtain the well-known inertia law

m0 z̈
a = 0 . (3.54)

As outlined by De Witt and Brehme [3], for purposes of application
to physically set boundary conditions, it is more appropriate to deal
with the “incoming” field (Fab)

in

m0 z̈
a =

e

c
(F a ·

·b )
in żb +

2

3

e2

c3

(
...
z a − ża ż2

c2

)
+

+
e2

c
żb
∫ r

−∞
fa · ·
·be′ ż

e′dτ . (3.55)

On the right hand side, one recognizes the first two terms of the
relativistic equation (1.23), bearing in mind that the derivatives are
covariant here, while keeping the proper mass m0 on the left hand side.

The third term determined by baq of the Green function is the “tail”
due to the space-time curvature and radiation damping occurs even
when (F a ·

·b )
in vanishes.

Concluding remarks

Let us stress some important points about the “tail” term:

• It is spanned by Rab, which are built with the general connection
coefficients (2.2): Γ= { } +(Γ)J as defined by the EGR theory;



194 The Abraham Zelmanov Journal — Vol. 2, 2009

• We thus have implicitly assumed that the elementary solutions
of Hadamard and subsequent relations hold within the suggested
extension of the GR theory.

Upon this assumption, it is clearly shown that, with the introduction
of the related persistent free field, one no longer requires a negative
external mass, thus avoiding an unphysical “pathology” found in the
Riemannian theory.

In the Euclidean approximation, the third term (3.55) vanishes any-
way and the formula (1.23) is recovered.
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Abstract: In this paper, we first recall the quantum theory of Louis
de Broglie which attempted to give the usual wave function a real and
truly physical nature, and which is closely associated to a massive
particle. The resulting Double Solution Theory is then interpreted in
terms of a physical fluid described in the framework of the Extended
General Relativity Theory (EGR theory) approximation. This ap-
proach may provide an explanation to the problem arising from the
“hidden” medium as set forth by the initial theory.
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Introduction

The original wave function first discovered by Louis de Broglie [1] in his
famous Wave Mechanics Theory is always acknowledged as a statistical
entity. Its physical meaning was almost totally denied in all subsequent
quantum field developments despite the Davisson and Germer experi-
ment, which actually detected the wave through diffraction of electrons
by a nickel crystal lattice.

This problem dates back from the Solvay Symposium of 1927 in
Brussels, when most of the physicists decided to adopt the so-called
Copenhagen School Concept of considering quantum physics on pure
statistical grounds. Throughout the remainder of his life, de Broglie yet
could not believe observable physical phenomena to only follow from
abstract mathematical wave functions.

In the late 1960’s, he improved his first theory called the double so-

lution interpretation of Quantum Mechanics, which describes a particle
as closely related to its physical wave and constantly in phase with it.
The theory is extremely simple and elegant, but to remain consistent,
it requires two constraints:

• The guided particle should permanently exchange energy and mo-
mentum from an external (unknown) medium which he named
“hidden thermostat”;

• In addition, the considered particle should also undergo small
energetic random perturbations.

In the past decades, many interesting theories have been provided for
explaining the nature of this “sub-quantum” medium, which is assumed
to exchange energy and momentum at the quantum level.

In this paper, we suggest to identify this “energy background” with
the persistent field of the EGR theory. The hydrodynamic interpreta-
tion for the particle’s probability density as depicted by de Broglie, is
here given with physical consistency.

Chapter 1. Interpretation of Wave Mechanics by Means of
Louis de Broglie’s Theory of Double Solution

§1.1. The reasons for implementing the theory

For almost a century, the wave-particle duality first discovered by Ein-
stein, in his theory of light quanta, has been the basis of present day
Quantum Physics. As an essential contribution, the wave mechanics
theory of Louis de Broglie has successfully extended this duality to all
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known particles. Shortly after, de Broglie further developed the Double
Solution Theory based on two striking observations.

In the framework of the Special Theory of Relativity, it is noticed
that the frequency ν0 of a plane monochromatic wave is transformed as

νc = ν0
√
1− β2 ,

while a clock’s frequency ν0 is transformed according to

νc =
ν0√
1− β2

with the phase velocity

ṽ =
c

β
=
c2

v

.

It is noticed that the four-vector defined by the gradient of the plane
monochromatic wave can be linked to the energy-momentum four-vector
of a particle by introducing Planck’s constant h, thus writing

W = hν , λ =
h

p
, (1.1)

where p is the particle’s momentum and λ is its wavelength.
If the particle is considered as containing the rest energy

M0 c
2 = hν0 ,

we may compare it to a small clock of a frequency ν0 so that when
moving with a velocity v= β c, its frequency, different from that of the
wave, is then

νc = ν0
√
1− β2 .

It can be further shown that the particle has an internal vibration
which is constantly in phase with the vibration of the surrounding wave.

In the spirit of the theory, the wave is regarded as a physical entity
having a very small amplitude which cannot be arbitrarily normed, and
which is distinct from the wave ψ having a statistical significance in the
usual quantum mechanical formalism.

Let us call ϑ the physical wave which is connected to the wave ψ
by the relation ψ = Cϑ, where C is a normalizing factor. The wave
ψ has then the nature of a subjective probability representation formu-
lated by means of the objective wave ϑ. Therefore, the wave mechanics
is complemented by the Double Solution Theory, so ψ and ϑ are two
solutions of the same equation.

If the complete solution of the equation representing the wave ϑ, or,
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if preferred, the wave ψ (since both waves are equivalent according to
ψ=Cϑ) is written as

ϑ = a(x, y, z, t) exp

[
i

~
φ(x, y, z, t)

]
, ~ =

h

2π
, (1.2)

where a and φ are real functions, the energy W and momentum vector
p of the particle localized at point x, y, z at time t are given by

W = ∂tφ , p = −gradφ , (1.3)

which in the case of a plane monochromatic wave, where one has

φ = h

[
ν t− (αx+ βy + γz)

λ

]
,

yields equation (1.1) for W and p.

§1.2. The guidance formula and the quantum potential

Taking Schrödinger’s equation for the scalar wave phase ϑ in the exter-
nal potential U , we get

∂tϑ =
~

2im
∆ϑ+

i

~
Uϑ . (1.4)

This complex equation suggests that ϑ should be represented by two
real functions linked by two real equations, leading to

ϑ = a exp
iφ

~
, (1.5)

where a (the wave’s amplitude) and φ (its phase) are both real val-
ues. Taking this value into equation (1.4), we arrive at two important
equations

∂tφ− U − 1

2m
(gradφ)

2
=

~

2m

∆a

a
, (1.6)

∂ta
2 − 1

m
div
(
a2 gradφ

)
= 0 . (1.7)

If terms involving Planck’s constant ~ in equation (1.6) are neglected
(which amounts to disregarding quanta), and if we set φ=S, this equa-
tion becomes

∂tS − U =
1

2m
(gradS)

2
. (1.8)

As S is the Jacobi function, equation (1.8) is the Jacobi equation of
Classical Mechanics. Only the term containing ~2 is responsible for the
particle’s motion being different from the classical motion.
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It can be interpreted as another potential Q, distinct from the clas-
sical potential U ,

Q = − ~2

2m

∆a

a
. (1.9)

One has thus a variable proper mass

M0 = m0 +
Q0

c2
,

where, in the particle’s rest frame, Q0 is a positive or negative variation
of the rest mass, and it represents the “quantum potential” which causes
the wave function’s amplitude to vary.

By analogy with the classical formulae ∂tS=E and p=−gradS,
with E and p being the classical energy and momentum vector, one
may write

∂tφ = E , p = −grad φ . (1.10)

As in non-relativistic mechanics, where p is expressed as a function of
velocity by the relation p=mv, one eventually finds the following result

v =
p

m
= − 1

m
gradφ , (1.11)

which is the guidance formula; it gives the particle’s velocity, at point
x, y, z and time t as a function of the local phase variation at this
point. Inspection shows that relativistic dynamics applied to the vari-
able proper mass M0 eventually leads to the following result

W =
M0 c

2

√
1− β2

=M0 c
2
√
1− β2 +

M0v
2

√
1− β2

, (1.12)

known as the Planck-Laue formula.
In the relativistic form of the theory, equation (1.4) is replaced by

the Klein-Gordon equation applied to the wave function ϑ

2ϑ− 2i

~

eV

c2
∂tϑ+

2i

~

e

c

∑

xyz

Ax ∂xϑ+

+
1

~2

[
m2

0 c
2 − e2

c2
(
V 2 −A2

)]
ϑ = 0 , (1.13)

where the particle’s charge e is acted upon by an electromagnetic field
with a scalar potential V (x, y, z, t) and a vector potential A(x, y, z, t).
Note that the d’Alembertian, as usual, is

2 =
1

c2
∂2

∂t2
−∆ .
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Inserting equation (1.5) into equation (1.13) yields the generalized
Jacobi equation (1.14) as well as another continuity equation (1.15)

1

c2
(∂tφ− eV )2−

∑

xyz

(
∂tφ+

e

c
Ax

)2
= m2

0 c
2+~

22a

a
=M2

0 c
2, (1.14)

1

c2
(∂tφ− eV ) ∂ta−

∑

xyz

(
∂xφ+

e

c
Ax

)
∂xa+

a

2
2φ = 0 , (1.15)

where on the right hand side of (1.14) we have introduced a variable
proper mass M0 defined by

M0 =

√
m2

0 +
~2

c2
2a

a
. (1.16)

Neglecting the terms in ~2, equation (1.14) leads to

1

c2
(∂tS − eV )

2 −
∑

xyz

(∂xS + eAx)
2
= m2

0 c
2, (1.17)

which is the Jacobi equation for a charged particle moving in an elec-
tromagnetic field with scalar and vector potentials V and A, and con-
sidered in the framework of relativistic mechanics without quanta.

Keeping the terms in ~2 and considering the proper mass M0 as
defined in equation (1.16), one gets

M0 c
2

√
1− β2

= ∂tφ− eV,
M0v√
1− β2

= − (gradφ+ eA) , (1.18)

thus, with β = v

c , we find the relativistic guidance formula

v = −c
2 (gradφ+ eA)

∂tφ− eV
. (1.19)

For the Newtonian approximation with A=0 and ∂tφ− eV ∼=m0c
2,

equation (1.11) is found again.
Here, the quantum force results from the variation of M0c

2 as the
particle moves. For a monochromatic wave, the quantum potential is
constantly zero, and one simply has

Q =M0 c
2 −m0 c

2. (1.20)

In the non-relativistic approximation, c→∞ and 2a∼=−∆a.
Therefore we obtain

Q =

√
m2

0c
4 + c2~22a

a
∼= − ~2

2m0

∆a

a
. (1.21)
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§1.3. Particles with internal vibration and the hidden thermo-
dynamics

The idea of considering the particle as a small clock is of central im-
portance here. Let us look at the self-energy M0c

2 as the hidden heat
content of a particle. One easily conceives that such a small clock has (in
its proper system) an internal periodic energy of agitation which does
not contribute to the momentum of the whole. This energy is similar
to that of a heat-containing body in a thermal equilibrium. Let Q0 be
the heat content of the particle in its own (resting) frame, and viewed
in a frame where it has a velocity βc. The contained heat in the second
frame will be

Q = Q0

√
1− β2 =M0 c

2
√
1− β2 = hν0

√
1− β2 . (1.22)

The particle thus appears at the same time as being a small clock
of a frequency

ν = ν0
√
1− β2

and a small reservoir of a heat

Q = Q0

√
1− β2

moving with the velocity βc.
If φ is the phase of the wave a exp iφ

~
, where a and φ are real, the

guidance theory states that

∂tφ =
M0 c

2

√
1− β2

, − gradφ =
M0v√
1− β2

, (1.23)

so the Planck-Laue equation can be written as

Q =M0 c
2
√
1− β2 =

M0 c
2

√
1− β2

− vp . (1.24)

Combining (1.23) and (1.24) results in

M0 c
2
√
1− β2 = ∂tφ+ v gradφ =

dφ

dt
.

Since the particle is regarded as a clock of a proper frequency M0c
2

h
,

the phase of its internal vibration expressed by ai exp
iφi

~
, with ai and

φi real values, will be

φi = hν0
√

1− β2 t =M0 c
2
√
1− β2 t ,

thus
d (φi − φ) = 0 . (1.25)
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The fundamental result agrees with the assumption according to
which a particle, as it moves in its own wave, remains constantly in
phase with it.

§1.4. The equations of continuity

The equations of continuity are (1.7) and (1.15). First we revert to
equation (1.7)

∂ta
2 − 1

m
div
(
a2 gradφ

)
= 0 .

Making use of the guidance law (1.11) and setting ρ=Ka2, where
K is a constant, equation (1.7) becomes

∂t ρ+ div(ρv) = 0 . (1.26)

In hydrodynamics, this equation represents the continuity equation.
The quantity ρdτ is the number of the fluid’s molecules in the volume
element dτ moved with the velocity v.

We denote by D
dt

the derivative taken along the direction of motion
of the molecules. The expression

D (ρdτ)

dt
= 0

then expresses the conservation of the fluid.
With a normalization factor, ρdτ = a2 (x, y, z, t) dτ is here assumed

to be the probability of finding a single particle at time t in the volume
element dτ , at x, y, z.

As the statistical wave ψ solution of the linear equation is purely
virtual, it can be defined as everywhere proportional to the real wave ϑ,
and so we may set ψ=Cϑ, where C is the normalization factor chosen
so as to satisfy ∫

|ψ|2 dτ = 1 .

Chapter 2. The Random Perturbation in the Framework of
the EGR Theory

§2.1. The physical requirement

With the simple hydrodynamic picture (1.26), and with the constant
K taken to be 1, it is assumed that a2 (xa) = ρ multiplied by dτ gives,
with a normalizing factor, the probability of finding a single particle
in the volume element dτ , which is the absolute value of the statistical
wave

∫ ∣∣ψ2
∣∣ dτ .
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This hydrodynamic model is however not adequate by itself for it
contains nothing to describe the actual location of the particle: by ex-
amining a simple quantized state of a hydrogen atom, inspection shows
that the guidance formula for the electron gives v=0, which makes
equation (1.26) irrelevant.

We may however circumvent this difficulty by considering a random
perturbation of Brownian character superimposed onto the guided mo-
tion. In that case, the particle’s regular motion obeying the guidance
law should be subjected to a slight random influence of hidden origin,
so as to switch from one guided trajectory to another.

The “main” trajectory would then appear as a “mean-valued mo-
tion”.

Such a concept was brought forward by Bohm and Vigier [1] who
referred to this invisible “thermostat” as the “sub-quantum medium”.
Referring to the same interpretation of the continuity equation (1.26),
they showed that when random fluctuations would perturb the density
ρ, a systematic tendency must exist for fluid elements to move to certain
regions in such a way as to maintain the stability of the mean density ρ.

This tendency may find its origin in a kind of pressure which tends
to correct the deviation.

A good example is a gas in a gravitational field in which the pres-
sures automatically adjust themselves to maintain a local mean density
close to

ρ = ρ0 exp
(
−mgz

KT

)
,

where g is the acceleration of the force of gravity, and K is Boltzmann’s
constant.

It should be stressed however, that the suggested medium does not
serve as a universal reference system.

§2.2. The EGR picture

The velocity of light c will be taken here to be equal to 1.
When V =0 and A=0, in a Riemannian situation, the relativistic

continuity equation (1.15) may be conveniently generalized as

(
gbc ∂bφ

)
∂c a+

1

2
a2Riem φ = 0 , (2.1)

where 2Riem= gbc∇b∇c.
In the framework of the Riemannian relativistic hydrodynamics, the

classical continuity equation (1.26) for a neutral mass density ρ is

∇a (ρu
a) = 0 , (2.2)
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where the unit velocity ua = dxa

ds
obeys

gab u
aub = gabuaub = 1 .

If we define the “guidance lines” by the differential equations (in the
absence of external potentials)

gbc ∂c φ = ub,

where ub generalizes the three-spatial guidance velocity v defined by the
equation (1.19), which characterizes the flow lines of the fluid of proper
density ρ

v = v
β =

uβ

u4
. (2.3)

To maintain the form given by (1.26) it is easy to see that we must set

ρ = a2u4 (2.4)

and, taking into account (1.19), we obtain

ρ = a2 (− ∂tφ) , (2.5)

with the space-time signature (−+++).
To apply the generalized equation (2.2), we must start from the

tensor
Tab = a2uaub (2.6)

and the equations
ua∇aub = 0 , (2.7)

which are a differential systems satisfied by the flow lines, which ex-
presses that those lines are geodesics of the Riemannian metric ds2.

Following now the above example of a pressurized gas, we consider
a neutral perfect fluid whose well-known tensor is

Tab =
(
a2 + P

)
uaub − P gab (2.8)

with a prescribed equation of state a2 = f(P ).
Equation (2.7) takes the form in a holonomic frame

u̇b = hab ∂
aU , (2.9)

(here hab = gab −uaub is the projecting tensor) with

U =

∫ P2

P1

1

a2 + P
dP .
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The quantity u̇b represent the acceleration of the flow lines satisfying
the differential system (2.9). Those flow lines are everywhere tangent
to the four-unit vector uc.

The differential system (2.9) is also written as

ua∇aub − ∂a (Uh
a
b ) = 0 . (2.10)

In this case, the continuity equation becomes now

∇b (a
2ub)− a2ub∂bU = 0 . (2.11)

By doing so, our final aim is to put in evidence a “perturbed” density
ã2, while keeping the usual classical form

∇b (ã
2ub) = 0 . (2.12)

A rigorous demonstration of Lichnérowicz [3] states, concerning the
aforementioned flow lines, that:

“. . . the flow lines satisfying the differential system∗ u̇b =hab ∂
aU

are geodesics of the metric

ds2 ′ = e2Uds2

conformal to the Einstein metric ds2.”

In other words, the presence of an internal pressure P readily induces
a conformal factor (here e2U ), which is referred to as the fluid index.

Let us now introduce ∇′ as the covariant derivative operator of the
conformal metric ds2 ′. We also define the “current vector” Ca of the
considered fluid, whose components are

Ca = eUua.

The current vector C ′ of ds2 ′ has covariant components defined by

C ′
a = Ca ,

so as to remain unitary in the new metric

gab′ C ′
aC

′
b = e−2Ugab (eUua)(e

Uub) = 1 .

The contravariant components of the vector C ′ are

Ca′ = gab ′ Cb = e−Uua.

∗The equation u̇b =hab ∂
aU quoted by Lichnérowicz is given by formula (2.9) of

this paper. — P.M.
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Inspection shows that these flow lines are geodesics of ds2 ′, accord-
ing to

Ca′ ∇′
a C

b ′ = 0 , (2.13)

which are fully equivalent to equations (2.10).
Likewise, the continuity equation (2.11)

∇a (a
2ua)− a2ua∂aU = 0

must coincide with the one describing the fluid density ã2

∇′
a (ã

2Ca′) = 0 , (2.14)

which amounts to the recognition that the perturbation exerted on the
fluid density ã2, i.e. the pressure P , is implicitly described by the con-
formal derivative ∇′

{
d
ab

}′
=
{
d
ab

}
+
(
δdb ∂aU + δda ∂bU − gab∂

dU
)
.

However, a conformal metric is not suitable for describing the phys-
ical influence of an external medium which is defined in the initial ds2.

This model has nevertheless an interesting virtue: following the same
pattern, we will see that it is possible to build a plausible representation
in the framework of the EGR theory.

§2.3. The influence of the metric fluctuations

In the extended formulation of General Relativity, the EGR theory [4],
we may establish a continuity equation analogous to (2.14)

Da (ã
2uaEGR) = 0 , (2.15)

where the four-velocity uaEGR has the form defined in the EGR theory [4].
We suggest the following interpretation. The fluctuating density ã2

is related to the general connection defined in the EGR theory

Γd
ab =

{
d
ab

}
+
(
Γd
ab

)
J
=
{
d
ab

}
+

1

6

(
δda Jb + δdb Ja − 3gabJ

d
)
.

Unlike the conformal metric, which does not present a physical sig-
nificance, the EGR theory provides a consistent scheme which enables
to consider a one-to-one influence from an external medium manifestly
represented by the “residual field” T ab

field.
The “approximated” Riemannian continuity equation defined in the

metric ds2, which generalizes (2.12), should be written

∇a

(
〈ã2〉ua

)
= 0 . (2.16)
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The density a2 in the Riemannian continuity equation would then
appear as a mean value of the “instant” fluctuating density ã2 of the
fluid, which actually obeys the equation (2.15) on the very small scale.

According to the EGR postulate, like for elementary particles, the
Double Solution Theory is always considered in the framework of the
dominant Riemannian geometry.

Bearing this in mind, remember that the wave ϑ is a physical en-

tity, and so is the amplitude a, therefore the relativistic hydrodynamics
applied here is fully legitimate.

Within the EGR theory, the Riemannian part of the “residual field”
at its lowest level (but not vanishing) supplies the energy background
(“thermostat”) required by de Broglie’s theory, and the small random
disturbances are directly related to the covariant fluctuations of the
metric through the non-Riemannian part of the persistent field.

Concluding remarks

As a concluding remark, let us stress that in this study we have made
use of non-linear considerations, as we should in General Relativity, in
accordance with de Broglie’s ideas.

Francis Fer [5] has constructed a non-linear equation corresponding
to the equation (1.13), and showed that in this general case, the rela-
tivistic continuity equation (2.1) defined in a Minkowski space remains
unaffected. This remarkable result lends support to the aforementioned
interpretation based on the EGR theory.
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Abstract: This study applies the mathematical method of chrono-
metric invariants, which are physically observable quantities in the
four-dimensional space-time (Zelmanov A. L., Soviet Physics Doklady,
1956, vol. 1, 227–230). The isotropic region of the space-time is consid-
ered (it is known as the isotropic space). This is the home of massless
light-like particles (e.g. photons). It is shown that the isotropic space
rotates with a linear velocity equal to the velocity of light. The rota-
tion slows in the presence of gravitation. Even under the simplified
conditions of Special Relativity, the isotropic space still rotates with
the velocity of light. A manifestation of this effect is the observed
Hubble redshift explained as energy loss of photons with distance, for
work against the non-holonomity (rotation) field of the isotropic space
wherein they travel (Rabounski D. The Abraham Zelmanov Journal,
2009, vol. 2, 11–28). It is shown that the light-speed rotation of the
isotropic space has a purely geometrical origin due to the space-time
metric, where time is presented as the fourth coordinate, expressed
through the velocity of light.
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This presentation is dedicated to Hermann Minkowski (1864–1909),
on the 100th anniversary of his publication of “Raum und Zeit”.

§1. Foreword. When I presented Hubble Redshift due to the Global

Non-Holonomity of Space∗ [1], the scientific community asked: Why do
you believe that the isotropic space (the home of photons) rotates with

∗The presentation was also delivered, in two parts, at Meetings of the Ameri-
can Physical Society, held in Spring, 2009 [2, 3]. A brief account of the study was
preliminary published in [4].
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the velocity of light, and what are its foundations in the basic space-time
geometry?

Naturally, this question is not trivial, and cannot be answered in
brief. I therefore decided to provide the answer, in detail, in this special
presentation.

This problem will be considered in the framework of both General
Relativity and Special Relativity. In both cases, it will be observed
that the sign-alternating structure of the space-time metric, where time
is presented as the fourth coordinate x0= ct, expressed through the
velocity of light, is solely responsible reason for the ligh-speed rotation
of the isotropic space. Now, I have to offer all the explanations to the
attention of readers.

§2. A short explanation of the isotropic space. First of all we
need to give a short explanation of the isotropic space and of its origin
in the geometric structure of space-time.

The basic space-time of the General Theory of Relativity is a four-
dimensional pseudo-Riemannian space, with the signature (−+++) or
(+−−−). This is one member of the family of Riemannian spaces, the
metric spaces where the square of distance between any two infinitely
close points is set up by the square form ds2= gαβ dx

αdxβ . This form is
invariant along all the space (that also is specific to Riemannian spaces).
Due to invariance of the metric, the length of any n-dimensional vec-
tor Qα, being transferred in parallel to itself in a Riemannian space of
n-dimensions, remains unchanged: QαQ

α= gαβ Q
αQβ= const. This is

known as Levi-Civita parallel transfer, due to Tullio Levi-Civita, and is
specific to Riemannian spaces. The kind metric ds2= gαβ dx

αdxβ= inv
is referred to as a Riemannian metric, in memory of Bernhard Riemann
who introduced it in the 1850’s. The prefix “pseudo” means a class of
Riemannian spaces, where the metric is sign-alternating. In this case,
algebraically, the diagonal components gαα of the fundamental met-
ric tensor gαβ do not bear the same sign. Geometrically, this means
that two types of coordinate axes are present in the space: the axes
of real coordinates (the “plus” sign in the diagonal components) and
the axes where coordinates are imaginary (the “minus” sign). Pseudo-
Riemannian spaces were introduced in 1908 by Hermann Minkowski,
who first considered a particular case of these, having four dimensions,
wherein one axis is imaginary and three other axes are real, or, alter-
natively, one axis is real while the other three are imaginary∗. So, the

∗In a general case, pseudo-Riemannian spaces can have any number of dimen-
sions, with any combinations of positive and negative signs in the signature.
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signature of the space metric is (−+++) or (+−−−), respectively. Thus,
Minkowski emphasized time as a coordinate axis x0= ct, which is seg-
regate from three axes of the spatial spread. Historically, he studied
a highly simplified case, where the space metric can be reduced, by
transformation of the coordinates, to a simplest diagonal form, where
gαα= {−1,+1,+1,+1} or {+1,−1,−1,−1}, and the non-diagonal com-
ponents of gαβ are zero. This is the basic space-time of the Special The-
ory of Relativity. In this case, the Riemann-Christoffel curvature tensor
is zero, so the space is non-curved as can be illustrated by a pile of flat
spatial sections (three-dimensional spaces) threaded up onto the time
axis. This simplified case of the four-dimensional pseudo-Riemannian
space is known as Minkowski’s space. This, however, differs from a four-
dimensional pseudo-Euclidean space, which also is non-curved, but all
spatial coordinates are homogeneous therein (the unit coordinate marks
are uniformly distributed along the coordinate axes). In contrast, the
spatial coordinates can be inhomogeneous in Minkowski’s space, pro-
ducing some forces therein.

The four-dimensional pseudo-Riemannian space is not a “monolite”
single spread as a sign-definite metric space. Due to its sign-alternating
metric, it is presented with two segregate spreads:

a) The non-isotropic space (space-time), where the time interval and
the spatial interval always differ from each other. As such, ds2 6=0
and any world-vector’s length is QαQ

α= const 6=0 in the space.
Thus, this is the home for mass-bearing particles (such a particle,
being characterized with the world-vector Pα=m0

dxα

ds
, has a non-

zero rest mass PαP
α=m0= const 6=0).

b) The isotropic space (space-time), where the time interval and the
spatial interval have the same length. As such, the space-time
interval is always zero (ds2=0). Any world-vector of the isotropic
space has zero length (QαQ

α= const=0). The isotropic space
particles are characterized with the world-vector Pα= m

c
dxα

dτ
, ex-

pressed through the relativistic mass m and the observable time
interval dτ . They have zero rest mass (PαP

α= const=0), but
non-zero relativistic mass and energy according to E=mc2. All
isotropic space particles move at the velocity of light. Thus, these
are massless light-like particles, e.g. photons.

This terminology, “non-isotropic” and “isotropic”, does not seem to
be very successful when being applied to the space-time regions. This
is because, for a physicist, the terms mean something different than in
the geometry of pseudo-Riemannian spaces. A physicist, when hearing
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that something (space or medium) is non-isotropic, thinks about the
presence of a preferred direction in it. Conversely, the absence of a
preferred direction is regularly understood as isotropy. Relativists and
mathematicians refer to a space region as isotropic if ds2=0 therein, so
the length of any world-vector is zero: the vector is equally targeting all
four-dimensional directions. On the other hand, spatial vectors of the
isotropic space, having one dimension lesser than the four-dimensional
space itself, are not world-vectors therein. The vectors have surely non-
zero lengths, and target their specific spatial direction. That is, the term
“isotropic” is attributed to the four-dimensional space (space-time) of
photons, but is unrelated to the three-dimensional space where photons
travel (it can be isotropic or anisotropic, depending on the particular
physical conditions in it).

I, and the relativists in general, adhere to this terminology, because
it is well accepted in the scientific literature on the space-time geometry
and the theory of relativity.

§3. The light-speed rotation. We are going to consider the iso-
tropic space from the viewpoint of a regular observer, whose home is
the non-isotropic space filled with mass-bearing particles. Thus, his
reference body is a rigid physical body over which a real (deformed)
coordinate net is spanned, and real clocks are located on its surface. To
find physical quantities, registered by the observer, we should project
the four-dimensional quantities onto the time line and coordinate net of
his body of reference. This problem was resolved, in 1944, by Abraham
Zelmanov. His mathematical apparatus of chronometric invariants [5–7]
targets physically observable quantities for a regular observer at rest
with respect to his body of reference.

In particular, the theory introduces the chronometrically invariant
(physically observable) intervals of time and the spatial coordinates as
the projections of the interval of the four-dimensional coordinates dxα

onto the observer’s time line and the spatial section. The observable spa-
tial coordinates meet the regular three-dimensional coordinates, while
the physically observable time interval

dτ =
√
g00 dt+

g0i
c
√
g00

dxi =
√
g00 dt−

1

c2
vidx

i (3.1)

depends on the gravitational potential w= c2 (1−√
g00) and the linear

velocity of rotation of the observer’s three-dimensional space

vi = − c
g0i√
g00

. (3.2)
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The chronometrically invariant metric tensor

hik = − gik +
g0i g0k
g00

= − gik +
1

c2
vi vk , (3.3)

obtained as the spatial projection of the fundamental metric tensor gαβ ,
gives the chronometrically invariant (observable) spatial interval

dσ2 = hik dx
idxk. (3.4)

Due to these formulae, the space-time interval ds2= gαβ dx
αdxβ is

expressed through the observable time interval and the observable spa-
tial interval as

ds2 = c2dτ2 − dσ2, (3.5)

that is true in the space-time of General Relativity, because the ob-
servable quantities, dτ and dσ, take all components of the fundamental
metric tensor gαβ into account. This is in contrast to the analogous for-
mula of Special Relativity, ds2= c2dt2− dx2− dy2− dz2, which assumes
that only the diagonal terms of gαβ are non-zero, and are units.

Now, I show how rotation of the isotropic space can be easily found
with use of the mathematical method of physically observable quantities
(chronometric invariants).

Two physical conditions specific to the isotropic space,

ds2 = 0 , c2dτ2 = dσ2 6= 0 , (3.6)

were highlighted in §2∗. These conditions set that the time spread and
the spatial spread meet each other everywhere in the isotropic space.

Time and regular three-dimensional space can meet each other in
terms of the linear velocity of rotation of the space, according to the
definition of the velocity (3.2).

This can be visualized by introducing a locally geodesic frame of
reference in the point of observation (where the observer is located).
The main advantage of such a reference frame is that it is the same,
within infinitesimal vicinities of the point of observation, for all other
regions of the space (space-time)†.

∗The second condition, c2dτ2= dσ2 6=0, is stronger. This is because the first,
ds2= c2dτ2− dσ2=0, includes also the fully degenerate case c2dτ2= dσ2=0, which
means something out of the isotropic space due to the full degeneration of the ob-
servable time durations and the observable lengths.

†Locally geodesic coordinates and reference frames rise from Riemann’s pioneer-
ing studies, and are much explained in the scientific literature. For instance, see §7
of Petrov’s Einstein Spaces [8].
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Within infinitesimal vicinities of any point of such a reference frame
the fundamental metric tensor is

g̃αβ = gαβ +
1

2

(
∂2g̃αβ
∂x̃µ∂x̃ν

)
(x̃µ − xµ)(x̃ν − xν) + . . . , (3.7)

i.e. its components g̃αβ at a point, located in the vicinities, are different
from gαβ at the point of observation to within only the higher order
terms, which can be neglected. Therefore, at any point of a locally geo-
desic reference frame the fundamental metric tensor can be considered
constant, so its first derivatives (the Christoffel symbols) and the second
derivatives (the space curvature) are zero.

As a matter of fact, within infinitesimal vicinities of any point lo-
cated in a Riemannian space, a locally geodesic reference frame can be
set up. At the same time, at any point of this locally geodesic reference
frame, a tangential flat Euclidean space can be set up so that this ref-
erence frame, being locally geodesic for the Riemannian space, is the
global geodesic for that tangential flat space.

The fundamental metric tensor of a flat Euclidean space is constant,
so the values of the tensor g̃αβ , taken in the vicinities of a point of
the Riemannian space, converge to the values of the tensor gαβ in the
flat space tangential at this point. Therefore, we can build a system of
basis vectors ~e(α), which are located along the coordinate axes in this
flat space, and tangential to curved coordinate lines of the Riemannian
space in the point of observation.

It should be noted that, in a general case, real coordinate lines in
Riemannian spaces are curved, inhomogeneous, and are not orthogonal
to each other. So the lengths of the basis vectors may sometimes be
very different from unity.

We denote a four-dimensional vector of infinitesimal displacement by
d~r={dx0, dx1, dx2, dx3}. So d~r=~e(α)dx

α, where components of the ba-
sis vectors ~e(α) tangential to the coordinate lines are ~e

(0)
= {e0

(0)
, 0, 0, 0},

~e(1)= {0, e1(1), 0, 0}, ~e(2)= {0, 0, e2(2), 0}, ~e(3)= {0, 0, 0, e3(3)}. The scalar
product of the vector d~r with itself is d~rd~r= ds2. On the other hand,
ds2 = gαβ dx

αdxβ . As a result we arrive at the formula

gαβ = ~e(α)~e(β) = e(α)e(β) cos (x
α; xβ) , (3.8)

which shows how components of the fundamental metric tensor of the
observer’s space depend on the lengths of the basis vectors (tangential
to his real coordinate axes, inhomogeneous and curved), and on the
angle between them.
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In particular, formula (3.8) gives

g00 = e2(0) , (3.9)

g0i = e(0)e(i) cos (x
0;xi) , (3.10)

gik = e
(i)
e
(k)

cos (xi;xk) . (3.11)

Finally, applying these to the definitions of vi (3.2) and hik (3.3), we
derive how these depend on the lengths of the basis vectors ~e(0) and ~e(i)
(tangential to the real coordinate axes, inhomogeneous, and curved),
and on the angle between them. That is

vi = − c e(i) cos (x
0; xi) , (3.12)

hik = e(i)e(k)

[
cos(x0;xi) cos(x0;xk)− cos(xi;xk)

]
. (3.13)

Consider these equations under the isotropic space condition,
c2dτ2= dσ2 6=0. According to this condition, time and regular three-
dimensional space meet each other. Geometrically, this means that the
time basis vector ~e(0) meets all three spatial basis vectors ~e(i) (this fact
does not mean, however, that the spatial basis vectors coincide, be-
cause the time basis vector is the same for all the spatial frame). In
other words, cos(x0;xk)=±1 everywhere in the isotropic space. Also,
in observing a photon, only its direction of motion (direction of travel-
ling light) is counted, and e(0)= e(i) along it (according to the isotropic
space condition). This can be expressed through the gravitational po-
tential w= c2 (1−√

g00), because e(0)=
√
g00 in a general case (3.9).

Finally, in the isotropic space, we have

cos (x0;xk) = ±1 , e(i) = e(0) =
√
g00 = 1− w

c2
, (3.14)

and, hence,

vi = ∓√
g00 ci = ∓

(
1− w

c2

)
ci , (3.15)

hik =
(
1− w

c2

)2 [
1− cos (xi;xk)

]
, (3.16)

where ci is the chronometrically invariant three-dimensional vector of
the physically observable velocity of light, cic

i=hik c
ick= c2.

According to the formula derived (3.15), we immediately come to
the following conclusion:
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The isotropic space rotates, at each its point and in each direction
where a photon travels, with a linear velocity equal to the velocity
of light. This fundamental rotation can slow down relative to the
light speed in the presence of gravitation.

§4. Consequences of the light-speed rotation. Now, we investi-
gate two sequels of the light-speed rotation of the isotropic space.

First consequence. Consider physically observable time dτ (3.1),
which is dependent on the linear velocity of rotation of space. This
is proper time, registered by the observer. It is always positive (dτ > 0)
due to his recognition of the past and the future. Therefore, the coor-
dinate time function of an object, the function dt

dτ
, manifests how this

object travels along the time axis with respect to the observer.
When expressing the coordinate time function from the definition of

dτ (3.1), we obtain

dt

dτ
=

1√
g00

(
1 +

1

c2
viv

i

)
, vi =

dxi

dτ
, (4.1)

where vi is the chronometrically invariant (physically observable) veloc-
ity of the object we observe.

Substituting the observable velocity of photons vi= ci and the linear
velocity of the light-speed rotation (3.15), specific to the isotropic space
as we obtained above, we consider a case where the time basis vector is
directed oppositely to the spatial basis vectors, so cos(x0;xk)=−1 and,
hence, vi =−ci. (The second case, cos(x0;xk)=+1, leads to nonsense
in the coordinate time function.) We obtain

dt

dτ
=

1√
g00

(
1−√

g00
)
. (4.2)

It is evident that the photon coordinate time stops, dt
dτ

=0, when√
g00 =1 and, hence, the gravitational potential w= c2 (1−√

g00) be-
comes w=0, implying the absence of gravitational fields. In the pres-
ence of gravitation we have

√
g00< 1, so the photon coordinate time

function increases with the value of the gravitational potential, and the
isotropic space rotation is slowing down from the light speed.

The stopping of the photon coordinate time function reflects that
they, the particles of the isotropic space, move at the velocity of light.
Light signals are mediators in synchronization of clocks (Einstein’s
method of synchronization). In this process, a light signal transfers
zero-point of the time coordinate from one clock to another. Thus,
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from the point of view of a regular observer, the isotropic space parti-
cles are “resting-in-time”: their coordinate time is stopped with respect
to his coordinate time, while physically observable time is not at rest
due to their visible motion. In other words, photons rest in time, while
we are moving along the time axis with respect to them. Therefore, the
photon coordinate time function is always zero in the absence of gravi-
tational fields. According to the formula (4.2), only gravitation is able
to enforce the coordinate time of a photon to be flowing with respect to
that of the observer.

Second consequence. It is interesting to ponder whether the light-
speed rotation of the isotropic space has any influence on the space
curvature. It is doubtful that this rotation can be attributed only to
the curved space-time of General Relativity. To illustrate, consider the
Riemann-Christoffel curvature tensor Rαβµν . It is built on the second
derivatives of the fundamental metric tensor gαβ, and on its first deriva-
tives, according to its definition

R · · ·α
µνσ · =

∂Γα
σµ

∂xν
−
∂Γα

µν

∂xσ
+ Γβ

µσΓ
α
νβ − Γβ

µνΓ
α
σβ , (4.3)

where Γα
µν = gασ Γµν,σ =

1
2
gασ
(

∂gµσ

∂xν + ∂gνσ

∂xµ − ∂gµν

∂xσ

)
.

In this formula, according to the definition of vi (3.2), we should use
g0i=− 1

c vi
√
g00 . Hence, even if

√
g00 =1 (no gravitational fields), vi

should have an influence on the Riemann-Christoffel tensor. But this
is true, only if g0i 6= const. In the isotropic space, in the absence of
gravitation, as shown above, vi =−ci and, hence, g0i= 1

c ci. If rotation
of the isotropic space is stationary and vorticeless, vi =−ci is inde-
pendent from the spatial coordinates and time, so its first and second
derivatives are zero. In other words, there is not a goal of this rota-
tion into the curvature tensor. Thus, with the diagonal spatial metric∗

where gkk= {−1,−1,−1} or {+1,+1,+1}, we arrive at the condition of
Special Relativity, which is R · · ·α

µνσ · =0.

Therefore, even in the framework of the simplified conditions of Spe-
cial Relativity, the isotropic space still rotates with the velocity of light.

∗We know, according to the theorem introduced by Émile Cotton [9], that any
three-dimensional square form can be reduced to the diagonal unit form. This means,
in particular, that, if a four-dimensional space (space-time) is free of gravitation
(g00 =1) and its three-dimensional metric gik is stationary, the space-time metric
is reducible to the diagonal unit form gαα= {+1,−1,−1,−1} or {−1,+1,+1,+1}
(see §46 of Petrov’s Einstein Spaces [8]). This is the case considered by the Special
Theory of Relativity, and is known as Minkowski’s space (space-time).
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§5. The origin of the fundamental rotation. Why does the iso-
tropic space rotate at the velocity of light? In other words, wherefrom
does the rotation originate? To answer this question, we should turn to
the geometric structure of space-time.

The basic space-time of the General Theory of Relativity is the four-
dimensional pseudo-Riemannian space, which metric is sign-alternating
so that the time axis is emphasized as x0= ct. The space-time signature,
(+−−−) or (−+++), was first pointed out by Hermann Minkowski in his
famous Raum und Zeit [14] as the origin of the relativistic transforma-
tions of the spatial coordinates and time, which distinguishes relativistic
physics from classical physics.

If a sign-definite signature, (++++) or (++++), the world would have

four spatial coordinates where time is a spatial parameter as found in
classical physics. In this case, no difference from the laws of classical
physics would be observed, but simply four spatial coordinates instead
of three ones. Accordingly, ds2=0 that is the isotropic space condition
which differs an isotropic region from a non-isotropic one, would mean
that the space has been shrunk into a point. So, ds2 6=0 is true every-
where in the space. No splitting into isotropic and non-isotropic regions
is possible. All the space is a single non-isotropic spread.

In contrast, in a space of the sign-alternating signature as above, the
isotropic space condition ds2=0 is expanded as to contain non-zero time
and spatial spreads, equal to each other in the length. As a result, the
isotropic region (ds2=0) and the non-isotropic region (ds2 6=0) co-exist
in the space.

Therefore the isotropic space (the home of photons), i.e. the region
determined by the condition ds2=0, is due only to the sign-alternating
space metric which emphasizes time as a segregate axis of the space.

The next step in understanding the light-speed rotation of the iso-
tropic space is visualized by consideration of the formula (3.12). This
formula, vi =− c e(i) cos (x

0; xi), shows how the linear velocity of the
rotation of the observer’s space depends on the lengths of the spatial
basis vectors ~e(i) (tangential to his real coordinate axes, inhomogeneous
and curved), and on the angle between them and the time basis vector
~e(0). The velocity of light appears in the formula, as well as in the other
formulae of relativistic physics, due to the fact that time is presented
here as the fourth coordinate axis, x0= ct, where the velocity plays a
rôle of numerical coefficient.

If one assumes another numerical coefficient of the same dimension,
say u cm/sec, so the time coordinate axis is presented as x0=ut, the
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formula has to be changed as∗

vi = − u e(i) cos (x
0; xi) . (5.1)

Once the isotropic space condition ds2=0 applied to the space-time
metric ds2= gαβ dx

αdxβ= e(α)e(β) cos (x
α; xβ) as we did in §2 and §3,

we obtain cos (x0; xi)=−1 and, hence,

vi = − ui (5.2)

in the space. In other word, when assuming x0=ut instead of x0= ct,
we immediately arrive at a result that the isotropic space rotates with
a linear velocity equal to u.

As a result of what has been said above, we arrive at the conclusion
that the isotropic space rotates with the velocity of light due to two
purely geometric conditions:

a) The space-time metric is sign-alternating. The signature, (+−−−)

or (−+++), emphasizes time as the fourth coordinate x0= ct con-
taining the velocity of light as a numerical coefficient.

b) The isotropic space condition ds2=0. This is a sequel of the first
condition. Namely, because the signature emphasizes the time
axis x0= ct, there is in the space-time a region where the space-
time spread is zero (ds2=0), while the time spead and the spatial
spread are non-zero, and are equal to each other.

The conditions are true in the framework of both General Relativ-
ity and Special Relativity, because the same signature condition exists,
independent of the presence of the space curvature or the other factors
which alter the basic geometries of the theories.

So, the light-speed rotation of the isotropic space has a purely ge-
ometrical origin due to the sign-alternate structure of the space-time
metric, where time is presented as the fourth coordinate axis x0= ct.

§6. A topological interpretation of the result. How can we
imagine that the isotropic space rotates with the velocity of light? In
searching for a native illustration of this result, we turn our attention
to the concepts of topology as the best way of understanding something
in many-dimensional space geometry.

According to the concepts of topology [10], a finite symmetric system
can be considered as a topological spread mapped into a spherical space.
Can we apply these views to our Universe?

∗In this case, the respective changes appear in Lorentz’ transformations and in
all other formulae of relativistic physics.
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Observational astronomy manifest the presence of the event horizon
in the cosmos, and also the homogeneity and symmetry of the Meta-
galaxy to within a first order approximation. Therefore the Universe is
homogeneous and isotropic on the average.

Also, as was proved by Zelmanov in the 1950’s, in the framework of
the General Theory of Relativity, spatial infinitude of the homogeneous
isotropic cosmological models depends on the frame of reference from
which we observe the universe [11,12]. In other words, if a homogeneous
isotropic universe, being observed in one reference frame, is infinite, it
may be finite in another reference frame. Zelmanov enunciated this
result as the Infinite Relativity Principle. Thus, being located in a uni-
verse of infinite spread, we can always move to a specific frame of refer-
ence wherein the universe seems finite.

So, we can consider the Universe as a finite spread, which is ho-
mogeneous and isotropic on the average. Therefore, we can apply the
aforementioned topological views to the Universe as a whole.

In addition, we should take into account that only one geodesic line
can be drawn through a given point in a given direction, and the unique
geodesic line can be either non-isotropic or isotropic (see §6 of Petrov’s
Einstein Spaces [8] or §101 of Raschewski’s Riemannsche Geometrie und

Tensoranalysis [13] for detail). That is, the isotropic and non-isotropic
regions of space-time have no common points.∗

Therefore, we do consider the Universe as two segregate spreads
(isotropic and non-isotropic), each mapped into a respective spherical
space of the same radius of curvature. These two spherical spaces are
equivalent to the surfaces of two concentric hyperspheres, which have the
same radius, but are not coincident with each other. The surface of the
isotropic hypersphere is the home of isotropic trajectories, while the non-
isotropic hypershere’s surface is the home of non-isotropic trajectories.

We are going to consider an observer who is located in the hyper-
sphere’s surface.

Any spherical formation of n dimensions (created by a spherical
space of n−1 dimensions) is directed in its “parental” space of n+1
and higher dimensions. This can be easily understood, because in any

∗This result can be illustrated in Minkowski’s diagram, which is the plane paper
(two-dimensional) representation of the four-dimensional pseudo-Riemannian space
(space-time). Once a moving mass-bearing particle increases its velocity so much
that it approaches the velocity of light, its non-isotropic trajectory in the diagram
tries to reach the light cone (isotropic region) but never meets it as the particle never
reaches the velocity of light. Even if the particle is moving infinitesimally close to
the velocity of light, its trajectory is close to the light cone but never meets it. So,
the isotropic and non-isotropic regions have no common points.
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circle, the two-dimensional spherical formation created by a respective
circumference (one-dimensional spherical space), is obviously directed in
the three-dimensional space. If a hypothetical one-dimensional observer,
located in a circumference, sees that every other (one-dimensional) ob-
ject of the circumference moves with respect to him with a constant
velocity, this is equivalent to the circumference rotating as a whole with
respect to his position in it, with the same velocity along the direction
in which he looks. Due to this rotation, an inertial force acts on all one-
dimensional objects of the circumference, according to the angular ve-
locity and the radius of it. This force has the same numerical value at all
the objects, and is directed orthogonally to the circumference. As a re-
sult, all objects moving relative to the observer along the circumference
are carried out, by the force, in the directions opposite to their motion.
This is manifested as an additional acceleration braking the objects.

Analogously, a three-dimensional observer located in the isotropic
hypersphere’s surface (isotropic spherical space) sees that any other ob-
ject of the surface moves with respect to him with the velocity of light
along his direction of observation. This is equivalent to stating that
the surface rotates as a whole with the velocity of light in the direction
of his observation. Because the polar axis of the rotation is directed in
the “parental” space of the hypersphere, the inertial force produced due
to the rotation is directed orthogonally to the hypersphere’s surface in
each of its points, and is equally applied to all objects of the surface.
Trying to carry the moving objects to the direction orthogonal to the
surface, along which they travel, the force produces a braking accelera-
tion on the objects. Because all objects of the isotropic space (massless
particles, e.g. photons) move with the velocity of light, the additional
braking acceleration cannot slow down their motion, but only change
their energy (frequency). As was shown in my previous study [1], this
“braking effect” is observed as Hubble redshift which is explained as en-
ergy loss of photons with distance, for work against the non-holonomity
(rotation) field of the isotropic space wherein they travel.

§7. Conclusions. We have considered how the isotropic space (the
home of photons) appears to a hypothetical “light-like” observer located
in it. Such an observer cannot accompany his reference body to which he
compares all his measurements (a real physical body, e.g. a cosmic rigid
body, located in the non-isotropic space). Therefore the result of his
observation differs from that obtained by a regular observer who always
accompanies his reference body in the non-isotropic space. Meanwhile,
this approach gives an advantage to see the real physical properties of
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the isotropic space. Here I would like to emphasize the most important
of the obtained results:

1. In the four-dimensional pseudo-Riemannian space, which is the
basic space-time of the General Theory of Relativity, the isotropic
region (isotropic space, the home of photons) rotates, basically,
with a linear velocity equal to the velocity of light. The funda-
mental rotation is slowed down in the presence of gravitation.

2. Even in a very simplified case of Minkowski’s space — the basic
space-time of the Special Theory of Relativity — the isotropic
space of photons still rotates with the velocity of light. This means
that a Galilean frame of reference (completely free of gravitation
and rotation) is not possible in the isotropic space, since the latter
always has an associated rotation.∗

3. The fundamental rotation was found, in the frameworks of both
General Relativity and Special Relativity, proceeding from only
two obviously geometric conditions: a) the space-time metric is
sign-alternating, (+−−−) or (−+++), where the time axis is empha-
sized as x0= ct, and b) ds2=0 everywhere in the isotropic space.
This means that the rotation has a purely geometrical origin due
to the sign-alternating structure of the space-time metric.

4. In the framework of topology, the Universe can be presented as
two segregate spreads (isotropic and non-isotropic) mapped onto
two concentric hyperspheres, which have the same radius, but are
not coinciding with each other. The fact that any object of the
isotropic space moves relative to the observer with the velocity of
light is eqivalent to an isotropic hypersphere which rotates with
the velocity in its “parental” space of higher dimensions.

Thus, the isotropic space (the home of photons) rotates, at each of its
points, with a linear velocity which is, basically, equal to the velocity of
light. This fact was unfortunately overlooked during one hundred years
commencing in Hermann Minkowski’s 1908 famous presentation pub-
lished posthumously†, in 1909, as Raum und Zeit [14]. Minkowski was
the first person who pointed out that the Special Theory of Relativity,

∗This is in contrast to the non-isotropic region (non-isotropic space) inhabited
with mass-bearing particles. In Minkowski’s space, as proven in the framework of the
Special Theory of Relativity, we can reduce any motion to rectilinear and uniform
form by transformations of the spatial coordinates and time. Therefore, a regular
observer can find a Galilean frame of reference everywhere in the positions allowed
for him in Minkowski’s space.

†This presentation was delivered by Minkowski, a few months before the pub-
lication, at the 80th Assembly of German Natural Scientists and Physicians, held
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introduced by Albert Einstein three years before, in 1905, is explained
in a four-dimensional space (space-time), where time is the fourth co-
ordinate axis x0= ct, while the three-dimensional space of the observer
moves with the velocity of light along it. Now, we clearly understand
that this picture is not complete. It should be added to the light-speed
rotation of the isotropic space (the home of photons). In other words,
Minkowski’s formula x0= ct means not only the light-speed motion of
the observer’s space along the time axis, upstairs in Minkowski’s dia-
gram, but also the light-speed rotation of the surface of the isotropic
cone which illustrates the isotropic space therein. It is significant that
this understanding arrives on the anniversary of his Raum und Zeit,
which was published exactly one hundred years ago. Therefore, I dedi-
cate this paper to the memory of Hermann Minkowski (1864–1909), the
pathfinder of space-time geometry.
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The Gravitational Field of a Condensed

Matter Model of the Sun: The Space

Breaking Meets the Asteroid Strip

Larissa Borissova

Abstract: This seminal study deals with the exact solution of Ein-
stein’s field equations for a sphere of incompressible liquid with-
out the additional limitation initially introduced in 1916 by Karl
Schwarzschild, according to which the space-time metric must have
no singularities. The obtained exact solution is then applied to the
Universe, the Sun, and the planets, by the assumption that these ob-
jects can be approximated as spheres of incompressible liquid. It is
shown that gravitational collapse of such a sphere is permitted for
an object whose characteristics (mass, density, and size) are close to
the Universe. Meanwhile, there is a spatial break associated with any
of the mentioned stellar objects: the break is determined as the ap-
proaching to infinity of one of the spatial components of the metric
tensor. In particular, the break of the Sun’s space meets the Asteroid
strip, while Jupiter’s space break meets the Asteroid strip from the
outer side. Also, the space breaks of Mercury, Venus, Earth, and Mars
are located inside the Asteroid strip (inside the Sun’s space break).
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§1. Problem statement. The main task of this paper is to study
the possibilities of applying condensed matter models in astrophysics
and cosmology. A cosmic object consisting of condensed matter has
a constant volume and a constant density. A sphere of incompressible
liquid, being in the weightless state (as any cosmic object), is a kind of
condensed matter. Thus, assuming that a star is a sphere of incompress-
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ible liquid, we can study the gravitational field of the star inside and
outside it.

The Sun orbiting the center of the Galaxy meets the weightless con-
dition (see Chapter 2 of [1] for detail)

GM

r
= v2,

where G=6.67×10−8 cm3/g× sec2 is the Newtonian gravitational con-
stant, M is the mass of the Galaxy, r is the distance of the Sun from
the center of the Galaxy, and v is the Sun’s velocity in its orbit. The
planets of the Solar System also satisfy the weightless condition. As-
suming that the planets have a similar internal constitution as the Sun,
we can consider these objects as spheres of incompressible liquid being
in a weightless state.

In addition to it, we assume that the Universe also is a sphere of
incompressible liquid. Concerning the Universe, this problem is not
solved in detail in this study: only several conditions specific to the
liquid Universe model are considered in §4.

I will consider the problems by means of the General Theory of Rel-
ativity. First, it is necessary to obtain the exact solution of the Einstein
field equations for the space-time metric induced by the gravitational
field of a sphere of incompressible liquid.

The regular field equations of Einstein, with the λ-field neglected,
have the form

Rαβ − 1

2
gαβR = −κ Tαβ , (1.1)

where Rαβ is the Ricci tensor, R is the Riemann curvature scalar,
κ= 8πG

c2
=18.6×10−28 cm/g is the Einstein gravitational constant, Tαβ

is the energy-momentum tensor, and α, β=0, 1, 2, 3 are the space-time
indices. The gravitational field of spherical island of substance should
possess spherical symmetry. Thus, it is described by the metric of spher-
ical kind

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2θ dϕ2) , (1.2)

where eν and eλ are functions of r and t.
In the case under consideration the energy-momentum tensor is that

of an ideal liquid (incompressible, with zero viscosity), by the condition
that its density is constant: ρ= ρ0 = const. As known, the energy-
momentum tensor in this case is

Tαβ =
(
ρ0 +

p

c2

)
bαbβ − p

c2
gαβ, (1.3)
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where p is the pressure of the liquid, while

bα =
dxα

ds
, bαb

α = 1 (1.4)

is the four-dimensional velocity vector, which determines the reference
frame of the given observer. The energy-momentum tensor should sat-
isfy the conservation law

∇σT
ασ = 0 , (1.5)

where ∇σ is the four-dimensional symbol of covariant differentiation.
Formally, the problem we are considering is a generalization of the

Schwarzschild solution produced for an analogous case (a sphere of in-
compressible liquid). Karl Schwarzschild [2] solved the Einstein field
equations for this case, by the condition that the solution must be regu-
lar. He assumed that the components of the fundamental metric tensor
gαβ must satisfy the signature conditions (the space-time metric must
have no singularities). Thus, the Schwarzschild solution, according to
his initial assumption, does not include space-time singularities.

This limitation of the space-time geometry, initially introduced in
1916 by Schwarzschild, will not be used by me in this study. Therefore,
we will be able to study the singular properties of the space-time metric
associated with a sphere of incompressible liquid. Then we will apply
the obtained results to the cosmic objects such as the Sun, the planets,
and, ultimately, the Universe as a whole.

It should be noted that the problem of space-time singularities plays
a very important rôle in the General Theory of Relativity and astro-
physics, because it is linked indirectly with the problem of black holes:
such an object as a gravitational collapsar possesses a space-time sin-
gularity on its surface.

The term “black hole” was coined due to David Hilbert’s study of
1917, which followed six months after Schwarzschild’s original solution
(and his tragic death in 1916). Hilbert analyzed the Schwarzschild solu-
tion for the gravitational field of a mass-point [3]. He wrote this solution
in the form

ds2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
, (1.6)

where rg =
2GM
c2

is known as the Hilbert radius, while M is the mass of
the field source (the mass-point). At r= rg the space-time region of the
surface around the mass-point collapses: gravitational collapse, a state
by which the component g00 is zero, occurs on the surface r= rg.
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It is easy to see that by r = rg two conditions are fulfilled

g00 = 0 and g11 → ∞ . (1.7)

The first condition, g00 =0, is known as the collapse condition. It
is said that “time is stopped by gravitational collapse”. This situation
will be studied in detail in §4: it will be shown that the observed time is
truly stopped, while the coordinate time continues its flow, uniformly.
The second condition, g11→∞, was completely ignored in the past, al-
though it can be considered as the condition of the breaking of the space.
From a formal viewpoint these conditions violate the requirements which
determine the the space-time region of a real observer (a real observer
has a real mass and can move only with a sublight velocity).

The conditions are linked with violation of the space-time signature

prescription. This violation means that the given space-time has singu-
larities in the regions (surfaces or volumes) wherein the aforementioned
conditions are true. The signature conditions for a diagonal metric
(+−−−) have the form

g00 > 0

g00 g11 < 0

g00 g11 g22 > 0

g = g00 g11 g22 g33 < 0






. (1.8)

The first three are known as the weak signature conditions. The
fourth is known as the strong signature condition. If one or all weak
signature conditions are violated, while the strong signature condition
is true, this is a removable singularity. If the strong signature condition
is violated, the space-time has unremovable singularity: in this case the
field solution is regularly failed from consideration, because it “has not
physical meaning”. Actually, someone did not see the physical meaning
therein. However it is very meaningful mathematically. Therefore, I
will direct my focus onto unremovable singularities in the Schwarzschild
field of a sphere of incompressible liquid. The most important results
obtained due to this approach will be discussed in §7.

The most known kind of space (space-time) containing a removable
singularity is Schwarzschild space. It is an empty space (no continu-
ous matter presented in the space, that means Tαβ =0), filled with the
spherically symmetric gravitational field of a mass-point (1.6). Given
such a space, two weak signature conditions are violated (g00 =0 and
g11 →∞ by r= rg) and the strong signature condition g=−r4 sin2 < 0
is true by r= rg in it.
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Because the Schwarzschild solution describes the gravitational field
of a mass-point in a space free of distributed matter (empty space-
time), and it includes the possibility of gravitational collapse, it is very
popular amongst the theoretical physicists and astrophysicists working
on the black hole problem. As a matter of fact, several cosmic objects
like stars can collapse (the problem of gravitational collapse is often
linked with stars at a later stage of their evolution). On the other
hand, the aforementioned Schwarzschild solution means gravitational
collapse of a mass-point’s field, although stars are continuous bodies,
not mass-points. Therefore, the problem of the space-time singularities
(for instance, gravitational collapsars — black holes) should be solved
by models of continuous bodies, not mass-points.

Thus, the main task of my study is to study singularities in the space
filled with the gravitational field of a sphere of incompressible liquid,
which can approximate the models an actual cosmic body like a star,
a planet, or the Universe as a whole. In the framework of this approach,
the Universe will be considered in §4, while the Sun and the planets will
be considered in §7.

I will consider this problem employing the mathematical methods
of physically observable quantities, known as chronometric invariants.
This versatile mathematical apparatus was developed in 1944 by Abra-
ham Zelmanov [4–6], then applied by him, very successfully, to relativis-
tic cosmology. This mathematical technique gives the advantage that it
is connected to a specific (chosen) observer and the physical standards
of his laboratory, so we obtain the theoretical results expressed through
the real quantities measurable in practice. All physically observable
characteristics of the reference space of the space-time described by the
metric (1.2) will be calculated in §2.

In §3, the exact solution of the field equations (1.1) will be obtained
for the spherically symmetric metric (1.2) inside a sphere of incompress-
ible liquid, which is described by the energy-momentum tensor (1.3).
Because we do not limit the solution by that the metric must be reg-
ular, the obtained metric has two singularities: 1) collapse by g00 =0,
and 2) break of the space by g11 →∞. It will be shown then that these
singularities are unremovable, because the strong signature condition is
also violated in both cases.

The singularities of the Schwarzschild field produced by a sphere
of incompressible liquid, are studied in detail in §4. It will be shown
that the conditions of collapse and breaking of the space depend on
the density of the liquid sphere, and also on its total mass and radius.
The spherical surface of the space breaking can either be inside the
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liquid sphere or outside it, depending on the numerical value of the
mass density. Besides, the surface of the space breaking can meet the
Schwarzschild sphere of collapse under particular conditions. The last
situation realizes itself for the liquid model of the Universe. In the liquid
model of the Sun, the surface of the space breaking is located outside the
Sun itself. Also, we will arrive at the next conclusion: a liquid sphere
of the Sun’s radius, cannot be in the state of gravitational collapse. In
contrast, the liquid Universe as a whole is represented as a collapsed
cosmic object.

The properties of particles located on a collapsar’s surface are the
subject of study in §5. It will be shown that these particles have imagi-
nary rest-mass and imaginary three-dimensional momentum. The term
“relativistic mass” is inapplicable to the particles, because they do not
move in the usual sense of this word.

Physically observable properties of the space inside a sphere of in-
compressible liquid will be calculated in §6. It will be shown a tricky
situation therein: the three-dimensional space inside the sphere is a con-
stant negative curvature space, while the four-dimensional Riemann-
Christoffel curvature tensor does not satisfy the constant curvature con-
dition (its three-dimensional components satisfy the constant positive
curvature, while the component R0101 does not satisfy the constant
curvature condition in general). The component R0101 is zero on the
surface of collapse, and is positive inside the collapsar. Therefore, a col-
lapsar’s surface is a bridge connecting two spaces of the negative and
the positive curvature.

In §7, these results will be applied to the Sun and the planets, which
will be considered as spheres of incompressible liquid. It will be shown
that the collapse condition is not satisfied for these objects. The surface
of the space breaking is located outside such an object. According
to the detailed calculations, the surface of the breaking of the Sun’s
space meets the Asteroid strip. Analogous calculations manifest the
intersections of the planets’ space breaking.

§2. Physically observable characteristics of the gravitational
field inside a sphere of incompressible liquid. In the frame-
work of the mathematical apparatus of physically observable quantities
(chronometric invariants), two three-dimensional quantities are neces-
sary for further derivation of the physically observable properties of
a space [4–6]: a three-dimensional scalar — the gravitational potential
of the field produced by the reference body of the observer

w = c2 (1−√
g00) , (2.1)
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and a three-dimensional vector — the linear velocity of the reference
space’s rotation in the point of observation

vi = − c
g0i√
g00

, (2.2)

where Roman indices (i=1, 2, 3 in the present case) are signed for the
three-dimensional spatial coordinates.

We can easily see, therefore, that the collapse condition g00=0 is
realized by w= c2. For the spherically symmetric metric (1.2), we have

w = c2
(
1− e

ν
2

)
. (2.3)

Because g0i=0 in the metric (1.2), i.e. the space does not rotate,
we have vi=0. Hence the chr.inv.-tensor of the angular velocity of
rotation of the reference space (the tensor of the space non-holonomity),
determined in the theory of chronometric invariants, is zero

Aik =
1

2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1

2c2
(Fivk − Fkvi) = 0 , (2.4)

while the chr.inv.-vector of gravitational inertial force is

Fi =
c2

c2 − w

(
∂w

∂xi
− ∂vi

∂t

)
= − c2

2
ν ′ , (2.5)

where the prime denotes the differentiation along the r-coordinate.
With these, the chr.inv.-metric tensor [4–6]

hik = − gik +
1

c2
vivk (2.6)

(it determines the physically observable metric of the observer’s three-
dimensional space), in the space of the spherically symmetric metric
(1.2) has the following components

h11 = eλ, h22 = r2, h33 = r2 sin2θ , (2.7)

h11 = e−λ, h22 =
1

r2
, h33 =

1

r2 sin2 θ
, (2.8)

h = det ‖hik‖ = eλr4 sin2 θ . (2.9)

Thus, the chr.inv.-tensor of the rate of deformation of the space [4–6]

Dik =
1

2

∗∂hik
∂t

, Dik = − 1

2

∗∂hik

∂t
, (2.10)
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where ∗∂

∂t
=

1√
g00

∂

∂t
(2.11)

is the chr.inv.-operator of differentiation along the time coordinate, has
the following non-zero components

D11 =
λ̇

2
eλ−

ν
2 , D11 = − λ̇

2
e−λ− ν

2 , (2.12)

(the upper dot denotes differentiation along the time coordinate t).
We see, therefore, that a non-rotating spherical symmetric space

contains gravitation, and can deform if the spatial metric hik does not
depend on time. We will see later that the stationarity condition of the
metric hik depends on the structure of the energy-momentum tensor of
continuous matter filling the space.

Now, we calculate the characteristics of non-uniformity the space —
the chr.inv.-Christoffel symbols of the first and second kinds

∆k
ij = hkm∆ij,m =

1

2
hkm

(∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)
, (2.13)

where the chr.inv.-operator of differentiation along the spatial coordi-
nates is ∗∂

∂xi
=

∂

∂xi
+

1

c2
vi

∗∂

∂t
. (2.14)

We obtain, after algebra, non-zero components of ∆ij,m

∆11,1 =
λ′

2
eλ , ∆22,1 = − r , ∆33,1 = − r sin2 θ , (2.15)

∆12,2 = r , ∆33,2 = − r2 sin θ cos θ , (2.16)

∆13,3 = r sin2 θ , ∆23,3 = r2 sin θ cos θ , (2.17)

thus non-zero components of ∆k
ij are

∆1
11 =

λ′

2
, ∆1

22 = − re−λ, ∆1
33 = − r sin2 θ e−λ, (2.18)

∆2
12 =

1

r
, ∆2

33 = − sin θ cos θ , (2.19)

∆3
13 =

1

r
, ∆3

23 = cot θ . (2.20)

The three-dimensional observable curvature of the space is charac-
terized by the chr.inv.-curvature tensor Clkij , which possesses all the
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algebraic properties of the Riemann-Christoffel tensor [4–6]

Clkij =
1

4
(Hlkij −Hjkil +Hkljij −Hiljk) , (2.21)

where Hlkij is similar to the Schouten tensor of the theory of non-
holonomic manifolds, and is derived from the non-commutativity of the
second chr.inv.-derivatives of an arbitrary transferred three-dimensional
vector Ql along the spatial coordinates

∗∇i
∗∇kQl − ∗∇k

∗∇iQl =
2Aik

c2

∗∂Ql

∂t
+H ···j

lki·Qj, (2.22)

where the chr.inv.-covariant differential from the vector is

∗∇kQ
idxk = dQi +∆i

klQ
kdxl. (2.23)

The tensor H ···j
lki· has the form [4–6]

H ···j
lki· =

∗∂∆j
il

∂xk
−

∗∂∆j
kl

∂xi
+∆m

il ∆
j
km −∆m

kl∆
j
im , (2.24)

it is connected with the curvature tensor Clkij by

Hlkij = Clkij +
1

c2
(
2AkiDjl +AijDkl +AjkDil +

+AklDij +AliDjk

)
, (2.25)

while the contracted tensors Hlk =H ···i
lki· and Clk =C ···i

lki· are connected,
according to the theory of chronometric invariants, as

Hlk = Clk +
1

c2

(
AkjD

j
l +AljD

j
k +AklD

)
. (2.26)

We see that Hlkij and Clkij are the same if the reference space is
free of rotation and deformation. It is obvious that this condition is
true for Hlk and Clk as well. The tensor Clk = hijCilkj has the form

Clk =
∗∂

∂xk

(∗∂ ln
√
h

∂xl

)
−

∗∂∆i
kl

∂xi
+∆m

il ∆
i
km −∆m

kl

∗∂ ln
√
h

∂xm
. (2.27)

Thus, we obtain non-zero components of Clk for the spherically sym-
metric metric (1.2). They are

C11 = − λ′

r
, C22 =

C33

sin2 θ
= e−λ

(
1− rλ′

2

)
− 1. (2.28)

So, we have calculated all the physically observable characteristics
of the space, which are necessary for our further deduction of the exact
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solution of the Einstein field equations.
All that I have to add to these, are the physically observable com-

ponents (chr.inv.-components) of the energy-momentum tensor of ideal
liquid (1.3). Being calculated according to the theory of chronometric

invariants, where bi= dxi

ds
=0 and b0 = 1√

g00
[4–6], they are

ρ =
T00
g00

= ρ0 , J i =
c T i

0√
g00

= 0 , U ik = c2T ik = phik, (2.29)

where ρ is the chr.inv.-density of the distributed matter, J i is the
chr.inv.-vector of the density of the momentum in the medium, U ik

is the chr.inv.-stress tensor. The condition J i =0 means that the ob-
server’s reference frame accompanies the mass, while U ik = phik means
that his reference frame accompanies the medium.

§3. The Einstein equations inside a sphere of incompressible
liquid: the exact solution. In order to obtain the exact internal so-
lution of the Einstein field equations with respect to a given distribution
of matter, it is necessary to solve two systems of equations: the Einstein
field equations (1.1), and the equations of the conservation law (1.5).

We will solve the equations in terms of physically observable quan-
tities. The Einstein field equations expressed through the physically
observable quantities (the chr.inv.-Einstein equations) are [4–6]

∗∂D

∂t
+DjlD

lj + AjlA
lj +

(
∗∇j −

1

c2
Fj

)
F j = − κ

2

(
ρc2 + U

)
, (3.1)

∗∇j

(
hijD −Dij −Aij

)
+

2

c2
FjA

ij = κJ i, (3.2)

∗∂Dik

∂t
− (Dij +Aij)

(
Dj

k +A·j
k·
)
+DDik −DijD

j
k +

+ 3AijA
·j
k· +

1

2
(∗∇iFk + ∗∇kFi)−

1

c2
FiFk − c2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
, (3.3)

where U =hikUik is the trace of the stress-tensor Uik. The chr.inv.-form
of the conservation law is [4–6]

∗∂ρ

∂t
+Dρ+

1

c2
DijU

ij + ∗∇̃iJ
i − 1

c2
FiJ

i = 0 , (3.4)

∗∂Jk

∂t
+DJk + 2

(
Dk

i +A·k
i·
)
J i + ∗∇̃i U

ik − ρF k = 0 , (3.5)
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where the chr.inv.-differential operator ∗∇̃i=
∗∇i− 1

c2
Fi is constructed

on the basis of chr.inv.-divergence ∗∇i which is according to (2.23).
To solve the system of the Einstein field equations we substitute,

into (3.1–3.3), the chr.inv.-characteristics of the space obtained in §2.
We substitute also the chr.inv.-components of the energy-momentum
tensor (2.29), from which we conclude, additionally, that

U = 3p (3.6)

in the spherically symmetric liquid model.
Then, after algebra, we obtain the chr.inv.-Einstein field equations in

the spherically symmetric space (1.2) inside a sphere of incompressible
liquid. The obtained equations, in component notation, are

e−ν

(
λ̈− λ̇ν̇

2
+
λ̇2

2

)
− c2e−λ

[
ν ′′ − λ′ν ′

2
+

2ν ′

r
+

(ν ′)2

2

]
=

= −κ
(
ρ0c

2 + 3p
)
, (3.7)

λ̇

r
e−λ− ν

2 = κJ1 = 0 , (3.8)

eλ−ν

(
λ̈− λ̇ν̇

2
+
λ̇2

2

)
− c2

[
ν ′′ − λ′ν ′

2
+

(ν ′)2

2

]
+

2c2λ′

r
=

= κ
(
ρ0c

2 − p
)
eλ, (3.9)

c2 (λ′ − ν ′)

r
e−λ +

2c2

r2
(
1− e−λ

)
= κ

(
ρ0c

2 − p
)
. (3.10)

The second equation manifests that λ̇=0 in this case. Hence, the
space inside the sphere of incompressible liquid does not deform. Taking
this circumstance into account, and also that the stationarity of λ, we
reduce the field equations (3.7–3.10) to the final form

c2e−λ

[
ν ′′ − λ′ν ′

2
+

2ν ′

r
+

(ν ′)2

2

]
= κ

(
ρ0c

2 + 3p
)
eλ, (3.11)

− c2
[
ν ′′ − λ′ν ′

2
+

(ν ′)2

2

]
+

2c2λ′

r
= κ

(
ρ0c

2 − p
)
eλ, (3.12)

c2 (λ′ − ν ′)

r
e−λ +

2c2

r2
(
1− e−λ

)
= κ

(
ρ0c

2 − p
)
. (3.13)

To solve the equations (3.11–3.13), a formula for the pressure p
is necessary. To find the formula, we now deal with the conservation
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equations (3.4–3.5). Because, as was found, J i=0 and Dik =0 in the
case under consideration, the chr.inv.-scalar conservation equation (3.4)

leads to the trivial result
∗∂ρ
∂t

=0. Thus ρ= ρ0 = const inside the sphere,
and the chr.inv.-vectorial conservation equations (3.5) take the form

∗∇i

(
phik

)
−
(
ρ0 +

p

c2

)
F k = 0 , (3.14)

which, since ∗∇ih
ik =0 in the case, reads

hik
∗∂p

∂xi
−
(
ρ0 +

p

c2

)
F k = 0 . (3.15)

Taking into account that
∗∂
∂xi =

∂
∂xi in the case, we obtain, this for-

mula reduces to only a single nontrivial equation

p′e−λ +
(
ρ0c

2 + p
) ν ′

2
e−λ = 0 , (3.16)

where p′ = dp

dr
, ν ′= dν

dr
, eλ 6=0. Dividing both parts of (3.16) by e−λ, we

arrive at
dp

ρ0c2 + p
= −dν

2
, (3.17)

which is a plain differential equation with separable variables. It can be
easily integrated as

ρ0c
2 + p = Be−

ν
2 , B = const. (3.18)

Thus we have to express the pressure p as the function of ν,

p = Be−
ν
2 − ρ0c

2. (3.19)

In look for an r-dependent function p(r), we integrate the field equa-
tions (3.11–3.13). Summarizing (3.11) and (3.12), we find

c2 (λ′ + ν ′)

r
= κBeλ−

ν
2 . (3.20)

Then, expressing ν ′ from this equation, and substituting the result
into (3.13), we obtain

2c2

r
λ′ +

2c2

r2
(
eλ − 1

)
− κBe−λ− ν

2 = κ
(
ρ0c

2 − p
)
eλ. (3.21)

Substituting p from (3.19) into (3.21), we obtain the following dif-
ferential equation with respect to λ

λ′ +
eλ − 1

r
− κρ0re

λ = 0 . (3.22)
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We introduce a new variable y = eλ. Thus λ′ = y′

y . Substituting into

this equation y and y′, we obtain the Bernoulli equation (see Kamke [7],
Part III, Chapter I, §1.34)

y′ + f(r)y2 + g(r)y = 0 , (3.23)

where

f(r) =
1

r
− κρ0r , g(r) = −1

r
. (3.24)

It has the following solution

1

y
= E(r)

∫
f(r) dr

E(r)
, (3.25)

E(r) = e
∫

g(r)dr
. (3.26)

Integrating (3.26), we obtain E(r) which is

E(r) = e
−

∫

dr
r = e

ln L
r =

L

r
, L = const > 0 , (3.27)

thus we obtain 1
y = e−λ which is

e−λ =
L

r

∫
r

L

(
1

r
− κρ0r

)
dr = 1− κρ0r

2

3
+
Q

r
, Q = const. (3.28)

To find Q, we rewrite equation (3.21) as

e−λ

(
λ′

r
− 1

r2

)
+

1

r2
= κρ0 . (3.29)

This equation has a singularity at the point r = 0, therefore the
numerical value of the right side term of the equation (the density of
the liquid) grows to infinity by r→ 0, i.e. in the center of the sphere.
This is in contradiction to the initially assumed condition ρ0 = const,
which is specific to incompressible liquids. As a matter of fact, this
contradiction should not be in the theory. We remove this contradiction
by re-writting (3.29) in the form

e−λ (1− rλ′) =
d

dr

(
re−λ

)
= 1− κρ0r

2. (3.30)

After integration, we obtain

re−λ = r − κρ0r
3

3
+A , A = const. (3.31)
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Because A=0 at the central point r=0, it should be zero at any
other point as well. Dividing this equation by r 6=0, we obtain

e−λ = 1− κρ0r
2

3
. (3.32)

Comparing this solution with the value e−λ obtained earlier (3.28),
we see that they meet each other if Q=0. Besides, we should suggest
that eλ0 =1 at the central point r=0, consequently λ0 =0.

Thus we have obtained the components h11 = e−λ and h11 = eλ of
the chr.inv.-metric tensor hik, expressed through the coordinate r, i.e.

h11 = e−λ = 1− κρ0r
2

3
, h11 = eλ =

1

1− κρ0r2

3

. (3.33)

So forth, we should introduce a boundary condition on the surface
of the sphere. We have on the surface: r= a, where a is the radius of
the sphere. Thus

e−λa = 1− κρ0a
2

3
. (3.34)

On the other hand, the solution of this function is also the Schwarz-
schild solution in emptiness. Hence,

e−λa = 1− 2GM

c2a
, (3.35)

where M is the mass of the sphere. Comparing both expressions, and
taking into account that the Einstein gravitational constant is κ= 8πG

c2
,

we find

M =
4πa3ρ0

3
= ρ0V, (3.36)

where V = 4πa3

3 is the volume of the sphere. Thus, we have obtained
the regular relation between the mass and the volume of a homogeneous
sphere.

Our next step is the looking for the solution e−λ outside the sphere,
i.e. for r >a. Since outside the sphere the density of the substance
(liquid) is ρ0 =0, we obtain, after integration of (3.30),

re−λ =

∫ r

0

dr −
∫ a

0

κρ0 r
2dr = r − κρ0a

3

3
. (3.37)

We obtain, from this formula, that

e−λ = 1− κρ0a
3

3r
. (3.38)
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Taking (3.38) into account, we obtain the Schwarzschild solution in
emptiness

e−λ = 1− 2GM

c2r
. (3.39)

To obtain ν we again use equation (3.20). Substituting, into this
equation,

λ′ =
2κρ0r

3

1− κρ0r2

3

(3.40)

and eλ, we obtain, after transformations,

ν ′ +
2κρ0r

2

3

1− κρ0r2

3

− κB

c2
re−

ν
2

1− κρ0r2

3

= 0 . (3.41)

We introduce a new variable e−
ν
2 = y. Thus, ν ′ =− 2y′

y . Substituting

these into (3.41), we obtain the Bernoulli equation

y′ +
κB

2c2
ry2

1− κρ0r2

3

−
κρ0r

3 y

1− κρ0r2

3

= 0 , (3.42)

where

f(r) =
κB

2c2
r

1− κρ0r2

3

, g(r) = −
κρ0r

3

1− κρ0r2

3

. (3.43)

Thus, we have the integral

∫
g(r)dr = −

∫ κρ0r
3

1− κρ0r2

3

= lnN

√∣∣∣∣1−
κρ0r2

3

∣∣∣∣ , N = const, (3.44)

then

E(r) = N

√∣∣∣∣1−
κρ0r2

3

∣∣∣∣ . (3.45)

In the region where the signature condition h11 = eλ > 0 is satisfied,
we have

1− κρ0r
2

3
> 0 , (3.46)

therefore we use the modulus of the function here.
Next, we look for 1

y = e
ν
2 , which is

e
ν
2 =

κB

2c2

√
1− κρ0 r2

3

∫
rdr√(

1− κρ0r2

3

)3 . (3.47)
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We obtain, after integration,

e
ν
2 =

κB

2c2

(
3

κρ0
+K

√
1− κρ0r2

3

)
, K = const. (3.48)

Now, we look for the constants B and K. To find B, we rewrite the
formula of p by the condition that p=0 on the surface of the sphere
(r= a). Thus, we obtain

B = ρ0c
2e

νa
2 , (3.49)

where e
νa
2 is the value of the function e

ν
2 on the surface. As a result,

we have

e
ν
2 =

κρ0
2

e
νa
2

(
3

κρ0
+K

√
1− κρ0r2

3

)
. (3.50)

To find K, we take the value of e
ν
2 on the surface (r= a)

e
νa
2 =

κρ0 e
νa
2

2

(
3

κρ0
+K

√
1− κρ0a2

3

)
. (3.51)

We obtain, from this formula, that

K = − 1

κρ0

1√
1− κρ0a2

3

. (3.52)

The quantity e
νa
2 means the numerical value of e

ν
2 by r= a, therefore

we can apply it to the Schwarzschild solution (a mass-point’s field) in
emptiness at r= a, i.e.

e
νa
2 =

√
1− 2GM

c2a
. (3.53)

Taking the expressions for e
νa
2 , (3.34) and (3.35), into account, we

obtain

e
ν
2 =

1

2
e

νa
2


3−

√√√√1− κρ0r2

3

1− κρ0a2

3


 =

=
1

2

(
3

√
1− 2GM

c2a
−
√
1− 2GMr2

c2a3

)
. (3.54)

This formula on the surface (r = a) meets the Schwarzschild solution

in emptiness: e
νa
2 =

√
1− 2GM

c2a
=
√
1− κρ0a2

3
.



240 The Abraham Zelmanov Journal — Vol. 2, 2009

Thus the space-time metric of the gravitational field inside a sphere
of incompressible liquid is, since the formulae of ν and λ have already
been obtained, as follows

ds2 =
1

4

(
3e

νa
2 −

√
1− κρ0r2

3

)2
c2dt2 −

− dr2

1− κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (3.55)

Taking (3.34) and (3.35) into account, we rewrite (3.55) as

ds2 =
1

4

(
3e

νa
2 −

√
1− 2GMr2

c2a3

)2
c2dt2 −

− dr2

1− 2GMr2

c2a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (3.56)

Since 2GM
c2

= rg is the Hilbert gravitational radius, we rewrite (3.56)
in the form

ds2 =
1

4

(
3

√
1− rg

a
−
√
1− r2rg

a3

)2
c2dt2 −

− dr2

1− r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (3.57)

It is therefore obvious that this “internal” metric completely coin-
cides with the Schwarzschild metric in emptiness on the surface of the
sphere of incompressible liquid (r = a).

Our next step is to obtain the space-time metric outside the sphere
(r >a). We already obtained the “external” solution for e−λ, which
completely coincides with the “external” Schwarzschild solution for this
function (3.39). Outside the sphere, (3.20) takes the form

λ′ + ν ′ = 0 , (3.58)

consequently where according to (3.39)

λ′ =
2GM

c2r2
1

1− 2GM
c2r

. (3.59)

Substituting (3.59) into (3.58) and integrating, we find

ν = ln

(
1− 2GM

c2r

)
+ P, P = const, (3.60)
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thus

eν = P

(
1− 2GM

c2r

)
. (3.61)

Since this function is

eν = 1− 2GM

c2a
,

on the surface (r= a), we obtain P =1. Thus we have established that
the space-time outside a sphere of incompressible liquid is described by
the Schwarzschild metric in emptiness, which is (1.6).

§4. Singular properties of the external and internal Schwarz-
schild solutions. The space-time of a sphere of incompressible liquid
is described by the metric (3.55) or, in the equivalent form, by (3.57).
The singular properties of the space-time will be studied here. This
study is a generalization of the originally Schwarzschild solution for such
a sphere [2], and means that Schwarzschild’s requirement to the metric
to be free of singularities will not be used here. Naturally, the metric
(3.57) allows singularities; they will be studied here in detail. This
problem will be solved by analogy with the singular properties of the
Schwarzschild solution in emptiness (a mass-point’s field), which already
gave black holes. As will be shown, there is a big difference between
the Schwarzschild solutions. The mass-point solution in emptiness [3]
will be considered at first, because it plays a key rôle in physics of black
holes (gravitational collapsars).

As is known, the Schwarzschild metric of a mass-point’s field (1.6)
has singularities by the condition that the radial coordinate r equals the
Hilbert radius

r =
2GM

c2
= rg . (4.1)

One considers (4.1) as the condition of collapse of real cosmic objects
like stars. It is supposed that stars can collapse in the last stage of
their evolution. Of course, no doubts that stars can collapse in this
way. However they are not mass-points; they are continuous objects
consisting of substance. Therefore, the Schwarzschild metric of a mass-
point’s field (1.6) does not characterize a collapsing continuous object,
but states that the field of a continuous object collapses at the distance
r= rg from its centre of gravity. This distance is known as the radius

of the Schwarzschild sphere. It is easy to see that rg depends on the
object’s mass M only, and not on its characteristics such as the density
of substance or the radius of the object itself.
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Two singular conditions are realized in the metric (1.6) by the con-
dition (4.1)

g00 =
(
1− w

c2

)2
= 1− rg

r
= 0 , (4.2)

g11 = − h11 =
1

1− rg
r

→ ∞ . (4.3)

The first singularity (4.2) is known as gravitational collapse. In this
case, the gravitational potential is w= c2. The state of collapse is con-
nected indirectly with the physically observable time τ , which is deter-
mined by the theory of chronometric invariants [4–6] as

dτ =
√
g00 dt+

g0i
c
√
g00

dxi, (4.4)

where t is the coordinate (ideal) time, which is according to x0 = ct, and
flows uniformly. As seen, τ depends on the gravitational potential and
the rotation of the space. Since a space with the Schwarzschild metric
does not rotate (g0i=0), we have

dτ =
√
g00 dt =

√
1− rg

r
dt , (4.5)

consequently
τ = 0 (4.6)

on the surface of collapse in the field, which is located at the distance
r= rg from the centre of gravity of the body. In other words, the observ-
able time stops on the surface of collapse, being registered by a regular
observer. (However the coordinate time t still be flowing uniformly.)

Consider the spatial part of the metric (1.6) by the condition (4.1).
At first, we note that any four-dimensional metric ds2 can be expressed
through the interval of the physically observable time dτ and the phys-
ically observable space interval dσ as [4–6]

ds2 = c2dτ2 − dσ2, dσ2 = hik dx
idxk. (4.7)

Since the three-dimensional observed space (the observer’s spatial
section) is curved, only distances σ are observable, while r are coordinate
(photometric) distances. A physically observable distance between two
points with radial coordinates r1 and r2 along the radial direction, for
the metric (1.6) has the form

σr =
√
h11 dr =

∫ r2

r1

dr√
1− rg

r

. (4.8)
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In the integration of this equation we should keep in mind that
r > rg always for any regular observer, because the metric (1.6) does
not describe the region inside the Schwarzschild sphere. The space-time
inside the collapsar, created by a mass-point in emptiness, is described
by another, non-stationary metric which is [8]

ds2 =
c2dt̃2

rg

c t̃
− 1

−
(
rg

ct̃
− 1

)
dr̃2 − c2 t̃2

(
dθ2 + sin2θ dϕ2

)
. (4.9)

This metric is obtained from (1.6) by means of substitution among
r= ct̃ and ct= r̃. We realize that, during a finite interval of time, t̃ =

rg
c .

Let us find the observable distance between a point with the radial
coordinate r1 and a point on the Schwarzschild sphere r = rg. Integrat-
ing (4.8) from rg to r1, we obtain

σ =
√
r1
√
r1 − rg + rg ln

∣∣∣∣
√
r1 +

√
r1 − rg√
r1

∣∣∣∣ . (4.10)

We have just integrated dσ from rg = rsp (a radial distance, where a
breaking of the space takes place) to another radial coordinate which is
r= r1>rg, since we are presently considering only the space-time out-
side the collapsar. What is the collapsar according to the metric (1.6)?
This is a region of the empty space-time inside the sphere of the radius
r= rg. We see, therefore, that the observed distance between the points
with radial coordinates rg and r1 has a finite value, which becomes zero

if r1 = rg. If rg ≪ r1, we expand
√
1− rg

r and ln
∣∣∣1 +

√
1− rg

r

∣∣∣ into the

series, then save only the terms of the first order with respect to
rg
r . We

obtain, after algebra, for the metric (4.9), the approximate formula

σr = r1 −
rg
2

+ rg ln

∣∣∣∣ 2−
rg
2r1

∣∣∣∣ ≃ r1 + 0.19 rg . (4.11)

This formula is true for small rg. Thus the observable distance σr
between the points with the radial coordinates rg and r1 is larger than
the coordinate (photometric) distance r1 − rg between the points. It is
important to remark that the elementary interval dσr has a singularity
by r= rg, while the integral of it is continuous and has a finite value.
The spatial interval of the metric (1.6) has the form

dσ2 =
dr2

1− rg
r

− r2
(
dθ2 + sin2θ dϕ2

)
. (4.12)

We see, therefore, that the three-dimensional metric form has a sin-
gularity at r= rg. In this case, h11 →∞ (i.e. dσ→∞).
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Thus the Schwarzschild metric of a mass-point’s field (1.6) has two
singularities: collapse and breaking of the space. Both singularities
take place by the same condition r = rg. We will refer to the state
of the space-time by which the elementary observable spatial interval
dσ→∞ as the space breaking, and denote the corresponding value of
the radial coordinate as rbr . We see that rbr = rg in the space-time filled
with the gravitational field of a mass-point. In other words, the space-
time described by the Schwarzschild metric (1.6) has a singular surface,
spherically covering the gravitating body at the distance r= rg from its
centre of gravity (mass-point).

Now, we are going to study singularities in the space-time filled with
the gravitational field of a sphere of incompressible (ideal) liquid. Inside
such a sphere (its radius is r= a), space-time is described by the metric
(3.55) or its equivalent form (3.57). As is seen, the metric has a spatial
singularity (space breaking) by the condition

rbr =

√
3

κρ0
= a

√
a

rg
, (4.13)

thus we conclude something about the surface of the space breaking:

1) It meets the surface of the liquid sphere, if a= rg;

2) It is located outside the liquid sphere, if rg <a;

3) It is located inside the liquid sphere, if rg >a.

Calculating the physically observable distance between the center of
the liquid sphere and the spherical surface of the space breaking, in the
r-direction, we obtain

σr =

∫ rbr

0

√
h11 dr =

∫ rbr

0

dr√
1− κρ0r2

3

=

=

√
3

κρ0
arcsin

(√
κρ0
3

rbr

)
=
π

2
rbr . (4.14)

Thus, σr takes finite numerical values in the field of a liquid sphere.
It is obvious that the physically observable distance π

2
rbr is larger than

the coordinate (photometric) distance rbr .
Since rg is determined only by the mass of the liquid sphere, rbr

depends on ρ0 as it does on the sphere’s radius a. For example, con-
sidering the Sun as a sphere of incompressible liquid, whose density is
ρ0 =1.4 g/cm3, we obtain

rbr = 3.4×1013 cm, (4.15)
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while the radius of the Sun is a=7×1010 cm and its Hilbert radius is
rg =3×105 cm. Therefore, the surface of the Sun’s space breaking is
located outside the surface of the Sun, far distant from it in the near
cosmos.

Consider another example. Assume our Universe to be a sphere of
incompressible liquid, whose density is ρ0 =10−31 g/cm3. The radius of
its space breaking, according to (4.13), is

rbr = 1.3×1029 cm. (4.16)

Observational astronomy provides the following numerical value of
the Hubble constant

H =
c

a
= (2.3± 0.3)×10−18 sec−1, (4.17)

where a is the observed radius of the Universe. It is easy obtain from
here that

a = 1.3×1028 cm. (4.18)

This value is comparable with (4.16), so the Universe’s radius may
meet the surface of its space breaking by some conditions. We calculate
the mass of the Universe by (3.36) and (4.18). We have M =5×1054 g.
Thus, for the liquid model of the Universe, we obtain rg =7.4×1026 cm:
the Hilbert radius (the radius of the surface of gravitational collapse) is
located inside the liquid spherical body of the Universe.

Now, we are going to study the collapse condition of a sphere of
incompressible liquid. On the first view, this problem statement makes
nonsense, because the body of incompressible liquid cannot be com-
pressed. Yes, it is true, if one would consider collapse as the process
of compression of a liquid cosmic body. We do not do it. In contrast,
we will consider a collapsar as a singular region of the space-time. In a
particular case, a cosmic body consisting of incompressible liquid can be
a collapsar, if the parameters of its field on its surface will correspond
to the collapse condition g00 =0 or the equivalent condition w= c2. But
this rises to the occurrence of the physical conditions, not the evolu-
tionary compression of a liquid cosmic body.

As is known, the collapse condition of a common case has the form

g00 =
(
1− w

c2

)2
= 0 , (4.19)

thus a cosmic object is a collapsar, if the three-dimensional gravitational
potential on its surface is

w = c2 . (4.20)



246 The Abraham Zelmanov Journal — Vol. 2, 2009

Consider the collapse condition for the space-time metric of the grav-
itational field inside a sphere of incompressible liquid (3.56). As is seen
from the metric (3.56), the collapse condition (4.19) in this case is

3e
νa
2 =

√
1− κρ0r2

3
, (4.21)

or, in terms of the Hilbert radius, when the metric takes the form (3.57),
the collapse condition is

3

√
1− rg

a
=

√
1− rgr2

a3
. (4.22)

We obtain that the numerical value of the radial coordinate rc, by
which the sphere’s surface meets the surface of collapse, is

rc =
√
9a2 − 8r2br = a

√
9− 8a

rg
. (4.23)

Because we keep in mind really cosmic objects, the numerical value
of rc should be real. This requirement is obviously satisfied by

a < 1.125 rg . (4.24)

If this condition holds not (a> rg), the sphere, which is a spherical
liquid body, has not the state of collapse.

It is obvious that the condition a = rg satisfies (4.24). Consider this
interesting particular case in detail. We have, in this case, that

rc = rbr = rg = a . (4.25)

This means that, in this case, given a sphere of incompressible liquid
in the state of collapse, it has the radius of its surface a, the Hilbert
radius rg, and the radius of the space breaking rbr coinciding with the
radius rc characterizing its surface in the state of collapse.

Comparing (4.25) with (4.2–4.3), which characterize the Schwarz-
schild solution for a mass-point in emptiness, we see that a mass-point’s
field in emptiness satisfies the condition

rg = rbr , (4.26)

which is a particular case of (4.25): despite such characteristics as the
proper radius a and the collapsed sirface’s radius rc are inapplicable to
a mass-point, the common condition (4.25) still be working in the case,
being represented in its particular form (4.26).



Larissa Borissova 247

I repeat that the condition a= rg is only a partial case of (4.24). The
common condition (4.24) includes three particular cases, concerning the
location of the surface of a collapsed liquid sphere:

1) The radius of a collapsed liquid sphere is larger than the Schwarz-
schild sphere’s radius (a> rg);

2) The radius of a collapsed liquid sphere is lesser than the Schwarz-
schild sphere’s radius (a< rg);

3) The surface of a collapsed liquid sphere meets the Schwarzschild
sphere (a= rg).

It is obvious that rc is imaginary for rg ≪ a, so collapse of such a
sphere of incompressible liquid is impossible. For example, considering
the Sun (a=7×107 cm, M =2×1033 g, rg =3×105 cm), we obtain from
(4.24) that rc has an imaginary value. This means that:

A homogeneous sphere of incompressible liquid, whose parameters
are the same as those of the Sun, cannot collapse.

One may ask: what does the condition rg 6= 0 imply for the Sun? This
means that the term rg comes from another model of the Sun where it
is approximated by a mass-point: the gravitational field of a mass-point
includes a collapsed region inside the spherical surface of the radius rg
around the mass-point.

Another example. Consider the Universe as a sphere of incompress-
ible liquid (the liquid model of the Universe). Assuming, according to
the numerical value of the Hubble constant (4.17), that the Universe’s
radius is a=1.3×1028 cm, we obtain the collapse condition, from (4.24),

rg > 1.2×1028 cm, (4.27)

and immediately arrive at the following conclusion:

The observable Universe as a whole, being represented in the
framework of the liquid model, is completely located inside its
gravitational radius. In other words, the observable Universe is
a collapsar — a huge black hole.

In another representation, this result means that a sphere of incompress-
ible liquid can be in the state of collapse only if its radius approaches
the radius of the observable Universe.

Compare the singularities of the liquid sphere’s internal metric (3.57)
and the mass-point’s field metric (1.6). The weak signature conditions
g00> 0 and g11< 0 are violated by r= rg. The determinant of the fun-
damental metric tensor of the mass-point’s field metric (1.6) equals

g = − r4 sin2 θ < 0 , (4.28)
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so the strong signature condition g < 0 is fulfilled, hence the singularity
of the mass-point’s field metric is removable. This means that the space-
time collapses and has the same breaking the condition rbr = rg. Thus,
the collapse surface coincides with the space breaking surface in a mass-
point’s field in emptiness: in this case, both collapse and the space
breaking are realized by the same condition (4.26).

A few words more on the singularities of the liquid sphere’s internal
metric (3.57). In this case, the determinant of the fundamental metric
tensor equals

g = − 1

4

(
3e

νa
2 −

√
1− κρ0r2

3

)2
r4 sin2 θ√
1− κρ0r2

3

, (4.29)

so the strong signature condition g < 0 is always true for a sphere of
incompressible liquid, except in two following cases: 1) in the state
of collapse (g00 =0), and 2) by the breaking of space (g11 →∞). These
particular cases violate the weak signature conditions g00> 0 and g11< 0
correspondingly. If both weak signature conditions are violated, g has
a singularity of the kind 0

0 . If collapse occurs in the absence of the
space breaking, we have g=0. If no collapse, while the space breaking
is present, we have g→∞. In all the cases, the singularity is non-
removable, because the strong singular condition g < 0 is violated.

So, as was shown above, a spherical object consisting of incompress-
ible liquid can be in the state of gravitational collapse only if it is as
large and massive as the Universe. Meanwhile, the space breaking real-
izes itself in the fields of all cosmic objects, which can be approximated
by spheres of incompressible liquid. Besides, since rbr ∼ 1√

ρ0
, the rbr is

then greater while smaller is the ρ0. Assuming all these, we arrive at
the following conclusion:

A regular sphere of incompressible liquid, which can be observed
in the cosmos or an Earth-bound laboratory, cannot collapse but
has the space breaking — a singular surface, distantly located
around the liquid sphere.

This problem will be considered in detail in §7.

§5. Collapsar as a special state of substance. Let us now con-
sider the properties of substance inside a collapsar and on its surface. As
was already shown above in the study, this consideration is applicable,
on the one hand, to the internal gravitational field of a homogeneous
liquid sphere (3.57), and, on the other hand, to the Schwarzschild grav-
itational field of a mass-point in emptiness (1.6).
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So, we need to understand what sorts of particles inhabit these sin-
gular regions (the regions inside a collapsar and on its surface). This
problem will be solved here by analogy with the study in [1].

First, we study substance on a collapsar’s surface. This spherical
surface is characterized by the condition r= rg for the metric of a mass-
point’s field (1.6), and by the condition r= rc for the internal metric
of a liquid sphere (3.57). Because the space-times metrics are free of
rotation, and taking the collapse condition g00 =0 into account, they
can be written in the common chr.inv.-form

ds2 = − dσ2 = −hik dxidxk, (5.1)

based on the general formula ds2 = c2dτ2 − dσ2 (4.7), which comes from
the theory of chronometric invariants [4–6] and can be applied to any
space-time metric.

Space-time trajectories are characterized by the four-dimensional
velocity vector, which on the surface of a collapsar takes the form

bα =
dxα

|ds | =
dxα

dσ
, bαb

α = −1, (5.2)

so it is a space-like vector on a collapsar’s surface. Multiplying it by
rest-mass m0, we obtain a momentum world-vector

Pα = m0
dxα

dσ
, PαP

α = −m2
0 , (5.3)

which is a space-like vector therein as well, while the rest-masses take
imaginary numerical values in the case (on a collapsar’s surface).

According to the theory of chronometric invariants, the physically
observable components of the momentum vector Pα (5.3) should be

P0√
g00

−→ 0

0
, P i = i |m0 |

dxi

dσ
, (5.4)

which have analogous physical meaning as the respective components

P0√
g00

= ±m, P i =
m0√

1− v2/c2
dxi

cdτ
=

1

c
mvi (5.5)

of the momentum world-vector of a regular, real rest-mass particle

Pα = m0
dxα

ds
, PαP

α = m2
0 . (5.6)

We conclude therefore that the observable quantity analogous to
relativistic mass is not determined for the particles which inhabit the
surface of a collapsar, while the observable quantity analogous to three-
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dimensional momentum is imaginary for them. Thus, this sort of par-
ticles has special physical properties: such a particle has imaginary
rest-masses and three-dimensional momentum, while the characteristic
known as relativistic mass is not applicable to them.

Thus the surface of a collapsar cannot be considered as that of a reg-
ular physical body: this is a space-time region where the signature con-
ditions are violated, and is inhabited with a singular sort of substance.
Therefore, a regular observer whose rest-mass takes real numerical val-
ues cannot be there.

Another question: what sort of substance exists inside a collapsar,
under its collapsed surface?

A space-time filled with the Schwarzschild field of a mass-point in
emptiness has the metric (1.6), which is stationary. This metric is writ-
ten for a regular observer, who is located outside the surface of collapse,
and is watching the collapsar from outside. It is known [8] that the same
Schwarzschild metric written for an internal observer, located inside the
collapsar, is obtained from (1.6) by means of substitution among r= ct̃
and ct= r̃. The resulting metric (4.9) is non-stationary [8]. Thus, de-
spite the invariance of the space-time metric as a whole, its stationarity
under the collapsed surface (inside the collapsar) depends on the ob-
server’s reference frame: from views of an external observer the space
inside the collapsar is stationary, while it is non-stationary being ob-
served by an internal observer inside the collapsar.

A sphere of incompressible liquid cannot expand or compress. Mean-
while, if its characteristics satisfy the collapse conditions, it can be in
the state of collapse, i.e. be a gravitational collapsar (black hole). As
was shown above in §4, this is possible if the liquid sphere is as large
and massive as the Universe. In this case, the internal metric of a liquid
sphere (3.57) will be the metric inside the collapsar. This metric is sta-
tionary. It is written for a regular observer who is watching the collapsar
from outside. It is easy to re-write the metric for an internal observer by
the same substitution of the coordinates as for the Schwarzschild met-
ric of a mass-point field. The resulting metric will be non-stationary.
Thus, the space inside a collapsar consisting of incompressible liquid
can expand or compress, being observed from inside it.

This tricky situation is due to the fact that we consider a very specific
case: two different space-time regions, which are located outside and
inside a collapser respectively, and are separated by a singular surface.
If considering a regular sphere of incompressible liquid, whose surface’s
radius differs from the radius of collapse for this mass, this situation
would be impossible.
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Since g00< 0 under the surface of collapse, relativistic masses P0√
g00

take imaginary numerical values. This result can be easily obtained with
the deduction analogous to as formula (5.4), but with replacement of
g00 =0 by g00< 0. This is from the viewpoint of an external observer,
located outside the collapsar. In the observer is located inside a col-
lapsar, under the surface of collapse, in his reference frame all objects
inside the collapsar will be observed as bearing real relativistic masses,
while all objects outside the surface of collapse will be imaginary.

§6. Physical and geometric factors acting inside a sphere of in-
compressible liquid. Let us find the physical and geometric factors
acting inside a sphere of incompressible liquid. The metric inside the
sphere, expressed through the density of substance, is given by formula
(3.55). According to the metric, the chr.inv.-vector of the gravitational
inertial force (2.5) has only a single component which is non-zero

F 1 = −κρ0c
2r

3

√
1− κρ0r2

3

3e
νa
2 −

√
1− κρ0r2

3

=

= −2GMr

a3

√
1− rgr2

a3

3e
νa
2 −

√
1− rgr2

a3

. (6.1)

We see here that this is a force of attraction, which is proportional
to distance r. Its numerical value is zero in the center of the sphere. In
the state of collapse, F 1 →∞. Since the numerical value of the Einstein
constant κ is very small (κ=18.6×10−28 cm/g), it is obvious that this
force is significant only by large distances r, for instance, in the case of
“cosmological” objects such as the Universe.

Now, we are going to consider the singularities of pressure p con-
cerning a sphere of incompressible liquid. Substituting B (3.49) and e

ν
2

(3.54) into p (3.19), we obtain the formula

p = ρ0c
2

√
1− κρ0r2

3 − e
νa
2

3e
νa
2 −

√
1− κρ0r2

3

. (6.2)

From here we see that, for the liquid model, p→∞ for the state of
collapse. Also, we see that the space breaking occurs by the pressure

p=− ρ0c
2

3
. This is a negative pressure of radiation, because p= ρ0c

2

3
is the equation of state of radiation. It is obvious that this situation
is possible only if the spherical surface case of the space breaking is



252 The Abraham Zelmanov Journal — Vol. 2, 2009

located inside the liquid sphere (by r <a). Therefore, this particular
case is important for our further understanding of the internal consti-
tution of the cosmic objects which could be approximated by spheres of
incompressible liquid.

Consider the space-time regions outside the singularities. Because
r6 a means the space inside the liquid sphere, the numerator is positive
outside the region of collapse always, except on the surface of the liquid
sphere (r= a) where it equals zero.

So forth we consider the sign of this function in the region outside
the collapse. The denominator is always positive in this region. Since

e
νa
2 =

√
1− κρ0a2

3
=

√
1− 2GM

c2a
,

the numerator is positive by r> 0, that is inside the sphere except the
region inside the sphere of breaking (r= rbr , the numerator is strongly
negative in this case). It follows from (4.13), if the sphere of incom-
pressible liquid is not a collapsar, the sphere of the space breaking is
located outside it (rbr > a). Consequently, ρ= p=0 in the layer.

Consider the pressure near the surface of the liquid sphere. The
constant κ=18.6×10−28 cm/g is a very small value. Therefore, if ρ0 is
not very large, κρ0 is also very small. Supposing that

√
1− κρ0r2

3
≈ 1− κρ0r

2

6
,

we obtain, after algebra, the approximate formula for p, which is

p ≈ κρ20c
2
(
a2 − r2

)

12
=
ρ0GM

2a2

(
a2 − r2

a

)
, (6.3)

where GM
a2 = g is the free-fall acceleration.

Now we calculate the pressure of the liquid, with taking into account
that the liquid has the density ρ0, while the parameter h= a− r is the
distance from the surface of the sphere to the point of the measurement.
Assuming that h≪ r, i.e. the measurement is processed in the upper
layer of the sphere, near its surface, we obtain

a2 − r2 = (a− r) (a+ r) = h (2a+ h) ≈ 2ah.

Thus, we arrive at the regular formula for the pressure

p = ρ0gh. (6.4)

Let us study the geometric properties of the three-dimensional space
of a sphere of incompressible liquid. Calculating the components of the
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tensor Hlkij by the formula (2.25) for the metric (3.55), we obtain its
non-zero components

H1212 = C1212 = − κρ0
3

r2

1− κρ0r2

3

, (6.5)

H1313 = C1313 = − κρ0
3

r2 sin2 θ

1− κρ0r2

3

, (6.6)

H2323 = C2323 = − κρ0
3

r4 sin2 θ . (6.7)

We see, therefore, that the non-zero components of the observable
space curvature tensor Ciklj satisfy the condition

Ciklj = −κρ0
3

(hklhij − hilhkj) , (6.8)

where the constant −κρ0

3 is the observable three-dimensional curvature
in the two-dimensional direction. This means that this is a constant
negative curvature three-dimensional space. Calculating the observable
scalar curvature C =hikCik, where non-zero components of Cik are

C11 = −2κρ0
3

1

1− κρ0r2

3

, (6.9)

C22 =
C33

sin2 θ
= −2κρ0r

2

3
, (6.10)

we obtain
C = − 2κρ0 = const < 0 . (6.11)

Consequently, the components of the three-dimensional observable
tensor of curvature Ciklj have the form

Ciklj =
C

6
(hklhij − hilhkj) . (6.12)

Thus the physically observable three-dimensional space has a con-
stant negative curvature. The radius of the curvature ℜ in this case is
imaginary. It is linked with C by the relation

C = − 2κρ0 =
1

ℜ2
, (6.13)

thus

ℜ =
i

2κρ0
. (6.14)
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Let us estimate the numerical value of |ℜ| for this liquid model of the
Universe. Assuming the density of the Universe to be ρ0 =10−31 g/cm3,
we obtain |ℜ|=2×1027 cm. Thus, the numerical value of ℜ is compara-
ble with the Hubble radius of the Universe a=1.3×1028 cm (4.18).

We see from (6.5) and (6.6) that the three-dimensional space has
breakings in the direction of two surfaces (x1, x2) and (x1, x3). Both

breakings are realized by the condition r= rbr =
√

3
κρ0

= a
√

a
rg
. It was

shown above that g11 = −h11 → ∞ by this condition.
Now let us study the geometrical properties of the space-time de-

scribed by the metric (3.55). First, we calculate the components of the
Riemann-Christoffel tensor

Rαβγδ =
1

2
(∂βγ gαδ + ∂αδ gβγ − ∂αγ gβδ − ∂βδ gαγ) +

+ gστ (Γαδ,σΓβγ,τ − Γβδ,σΓαγ,τ ) , (6.15)

where Γαβ,δ are the four-dimensional Christoffel symbols of the 1st kind.
We have, for the metric (3.55), gik =−hik and Γik,j =−∆ik,j . Thus,
calculating the other components of Γαβ,δ, which are non-zero,

Γ01,0 = −Γ00,1 =
κρ0r

12

3e
νa
2 −

√
1− κρ0r2

3√
1− κρ0r2

3

, (6.16)

Γ11,1 = − κρ0r

3

1
(
1− κρ0r2

3

)2 , (6.17)

and substituting these into (6.5), we obtain

R0101 = − κρ0
12

3e
νa
2 −

√
1− κρ0r2

3√
1− κρ0r2

3

, (6.18)

R1212 = −C1212 , R1313 = −C1313 , R2323 = −C2323 . (6.19)

We see from here that the four-dimensional space inside a sphere of
incompressible liquid, described by the metric (3.55), is not a constant
curvature space. This is because the component R0101, determining the
four-curvature in the radial-time (x0, x1)-direction, does not satisfy the
condition

Rαβγδ = Q (gβγgαδ − gβδgαγ) , Q = const, (6.20)

which determines a four-dimensional constant curvature space.
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Also, we see that R0101 →∞ by the space breaking, while R0101 =0
in the state of collapse. It is seen from (6.19) that all the spatial (three-
dimensional) components of the Riemann-Christoffel tensor are positive.
The mixed (space-time) component R0101 (6.18) is negative, except in
the case of collapse where it equals zero. Because the numerator of
(6.18) is proportional to

√
g00 =1− w

c2
, the component R0101 will be

positive inside the collapsar (since
√
g00< 0 therein). Thus the four-

curvature in the space-time direction (x0, x1) changes its sign by the
state of collapse. Therefore we arrive at the conclusion that the surface
of collapse is a bridge connecting two spaces of the negative and the
positive curvature.

§7. The internal constitution of the Solar System: the Sun
and the planets as spheres of incompressible liquid. First, we
are going to consider the Sun as a sphere of incompressible liquid.
Schwarzschild [2] was the first person who considered the gravitational
field of a sphere of incompressible liquid. He however limited this con-
sideration by an additional condition that the space-time metric should
not have singularities. In this study the metric (3.55) will be used. It
allows singularities, in contrast to the limited case of Schwarzschild:
1) collapse of the space, and 2) the space breaking.

We calculate the radius of the space breaking by formula (4.13),
where we substitute the Sun’s density ρ0 =1.41 g/cm3. We obtain

rbr = 3.4×1013 cm = 2.3 AU, (7.1)

where 1 AU=1.49×1013 cm (Astronomical Unit) is the average distance
between the Sun and the Earth. So, we have obtained that the spherical
surface of the Sun’s space breaking is located inside the Asteroid strip,
very close to the orbit of the maximal concentration of substance in it
(as is known, the Asteroid strip is hold from 2.1 to 4.3 AU from the
Sun). Thus we conclude that:

The space of the Sun (actually — its gravitational field), as that
of a sphere of incompressible liquid, has a breaking. The space
breaking is distantly located from the Sun’s body, in the space of
the Solar System, and meets the Asteroid strip near the maximal
concentration of the asteroids.

In addition to it, we conclude:

The Sun, approximated by a mass-point according to the Schwarz-
schild solution for a mass-point’s field in emptiness, has a space
breaking located inside the Sun’s body. This space breaking coin-
cides with the Schwarzschild sphere — the sphere of collapse.
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Object Mass, gram Proper radius, cm Hilbert radius, cm

Sun 1.98×1033 6.95×1010 2.9×105

Mercury 2.21×1026 2.36×108 0.03

Venus 4.93×1027 6.19×108 0.73

Earth 5.97×1027 6.38×108 0.88

Mars 6.45×1026 3.44×108 0.10

Jupiter 1.90×1030 7.11×109 2.8×102

Saturn 5.68×1029 6.00×109 84

Uranus 8.72×1028 2.55×109 13

Neptune 1.03×1029 2.74×109 15

Pluto 1.31×1025 1.20×108 0.002

Table 1: The proper radius and the Hilbert radius of the Sun and the planets,
calculated in the framework of the model where they are approximated by
spheres of incompressible liquid.

What is the Schwarzschild sphere? It is an imaginary spherical sur-
face of the Hilbert radius rg =

2GM
c2

, which is not a radius of a physical
body in a general case (despite it can be such one in the case of a black
hole — a physical body whose radius meets the Hilbert radius calculated
for its mass). The numerical value of rg is determined only by the mass
of the body, and does not depend on its other properties. The phys-
ical meaning of the Hilbert radius in a general case is as follows: this
is the boundary of the region in the gravitational field of a mass-point
M , where real particles exist; particles in the boundary (the Hilbert ra-
dius) bear the singular properties as shown in §5. In the region wherein
r6 rg, real particles cannot exist. The Hilbert radius rg calculated for
the Sun and the planets is given in Table 1.

Let us turn back to the Sun approximated by a sphere of incompress-
ible liquid. The space-time metric is (3.55) in this case. Substituting
into (4.23) the Sun’s mass M =2×1033 g, radius a=7×107 cm, and the
Hilbert radius rg =3×105 cm calculated for its mass, we obtain that the
numerical value of the radial coordinate rc by which the Sun’s surface
meets the surface of collapse of its mass is imaginary. Thus, we arrive at
the conclusion that a sphere of incompressible liquid, whose parameters
are the same as those of the Sun, cannot collapse. This conclusion is as
that before, see Page 247.

One can ask: then what does the Hilbert radius rg mean for the
Sun, in this context? Here is the answer: rg is the photometric distance
in the radial direction, separating the “external” region inhabited with
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real particles and the “internal” region under the radius wherein all
particles bear imaginary masses. Particles which inhabit the boundary
surface (its radius is rg) bear singular physical properties. Note that no
one real (external) observer can register events inside the singularity.

Now we apply this research method to the planets of the Solar Sys-
tem. Thus, we approximate the planets by spheres of incompressible
liquid. All results of the calculation are given in Table 2.

The numerical values of rc, calculated for the planets according to
the same formula (4.23) as that for the liquid model of the Sun, are
imaginary. Therefore, the planets being approximated by spheres of
incompressible liquid cannot collapse as well as the Sun.

According to Table 1, the Hilbert radius rg calculated for the planets
is much smaller than the sizes of their physical bodies, and is in the
order of 1 cm. This means that, given any of the planets of the Solar
System, the singulary surface separating our world and the imaginary
mass particles world in its gravitational field draws the sphere of the
radius about one centimetre around its centre of gravity.

Table 2 gives the numerical values of the radius of the space break-
ing, calculated for each of the planets through the average density of
substance inside the planet according to the formula (4.13).

The results of the summarizing and substraction associated with the
planets, according to Table 2, lead to the next conclusions:

1. The spheres of the singularity breaking of the spaces of Mercury,
Venus, and the Earth are completely located inside the sphere of
the singularity breaking of the Sun’s space;

2. The spheres of the singularity breaking of the internal spaces of
all planets intersect among themselves, when being in the state of
a “parade of planets”;

3. The spheres of the singularity breaking of the Earth’s space and
Mars’ space reach the Asteroid strip;

4. The sphere of the singularity breaking of Mars’ space intersects
with the Asteroid strip near the orbit of Phaeton (the hypothetical
planet which was orbiting the Sun, according to the Titius–Bode
law, at r=2.8 AU, and whose distraction in the ancient time gave
birth to the Asteroid strip).

5. Jupiter’s singularity breaking surface intersects the Asteroid strip
near Phaeton’s orbit, r=2.8 AU, and meets Saturn’s singularity
breaking surface from the outer side;

6. The singularity breaking surface of Saturn’s space is located be-
tween those of Jupiter and Uranus;



258 The Abraham Zelmanov Journal — Vol. 2, 2009

O
b
je
ct

D
en

si
ty
,

g
ra
m
/
cm

3

O
rb
it
,
A
U

R
a
d
iu
s

o
f
th
e
sp
a
ce

b
re
a
k
in
g
∗
,
A
U

L
o
ca
ti
o
n

o
f
th
e
sp
a
ce

b
re
a
k
in
g

sp
h
er
e

Sun 1.41 — 2.3 Asteroid strip

Mercury 4.10 0.39 1.3 Completely inside the Sun’s
space breaking

Venus 5.10 0.72 1.2 Completely inside the Sun’s
space breaking

Earth 5.52 1.00 1.1 Completely inside the Sun’s
space breaking

Mars 3.80 1.52 1.4 Meets the Sun’s space break-
ing at the outer side

Asteroid strip — 2.5† — —

Jupiter 1.38 5.20 2.3 Meets the Sun’s space break-
ing at one side and Saturn’s
space breaking at the oppo-
site side

Saturn 0.720 9.54 3.2 Between Jupiter’s space
breaking and Uranus’ space
breaking

Uranus 1.30 19.2 2.4 Between Saturn’s space
breaking and Neptune’s
space breaking

Neptune 1.20 30.1 2.4 On the lower boundary of
the Kuiper belt

Pluto 2.0 39.5 1.9 Completely on the lower
strip of the Kuiper belt

Kuiper belt — 30–100 — —

∗The distance (radius) of the singulary breaking of the respective cosmic body’s
space, measured from the body (in Astronomical Units).
†The density of the Asteroid strip’s substance has a maximum registered at
2.5AU, while the strip itself continues from 2.1 to 4.3AU.

Table 2: Singularity breakings of the local spaces of the Sun and the planets.
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7. The singularity breaking surface of Uranus’s space is located be-
tween those of Saturn and Neptune;

8. The singularity breaking surface of Neptune’s space meets, from
the outer side, the lower boundary of the Kuiper belt (the strip of
the aphelia of the Solar System’s comets);

9. The singularity breaking surface of Pluto is completely located
inside the lower strip of the Kuiper belt.

Just two small notes in addition to these. The intersections of the space
breakings of the planets, discussed here, take place for only that case
where the planets thenselves are in the state of a “parade of planets”.
However the conclusions concerning the location of the space breaking
spheres, for instance — that the space breaking spheres of the internal
planets are located inside the sphere of the Sun’s space breaking, while
the space breaking spheres of the external planets are located outside
it, — are true for any position of the planets.

What does the “space breaking” mean from the physical viewpoint?
Has this breaking a real action on a physical body appeared in it, or is it
only a mathematical fiction? As was obtained in §6, the space (space-
time) of a sphere of incompressible liquid has a breaking of its four-
curvature Rαβγδ by the condition r= rbr : the quantity R0101 (6.18),
which is the four-curvature of the space in the radial-time direction
0101, has a breaking R0101 →∞ (the curvature becomes infinite) at the
distance r= rbr from the centre of gravity of the liquid sphere. (See top
of Page 255.) Because the curvature determines the gravitational field
filling the space, the aforementioned breaking means the breaking in the
gravitational field of the liquid sphere at r= rbr . This is the physical
meaning of the space breaking we studied here.

The fact that the space breaking of the Sun meets the Asteroid strip,
near Phaeton’s orbit, allows us to say: yes, the space breaking consid-
ered in this study has a really physical meaning. As probable the Sun’s
space breaking did not permit the Asteroids to be joined into a common
physical body, Phaeton. Alternatively, if Phaeton was an already exist-
ing planet of the Solar System, the common action of the space break-
ing of the Sun and that of another massive cosmic body, appeared near
the Solar System in the ancient ages (for example, another star passing
near it), has led to the distraction of Phaeton’s body.

Thus the internal constitution of the Solar System was formed by
the structure of the Sun’s space (space-time) filled with its gravitational
field, and according to the laws of the General Theory of Relativity.

Submitted on November 09, 2009
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Patrick Marquet∗

Abstract: In this paper, we briefly review the basic theory of the
Alcubierre drive, known as the Warp Drive Concept, and its subse-
quent improvements. By using the Arnowitt-Deser-Misner formalism
we then re-formulate an extended extrinsic curvature which corre-
sponds to the extra curvature of the Extended General Relativity
(EGR). With this preparation, we are able to generalize the Alcu-
bierre metric wherein the space-like hypersurfaces are Riemannian,
and the characteristic Alcubierre function is associated with the EGR
geometry. This results in a reduced energy density tensor, whose form
displays a potential ability to avoid the weak energy condition.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

(−+++) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Newton’s constant:

G = c = 1.
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Introduction

The physical restriction related to the finite nature of the light velocity
has so far been a stumbling block to exploring the superluminal speed
possibility of long-term space journeys.

However, recent theoretical works have lent support to plausible in-
terstellar hyperfast travels, without physiological human constraints.

How is this possible? The principle of space travel while locally “at
rest”, is analogous to galaxies receding away from each other at extreme
velocities due to the expansion (and contraction) of the Universe.

Instead of moving a spaceship from a planet A to a planet B, we
modify the space between them. The spaceship can be carried along by
a local spacetime “singular region” and is thus “surfing” through space
with a given velocity with respect to the rest of the Universe.

In 1994, a Mexican physicist Miguel Alcubierre [1], working at the
Physics and Astronomy Department of Cardiff University in Wales,
Great Britain, published a short paper describing such a propulsion
mode, known today under the name Warp Drive.

Based on this theory, a faster than light travel could be for the first
time considered without violating the laws of relativity.

Many problems (open questions) remain to be investigated, among
which two major problems are reflected in the following statements:

a) Produce a sufficiently large negative energy to create a local space
distortion without violating the energy conditions resulting from
the laws of General Relativity [2];

b) Maintain contact (control) between the spaceship and the outside
of the distorsion (causality connection).

The problem a) can be avoided if one considers a non-Riemannian
geometry that governs the laws of our Universe [3] which could eliminate
the negative energy density required by the Alcubierre metric to sustain
a realistic Warp Drive.

The difficulty b) may be theoretically circumvented by introducing
certain types of transformations which may allow us to use the warped
regions for the removal of the singularities or “event horizons”. Some of
these transformations are briefly reviewed in the course of this study.

Pre-requisite: time-like unit four-vector

As is well known [4], the covariant derivative of a time-like vector field ua

(whose square is uaua =−1), may be expressed in an invariant manner
in terms of tensor fields which describe the kinematics of the congruence
of curves generated by the vector field ua.
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One may write

ua;b = ςab + ωab +
1

3
(θhab) + u̇aub ,

where u̇a= ua;bu
b is the acceleration of the flow lines, τ is the proper

time, ωab = hcah
d
b u[c;d] is the vorticity tensor, hab = gab +uaub is the pro-

jection tensor, θab = hcah
d
b u(c;d) is the expansion tensor, θ=habθab =ua;a

is the expansion scalar, ςab = θab − 1
3
(habθ) is the shear tensor.

The kinematic quantities are completely orthogonal to ua, i.e.,

habu
b = ωabu

b = ςabu
b = 0 , u̇au

b = ωau
b = 0 .

Physically, the time-like vector field ua is often taken to be the four-
velocity of a fluid. The volume element expansion θ extracted from
this decomposition can be thus seen as a hydrodynamic picture: it is of
major importance in the foregoing.

Chapter 1. Basics of Warp Drive Physics

§1.1. Description of the Alcubierre concept

§1.1.1 Space-time bubble

The Universe is approximated as a Minkowskian space: we choose an
arbitrary curve and deform the space-time in the immediate vicinity in
such a way that the curve becomes a time-like geodesic somewhat like
a “ripple”, in order to generate a perturbed or singular local region in
which one may fit a spaceship and its occupants.

Let xs be the center of the region where the spaceship stays, and x
any coordinate within this region so that x=xs for the spaceship.

Within an orthonormal coordinate frame, such a region, which is
referred to as a bubble, is transported forward with respect to distant
observers, along a given direction (x in this text).

With respect to the same distant observers, the apparent velocity of
the bubble center is given by

vs(t) =
dxs(t)

dt
, (1.1)

where xs(t) is the trajectory of the region along the x-direction, and

rs(t) =

√
(x− xs(t))

2
+ y2 + z2 (1.2)

is the variable distance outward from the center of the spaceship until
ℜ which may be called the radius of the singular region.

The spaceship is at rest inside the bubble and has no local velocity.
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§1.1.2. Characteristics

From these first elements, we must now select the exact form of a met-
ric that will “push” the spaceship along a trajectory described by an
arbitrary function of time (xs, t).

Furthermore, this trajectory should be a time-like geodesic, whatever
vs(t). By substituting x=xs(t) in the new metric to be defined, we
should expect to find

dτ = dt . (1.3)

The proper time of the spaceship is equal to coordinate time which
is also the proper time of distant observers.

Since these observers are situated in the flat region, we conclude
that the spaceship suffers no time dilation as it moves. It will be easy
to prove that this spaceship moves along a time-like geodesic and its
proper acceleration is zero.

§1.2. The physics that leads to Warp Drive

§1.2.1. The (3+1) Formalism: the Arnowitt-Deser-Misner
(ADM) technique

In 1960, Arnowitt, Deser, and Misner [5] suggested a technique based
on decomposing the space-time into a family of space-like hypersurfaces
and parametrized by the value of an arbitrarily chosen time coordi-
nate x4.

This “foilation” displays a proper-time element dτ between two
nearby hypersurfaces labelled x4 = const and x4 + dx4 = const. The
proper-time element dτ must be proportional to dx4. Thus we write

dτ = N
(
xα, x4

)
dx4. (1.4)

In the ADM terminology, N is called the lapse function and more
specifically the time lapse.

Consider now the three-vector whose spatial coordinates xα are lying
in the hypersurface (x4 = const) and which is normal to it.

We want to evaluate this vector on the second hypersurface, which
is x4 + dx4 = const, where these coordinates now become Nαdx4. This
Nα vector is known as the shift vector.

The ADM four-metric tensor is decomposed into covariant compo-
nents

(gab)ADM =

{
−N2 −NαNβ g

αβ , Nβ ,

Nα , gαβ .
(1.5)
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The line element corresponding to the hypersurfaces’ separation is
therefore written

(ds2)ADM = (gab)ADMdx
adxb

or

(ds2)ADM = −N2
(
dx4
)2

+ gab
(
Nαdx4 + dxα

)(
Nβdx4 + dxβ

)
=

=
(
−N2 −NαN

α
)(
dx4
)2

+ 2Nβ dx
4dxβ + gαβ dx

αdxβ , (1.6)

where gαβ is the 3-metric tensor of the hypersurfaces.
The ADM metric tensor has the contravariant components

(gab)ADM =





−N−2,
Nβ

N2
,

Nα

N2
, gαβ −Nα N

β

N2
.

(1.7)

As a result, the hypersurfaces have a unit time-like normal vector
with components

na = N−1 (1, −Nα) , na = (−N, 0) . (1.8)

When the fundamental three-tensor satisfies gαβ = δαβ the metric
(1.6) becomes

ds2 = −
(
N2 −NαN

α
)
dt2 − 2Nαdxdt+ dxαdxβ

or
ds2 = −N2dt2 − (dx+Nαdt)

2
+ dy2 + dz2. (1.9)

§1.2.2. Curvatures in the ADM formalism

The Einstein action can be written in terms of the metric tensor (gab)ADM

(1.5) and (1.7), as [6]

SADM =

∫
R
√
−g d4x =

=

∫
dt

∫
N
(
KαβK

αβ −K2 + (3)R
)√−g d3x+

+ boundary terms
(
Kα

αK
β
β =K2

)
, (1.10)

where g= det ‖gαβ‖, while (3)R stands for the intrinsic curvature tensor
of the hypersurface x4 = const

Kαβ = (2N)
−1

(−Nα;β −Nβ;α + ∂t gαβ) . (1.11)
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The tensor (1.11) (in which ; refers to covariant differentiation with
respect to the three-metric), represents the extrinsic curvature, and as
such, describes the manner in which that surface is embedded in the
surrounding four-dimensional space-time.

The determinant (4)g of the four-metric is shown to be related to the
determinant (3)g by √

− (4)g = N
√

(3)g .

The rate of change of the three-metric tensor gαβ with respect to
the time label can be decomposed into “normal” and “tangential” con-
tributions:

• The normal change is proportional to the extrinsic curvature −2N
Kαβ

of the hypersurface;

• The tangential change is given by the Lie derivative of gαβ along
the shift vector Nα, namely

L
N

gαβ = 2N(α;β) . (1.12)

The main advantage of the ADM formalism is that the time deriva-
tive is isolated and it can be used in further specific computations.
Furthermore we verify that

Kαβ = −nα;β , (1.13)

which is sometimes called the second fundamental form of the three-
space [7]. Six of the ten Einstein equations imply for Kα

β to evolve
according to [8]

∂Kα
β

∂t
+ L

N

Kα
β = ∇α∇β N +

+N
[
Rα

β +Kα
αK

α
β + 4π (T − C) δαβ − 8πTα

β

]
, (1.14)

where Rα
β is the three-Ricci tensor, and C =Tab n

anb is the material
energy density in the rest frame of normal congruence (time-like vector
field) with T =Tα

α .
It is convenient to introduce the three-momentum current density

Iα =−nc T
c
α. So the remaining four equations finally form the so-called

constraint equations

H =
1

2

(
R−Kα

βK
β
α +K2

)
− 8πC = 0 , (1.15)

Hβ = ∇α

(
Kα

β −Kδαβ
)
− 8πIβ = 0 . (1.16)

Equation (1.15) will be of central importance in the present theory.



268 The Abraham Zelmanov Journal — Vol. 2, 2009

Chapter 2. The Alcubierre Warp Drive

§2.1. The Alcubierre metric

In view of building a space warp progressing along the x-direction, one
may choose with Alcubierre

N = 1

N1 = − vs(t) f(rs, t)

N2 = N3 = 0




, (2.1)

we then have

(ds2)AL = − dt2 +
[
dx− vs f(rs, t) dt

]2
+ dy2 + dz2; (2.2)

this interval is known as the Alcubierre metric.
The function f(rs, t) is so defined as to cause space-time to contract

on the forward edge and equally expanding on the trailing edge of the
singular region. It is often referred to as a “top hat” function.

Let us now write down the Alcubierre metric under the following
equivalent form

(ds2)AL = −
[
1− v2s f

2(rs, t)
]
dt2 − 2vsf dtdx+ dx2 + dy2 + dz2, (2.3)

which puts in evidence the covariant components of the Alcubierre met-
ric tensor

(g44)AL = −
[
1− v2s f

2(rs, t)
]

(g41)AL = (g14)AL = − vs f(rs, t)

(g22)AL = (g33)AL = 1




. (2.4)

§2.2 Analyzing the “top hat” function

We now turn our attention to the “top hat” function f(rs, t) itself,
which allows for the bubble to develop. Alcubierre originally chosen the
following form

f(rs, t) =
tanh

[
σ (rs + ℜ)

]
− tanh

[
σ (rs −ℜ)

]

2 tanh (σR)
, (2.5)

where ℜ> 0 is the “radius” of the “region”, while σ is a “bump” param-
eter which can be used to “tune” the “wall” thickness of the singular
region.
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The larger this parameter, the greater the contained energy density,
so its shell thickness decreases. Moreover, the absolute increase of σ
means a faster approach of the condition

lim
σ→∞

f(rs, t) =

{
1 for rs ∈ [−ℜ, ℜ ] ,

0 otherwise.
(2.6)

Note that rs =0 at the center of the singular region (spaceship loca-
tion). For rs>ℜ, the function f(rs, t) should rapidly verify f(rs, t)= 0
and we recover the Minkowski space-time.

As outlined earlier, any function will suffice so long as the above
conditions are fullfilled. For simplified calculations, it is convenient to
introduce the equivalent piecewise continuous function as established
by Pfenning and Ford [9]

fp.c.(rs, t) =






1 for rs<ℜ− ∆
2
,

(−1
∆

)(
rs−ℜ− ∆

2

)
for ℜ− ∆

2
<rs<ℜ+ ∆

2
,

0 for rs>ℜ+ ∆
2
,

(2.7)

where the variable ∆ is the region shell “thickness”.
Setting the slopes of the functions f(rs, t) and fp.c.(rs, t) to be equal

at rs =ℜ, leads to the following result

∆ =
1 + tanh2 (σℜ)2
2σ [ tanh (σℜ)] . (2.8)

For large σℜ, one may admit the approximation

∆ ≈ 2

σ
. (2.9)

§2.3. Eulerian observer

§2.3.1 Definition

With the choice of the three-vector Nα =0, we have a particular coordi-
nate frame called normal coordinates, according to (1.8). Such a choice
of coordinates constitutes an “Eulerian” gauge.

In the Alcubierre formalism, N1 6=0 characterizes a special type of
observer who “measures” the warped shell and the associated region
when they cross through.

His four-velocity is normal to the hypersurfaces. This observer, who
also is referred to as Eulerian observer, is initially at rest. Just the front
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wall of the disturbance reaches the observer, he begins to accelerate, in
the progressing direction of the singular region, relative to observers
located at large distance from him.

Once during his “stay” inside the region, the Eulerian observer trav-
els with a nearly constant velocity given by

dx(t)

dt
= vs(tρ, ρ) f(ρ) , (2.10)

where tρ is the time measured at the coordinate

ρ =
√
y2 + z2 . (2.11)

This velocity will always be less than the region’s velocity unless
ρ=0, i.e. when the observer is at the center of the spaceship.

After reaching the region’s equator, the Eulerian observer deceler-
ates, and is left at rest while going out of the rear edge of the “wall”.

If using the piecewise continuous function of Pfenning for rs<ℜ−∆
2
,

any observer moves along the singular region with the same speed. In-
side the warped regions (“shells”), i.e. for

ℜ− ∆

2
< ρ < ℜ+

∆

2
,

we recover the conditions deduced from the “top hat” function (2.5),
as viewed by the Eulerian observer. The singular regions have toroidal
geometry concentrated on either part of the longitudinal direction of
travel x, and are thus perpendicular to the plane defined by ρ.

§2.3.2. Specific characteristics

Following Alcubierre, such an observer has a four-velocity normal to the
hypersurfaces t= const.

With the condition dτ = dt= ds, it is straightforward to show that
this four-velocity has the following components

(ua)AL =
[
1, vs f(rs, t), 0, 0

]

(ua)AL =
[
−1, 0, 0, 0

]

}
. (2.12)

The Eulerian observer follows time-like geodesics orthogonal to the
Euclidean hypersurfaces.

From the metric (2.2), inspection shows that the Eulerian observer
is in free fall, i.e. his four-acceleration is zero

(ab)AL = (ua)AL (u
b
;a)AL = 0 ,
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which confirms the postulate of §1.1.2.
In this case δαβ = gαβ , N =1, and (1.11) reduces to

Kαβ =
1

2

(
∂αNβ + ∂βNα

)
.

The contracted tensor, which is defined by

θ = − traceKαβ , (2.13)

is the expansion scalar defined above; it means the expansion of the
three-volume element which, taking account of (2.1), is

θ = vs
df

(dx)AL

, (2.14)

where (x)AL = x−xs(t) is the single derivative variable.
Hence, we find

θ = vs

(
df

drs

)[
drs

d(x− xs)

]
(2.15)

and by using the classical derivative formula of functions of functions,
it is not difficult to show that this last formula becomes

θ = vs

(
df

drs

)(
xs
rs

)
. (2.16)

Obviously, the shape of the function f , (2.5) induces both a volume
contraction and expansion ahead of, as well as behind, the singular
region.

§2.4. Negative energy requirement

§2.4.1. The Alcubierre-Einstein tensor

Before determining the form of the Alcubierre-Einstein tensor, we recall
briefly the so-called energy conditions.

Let us consider at a point p on the manifold (M, gab), an energy-
momentum tensor T ab.

For any time-like vector ua ∈Tp (tangent space at p), one must have
the inequality

C = Tab u
bub > 0 , (2.17)

known as the weak energy condition.
In addition, the “dominant” energy condition stipulates that for any

time-like four-vector ua> 0, the four-vector Qa=T a
b u

b is a non-space-
like vector.
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By continuity, the weak energy condition implies the null energy

condition which asserts that for any null vector ka

Tabk
akb > 0 .

Lastly, we consider the strong energy condition for any time-like
four-vector ua (

Tab −
1

2
gab T

)
uaub > 0 .

Note: The dominant energy condition implies the weak energy con-
dition and therefore the null energy condition, but not necessarily the
strong energy condition, which itself implies the null energy condition
but not necessarily the weak energy condition.

From the components of the metric tensor (2.4), it is possible to
form the contravariant components of the Ricci tensor (Rab)AL of the
Alcubierre metric.

The resulting Einstein tensor

(Gab)AL = (Rab)AL −
1

2
(gab)ALR

contains the time component (R44)AL and

(G44)AL = −
(
v2s
4r2s

)
ρ2
(
df

drs

)2
.

Using (G44)AL to define the energy density (T 44)AL, one finds

C =
1

8π
(G44)AL (u4u4)AL = − 1

32π

(
v2s ρ

2

r2s

)(
df

drs

)2
. (2.18)

This formula is always negative as seen by the Eulerian observers,
and therefore it is not compatible with the energy condition (2.17).

Another way of writing this equation is obtained by using the Gauss-
Codazzi relations to form the Einstein tensor as a function of both the
intrinsic and extrinsic curvatures, which eventually leads to [10]

C = Tab n
anb =

1

16π

(
(3)R+K2 −KαβK

αβ
)
. (2.19)

By choosing N1 =−vs f(rs), N2 =N3 =0, and (3)R=0 the Alcu-
bierre formulation is obtained again.

The energy density as measured by the Eulerian observer is given by

(C)AL =
1

16π

(
K2 −KαβK

αβ
)
, (2.20)
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thus referring to (2.13), we find back

θ = − ∂1N
1 = vs f

′(rs)
x− xs
rs

(2.21)

and

(C)AL=
1

16π

[
(
∂1N

1
)2 −

(
∂1N

1
)2 −2

(
∂2N

1

2

)2
−2

(
∂3N

1

2

)2 ]
, (2.22)

(C)AL = − 1

32π
v2s f

′2(rs)
y2 + z2

r2s
. (2.23)

§2.4.2. Negative energy

We now write down the form of the total negative energy required to
sustain the Alcubierre metric.

Without loss of generality, we may simplify the case by assuming
a constant velocity for the singular region, i.e.

x(t) = vs(t) (2.24)

at t=0, we have
rs(t = 0) ,

√
(xα)2 = r . (2.25)

Under these conditions, we must calculate the integral of the local
energy density over the proper volume d3x= dV (hypersurface)

E =

∫ √
y T 44 dV, (2.26)

where y is the determinant of the spatial metric on the hypersurface
t= const, which, in our case, is y=1.

One finds

E = − 1

32π
v2s

∫
ρ2

r2

[
df(rs, t)

dr

]2
dV. (2.27)

With the piecewise function of Pfenning (2.7), the energy is, in the
spherical coordinates

E = − 1

12
v2s

∫ ℜ+∆/2

ℜ−∆/2

r2
(
− 1

∆

)2
dr. (2.28)

The contributions to the energy come only from the singular region’s
“shell” areas.

We then see that one needs a special type of negative energy (matter)
to travel faster than the speed of light by means of a Warp Drive. Such
an exotic matter has never been detected so far.
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Chapter 3. Causality

§3.1. Horizon formation

We regard the speed of the spaceship v as constant, and rs is then

rs =

√
(x− vt)2 + y2 + z2 (3.1)

reducing the metric (2.3) to two dimensions, y= z=0, we obtain

ds2 = −
(
1− v2f2

)
dt2 − 2vfdxdt+ dx2 (3.2)

for which now

x > vt , (3.3)

r = x− v t = x′ (3.4)

this new variable defines, in the original Alcubierre metric, the proper
spatial coordinate

dx = dx′ + vdt

of the spaceship frame from which are observed the events in order to
ensure a control communication.

Adopting the new coordinate

dx′ = dx− vdt (3.5)

and setting

S(r, t) = 1− f (r, t) , (3.6)

we may keep the metric (3.2) under the same form

(ds2)HS = −
[
1− v2S(r, t)2

]
dt2 − 2vS(r, t)dx′dt+ dx2. (3.7)

We will refer to it as the Hiscock metric after William A. Hiscock [11].
It can be written as

(ds2)HS = (g44)HSdt
2 + 2(g41)HSdx

′dt+ dx′2 (3.8)

with the covariant components of the fundamental tensor

(g44)HS = −
(
1− v2S2

)

(g41)HS = (g14)HS = − vS

(g11)HS = (g22)HS = (g33)HS = 1





. (3.9)
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The spaceship frame metric (3.7) is also expressed by

(ds2)HS = −H(r)

(
dt− vS

H(r)
dx′
)2

+
dx′2

H(r)
, (3.10)

where
(g44)HS = −H(r) ,

we then introduce a new time coordinate

dt′ =
vS

H(r)
dx′, (3.11)

which is manifestly the spaceship’s proper time since H(r)= 1 (thus
f =1) as r=0.

At the same time, the coordinates are not asymptotically normal-
ized. Indeed, for large r distant from the spaceship, H(r) approaches
1− v2 rather than 1. One may solve the problem by defining yet one
more set of coordinates

T ′ =
√
1− v2 t′ , X = x′

√
1− v2 . (3.12)

By examining the form of the metric (3.10), the coordinate system
seems to be valid only for r > 0, i.e. if v < 1 as per (3.3).

However, when v > 1 (superluminal velocity), there exists a coor-
dinate singularity, that is, an event horizon at the location r0 for the
metric (3.10), such that

H(r0) = 0
or

f(r0) = 1− 1

v
. (3.13)

This horizon first appears for the occupants of the spaceship, who
are unable to “see” beyond the distortion, and therefore cannot com-
municate with the outer universe.

§3.2. Reducing the energy

Based on the works produced byW. Hiscock, F. Loup, D. Waite and also
E. Halerewicz et al. [12, 13], it has been proposed a particular metric
which allows for the use of the warped region in order to “causally
connect” the inside of the spaceship and the outside of the singular
bubble region.

This generalized Hiscock metric (3.7) can also dramatically lower
the negative energy requirements.
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§3.2.1. The ESAA metric

By lowering the energy requirement, the proposed model intends to show
that the Warp Drive metric is much more realistic than that originally
shown by Pfenning and Ford.

We refer to this new space-time metric as Ex Somnium Ad Astra

(ESAA), which literally translates as From a Dream to the Stars (Simon
Jenks).

We are going to introduce the change ρ= rs of the variables. In-
dependently of this change, the ESAA metric differs from (3.7) by the
fundamental tensor whose covariant components are

(g44)ESAA = −
[
N2(ρ)− vsS(ρ)

2
]

(g41)ESAA = (g14)ESAA = − vsS(ρ)

(g11)ESAA = (g22)ESAA = (g33)ESAA = 1





, (3.14)

thus from these we readily note that the “time lapse” function is no
longer equal to 1.

In cylindrical coordinates (following x), the ESAA metric is

(ds2)ESAA = −
[
N(ρ)− vs(r)S(ρ)

]2
dt2 −

− 2vsS(ρ) + dx′2 + dr2 + r2dφ2. (3.15)

Let us set
r = ρ sin θ , x′ = r cos θ ,

it is then easy to see that (3.15) becomes

(ds2)ESAA =
[
N2(t, ρ)− vs(t)S

2(ρ)
]
dt2 + 2vs(t)S(ρ) cos θ dtdr −

− 2vs(t)S(ρ) ρ sin θ dθdt+ dr2 + ρ2dθ2 + ρ2 sin2 θ dφ2. (3.16)

§3.2.2 Required energy

The energy density of the spaceship frame is given by

(T 44)ESAA = − vs
32π

(
dS

dρ

)2
(sin θ)

2

N4(ρ, t)
. (3.17)

Clearly, an arbitrarily large N reduces the (negative) energy density
requirement of the spaceship frame.

In our given coordinate system, the volume element is given by

dV = ρ2 sin θ dρ dθ dφ ,
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rs f S N

0 1 0 1.023

20 0.997 0.0023 3.428

50 0.5 0.5 2×1075

100 4.5×10−5 0.9999 1.0950

Table 1: Numerical estimates for the lapse function.

thus reinstating Newton’s constant G and c, the total energy required
to sustain the distortion is finally given here by

E = −
∫ ∞

0

[
vsc

4

12G

(
dS

dρ

)2
1

N4

]
ρ2dρ . (3.18)

Another modification of the Alcubierre geometry has been suggested
by Van den Broeck [14], in order to reduce the amount of needed nega-
tive energy.

The Van den Broeck metric is

ds2 = − dt2 +B2(rs)
[
dx− vs(t) f(rs) dt

]2
+ dy2 + dz2,

where B(rs) is a twice differentiable polynomial such that its numeri-
cal value is −1<B(rs)6 1+α for ℜ′ 6 rs 6ℜ′ +∆′, and B(rs)= 1 for
ℜ′ +∆′ 6 rs (here ℜ′ is the radius of an internal “blown pocket” within
the Alcubierre region with thickness ∆).

This modification keeps the surface area of the bubble itself micro-
scopically small, while at the same time expanding the spatial volume
inside the region caused by the factor α.

One can show that the energy density given by the tensor T44 is
much lower than the one calculated by Alcubierre.

As an example, reinstating again the factor c2/G, to get the kilo-
gram units, for a bubble of ℜ=100m, the standard Alcubierre value
for the total negative energy would be E≈−6.2×1062 vs Kg, which is
theoretically enormous, but with the Van den Broeck solution (vs ≈ 1),
this energy is reduced to 4.9×1030Kg, that is a few solar masses: this
shows that reasonable energy levels can be reached by investigating new
models.

It is however difficult to establish energy level comparisons. This is
because each model is characterized by different and newly introduced
parameters.

In the case of the ESAA metric, we can, as an indication, compute
some values for the functions f and S with the resulting lapse function
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N , setting the initial values for the bump parameter as σ=0.1 and
bubble radius ℜ=50m.

We first notice that in the warped regions (rs =ℜ), the lapse function
N takes on very large values, which appears as a severe drawback, but
interestingly, for rs>ℜ, the ESAA model yields back a lapse function
N→ 1, which is in full accordance with the free fall condition (1.3).

§3.3. Causally connected spaceship

§3.3.1. The spaceship frame of reference

As we defined the Pfenning piecewise function (2.7) corresponding to
the Alcubierre “top hat” function, we may establish the similar type of
function with the time lapse N inserted

f(rs)p.c. =






1 for rs < ℜ − ∆
2
,

1−
(

1
N

)
rs −ℜ for ℜ − ∆

2
< rs < ℜ+ ∆

2
,

0 for rs > ℜ+ ∆
2
.

The “free fall” condition demands

N(rs) =

{
1 for rs < ℜ− ∆

2
,

1 for rs > ℜ+ ∆
2
.

The spaceship frame Hiscock-ESAA horizon is thus defined as

H(rs) =





1 for rs < ℜ− ∆
2
, H(rs) > 0 ,

N2 −
(
vs
N

)2
for rs = ℜ− ∆

2
, H(rs) > 0 ,

N2 for rs = ℜ , H(rs) > 0 ,

N2 −
(
vs
N

)2
for rs = ℜ+ ∆

2
, H(rs) > 0 ,

where we emphasize that N does not depend on the speed vs.
Three cases are to be considered:

Subliminal velocities : For large values of N , the spaceship will always
be connected to the domain from rs =0 (center of the spaceship)
to the exterior part of the bubble rs =ℜ+ ∆

2
, and since H(rs)> 0,

there is no horizon;

Luminal velocity : For the same domain, H(rs)= 0, since N =1 and
S(r)= 1, a horizon will appear in front of the spaceship, which
becomes causally disconnected from the part beyond the bubble.
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Provided that N is not a function of the speed and has been en-

gineered at subluminal speeds, it is always connected to the space-

ship and the warped region
∫ ℜ+∆/2

ℜ−∆/2 can be “controlled” by the

“astronauts”;

Superluminal velocities : The same argument applies here.

§3.3.2. A remote frame of reference

With the function N(t, rs), the Alcubierre metric is written

(dτ2)ALN = (ds2)ALN = −N2dt2 −
[
dx − vs f(rs, t) dt

]2

or

(ds2)ALN = −
(
N2 − vs f

2(rs, t)
)
dt2 − 2vs f(rs, t) dtdx + dx2 =

= −M(rs)dt
2 − 2vs f(rs) dxdt + dx2, (3.19)

where M(rs)=N2 − v2s f(rs)
2.

We will refer to (3.19) as the ESAA-Alcubierre metric, as observed
from a remote frame of reference.

The remote metric of Hiscock, analogous to (3.10), is thus given by

(ds2)ALN = −M(rs)dt
′2 +

N2

M(rs)
dx2,

lending

dt′2 = − dt2 − 2vs f(rs) dxdt

M(rs)
+
N2 −M(rs)

M(rs)2
dx2. (3.20)

If vs< 1 (subliminal), M(rs)> 0 then the domain is causally con-
nected to the spaceship’s remote frame.

If vs =1 (luminal), M(rs)= 0, a horizon appears for the remote
frame.

If vs> 1 (superluminal), M(rs)< 0, a horizon appears somewhere
between ℜ− ∆

2
and rs<ℜ− ∆

2
.

Using the continuous “top hat” function in (3.20) for the warped
region of Pfenning

[
ℜ− ∆

2
, ℜ+ ∆

2

]
, one obtains

M(rs) = N2 − h

with

h =

√
1−

[
v2s (rs −ℜ)2

]
N2(t, rs) .

Given that N2 ≫ vs f
2(rs), then M(rs)> 0 and the warped region

will be always connected to the remote frame.
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In other words, for large N , a signal can be sent by the spaceship to
rs =ℜ+ ∆

2
, and a signal sent by a remote observer can reach rs =ℜ− ∆

2
.

Therefore the region between

ℜ − ∆

2
6 rs 6 ℜ+

∆

2

is observed from both frames, and may allow us to engineer the space-
ship (speed control). Reverting now to the Alcubierre function

f(rs, t) =
tanh

[
σ(rs + ℜ)

]
− tanh

[
σ(rs −ℜ)

]

2 tanh(σℜ) ,

we know that it is 1 in the spaceship and 0 far from it. There exists
an open interval where f(rs, t) starts to decrease from 1 to 0, precisely
where the negative energy is located.

In order to maintain the “free fall” condition (1.3), N should reduce
to 1 in the spaceship and far from it outside the singular region.

In order to fulfill this condition, we suggest here the following form
for N which differs from the formula (33) of [13]

N = exp
(
tanh

[
σ(rs −ℜ)

]2)
. (3.21)

This has the advantage of taking higher “peak” value near the space-
ship where the excessive proper time Ndτ is thus rapidly shortened
as rs →ℜ.

Chapter 4. The EGR-Like Picture

§4.1. A particular extended Lie derivative

Instead of considering the Alcubierre function f associated with a local
Riemannian structure emerging from a background Euclidean space-
time, we choose here to express f in the EGR-like formulation.

Unlike the classical theory, this singular region will now be distin-
guished from a non-flat background space-time i.e. a “weak” Rieman-
nian background manifold, which is physically more appropriate.

Our aim is to find an additional energy decrease with a way to
possibly avoid violating the weak energy condition.

We begin by defining an extended Lie derivative of gab that leads to
a new extrinsic curvature.

Let us consider the infinitesimal coordinates shift

x′a = xa +Na, (4.1)
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the relevant metric variation is classically given by

δgab = − gac
∂N c

∂xb
− gcb

∂N c

∂xa
− ∂gab
∂xc

N c. (4.2)

Furthermore it can be shown that [15]

δgab = (Na;b +Nb;a) = L
N

gab . (4.3)

When L
N

gab=0, we have the Killing equations which preserve the

metric (a condition referred to as infinitesimal isometry) under (4.1).
In the EGR theory, the metric undergoes an additional variation ζ

upon (4.1) due to the covariant derivative of the metric, and we expect
to find for the Killing equations the following expression

L
N

gab = ζ gab . (4.4)

We need now to define the explicit form of the infinitesimal variation
ζ. To this effect we will first consider a vector l with components Ai

such that
l2 = gik A

iAk

upon (4.1) this vector is varied by

l′2 = (1 + ζ) l2,

i.e.
dl2 = ζ l2.

Obviously we have

dl2 = (Dc gik)A
iAk dxc,

where, as stipulated in the EGR theory,

Dc gik =
1

3

(
Jk gci + Ji gck − Jc gik

)
,

thus
dl2 = l2 gik (Dc gik) dx

c

and so
ζ = gik (Dc gik) dx

c

setting
gik (Dc gik) = Bc

we write
ζ gab = gabBcdx

c.
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Within a sufficient approximation, we may set

dxc = N c,

hence we define the “extended Lie derivative” of gab as

L
N′

gab ≡ L
N

gabBcN
c, (4.5)

where N ′ is the rescaled shift vector.
At this stage, we want to stress that the assumed extension is here

always considered in a Riemannian scheme.
The definition (4.5) formally holds for a Lie derivative of gab, pro-

vided the last term is “likened” to a Riemannian correction.
Indeed a “non-Riemannian” Lie derivative (i.e. defined in the frame-

work of the EGR theory) is not applicable, due to the algebraic nature
of this operation.

The EGR theory however provides a justification as to the origin of
the extra term in (4.5).

§4.2. Extended extrinsic curvature and associated energy
density

We are now able to define the “extended” extrinsic curvature as

K ′
αβ = (2N ′)−1

(
∇αN

′
β +∇β N

′
α +

∂gαβ
∂t

)
. (4.6)

Accordingly, we still consider the classical field equations as inferred
from the Hilbert-Einstein action

S =

∫
R
√−g d4x .

By doing so, we set forth a close one-to-one correspondence between
the EGR scalar curvature R=R− 1

3

(
∇eJ

e+ 1
2
J2
)
and the modified

Riemannian scalar curvature R depicted in Riemannian geometry.
In this perspective, the equation (2.19) becomes here

C′ =
1

6π

(
(3)R′ −K ′

αβK
′αβ +K ′2) . (4.7)

Now we are going to generalize the Alcubierre metric by following
the same pattern which has led to (2.20).

However, based on the extended formulation, we now choose

N ′1 = − vs f(rs) , (4.8)
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N ′2 = N2, N ′3 = N3 (4.9)
and

(3)R′ = (3)R .

An immediate and important consequence appears when one ob-
serves the form of the expression

(C′)AL=
1

16π

[
(3)R−Kαβ(N

′1, N)Kαβ(N ′1, N)+K2(N ′1, N)
]
. (4.10)

In contrast to the classical Alcubierre scheme, the non-vanishing
initial Riemannian scalar curvature of the hypersurfaces may have now
a significant impact on the negative energy density reduction.

In addition, the term K2, which should not cancel off here, con-
tributes even further to lowering this energy.

Discussion and Concluding Remarks

First observation : The expansion of the volume element θ=−Kα
α is

attached to the bubble which it generates and is thus a local prop-
erty;

Second observation : The free fall condition (1.3) requires obviously
a flat space (flat Universe), instead of a Riemannian one.

However, in the EGR context, the non-vanishing scalar curvature
(3)R may be also regarded here as sufficiently “local” with respect to the
(quasi) Euclidean space as a whole, wherein the Eulerian observers are
situated.

Indeed, if the three-volume of each hypersurface t= const is ex-
tremalized, the conditionK = const results (see André Lichnérowicz [16]
and also subsequently maximum slicing conditions by Yvonne Choquet
Bruhat [17]).

It is then possible to impose this condition, with respect to using
equation (1.16), to eliminate (3)R from the trace of equation (1.15): in
this case it is shown that the lapse function can be taken to be N→ 1
as an asymptotic boundary condition, which leads to an asymptotically
flat space-time.

This condition is physically satisfied when one considers the scale of
distances in our observable Universe as compared to the bubble warping
dimensions, so that (4.10) holds with an asymptotically flat universe
wherefrom the distant observers are located.

Hence, we can always imagine a situation where stellar massive ob-
jects arranged in such a required configuration are coming into play, and
where the influence of their curvature given by (3)R may then be used to
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balance the negative energy, which renders the Warp Drive compatible
with the weak energy condition.

With these two observations our theory tends to run counter to the
zero expansion Warp Drive suggested by José Natario [18].

Needless to say, all arguments regarding the piecewise function
causality constraints detailed above are equally valid in our extended
formulation.

Within the standard Alcubierre metric, it is however possible to
avoid the problem of causally disconnecting the spaceship from the outer
edge of the bubble.

A somewhat recent two dimensional metric concept has been pro-
posed by Serge V. Krasnikov [19] in which the time for a round trip
to a distant planet as measured by clocks located on the Earth can be
made arbitrarily short.

To connect the Earth to the planet, a space-time extension of this
metric leads to the creation of a “tube” wherein the space-time is flat,
but the light cones are opened out so as to allow superluminal travel [20].

In some cases, these metrics are shown not to lead to the fatally
closed time-like curves.

Appendix. Detailing a stellar round trip example according
to Alcubierre

A1. Stellar journey

Consider two quasi-static planets A and B, which are apart from each
other at a distance D in the Euclidean space-time.

A spaceship starts off on its own (self-propulsion) from A at an initial
moment of time t= tA, with a subluminal velocity v < c.

At a distance d away from A, d≪D, the spaceship stops at a point
where the bubble is being created, which then drags the spaceship to-
wards the planet B, thus inducing a coordinate three-acceleration a that
varies rapidly from a=0 to a= const 6=0.

Halfway, between A and B, the bubble is controlled so as to invert
this acceleration from a to −a.

As the absolute values of acceleration and deceleration are assumed
equal, the spaceship will eventually be at rest at a distance d away from
the planet B at the time the disturbance will disappear (vs =0) and the
journey is further completed at a “physical” speed v < c.

The total coordinate time elapsed in the one-way trip from the planet
A to the planet B is: T = tself-propulsion+ tbubble. Had the acceleration
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been constant along the distance (D− 2d), we would have

(D − 2d) =
a t2bubble

2
,

where

t2bubble =
2 (D − 2d)

a
.

In fact, during the accelerating stage of the bubble, we will have

(+)t2bubble =
(D − 2d)

a

and during the decelerating stage

(−)t2bubble =
(D − 2d)

a
,

which in total yields

T = tself-propulsion +

√
2 (D − 2d)

a
that is

T = 2

(
d

v
+

√
(D − 2d)

2a

)
.

A2. Deceleration stage

Remember that we considered planets A and B as static in a quasi-flat
space. In this case dx= dy= dz=0. This means that their proper time

is equal to their coordinate time (reinstating c): t= τ = x4

c .
The proper time τ measured in the spaceship, on the other hand,

must take into account the Lorentz transformations

τship = 2

(
d

γv
+

√
(D − 2d)

2a

)
,

where

γ =
1√

1− v2/c2
.

If the radius ℜ of the bubble satisfies, as it should, ℜ≪ d≪D, one
may admit the approximation

τ ≈ T ≈
√

2D

a
.
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This clearly shows that T can be chosen as small as we like, by
increasing the value of a.

As outlined by Alcubierre, since a round trip will only take twice as
long, we can be back on the planet A after an arbitrarily short proper
time, both from the point of view of an observer on board of the space-
ship and from the point of view of an observer located on the planet.

The spaceship will then be able to travel much faster than the speed
of light while remaining on a time-like trajectory (which is inside its
local light-cone).
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